

Introduction to Manual Backdooring

By: @abatchy17
http://www.abatchy.com

https://twitter.com/abatchy17
http://www.abatchy.com/

Page | 2

Contents

Chapter 1: Introduction ... 3

What is backdooring? ... 3

Lab Environment ... 4

Quick Peek into PE Structure .. 5

Code Caves .. 7

Address Space Layout Randomization (ASLR).. 8

File Offsets and RVA .. 9

Chapter 2: Manual Backdooring ... 10

Manipulating Execution Flow ... 10

Classic Backdooring ... 12

Chapter 3: Hijacking Existing Code Caves ... 19

Chapter 4: The Human Factor .. 23

More Anti-Virus Bypassing Shenanigans .. 26

How do I protect myself? .. 27

Appendix .. 28

Equations ... 28

Repositories ... 28

Acknowledgements .. 29

References ... 30

Page | 3

Chapter 1: Introduction

DISCLAIMER: This research is strictly for educational purposes. Use at your own risk.

What is backdooring?

In the context of this paper backdooring means making seemingly harmless executables (Portable Executables or
PEs in this paper) execute malicious payloads. That payload could be anything from launching calc.exe to adding a
user account to spawning a remote shell. Any self-sufficient payload, aka shellcode.

Although bypassing anti-virus software is not the main focus, an iterative analysis will be made to demonstrate
the efficacy of the backdooring technique. This topic is covered several times already, but none focused on
dealing with ASLR, not does using existing code caves which this paper does cover.

One excellent tool that automates backdooring a whole spectrum of executables is The Backdoor Factory by Josh
Pitts. I'd like to thank him for helping me explain some parts. Yet, don't rely on it yet, knowing how you can
implement backdoors manually won't hurt. ;)

Why would you backdoor stuff though? Are you evil?
Maybe. No! Did you even read the disclaimer?

Do you like it in the backdoor?
…

Okay okay, what's a good target for backdooring?
Since the executable will ultimately create a reverse/bind shell, user shouldn't get suspicious when network traffic
is generated or when asked to add a firewall exception. Great targets are NetCat, SSH/Telnet clients and many
others.

Another usage would be cracking software, there's that game you want to play without paying so you download a
"cracked" version with a patched .exe. Because they must've only patched it not to require paying, without any
other changes, right?

PsExec (part of Sysinternal tools) will be used for our backdooring tutorial. PsExec is our tool for a number of
reasons; it's widely used by sysadmins, already expected to generate network traffic, and communicates with
other machines. Its intended purpose is already to load and execute binaries which makes it less suspicious when
creating a bind/reverse shell. Funnily enough, Sophos AV flags PsExec as malware (WTF?), so its result won't be
counted in our analysis.

How is this paper organized?
This paper is divided into four chapters:

Chapter 1: An introduction (you're reading it now) as well as a lab setup (you won't just be reading, will you?), a
brief look into PE structure, code caves, ASLR and addressing.

https://github.com/secretsquirrel/the-backdoor-factory
https://technet.microsoft.com/en-ca/sysinternals/bb897553.aspx
https://www.virustotal.com/en/file/3337e3875b05e0bfba69ab926532e3f179e8cfbf162ebb60ce58a0281437a7ef/analysis/

Page | 4

Chapter 2: Focuses on manually backdooring a legitimate PE the old fashioned way by adding an entire new
section.
Chapter 3: We'll be making use of existing code caves instead of adding a new section.
Chapter 4: Fourth module demonstrates a smarter way to prevent execution of the payload by default (adding a
human factor).

What prerequisites are needed to follow this paper?
I'm learning about all of this myself, so that probably means not much. But to follow all parts and/or to recreate
the implementations, you're expected to have good knowledge of x86 assembly, shellcoding, debuggers
(specifically OllyDbg/Immunity) and persistence.

One last thing, are you a llama or an alpaca?
Yes.

Lab Environment

To protect our system, virtual machines will be used for manipulation and executing the payloads. Reader can use
whatever setup/tools they like, list below shows the specific OS versions and tools used throughout the paper.

Virtual Machine 1: Windows 7 SP1 (x86)

Immunity Debugger (http://debugger.immunityinc.com/ID_register.py)

LordPE (http://www.malware-analyzer.com/pe-tools)

XVI32 (http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm)

Stud_PE (http://www.cgsoftlabs.ro/dl.html)

Netcat (Can be found in Kali /usr/share/windows-binaries/)

PsExec (https://technet.microsoft.com/en-ca/sysinternals/bb897553.aspx)

Virtual Machine 2: Kali Linux (Used 2016.2 32-bit but should work for any version)
• All tools needed are pre-installed.

http://debugger.immunityinc.com/ID_register.py
http://www.malware-analyzer.com/pe-tools
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
http://www.cgsoftlabs.ro/dl.html
https://technet.microsoft.com/en-ca/sysinternals/bb897553.aspx

Page | 5

Quick Peek into PE Structure

This chapter will focus on specific parts of Portable Executables that are needed for the backdooring concepts
discussed later. For a more in-depth explanation, check this, but for now we'll focus on what matters for the
backdooring process.

Let's use our Windows 7 VM, load PsExec.exe in LordPE, you should see this:

• EntryPoint: Virtual offset from base address that points to the first command to be executed

(ModuleEntryPoint).
• ImageBase: Preferred base address to map the executable to, although default value is 0x00400000, this

value can be overridden. Ignored if compiled with ASLR.
• SectionAlignment: Alignment of the sections when loaded in memory, cannot be less than page size (4096

bytes). Sections have to occupy space of multiples of SectionAlignment in memory.
• FileAlignment: Alignment of the sections in the raw file, usually 512.
• Magic: Slightly overhyped term for File Signature (Sorry, nothing magical here).
• NumberOfSections: Number of sections defined after header, discussed later.
• SizeOfHeaders: Combined size of all headers (including DOS header, PE header, PE optional header and

section headers).
• Checksum: The image file checksum.
• SizeOfOptionalHeader: As it says. Optional header contains data like preferred ImageBase, EntryPoint,

Checksum and many other fields.

https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files

Page | 6

Next, click on Sections:

As NumberOfSections shows, we have 5 sections.

The .text section contains the executable code, so by default it needs to be readable and executable.
.data and .rdata contains read-only data, executing content inside this section is possible by setting the Executable
flag.
.rsrc contains resource data, .reloc section is usually not needed unless there are base address conflicts in
memory.

Now, onto more definitions:

• Voffset: Offset of the section from the ImageBase when loaded into memory.
• VSize: Size of the section when loaded into memory.
• ROffset: Real file offset on disk, this can be verified using your preferred HEX editor tool.
• RSize: Real size of the section on disk.
• Flags: Contains flags defining "permissions" on sections. For easy viewability, right click a section - > Edit

SectionHeader then the small box next to Flags text field.

Page | 7

Code Caves

An excellent article about code caves written by Drew Benton defined code caves as "a redirection of program
execution to another location and then returning back to the area where program execution had previously left."
In context of backdooring, a code cave is a new or unused dead space where we can put custom code and
redirect the execution to it, without breaking the actual executable.

Couple of techniques we'll review:
• Adding a new section

Pros: Lots of space.
Cons: Binary size increases, more susceptible to get flagged as malicious.

• Using existing dead space
Pros: File size doesn't change, less susceptible to get flagged as malicious.
Cons: Might be very low on space, section permissions might need to change to allow code execution.

There are 2 more techniques which this paper doesn't cover:
• Extending last section

Pros: Number of sections doesn't change.
Cons: Binary size increases, more susceptible to get flagged as malicious, heavy dependency on the
last section. Doesn't perform better than adding a new section.

• Cave jumping

Pros: Flexible, can utilize a single or a mix of existing techniques. Possibly stealthier.
Cons: Tricky to break payload into smaller parts, might require changing permissions on multiple
sections.

https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

Page | 8

Address Space Layout Randomization (ASLR)

ASLR is a security feature that randomises the base address of executables/DLLs and positions of other memory
segments like stack and heap. This prevents exploits from reliably jumping to a certain function/piece of code.

When a PE/DLL is compiled with /DYNAMICBASE on an OS with ASLR support, the .reloc segment (remember?) is
no longer needed. When patching instructions we can't use fixed jumps, instead we have to make use of relative
offsets between current instruction and next instruction to jump to (will be explained in details later).

If you want to see ASLR in action, load PsExec in Immunity and go to the Memory tab (ALT+M):

Base Address is 0113 0000. Restart it again (you need to close Immunity):

Base Address became 0016 0000. That's all you need to know about ASLR for now.

Page | 9

File Offsets and RVA

As discussed earlier, when a PE is loaded into memory, it's not mapped exactly the same way it's on disk, which
introduces a few terms we need to keep in mind for later usage.

• File Offset: Current position in file which is the same when examined with a HEX editor.
• Base Address: Starting address of the binary when loaded into memory. Preferred value by default is

0x00400000 but with ASLR enabled, this value changes on every load.
• Virtual Address: Address of the segment when loaded into memory, that includes the base address the

binary starts at.
• Relative Virtual Address: Same as the virtual address with the base address subtracted.

EntryPoint is at 9DE6, yet this value is the RVA, so when mapped into memory it will be at 𝐼𝑚𝑎𝑔𝑒𝐵𝑎𝑠𝑒 +
𝐸𝑛𝑡𝑟𝑦𝑃𝑜𝑖𝑛𝑡. Again, ImageBase value shown is a preferred one, if that location is occupied the PE loader will find
another location. If ASLR is enabled, this value is ignored completely.

Load PsExec into Immunity, you should see the following:

Next go to the Memory Window (ALT+M):

When the binary is loaded into memory, sections are mapped differently than on file, if you look at the Size
column, all sizes are multiples of 4096 (remember SectionAlignment?)
BaseAddress is 0x00F0000, can be found either by checking the start address of the PE header or value in Owner
column.
One more observation is the SizeOfHeaders field, which is 400h bytes, yet it's mapped into 1000h bytes, so there's
a 600h bytes offset between FileOffset of .text and its RVA equivalent. Equation 2 in Appendix allows you to
calculate this.

Page | 10

Chapter 2: Manual Backdooring

Manipulating Execution Flow

The following steps will demonstrate how a basic backdoor implementation should look:

1. Hijacking code execution: Easiest way to execute the backdoor is replacing the instruction at
ModuleEntryPoint with JMP Cave. JMP Cave will possibly overwrite more than a single instruction, so save
them for later as well as the address of the instruction following it.

2. Storing current state: As executing the binary is crucial to hide the backdoor, we need to store the values in
all registers/flags. This is done by two instructions, PUSHAD and PUSHFD. Take note of ESP.

3. Executing malicious payload: Now we can safely execute the shellcode.
4. Aligning stack: Shellcode possibly pushes data onto the stack. As we need to retrieve the registers/flags, ESP

might need to be aligned. Compare its value with ESP after step 3 and align it (ADD ESP, alignment).
5. Restoring state: As you'd expect, just call POPFD/POPAD. Needs to be done in reverse order as stack is a

LIFO structure.
6. Execute overwritten instruction: We overwrote some instructions at Step 1, time to rewrite them.
7. Continue execution: Last step is jumping to the next instruction to be executed to continue with the normal

flow of the binary.

Before Backdooring
+--+
| .text Section Start |
| |
| |
| |
|- |
| Some Instruction |
|- |
| |
| |
| .text Section Ends |
+--+
| |
| |
| |
| |
| |
| Other Sections (.data/.reloc) |
| |
| |
| |
| |
+--+

Page | 11

After Backdooring
+--+
| .text Section Start |
| |
| |
| |
|- |
| Instruction replaced with JMP Cave |
|- |
| Instruction to execute After Cave |
|- |
| |
| .text Section Ends |
+--+
| |
| |
| |
| |
| |
| Other Sections (.data/.reloc) |
| |
| |
| |
| |
+--+
| Code Cave |
| PUSHAD/PUSHFD |
| |
| [Shellcode] |
| |
| Align Stack |
| Overwritten Entry Point Instruction |
| JMP Next Instruction |
+--+

Page | 12

Classic Backdooring

First technique is adding a whole new section at the end of the original PE, a regular Meterpreter payload is ~350
bytes, let's create a new section to fit that using Stud_PE.

NOTE: Reason I'm using Stud_PE instead of LordPE + a hex editor is that it sometimes failed me, feel free to use
whatever you're comfortable with.

Open Stud_PE, drag PsExec.exe into it, go to Sections tab, right click -> New Section and fill in the fields as the
following:

After it's added, you should see this:

Flags make the section by default RWX, as the section should be readable and executable, writable flag should be
set if changes are made to the section when in memory.

Page | 13

Good, section exists, double click it and you should get a dump full of nulls.

This is where our payload will reside. Before we go on let's check how suspicious this file already is. For that we'll
use a website called VirusTotal.com to scan the file against popular AV vendors. Although it distributes the results,
NoDistribute.com seemed to malfunction and reported it to be clean (0/35). Also, I don’t mind sharing the file, so
not much to lose.

Page | 14

NOTE: PsExec gets flagged by default with Sophos anti-virus, so it will be ignored.

Just having an extra section made 3/59 AVs suspicious. Let's move on for now.

Next step is to hijack the first instruction by jumping to our new section, for that we need the RVA for both the
.test section, first CALL instruction and address of the next instruction.

001C9DE6 > $ E8 15770000 CALL PsExec_b.001D1500
001C9DEB .^E9 7BFEFFFF JMP PsExec_b.001C9C6B

RVA of 001D1500 is RVA_11500. RVA of 001C9DEB is RVA_9DEB, RVA of .test is RVA_7D0000.

NOTE: If JMP CAVE overwrites more than a single command, you need to handle that too. Luckily for us, CALL
PsExec_b.001D1500 opcode size matches JMP CAVE.

We'll use nasm_shell.rb (part of Metasploit project) to get the correct instruction. If you assemble a JMP
.test_section_start it might work once, but the address jumped to will be hard coded and won't work on reload.

To jump from 9DE6 to 7 D000, offset is 7 321A.

Copy the generated opcode (E915320700) then go back to Immunity. Right click the first instruction -> Binary ->
Binary Paste.

Step a single instruction (F7), you should land on the very start of .test section.

Sweet, restart debugging (CTRL+F2), paste the new opcode and right click -> Copy To Executable -> All
Modification. On the new window, right click -> Save File. I'll name it PsExec_bkdr1.exe.

Open the new executable and you should see the newly overwritten command (You think it changed? Take a
closer look). Next, step to the new section and let's add some code.

Page | 15

1. PUSHFD/PUSHAD to store values in registers/flags.
2. ~400 NOPs (This is where the shellcode will reside along with stack alignment).
3. POPAD/POPFD
4. Overwritten instruction(s) (Hijacked ModuleEntryPoint)
5. JMP to next instruction

At the very end, you should restore the registers/flags.

Memory should look like this:

RVA_7D000 - RVA_7D001: PUSHAD/PUSHFD
RVA_7D002 - RVA_7D1FD: NOPs (space for shellcode and stack alignment).
RVA_7D1FE - RVA_7D1FF: POPFD/POPAD (Stack is LIFO).

Starting 011D D200 (RVA_7D200), we want to add the following couple of instructions:

• CALL RVA_11500
• JMP RVA_9DEB

We need to CALL RVA_11500, pretty easy with nasm_shell:

Copy the opcode and make sure you select enough space for the new instruction.

Page | 16

Same thing to jump from RVA_7D205 to RVA_9DEB:

Final changes should look similar to this:

Save the changes to PsExec_bkdr2.exe. Executable should work exactly as original as the code cave handles
proper execution of the binary. Another quick scan shows 9/66 detection rate. Note that the executable doesn't
contain any malicious payload yet.

Let's generate our payload using msfvenom, we'll use the windows/shell_reverse_tcp payload.

Important notes:
• Default EXITFUNC is process, which will simply exit the process after closing the shell, we do not want that.

EXITFUNC=none is used as execution won't be paused.
• Generated payload needs to be modified as it calls WaitForSingleObject with value -1 (wait indefinitely). We

don't want that either.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032(v=vs.85).aspx

Page | 17

Select enough space after the PUSHAD/PUSHFD commands and paste the generated payload. Near the end of the
payload patch these commands to avoid pausing the program execution [WaitForSingleObject(-1)]:

Make sure you align the stack by taking note of ESP after the PUSHFD/PUSHAD and ESP after executing the
payload. In my case I had to add an instruction ADD ESP, 1FC. Save all changes to avoid frustration.

Start a netcat listener on your Windows machine and execute the binary. You should get a shell.

Page | 18

Success! Detection rate hit 17/60 though.

Reducing detection rate requires a lot of trial and error, I attempted the following:
• Encoding the payload with MSF (we used the raw payload earlier): BAD! Decoding stub by MSF is known by

most AVs.
• Fixing the checksum: Eh, most AVs just ignore it.
• Compressing the binary (used UPX): GOOD! Detection dropped to 11/60.

We're getting there. Let's come up with a slightly different technique.

Page | 19

Chapter 3: Hijacking Existing Code Caves

Previous approach had some drawbacks: 1) File size changed significantly, 2) it got flagged by 3 AVs as malicious,
when a simple logic was added (still no actual payload generated), it went up to 9. Let's try to resolve this
problem by using already existing empty caves in our binary.

Note that searching for code caves has to be done on the file itself, not when it’s loaded into memory.

For that we'll use the following command:

root@kali:~/Desktop# backdoor-factory -f PsExec.exe -c -l 500 -q

• -f: Input file.

• -c: Search for code caves.

• -l: Minimum size of code cave.

• -q: Quiet mode.

Page | 20

Woah, wtf am I looking at?

• BDFactory found at least 3 code caves where we back implement our backdoor in.

• All 3 caves lie in the .data segment.

• Begin/End of Cave are both raw file offsets, to make use of them we’ll get their equivalent RVA.

• PointerToRawData/End of Raw Data: Raw file offsets noting the start/end of the .data segment.

Let's use the first cave, since it's located in the .data region we need to set the executable flag for the .data region
(using LordPE). Just setting the X flag to .data flagged it as malicious by 2/60 AVs.

Next, we need to get the RVA of Cave 1 offsets using Equation 3:

𝑅𝑉𝐴 = 𝑉𝑂𝑓𝑓𝑠𝑒𝑡 𝑜𝑓 𝐶𝑎𝑣𝑒′𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑅𝑂𝑓𝑓𝑠𝑒𝑡 𝑜𝑓 𝐶𝑎𝑣𝑒 − 𝑅𝑂𝑓𝑓𝑠𝑒𝑡 𝑜𝑓 𝐶𝑎𝑣𝑒′𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠
 = 0𝑥29000 + 0𝑥272𝑒5 − 0𝑥27200 = 𝑅𝑉𝐴_290𝐸5

Let's make it RVA_290E8 just in case.

Replace first instruction with payload:

Save Change to PsExec2_bkdr.exe then reload it and step.

Page | 21

Awesome, now we do the same thing, add the PUSHFD/POPFD, ~400 NOPs, POPFD/POPAD, CALL RVA_11500 and
JMP RVA_9DEB.

Another scan with the latest changes showed 5/58 detection rate, that's 4 less than last scan at same stage!

Next, we'll do the same thing with pasting the MSF payload and adjusting the stack. After saving the changes, let's
scan it again.

Page | 22

Although 13/60 is not so good, it's still an improvement over 17/60 thanks to not using a new section. Notice that
we didn't encode, encrypt, or obfuscate the MSF payload in any way.

Page | 23

Chapter 4: The Human Factor

So we got rid of the extra section, what else can we do? One thing that we did so far in both examples is placing
the JMP Cave at entry point. That’s good, it’s a guaranteed way to execute the payload, but that also allows AVs
to step through it, which increases the detection rate significantly.

What if we make it trigger on human interaction? AVs aren’t sophisticated enough (maybe never?) to pass
arguments or interact too much with executables. And after all, PsExec expects parameters, otherwise it prints
the manual.

Let's observe how PsExec behaves using a regular command:

What if the backdoor is hooked on printing that specific string? We can put a breakpoint when that string gets
loaded to memory and make that our backdoor trigger.

Page | 24

 Immunity allows providing command line arguments.

Search for -> All referenced text strings.

Right click -> Follow in Disassembly.

You might face an exception, you can safely ignore it. Let's step into the second CALL (CALL PsExec2_.003182AF).
Before RET there's some unused space, why don't we make this JMP to our payload instead?

At RVA_8334 let's jump to our code cave (RVA_290E8). What's awesome about hijacking the RETN instruction?
We can directly use it and not care about the next command.

Page | 25

NOTE: Don't forget to patch the EntryPoint instruction, we no longer need to jump to the cave at that position.
Save changes and start the listener.

 How about AV?

Lowest detection rate so far, hit 9/60! Possibly because of static analysis and MSF is well known by any decent AV.

Page | 26

More Anti-Virus Bypassing Shenanigans

As with the previous section, let's think of ways to reduce detection; I tried the following:

1. Stripping the binary with strip: No change (9/60).
2. Stripping the broken certificate: BAD! Went up to 18/60.
3. Smallest MSF payload XORed with custom XOR stub (https://github.com/abatchy17/SLAE)

Payload used: msfvenom -p windows/shell_reverse_tcp -b "\x00" --smallest
Detection rate: Lowest yet, hitting 5/60!

What if we get rid of the MSF payload and use a less suspicious shell off exploit-db? I used this:
https://www.exploit-db.com/exploits/40352/, same structure with no encoding.

Oh, look at that! Reaching 3/59 detection rate! There's possibly room for improvement (with encryption maybe?)
but that's enough for now.

https://github.com/abatchy17/SLAE
https://www.exploit-db.com/exploits/40352/

Page | 27

How do I protect myself?
Compile from source, write your own tools and trust no one. Or just give up.

But on a serious note:

• Download binaries only from trusted sources.

• Validate checksums/hashes.

• Patch your OS and update the AV database regularly.

• Look for signs, do you expect calc.exe to request firewall bypass?

• Cross fingers and double click more than once.

Thanks for reading!

Page | 28

 Appendix

Equations

1. 𝑀𝑜𝑑𝑢𝑙𝑒𝐸𝑛𝑡𝑟𝑦𝑃𝑜𝑖𝑛𝑡 = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 𝐸𝑛𝑡𝑟𝑦𝑃𝑜𝑖𝑛𝑡
2. 𝐹𝑖𝑙𝑒 𝑂𝑓𝑓𝑠𝑒𝑡 𝑜𝑓 𝐸𝑛𝑡𝑟𝑦𝑃𝑜𝑖𝑛𝑡 = 𝐸𝑛𝑡𝑟𝑦𝑃𝑜𝑖𝑛𝑡 − (𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐻𝑒𝑎𝑑𝑒𝑟 − 𝑆𝑖𝑧𝑒𝑂𝑓𝐻𝑒𝑎𝑑𝑒𝑟𝑠)
3. 𝑅𝑉𝐴 𝑜𝑓 𝐶𝑜𝑑𝑒 𝐶𝑎𝑣𝑒: 𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑂𝑓𝑓𝑠𝑒𝑡 𝑜𝑓 𝐶𝑎𝑣𝑒′𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑅𝑎𝑤 𝑂𝑓𝑓𝑠𝑒𝑡 𝑜𝑓 𝐶𝑎𝑣𝑒 − 𝑅𝑎𝑤 𝑂𝑓𝑓𝑠𝑒𝑡 𝑜𝑓 𝐶𝑎𝑣𝑒′𝑠 𝑆𝑒𝑐𝑡𝑖o𝑛

Repositories

1. https://github.com/abatchy17/Introduction-To-Backdooring
2. https://github.com/abatchy17/SLAE

https://github.com/abatchy17/Introduction-To-Backdooring
https://github.com/abatchy17/SLAE

Page | 29

Acknowledgements

Thanks to @jack, @sae, @vcsec and @wetw0rk at NetSecFocus for taking the time to review this crap.

To my wife for believing in me. And for thinking I’m funny.

https://netsecfocus.herokuapp.com/

Page | 30

References

[1] https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files
[2] https://sector876.blogspot.com/2013/03/backdooring-pe-files-part-1.html
[3] https://pentest.blog/art-of-anti-detection-2-pe-backdoor-manufacturing/
[4] https://github.com/secretsquirrel/the-backdoor-factory
[5] http://blog.sevagas.com/IMG/pdf/BypassAVDynamics.pdf
[6] https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files
https://sector876.blogspot.com/2013/03/backdooring-pe-files-part-1.html
https://pentest.blog/art-of-anti-detection-2-pe-backdoor-manufacturing/
https://github.com/secretsquirrel/the-backdoor-factory
http://blog.sevagas.com/IMG/pdf/BypassAVDynamics.pdf
https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

	Contents
	Chapter 1: Introduction
	What is backdooring?
	Lab Environment
	Quick Peek into PE Structure
	Code Caves
	Address Space Layout Randomization (ASLR)
	File Offsets and RVA

	Chapter 2: Manual Backdooring
	Manipulating Execution Flow
	Classic Backdooring

	Chapter 3: Hijacking Existing Code Caves
	Chapter 4: The Human Factor
	More Anti-Virus Bypassing Shenanigans
	How do I protect myself?

	Appendix
	Equations
	Repositories

	Acknowledgements
	References

