
[WEB APPLICATION PENETRATION TESTING] March 1, 2018

1

Contents
Information Gathering .. 4

1. Conduct Search Engine Discovery and Reconnaissance for Information Leakage 4

2. Fingerprint Web Server ... 5

3. Review Webserver Metafiles for Information Leakage .. 7

4. Enumerate Applications on Webserver ... 8

5. Review Webpage Comments and Metadata for Information Leakage ... 11

6. Identify Application Entry Points ... 11

7. Map execution paths through application ... 13

8. Fingerprint Web Application & Web Application Framework .. 14

Configuration and Deployment Management Testing .. 18

1. Test Network/Infrastructure Configuration... 18

2. Test Application Platform Configuration.. 23

3. Test File Extensions Handling for Sensitive Information ... 29

4. Review Old, Backup and Unreferenced Files for Sensitive Information .. 32

5. Enumerate Infrastructure and Application Admin Interfaces ... 34

6. Test HTTP Methods .. 39

7. Test HTTP Strict Transport Security .. 41

8. Test RIA cross domain policy ... 43

Identity Management Testing ... 45

1. Test Role Definition .. 45

2. Test User Registration Process ... 47

3. Test Account Provisioning Process ... 49

4. Testing for Account Enumeration and Guessable User Account .. 51

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

2

Authentication Testing .. 56

1. Testing for Credentials Transported over an Encrypted Channel ... 56

2. Testing for default credentials ... 59

3. Testing for Weak lock out mechanism ... 62

4. Testing for bypassing authentication schema ... 68

5. Test remember password functionality ... 73

6. Testing for Browser cache weakness .. 75

7. Testing for Weak password policy .. 80

8. Testing for weak security Question/Answer ... 85

9. Testing for weak password change or reset function .. 86

Authorization Testing ... 86

1. Testing Directory traversal / file include .. 86

2. Testing for Privilege Escalation .. 87

3. Testing for Insecure Direct Object References ... 90

Session Management Testing ... 94

1. Testing for Bypassing Session Management Schema ... 94

2. Testing for Cookies attributes ... 96

3. Testing for Session Fixation ... 98

4. Testing for Exposed Session Variables ... 100

5. Testing for Cross Site Request Forgery (CSRF) ... 101

6. Testing for logout functionality .. 104

7. Test Session Timeout .. 106

Input Validation Testing ... 108

1. Testing for Reflected Cross Site Scripting .. 108

2. Testing for Stored Cross Site Scripting ... 113

3. Testing for HTTP Verb Tampering .. 117

4. Testing for HTTP Parameter pollution ... 117

5. Testing for SQL Injection ... 121

6. Testing for LDAP Injection .. 134

7. Testing for XML Injection .. 136

8. Testing for XPath Injection ... 139

9. Testing for Code Injection .. 140

10. Testing for Command Injection .. 142

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

3

Testing for Error Handling .. 143

1. Analysis of Error Codes .. 143

2. Analysis of Stack Traces ... 146

Testing for weak Cryptography .. 147

1. SSL/TLS Testing .. 147

2. Testing for Padding Oracle ... 153

Business Testing Logic ... 157

1. Test Business Logic Data Validation .. 157

2. Test Ability to Forge Requests.. 159

3. Test Integrity Checks .. 159

4. Test for Process Timing .. 162

5. Test Defense Against Application Misuse .. 162

6. Test Upload of Unexpected File Types ... 162

7. Test Upload of Malicious Files ... 170

Client Side Testing .. 172

1. Testing for Client Side URL Redirect ... 172

2. Testing for Clickjacking.. 175

3. Test Cross Origin Resource Sharing ... 177

4. Testing for Spoofable Client IP address ... 177

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

4

Information Gathering

1. Conduct Search Engine Discovery and Reconnaissance for Information Leakage

Google hacking technique

Evident:

With: testphp.vulnweb.com

I have try google hack with search field parameter as: ñsite: testphp.vulnweb.comò

After this, I got basic crawling result below:

I used some query to discovering more interested information :

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

5

References:

¶ http://www.mrjoeyjohnson.com/Google.Hacking.Filters.pdf

2. Fingerprint Web Server

Web server fingerprinting is a critical task for the Penetration tester. Knowing the version and type of a

running web server allows testers to determine known vulnerabilities and the appropriate exploits to use

during testing.

Black box test:

The simplest and most basic form of identify a web server is look at the server field in the HTTP response

header with netcat

Example:

nc google.com 80

GET / HTTP/1.1

Host: google.com

enter

enter

http://www.mrjoeyjohnson.com/Google.Hacking.Filters.pdf

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

6

Automate Testing tools: httprint, Burpsuite

Online Testing: https://www.netcraft.com/

Evident:

¶ with netcat, we have result as below:

¶ Of course, we can use some extension of browser, such as:

¶ Online solutions:

https://www.netcraft.com/

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

7

References:

¶ http://www.terminally-incoherent.com/blog/2007/08/07/few-useful-netcat-tricks/

¶ https://www.sans.org/security-resources/sec560/netcat_cheat_sheet_v1.pdf

¶ http://netcat.sourceforge.net.

¶ https://www.darknet.org.uk/2007/09/httprint-v301-web-server-fingerprinting-tool-download/

¶ http://www.net-square.com/httprint.html

3. Review Webserver Metafiles for Information Leakage

How to test:

a. Robots.txt

Web spiders/robots/crawlers retrieve (access) a web page and then recursively traverse hyperlinks to

retrieve further web content. Their accepted behavior is specified by the Robots Exclusion Protocol of the

robots.txt file in the web root directory

Example: abc.com/robots.txt

Tool:

¶ Using wget:

o Example: wget http://google.com/robots.txt

References:

¶ http://www.robotstxt.org/

Evident:

http://google.com/robots.txt
http://www.robotstxt.org/

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

8

http://local/mutillidae/robots.txt

b. META Tag

Tags are located within the HEAD section of each HTML Document and should be consistent across a

web site in the likely event that the robot/spider/crawler start point does not begin from a document link

other than webroot

Web spiders/robots/crawlers can intentionally ignore the ñ<META NAME=òROBOTSò>ò tag as the

robots.txt file

Tool: BurpSuite

4. Enumerate Applications on Webserver

Base URLs:

¶ http://www.example.com/webmail

¶ http://mail.example.com/

Base ports:

Most basic and the simplest way is using port scanner such as nmap with this options. For example

below:

http://local/mutillidae/robots.txt

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

9

nmap -sT -sV -p 0-65535 192.168.1.1

Base Domain name:

¶ There are a number of techniques which may be used to idnetify DNS names to given IP, Which

one is nslookup.

 cmd

nslookup

all

set type=all

example.com

¶ Web-based DNS search:

o http://searchdns.netcraft.com/?host

¶ Reverse IP:

o Domain tools reverse IP: http://www.domaintools.com/reverse-ip/ (require free

membership)

o MSN search: http://search.msn.com syntax: "ip:x.x.x.x" (without the quotes)

o webhosting info: http://whois.webhosting.info/

o DNSstuff: http://www.dnsstuff.com/

Google hack

Evident:

¶ Example with nmap:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

10

¶ Example with nslookup:

Tools:

¶ nslookup, dig

¶ Port scanner: nmap http://www.insecure.org

¶ Nessus Vulnerability Scanner. http://www.nessus.org

¶ Search engine: shodan.io, google.

Note for shodan.io: //null

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

11

5. Review Webpage Comments and Metadata for Information Leakage

It is very common, and even recommended, for programmers to include detailed comments and metadata

on their source code. However, comments and metadata included into the HTML code might reveal

internal information that should not be available to potential attackers. Comments and metadata review

should be done in order to determine if any information is being leaked.

Tools:

¶ Wget

¶ Any browser

6. Identify Application Entry P oints

In request:

¶ Identify where GETs are used and where POST are use

¶ Identify ALL parameters used in POST request (including hidden parameter and unhidden

parameter)

¶ Identify ALL parameters used in GET request (usually after ? mark)

¶ Identify all parameters of query string

¶ Pay attention for parameters even if encoded or encrypted and identify which ones account who

are process by application.

In response:

¶ Identify and note any headers

¶ Identify where there are any redirects (300 HTTP status code), 400 status code, 403 particular

forbidden and 500 internal server errors during normal response.

Tools:

¶ Intercept proxy: Burpsuite, paros, webscarab,é

¶ Browser plugins: Tamper data on firefox,é

Some note:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

12

¶ To discovering hidden parameters, I can use Burp Suite with following options:

¶ With status code, using Burpsuite to findôem out

¶ Capture request parameters and response header with Burp Suite

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

13

7. Map execution paths through application

Before commencing security testing, understanding the structure of the application is paramount. Without

a thorough understanding of the layout of the application, it is unlikely that it will be tested thoroughly

Test objectives

¶ Map the target application and understand the principal workflows

Automatic Spider tools

¶ Burp Suite

¶ ZAP

Automate Spider example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

14

8. Fingerprint Web Application & Web Application Framework

Web framework fingerprinting is an important subtask of the information gathering process. Knowing the

type of framework can automatically give a great advantage if such a framework has already been tested

by the penetration tester. It is not only the known vulnerabilities in unpatched version but specific

misconfigurations in the framework and known file structure that makes the fingerprinting process so

important.

Black Box Testing

There are several most common locations to look in in order to define the current framework

¶ HTTP headers

¶ Cookies

¶ HTML source code

¶ Specific files and folders

HTTP headers

The most basic form of identifying a web application framework is to look at the X-Powered-By field in

the HTTP response header.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

15

Cookies

Another similar and somehow more reliable way to determine the current web framework are framework-

specific cookies.

HTML source code

This technique is based on finding certain patterns in the HTML page source code. We can find a lot of

information which helps a tester to recognize a specific web application.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

16

Specific files and folders

Every application has its own specific file and folder structure on the server. We can use tool or manual

access them.

Dirbusting example

¶ Google hacking technique

https://www.exploit-db.com/ghdb/4675/

¶ BurpSuite Intruder

https://www.exploit-db.com/ghdb/4675/

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

17

Common Application Identifiers

Nikto

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

18

Whatweb

Configuration and Deployment Management Testing

1. Test Network/Infrastructure Configuration

Review of the Application Architecture

Known Server Vulnerabilities

¶ Using Nessus Scan for Metasploitable 2, we have some Known vulnerabilities as shown below:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

19

Administrative Tools

¶ List all the possible administrative interfaces such as:

Local remote

 Remote access via SFTP

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

20

 Access via web interface ï such as HTTP basic authentication

Access via WebDAV

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

21

Access via FTP

Access via SSH

¶ Determine if administrative interfaces are available from an internal network or are also available

from the internet. If available from the internet, determine the mechanisms that control access to

these interface and their associated susceptibilities.

With insecure protocol like ftp, telnet or http basic authentication, easy to sniff administrator

password with Wireshark

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

22

Worse, WebDAV donôt request username and password from client to identifying, so hacker can

upload any malicious files him want.

Recommend using Secure protocol such as: FTPs, SFTP, SSH, TLS/SSL,VPN,é

¶ Change default user & password

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

23

2. Test Application Platform Configuration

Configuration review and testing is a critical task, while the typical web and application server installation

will spot a lot of function (like application examples, documentation, test pages), what is not essential

should be removed before deployment to avoid post install exploitation.

Black Box Testing and Example

Sample/known Files and Directory

Many web servers and application servers provide, in a default installation, sample applications and files

that are provided for the benefit of the developer and in order to test that the server is working properly

right after installation.

However, many default web server applications have been later known to be vulnerable or information

disclosure.

Example:

¶ Wordpress version show in readme

¶ Brute force attack / Denial of Service attack in Wordpressôs xmlrpc.php

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

24

More information at:

https://isc.sans.edu/diary/Wordpress+%22Pingback%22+DDoS+Attacks/17801

https://hackerone.com/reports/96294

https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-Exploit/blob/master/wordpress-

xmlrpc-brute-v2.py

https://testpurposes.net/2016/11/01/wordpress-xmlrpc-brute-force-attacks-via-burpsuite/

Comment on source code review

It is very common and even recommended

https://isc.sans.edu/diary/Wordpress+%22Pingback%22+DDoS+Attacks/17801
https://hackerone.com/reports/96294
https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-Exploit/blob/master/wordpress-xmlrpc-brute-v2.py
https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-Exploit/blob/master/wordpress-xmlrpc-brute-v2.py
https://testpurposes.net/2016/11/01/wordpress-xmlrpc-brute-force-attacks-via-burpsuite/

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

25

Configuration review

Some common guidelines should be taken into account:

¶ Only enable server modules that are needed for application.

¶ Handle server errors code with custom-made pages.

¶ Make sure server software runs with minimize privileges in the operating system.

¶ Make sure the server software logs properly both legitimate access and errors.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

26

¶ Make sure that the server is configured to properly handle overloads and prevent Denial of

Service attacks.

Logging

Logging is an important asset of the security of an application architecture, since it can be used to detect

flaws in application, logs are typically properly generated by web and server software.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

27

Sensitive information in logs

Some applications might, for example use GET requests to forward form data which will be viewable in

the server logs. This means that server logs might contain sensitive information (such as usernames as

passwords, or bank account details). This sensitive information can be misused by an attacker if logs were

to be obtained by an attacker, for example, through administrative interfaces or known web server

vulnerabilities or misconfiguration (like the well-known server-status misconfiguration in Apache-based

HTTP servers).

Log Location

Try to keep logs in a separate location, and not in the web server itself. This also makes it easier to

aggregate logs from different sources that refer to the same application (such as those of a web server

farm) and it also makes it easier to do log analysis (which can be CPU intensive) without affecting the

server itself.

Log Storage

In UNIX systems, logs will be located in /var (although some server installations might reside in /opt or

/usr/local) and it is thus important to make sure that the directories that contain logs are in a separate

partition. In some cases, and in order to prevent the system logs from being affected, the log directory of

the server software itself (such as /var/log/apache in the Apache web server) should be stored in a

dedicated partition.

Log rotation

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

28

Most servers (but few custom applications) will rotate logs in order to prevent them from filling up the

file system they reside on. The assumption when rotating logs is that the information in them is only

necessary for a limited amount of time.

This feature should be tested in order to ensure that:

¶ Logs are kept for the time defined in the security policy, not more and not less.

¶ Logs are compressed once rotated (this is a convenience, since it will mean that more logs will be

stored for the same available disk space)

¶ File system permission of rotated log files are the same (or stricter) that those of the log files

itself. For example, web servers will need to write to the logs they use but they donôt actually

need to write to rotated logs, which means that the permissions of the files can be changed upon

rotation to prevent the web server process from modifying these.

Some servers might rotate logs when they reach a given size. If this happens, it must be ensured that an

attacker cannot force logs to rotate in order to hide its tracks.

Log contents

¶ Do the logs contain sensitive information?

¶ Are the logs stored in a dedicated server?

¶ Can log usage generate a Denial of Service condition?

¶ How are log backups preserved?

¶ Is the data being logged data validated (min/max length, chars etc) prior to being logged?

¶ How are logs reviewed? Can admin use these review to detect targeted attack?

¶ How are they rotated ? are logs kept for the sufficient time?

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

29

3. Test File Extensions Handling for Sensitive Information

File extensions are commonly used in web servers to easily determine which technologies / languages /

plugins must be used to fulfill the web request.

Black box testing:

Submit http[s] requests involving different file extensions and verify how they are handled. These

verifications should be on a per web directory basis.

The following file extensions should NEVER be returned by a web server, since they are related to files

which may contain sensitive information, or to files for which there is no reason to be served.

¶ .asa

¶ .inc

Using google hack, easy to find them, such as:

¶ ext:asa inurl:www.maybole.org

The following file extensions are related to files which, when accessed, are either displayed or

downloaded by the browser. Therefore, files with these extensions must be checked to verify that they are

indeed supposed to be served (and are not leftovers), and that they do not contain sensitive information.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

30

¶ .zip, .tar, .gz, .tgz, .rar, ...: (Compressed) archive files

¶ .java: No reason to provide access to Java source files

¶ .txt: Text files

¶ .pdf: PDF documents

¶ .doc, .rtf, .xls, .ppt, ...: Office documents

¶ .bak, .old and other extensions indicative of backup files (for example: ~ for Emacs backup files)

For more information, access to this link: http://filext.com/

We can mix some below techniques for solving this problem:

¶ Vulnerability scanner

¶ Spider tools

http://filext.com/

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

31

¶ Mirroring tools

¶ Manual access

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

32

Gray box testing

Performing white box testing against file extensions handling amounts to checking the configurations of

web server(s) / application server(s) taking part in the web application architecture, and verifying how

they are instructed to serve different file extensions. If the web application relies on a load-balanced,

heterogeneous infrastructure, determine whether this may introduce different behaviour.

4. Review Old, Backup and Unreferenced Files for Sensitive Information

While most of the files within a web server are directly handled by the server itself it isn't uncommon to

find unreferenced and/or forgotten files that can be used to obtain important information about either the

infrastructure or the credentials. Most common scenarios include the presence of renamed old version of

modified files, inclusion files that are loaded into the language of choice and can be downloaded as

source, or even automatic or manual backups in form of compressed archives. All these files may grant

the pentester access to inner workings, backdoors, administrative interfaces, or even credentials to

connect to the administrative interface or the database server.

Black Box Testing

Testing for unreferenced files uses both automated and manual techniques:

¶ Enumerate all of applicationôs pages and functionality: This can be done manually using a

browser, or using an application spidering tool. Most applications use a recognisable naming

scheme, and organise resources into pages and directories using words that describe their

function. From the naming scheme used for published content, it is often possible to infer the

name and location of unreferenced pages. For example, if a page viewuser.asp is found, then look

also for edituser.asp, adduser.asp and deleteuser.asp. If a directory /app/user is found, then look

also for /app/admin and /app/manager.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

33

¶ Other clues in published content: Many web applications leave clues in published content that can

lead to the discovery of hidden pages and functionality. These clues often appear in the source

code of HTML and JavaScript files. The source code for all published content should be manually

reviewed to identify clues about other pages and functionality.

Another source of clues about unreferenced directories is the /robots.txt file used to provide

instructions to web robots.

¶ Information obtained through server vulnerabilities and misconfiguration

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

34

¶ Use of publicly available information: google hack, shodan.io

5. Enumerate Infrastructure and Appli cation Admin Interfaces

Black box and Gray box Testing

The following describes vectors that may be used to test for the presence of administrative interfaces.

These techniques may also be used for testing for related issues including privilege escalation and are

described elsewhere in this guide in greater detail:

¶ Directory and file Enumeration - An administrative interface may be present but not visibly

available to the tester. Attempting to guess the path of the administrative interface may be as

simple as requesting: /admin or /administrator etc.. A tester may have to also identify the

filename of the administration page. Forcibly browsing to the identified page may provide access

to the interface.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

35

¶ Comments and links in Source - Many sites use common code that is loaded for all site users. By

examining all source sent to the client, links to administrator functionality may be discovered and

should be investigated.

¶ Reviewing Server and Application Documentation - If the application server or application is

deployed in its default configuration it may be possible to access the administration interface

using information described in configuration or help documentation. Default password lists

should be consulted if an administrative interface is found and credentials are required.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

36

¶ Alternative Server Port - Administration interfaces may be seen on a different port on the host

than the main application. For example, Apache Tomcat's Administration interface can often be

seen on port 8080.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

37

¶ Parameter Tampering - A GET or POST parameter or a cookie variable may be required to enable

the administrator functionality.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

38

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

39

6. Test HTTP Methods

HTTP offers a number of methods that can be used to perform actions on the web server. Many of theses

methods are designed to aid developers in deploying and testing HTTP applications.

While GET and POST are by far the most common methods that are used to access information provided

by a web server, the Hypertext Transfer Protocol (HTTP) allows several other (and somewhat less

known) methods:

¶ HEAD

¶ GET

¶ POST

¶ PUT

¶ DELETE

¶ TRACE

¶ OPTIONS

¶ CONNECT

Some of these methods can potentially pose a security risk for a web application, as they allow an attacker

to modify the files stored on the web server and, in some scenarios, steal the credentials of legitimate

users. More specifically, the methods that should be disabled are the following:

¶ PUT: This method allows a client to upload new files on the web server. An attacker can exploit

it by uploading malicious files (e.g.: an asp file that executes commands by invoking cmd.exe), or

by simply using the victim server as a file repository

¶ DELETE: This method allows a client to delete a file on the web server. An attacker can exploit it

as a very simple and direct way to deface a web site or to mount a DoS attack

¶ CONNECT: This method could allow a client to use the web server as a proxy

¶ TRACE: This method simply echoes back to the client whatever string has been sent to the

server, and is used mainly for debugging purposes.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

40

Black Box Testing

Discover the Supported Methods

Test XST Potential

Find a page you'd like to visit that has a security constraint such that it would normally force a 302

redirect to a login page or forces a login directly. The test URL in this example works like this - as do

many web applications. However, if you obtain a "200" response that is not a login page, it is possible to

bypass authentication and thus authorization.

www.example.com 80 JEFF / HTTP/1.1 Host: www.example.com

HTTP/1.1 200 OK

Date: Mon, 18 Aug 2008 22:38:40 GMT

Server: Apache

Set-Cookie: PHPSESSID=K53QW...

If your framework or firewall or application does not support the "JEFF" method, it should issue an error

page (or preferably a 405 Not Allowed or 501 Not implemented error page). If it services the request, it is

vulnerable to this issue.

If you feel that the system is vulnerable to this issue, issue CSRF-like attacks to exploit the issue more

fully:

¶ FOOBAR /admin/createUser.php?member=myAdmin

¶ JEFF /admin/changePw.php?member=myAdmin&passwd=foo123&confirm=foo123

¶ CATS /admin/groupEdit.php?group=Admins&member=myAdmin&action=add

¶ HEAD /admin/createUser.php?member=myAdmin

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

41

With some luck, using the above three commands - modified to suit the application under test and testing

requirements - a new user would be created, a password assigned, and made an admin.

7. Test HTTP Strict Transport Security

The HTTP Strict Transport Security (HSTS) header is a mechanism that web sites have to communicate

to the web browsers that all traffic exchanged with a given domain must always be sent over https.

Considering the importance of this security measure it is important to verify that the web site is using this

HTTP header, in order to ensure that all the data travels encrypted from the web browser to the server.

The HTTP Strict Transport Security (HSTS) feature lets a web application to inform the browser, through

the use of a special response header, that it should never establish a connection to the specified domain

servers using HTTP. Instead it should automatically establish all connection requests to access the site

through HTTPS.

The HTTP strict transport security header uses two directives:

¶ max-age: to indicate the number of seconds that the browser should automatically convert all

HTTP requests to HTTPS.

¶ includeSubDomains: to indicate that all web applicationôs sub-domains must use HTTPS.

Here's an example of the HSTS header implementation:

 Strict-Transport-Security: max-age=60000; includeSubDomains

The use of this header by web applications must be checked to find if the following security issues could

be produced:

¶ Attackers sniffing the network traffic and accessing the information transferred through an

unencrypted channel.

¶ Attackers exploiting a man in the middle attack because of the problem of accepting certificates

that are not trusted.

¶ Users who mistakenly entered an address in the browser putting HTTP instead of HTTPS, or

users who click on a link in a web application which mistakenly indicated the http protocol.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

42

How to test

¶ I have wrote a tool which can analyze header, contact to me to get this tool for free.

¶ Burpsuite response

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

43

8. Test RIA cross domain policy

RIAs are web-based services that perform the same functions as desktop application systems.

A cross-domain policy file specifies the permissions that a web client such as Java, Adobe Flash, Adobe

Reader, etc. use to access data across different domains. For Silverlight, Microsoft adopted a subset of the

Adobe's crossdomain.xml, and additionally created it's own cross-domain policy file:

clientaccesspolicy.xml.

Whenever a web client detects that a resource has to be requested from other domain, it will first look for

a policy file in the target domain to determine if performing cross-domain requests, including headers, and

socket-based connections are allowed.

Master policy files are located at the domain's root. A client may be instructed to load a different

policy file but it will always check the master policy file first to ensure that the master policy file permits

the requested policy file.

How to Test

We should try to retrieve the policy files crossdomain.xml and clientaccesspolicy.xml from the

applicationôs root and from every folder found.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

44

After retrieving all the policy files, the permissions allowed should be checked under the least privilege

principle. Requests should only come from the domains, ports, or protocols that are necessary. Overly

permissive policies should be avoided. Policies with "*" in them should be closely examined.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

45

Identity Management Testing

1. Test Role Definition

Test objectives

Validate the system roles defined within the application sufficiently define and separate each system and

business role to manage appropriate access to system function and information

How to test

Either with or without the help of the system dev or admin, develop an role versus permission matrix. The

matrix will show and enumerate all the roles that can be provisioned and explore the permissions that are

allowed to be applied to the objects including any constraints.

Example

In real world, I have pentested many wordpress site, example of role definitions in wordpress can be

found at shown below link

¶ https://codex.wordpress.org/Roles_and_Capabilities

Tools

¶ You can approach this problem by manual test

¶ Spidering tools (Burp Suite) ï Log on with each role in turn and spider the application (donôt

forget to exclude the logout button/link from the spidering)

With admin account, using spider option we have this below result and save this state to file

https://codex.wordpress.org/Roles_and_Capabilities

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

46

With normal user account, we also use spider option and get following result

Finally, use compare function to comparing two site map weôve got

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

47

2. Test User Registration Process

Test Objectives

¶ Verify that the identity requirements for user registration are aligned with business and security

requirements

¶ Validate the registration process

How to Test

Test list

¶ Determine who can register for access (anyone)?

¶ Are registrations are vetted by a human prior to provisioning or are they automatically granted if

the criteria are met.

¶ Can the same person register multiple times?

¶ Can user register for different roles or permissions?

¶ What proof of identity is required for a registration to be successful?

¶ Are registered identities verified?

¶ Can identity information be easily forged or faked?

¶ Can the exchange of identity information be manipulated during registration process?

Tools

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

48

¶ Manual test

¶ HTTP proxy (Burp Suite, ZAP)

Example

In the wordpress example below, the only identification requirement is an email address that is accessible

to the registrant.

In the Google example below, the identification requirements include name, date of birth, country, mobile

phone number and two of the can be verified (Email and mobile phone number).

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

49

3. Test Account Provisioning Process

Test Objective

Verify which account may provision other account and of what type

How to test

Test List

¶ Is there any verification, vetting and authorization of provisioning requests?

¶ Is there any verification, vetting and authorization of de-provisioning requests?

¶ Can an administrator provision other administrators or just users?

¶ Can an administrator or other user provision accounts with privileges greater than their own?

Can an administrator or user de-provision themselves?

¶ How are the files or resources owned by the de-provisioned user managed? Are they deleted? Is

access transferred

Example

In WordPress, only a userôs name and email address are required to provision the user, as shown below

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

50

De-provisioning of users requires the admin to select the user to be de-provisioned, select delete from the

dropdown menu and applying this action. The administrator is then presented with a dialog box asking

what to do with the de-provisioning userôs post (delete or transfer them).

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

51

4. Testing for Account Enumeration and Guessable User Account

Black box Testing

In this case, the tester knows nothing about the specific application, username, application logic, error

messages on log in page, or password recovery facilities. If application is vulnerable, the tester receives a

response message that reveals, directly or indirectly, some information useful for enumerating users.

HTTP Response message

¶ Test for valid user with wrong password

¶ Test for a nonexistent username

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

52

Another way to enumerate users

¶ Analyzing the error code received on login page

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

53

¶ Analyzing URLs and URLs re-directions

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

54

Analyzing a message received from a another authentication function (recovery, reset pass, register)

¶ Reset password function example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

55

Guessing Users

In some cases the user IDs are created with specific policies of administration or company, such as:

Tools:

¶ Manual test

¶ Automate tools such as: WordPress enumeration username tools like wpscan

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

56

Authentication Testing

1. Testing for Credentials Transported over an Encrypted Channel

Black Box Testing

In the following examples we will use Burp Suite to capture packet headers and to inspect the them

Example 1: Sending data with GET/POST method through HTTP

Suppose that the login page presents a form with field User, Pass, and the Submit button to authenticate

and give access to application.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

57

So the data is transmitted without encryption and a malicious user could intercept the username and

password by simple sniffing the network with a tool like Wireshark

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

58

Example 2: Sending data with GET/POST method through HTTPS

Suppose that our web application uses the HTTPS protocol to encrypt the data we are sending (or at least

for transmitting sensitive data like credentials). In this case, when logging on to the web application the

header of our POST request would be similar to the following:

Example 3: sending data with GET/POST method via HTTPS on a page reachable via HTTP

Imagine we having a web page reachable via HTTP and that only data sent from the authentication form

are transmitted via HTTPS

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

59

We can see that our request is addressed to www.example.com/login using HTTPS. But if we have a look

at the Referer-header (the page from which we came), it is www.example.com/ And is accessible via

simple HTTP. Although we are sending data via HTTPS, this deployment can allow SSLStrip attacks (a

type of Man-in-the-middle attack)

You can see that the data is transferred in clear text in the URL and not in the body of the request. But we

must consider that SSL/TLS is a level 5 protocol, a lower level than HTTP, so the whole HTTP packet is

still encrypted making the URL unreadable to a malicious user using a sniffer. Nevertheless as stated

before, it is not a good practice to use the GET method to send sensitive data to a web application,

because the information contained in the URL can be stored in many locations such as proxy and web

server logs.

2. Testing for default credentials

How to Test

Testing for default credentials of common applications

¶ Try default usernames such as: admin, administrator, root, system, guest, operator, superuser.

http://www.example.com/login
http://www.example.com/

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

60

¶ Application administrative users are often named after the application or organization. It mean if

you are testing an application named ñABCò, trying abc/abc or any other similar combination as

username and password.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

61

¶ Using above username with blank passwords.

¶ Review the page source code and JavaScript, Look for account names and password written in

comments.

¶ Check for configuration files that contain usernames and passwords.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

62

¶ Check for password hints.

¶ Testing for default password of new accounts?

Tools

¶ Burp Intruder

¶ Hydra

¶ Nikto

¶ Medusa

References

¶ CIRT http://www.cirt.net/passwords

3. Testing for Weak lock out mechanism

Overview

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

63

Account lockout mechanisms are used to mitigate brute force password guessing attack. Account are

typically locked after 3 to 5 unsuccessful login attempts and can only be unlocked after a predetermined

period of time, via a self-service unlock mechanism, or intervention by an administrator. Account lockout

mechanisms require a balance between protecting accounts from unauthorized access and protecting users

from being denied authorized access.

Test Objective

¶ Evaluate the account lockout mechanismôs ability to mitigate brute force password guessing

¶ Evaluate the unlock mechanismôs resistance to unauthorized account unlocking.

How to test

¶ Using Burp Intruder & Burp Repeater to Brute force target site

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

64

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

65

¶ Review source code

¶ Make sure website have accout lockout policy ï Test for an account indeed lock after a certain

number of fail login

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

66

¶ Make sure application response limited timeout for user and verify limited timeout is correctly

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

67

¶ Make sure application warn user when they are approaching lockout thread hold

¶ A CAPTCHA may hinder brute force attack, but they can not replace a lockout mechanism.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

68

¶ Try for bypass lockout time out

¶ List all ways to unlocked account of website, Make sure they are secure

4. Testing for bypassing authentication schema

How to test

¶ Parameter modification

When the application verifies a successful log in on the basis of a fixed value parameters. A user

could modify these parameters to gain access to the protected areas without providing valid

credentials.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

69

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

70

¶ Session manipulate

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

71

¶ SQL Injection

SQL Injection is a widely known attack technique. This section is not going to describe this

technique in detail as there are several sections in this guide that explain injection techniques

beyond the scope of this section.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

72

¶ Direct page request (Forced Browsing)

If a web application implements access control only on the log in page, the authentication schema

could be bypassed.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

73

¶ Session ID Predict

Many web applications manage authentication by using session identifiers (session IDs).

Therefore, if session ID generation is predictable, a malicious user could be able to find a valid

session ID and gain unauthorized access to the application, impersonating a previously

authenticated user.

Tools

¶ Burp Suite

¶ ZAP

¶ WebGoat

5. Test remember password functionality

How to Test:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

74

¶ Look for password being stored in a cookie. Examine the cookies stored by the application.

Verify that the credentials are not stored in clear text, but are hased.

¶ Examine the hashing mechanism: if it is a common, well-know algorithm, check for its strength,

it homegrown hash functions, attempt several usernames to check whether the hash function is

easily guessable.

¶ Verify that the credentials are only sent during the log in phase, and not sent together with every

request to the application.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

75

¶ Consider other sensitive form fields (e.g. an answer to a secret question that must be entered in a

password recovery or account unlock form).

¶ Check for: autocomplete = ñoffò

6. Testing for Browser cache weakness

Browsers can store information for purposes of caching and history. Caching is used to improve

performance, so that previously displayed information doesn't need to be downloaded again. History

mechanisms are used for user convenience, so the user can see exactly what they saw at the time when the

resource was retrieved. If sensitive information is displayed to the user (such as their address, credit card

details, Social Security Number, or username), then this information could be stored for purposes of

caching or history, and therefore retrievable through examining the browser's cache or by simply pressing

the browser's "Back" button.

How to test:

If by pressing the "Back" button the tester can access previous pages but not access new ones, then it is

not an authentication issue, but a browser history issue. If these pages contain sensitive data, it means that

the application did not forbid the browser from storing it.

Authentication does not necessarily need to be involved in the testing. For example, when a user enters

their email address in order to sign up to a newsletter, this information could be retrievable if not properly

handled.

The "Back" button can be stopped from showing sensitive data. This can be done by:

¶ Delivering the page over HTTPS.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

76

¶ Setting Cache-Control: must-re-validate

Browser Cache. In Here testers check that the application does not leak any sensitive data into the browser

cache. In order to do that, they can use a proxy (such as Burp Suite) and search through the server

responses that belong to the session, checking that for every page that contains sensitive information the

server instructed the browser not to cache any data. Such a directive can be issued in the HTTP response

headers:

¶ Cache-Control: no-cache, no-store

¶ Expires: 0

¶ Pragma: no-cache

These directives are generally robust, although additional flags may be necessary for the Cache-Control

header in order to better prevent persistently linked files on the file system:

¶ Cache-Control: must-revalidate, pre-check=0, post-check=0, max-age=0, s-maxage=0

The exact location where that information is stored depends on the client operating system and on the

browser that has been used.

Mozilla Firefox:

¶ Unix/Linux: ~/.mozilla/firefox//Cache/

¶ Windows: C:\Documents and Settings\\Local Settings\Application

Data\Mozilla\Firefox\Profiles\\Cache

Internet Explorer:

¶ C:\Documents and Settings\\Local Settings\Temporary Internet Files

Example:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

77

Login with name root password toor and intercept to analysis packet

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

78

As you can see, we are not have any Cache-control header in response packet.

From message board page, letôs click logout button. And click ñBack buttonò on your browser or in

history (Ctrl + H) choose message board , we will catch this result out.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

79

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

80

7. Testing for Weak password policy

Test objectives

Determine the resistance of the application against brute force password guessing using available

password dictionaries by evaluating the length, complexity, reuse and aging requirements of passwords.

How to test:

