
Polymorph: A Real-Time Network Packet

Manipulation Framework

Santiago Hernández Ramos
shramos@protonmail.com

April 2018

mailto:shramos@protonmail.com

Special thanks to Lucas Fernández for all the help given in the development
of the project.

2

Contents

1 Introduction 5

2 State of the art 5

3 Introduction to Polymorph 5

4 Polymorph Installation 6
4.1 Download and installation on Linux (Recommended) 6
4.2 Download and installation on Windows 6
4.3 Docker installation . 7

5 Polymorph Interfaces 8

6 Interception of the communication 9
6.1 ARP spoofing . 9

7 Sniffing of network packets 9

8 Template abstraction 10
8.1 Structure of a template . 11
8.2 Template generation . 12
8.3 Template dissection . 13
8.4 Export Templates . 14
8.5 Import Templates . 14

9 Intercepting packages 14
9.1 Interception in Linux . 14
9.2 Interception in Windows . 14
9.3 Templates in the interception process 15

10 Preconditions, Executions and Postconditions 16
10.1 Conditional functions . 16
10.2 Precondition . 17
10.3 Executions . 18
10.4 Postconditions . 19

11 Packets modification. Syntax and access methods 19
11.1 Reading the fields of a packet . 19
11.2 Insertion of new values in the packets 20
11.3 Own methods of the package . 21
11.4 Global variables . 21

12 Dynamic dissection of packet fields 22

13 Creating custom layers and fields 23

3

14 ANNEX 1: Practical case: Modifying MQTT 26
14.1 Approach of the case . 26
14.2 Intercepting communication between two nodes in the network . 26
14.3 Capturing packets and generating templates 26
14.4 Modifying the Template . 28
14.5 Modifying the package in real time 33

15 ANNEX 2: Case of study: Modifying WINREG protocol 35
15.1 Approach of the case . 35
15.2 Generating the template . 35
15.3 Modifying the template . 36
15.4 Adding conditional functions . 40

16 ANNEX 3: All commands and their function 45
16.1 Main interface . 46
16.2 Template List interface . 46
16.3 Template interface . 47
16.4 Layer interface . 49
16.5 Field interface . 50

4

1 Introduction

The modification of network packets in real time, often called modification ”on
the air” consists of intercepting the network packets that circulate between two
or more machines in the same network, in such a way, that the intercepting
machine has the capacity to modify them and forward them in a consistent
state and keeping communication between both ends stable. This technique has
a large number of applications, ranging from the protection of certain services
through the modification of packets that can reveal certain sensitive information,
to the modification of packets for security verification of a system, a computer
application or a network. In spite of the numerous advantages, its execution
presents a high difficulty, which varies in relation to the complexity of the pro-
tocols that the packet to be modified implement.

Taking all this into account, this paper proposes a framework for real time
network packet modification that presents advantages like, support for a large
number of protocols or flexibility and ability to modify network packets at byte
level, at the same time that reduces the amount of effort the user must perform
to implement this technique.

2 State of the art

Currently there are some tools that allow the user to modify network packets
in real time using different techniques.

Tools like MITMF or Bettercap allow the user to modify some packets that
implement protocols such as TCP, HTTP or HTTPS through a set of predefined
filters. Other tools, such as Hexinject, allow the user to make this modification
on another reduced set of protocols by using regular expressions and substitution
patterns.

3 Introduction to Polymorph

Polymoprh is a framework written in the Python3 programming language that
allows the modification of network packets in real time, providing maximum
control to the user over the contents of the packet. This framework is intended
to provide an effective solution for real-time modification of network packets
that implement practically any existing protocol, including private protocols
that do not have a public specification. In addition to this, one of its main
objectives is to provide the user with the maximum possible control over the
contents of the packet and with the ability to perform complex processing on
this information.

In the following sections, each of the parts of the framework will be covered,
providing an introductory vision of the techniques that the framework imple-

5

ments and a practical vision of the actions that a user must perform to use this
techniques.

4 Polymorph Installation

This section introduces the different installation methods available for the tool.
Polymorph is a multiplatform framework, which works on both Windows and
Linux. The simplest way to generate a test environment is through the docker
deployment (explained at the end of the section). For those who want to have
the tool installed in their host operating system, the steps that must be followed
are explained below.

4.1 Download and installation on Linux (Recommended)

Polymoprh is specially designed to be installed and run on a Linux operating
system, such as Kali Linux. Its installation is considerably simple and can be
done through the Python content manager, pip3. Before installing the frame-
work, the following requirements must be installed through the package manager
corresponding to the operating system that the user is using. The dependencies
for a Kali-Linux operating system are specified below.

apt−get i n s t a l l bui ld−e s s e n t i a l python−dev l i b n e t f i l t e r −queue−dev
tshark tcpdump python3−pip wireshark nohup

After the installation of the dependencies, the framework itself can be in-
stalled with the Python pip package manager in the following way.

pip3 i n s t a l l −−process−dependency−l i n k s polymorph

4.2 Download and installation on Windows

Polymorph can also be installed on Windows operating systems. The require-
ments necessary for the framework to work correctly are the following.

• Installation of Python3 (add it to PATH). URL: https://www.python.org/downloads/

• Installation of Wireshark (add it to PATH). URL: https://www.wireshark.org/download.html

• Installation of Visual C ++ Build Tools. URL: https://www.visualstudio.com/en/thank-
you-downloading-visual-studio/?sku=BuildTools&rel=15

• WinPcap installation (If you have not installed it with Wireshark). URL:
https://www.winpcap.org/install/default.htm

Once the dependencies are installed, the only thing that the user must do is
open a console and execute the following command.

pip i n s t a l l −−process−dependency−l i n k s polymorph

6

After completing the installation, Polymorph will be accessible from the
terminal from any system path. It is important to note that in Windows, Poly-
morph must be executed in a console with administrative privileges.

4.3 Docker installation

Docker is a light virtualization system that allows you to create different sys-
tems isolated from each other on the host machine. This technology has been
popularized in recent years by the facilities it provides in the creation of multiple
environments in a versatile, dynamic and lightweight way.

Polymorph has a docker environment in with which you can quickly assemble
three machines to test the tool in any operating system in a matter of minutes.
The configuration file is written in YAML for the Docker compose tool and
consists of the following elements:

• Polymorph: Main machine based on Kali Linux, with ip 10.24.0.2. This
environment will have the polymorph application that will be accessible
from any system path with the command polymorph, it has the tools of
the top 10 of Kali Linux together with all the necessary packages to make
Polymoprh work.

• Alice: Victim machine with MQTT installed to establish communication
with Bob. It has a fixed IP of 10.24.0.3.

• Bob: Victim machine with MQTT installed to establish communication
with Alice. It has a fixed IP of 10.24.0.4. In addition to all this, Alice and
Bob have two aliases to be able to subscribe to an MQTT topic or post a
message to the desired IP with receive and send.

The implementation of this environment is simple, only consists of three
steps:

• Download and install Docker on the host machine, to do so go to the
Docker homepage and follow the installation instructions for the desired
operating system.

• Once the user has downloaded and started docker, the user can access the
project in the path /polymorph and execute:

docker−compose up −d

Docker will then take care of creating the containers following the specifi-
cations set in the Dockerfile and in the YAML of the compose, as soon as
the configuration is finished the three machines will be up and ready to
be used. Each time the docker service is restarted, it will be necessary to
execute:

docker−compose up −d

7

to setup the containers again.

• To access any of the machines the user must execute:

docker exec − t i [polymorph | a l i c e | bob] bash

5 Polymorph Interfaces

All the actions detailed in the following sections of the paper are carried out
through the Polymorph interface. The framework is formed by a set of interfaces
that change dynamically depending on the context in which the user is located.
In this way, the following subinterfaces can be distinguished:

• Main interface: It corresponds to the first screen that is displayed when
the application is executed, at this point, the user is not yet in a certain
context. Allows the performance of actions such as spoofing or sniffing.
The prompt that is shown is the following:

PH >

• tlist interface: It corresponds to the interface that is shown after the
completion of the sniffing process, as will be seen in the next section. The
user is in the context of a list of templates that is generated from the
captured packets. The prompt that is shown is the following:

PH: cap >

• template interface: It corresponds to the interface that is shown after
the selection of a certain template (more details about it in the following
sections). The user is in the context of a template, and may take actions
to modify their values. The prompt that is shown is the following:

PH: cap/ t5 >

• Layer interface: It corresponds to the interface that is displayed after
the selection of a layer within a template (more details about it in the
following sections). The user is in the context of a layer, and can take
actions to modify their values. The prompt that is shown is the following:

PH: cap/ t5 /TCP >

• Field interface: It corresponds to the interface that is displayed after
the selection of a field within a layer (more details about it in the following
sections). The user is in the context of a field, and can perform actions to
modify their values. The prompt that is shown is the following:

PH: cap/ t5 /TCP/ spor t >

8

6 Interception of the communication

One of the most important conditions that must be meet to be able to modify
network packets in real time is to be in the middle of the communication be-
tween two machines. The packets that flow from one end of the other must flow
through the machine where Polymorph is installed, in such a way, that the tool
must be able to intercept these packets, process them and forward them.

There are numerous techniques to intercept the communication between two
machines that are in the same network. The framework implements some of
them, in a certain way that they are very simple to execute by the user. Below
are some of these techniques.

6.1 ARP spoofing

This technique consists of sending ARP (Address Resolution Protocol) packets
generated by an attacker in a local network. The objective is to associate the
MAC address of the attacker’s machine with the IP address of another machine
on the network, such as the default gateway, causing all traffic to that IP ad-
dress to pass in its place by the attacker’s machine.

The realization of this technique with Polymorph is relatively simple. From
any of the interfaces of the tool we can use the command spoof to carry it out
in the following way.

PH > spoo f −t 1 9 2 . 1 6 8 . 1 . 5 0 −g 1 9 2 . 1 6 8 . 1 . 1 − i eth0

The options of the spoof command are the following:

Usage : spoo f −t <ta rge t s> −g <gateway>

Options :
−h p r i n t s the help .
−t t a r g e t s to perform the ARP spoo f i ng . Separated by ’ , ’
−g gateway to perform the ARP spoo f ing
− i network i n t e r f a c e .

The mandatory parameters for the realization of the ARP spoofing are the
gateway (-g) and at least one target ip address target (-t). If not interface is
specified, Polymorph will automatically get the one that is currently in use.

7 Sniffing of network packets

The sniffing process, in this case, corresponds to the capture of the network
packets that flow between two machines, without making any modification on
them.

9

Once the interception of the communication between two nodes of the net-
work has been made, the next step is to start doing sniffing of the network
packets that flow through the attacker machine. The sniffing process must be
maintained until it is captured one of the packets that corresponds to
the type of packet that the user wants to modify. This process is done
from the main interface of the framework using the command capture. This
command has the following options:

Usage : capture [− opt ion]

Options :
−h p r i n t s the help .
−f a l l ows packet f i l t e r i n g us ing the BPF notat ion .
−c number o f packets to capture .
−t stop s n i f f i n g a f t e r a g iven time .
− f i l e read a . pcap f i l e from di sk .
−v v e r b o s i t y l e v e l medium .
−vv v e r b o s i t y l e v e l high .

After performing the sniffing process, Polymorph will convert the captured
packets to a particular structure of the framework called template. The tem-
plate corresponds to the main abstraction of the whole system, in the following
section its details are explained in depth.

8 Template abstraction

Traditionally, there have been tools that allowed us to craft network packets
by specifying the characteristics of their components, such as the protocols
they implement, the layers they have or the size of their fields. This way of
defining a package, although effective, is extremely expensive and consumes
a large amount of time. To solve this, Polymoprh implements the template
concept, which corresponds to one of the most important of all the framework
and that provides the following essential characteristics:

• Allows users to access packages that are intercepted in real time in a simple
manner

• Allows the creation of new features within a packet in a quickly and easily
way

• Allow a certain configuration of a Polymorph session to be stored on disk
and exchange it between environments and users

In the next subsections, different features and applications of the template con-
cept within the framework are covered.

10

8.1 Structure of a template

All the templates have the same structure, which corresponds to a .json file
when they are exported from the framework.

{
”Name” : ”Template :ETHER/IP/UDP/DNS” ,
” Desc r ip t i on ” : ”” ,
” Vers ion ” : ”0 .1” ,
”Timestamp ” : ”2018−04−06 05 : 13 : 14 . 232177” ,
” Functions ” : {

” p r e c o n d i t i o n s ” : {} ,
” execut i ons ” : {} ,
” p o s t c o n d i t i o n s ” : {}

} ,
” l a y e r s ” : [

{
”name ” : ,
”custom ” : ,
” l s l i c e ” : ,
” s t r u c t s ” : {} ,
” f i e l d s ” : [

{
”name ” : ”” ,
” value ” : ”” ,
” type ” : ”” ,
” s i z e ” : ”” ,
” s l i c e ” : ”” ,
” f r e p r ” : ”” ,
”custom ” : ””

} ,
] ,

} ,
] ,
”raw ” : ””

}
(Some of the fields that appear in the template structure are hard to understand
at this point of the paper, but they will be specified in detail later.)

• Name: Name of the template

• Description: Description of the template

• Version: Template version

• Timestamp: Creation date of the template

• Functions: A set of functions that the user can define to perform ad-
vanced processing on packets that are intercepted in real time

11

• layers: A set of layers that the packet that has been captured and trans-
formed into a template has

• layers [name]: Name of the layer

• layers [custom]: Indicates whether the layer was generated by the tool
or by the user

• layers [lslice]: Position of the layer in the set of bytes of the packet,
represented by a Python slice object

• layers [structs]: A set of structures that allow the user to recalculate
packet fields in real time

• layers [fields]: The set of fields in the layer

• fields [name]: Field name

• fields [value]: Field value

• fields [type]: Field type

• fields [size]: Size of the field in bytes

• fields [slice]: Position that the field occupies in the packet bytes

• fields [frepr]: Representation of the value that the field should have.
Generated by the dissectors

• fields [custom]: Indicates whether the field has been generated by the
tool or by the user

8.2 Template generation

After performing the sniffing process, the captured packets are automatically
converted into templates by the framework. The transformed packets would
look similar to the following:

−−−[ETHER]−−−
hex dst = 005056 e6721b (0 0 : 5 0 : 5 6 : e6 : 7 2 : 1 b)
hex s r c = 000 c299909fa (0 0 : 0 c : 2 9 : 9 9 : 0 9 : f a)
i n t type = 2048 (2048)

−−−[IP]−−−
i n t v e r s i on = 69 (4)
i n t i h l = 69 (5)
i n t to s = 0 (0)
i n t l en = 58 (58)
i n t id = 18907 (18907)
. . .

12

−−−[UDP]−−−
i n t spor t = 36276 (36276)
i n t dport = 53 (53)
i n t l en = 38 (38)
i n t chksum = 899 (899)

. . .

The objective is to capture a packet that implements the protocols that the user
is interested in modifying in real time. Polymorph will transform this packets
into templates in which the layers, fields, value of the fields and the rest of the
values described above will be stored. From this moment all the modifications
made on that packets with Polymorph, will be done on the generated templates.
The templates will later allow the user to modify network packets in real time.

8.3 Template dissection

One of the biggest problems that real-time package modification tools have to-
day is the ability to dissect the protocols that implement the captured packets.
This translates into a great limitation when modifying them since the structure
of the packet bytes can not be determined.

To solve this problem and try to interpret as much as possible of the existing
protocols in the packets that are captured, Polymorph performs the following
process:

• Capture the packets bytes using the sniffing process

• Use the Tshark dissectors, which is probably the tool that more protocols
is able to interpret in the world, to dissect these bytes

• Build a template with the dissected fields, the position that the field oc-
cupies within the set of bytes of the packet, the layer to which it belongs
and other added values.

Using this technique, Polymorph is able to interpret a high number of net-
work protocols, as many as tools such as Wireshark can interpret, with the
difference that this interpretation will be used later to modify similar packages
in real time.

Dissection with Polymorph is done using the command dissect in the inter-
face corresponding to the list of templates, which is accessed immediately after
performing the process of sniffing in the main interface. If the user does not
perform the dissection process and directly accesses a template, the framework
will automatically dissect the selected template and all the previous ones, in
such a way that, if the user selects the template 15 without having previously
executed the command dissect, Polymorph will automatically dissect the first
15 templates and then, access the template 15.

13

8.4 Export Templates

The templates can be exported in a very simple way from the framework. The
result is a file with extension .json. This process can be carried out using the
command save in the template interface.

8.5 Import Templates

The templates can be easily imported into the framework so that the user can
work on a template previously saved on disk. Assuming that a template has
been previously stored on disk, the user can execute Polymorph in the following
way to start locking in the context of an existing template:

python3 polymorph −t ” path to template ”

9 Intercepting packages

Once the communication between two nodes of the network has been inter-
cepted, the network packets exchanged between them flow through the inter-
cepting machine. At this point, it is necessary to implement a technique to be
able to move the packets from kernel space to user space in which they will be
processed by Polymorph.

9.1 Interception in Linux

In the case of Linux operating systems, the Netfilter suite is used to perform
this task. The tool uses a module called Nfqueue that will be responsible for
moving the packages from Kernel space to user space through a queue from
where Polymorph will consume them. To redirect the packets, another well-
known module of this suite, Iptables, is used.

9.2 Interception in Windows

In the case of Windows operating systems, a module called Windivert is used.
This module allows things like:

• Capture network packets

• Filter or remove network packets

• Inject network packets

• Modify network packages

14

9.3 Templates in the interception process

It is important to understand the role of templates in the process of intercep-
tion of packages. When the user executes the order to intercept packages in
Polymorph, it does so in the context of a template. This means that for each
of the packets that are intercepted and arrive at the tool, a projection of the
template is performed on its bytes, in this way, we can access the fields of the
new package by means of the specific syntax of the template that it is being
used to intercept.
To understand this better, the following scenario is presented:

• The user want to access the source port field of a packet with the layers,
Ethernet, IP, TCP

• A sniffing process is performed with the tool to capture a packet with
these characteristics

• Once captured, the packet is automatically converted into a template and
the user use Polymorph to access the context of this template using the
template command

Once placed in the template interface, the user can use the show command to
display each of the layers and fields of the template, if the TCP layer is accessed
(where the source port is found) using the command layer and the command
show is entered again, something similar to the following should appear:

−−−[TCP]−−−
i n t spor t = 39440 (39440)
i n t dport = 443 (443)
i n t seq = 2693320198 (2693320198)
i n t ack = 2991926589 (2991926589)
i n t datao f s = 20500 (5)
i n t r e s e rved = 20500 (0)
s t r f l a g s = P (RA)
i n t window = 40880 (40880)
i n t chksum = 18239 (18239)
i n t urgptr = 0 (0)
s t r opt ions = ([])

Here you can see several things, on the one hand, you have the name of the
fields of the layer, along with an important characteristic of them, their type.
All fields can be of 4 different types, int, str, hex, bytes depending on the value
they have. These types can be modified by the user. Accessing the source port
field using the command field sport, and entering the command show again, wll
display different characteristics of the field:

−−−[spor t]−−−
value = 39440 (39440)
bytes = b ’\ x9a\x10 ’

15

hex = 9a10
s i z e = 2
s l i c e = [3 4 , 36]
custom = False
type = i n t

In this representation of the field you can see its value in different formats,
its size, its type, and what is important, the position that the field occupies
within the packet bytes. The command dump displays the position of the field
in the bytes of the packet:

00000000: 00 50 56 E6 72 1B 00 0C 29 99 09 FA 08 00 45 00
00000010: 00 28 87 FD 40 00 40 06 D3 DF C0 A8 73 81 D8 3A
00000020: D2 8E 9A 10 01 BB A0 88 CE 06 B2 55 2D 3D 50 14
00000030: 9F B0 47 3F 00 00

If at this point you want to start intercepting packets, you must return to the
template context (by going back with the back command to the layer interface
and then to the template interface), in this context you can use the command
intercept to begin intercepting the packets that pass through the intercepting
machine in the context of that template. If at this point you would like to access
the source port field of all the packets that arrived at the machine, the user
could do it with the syntax package [’TCP’][’sport’], Polymorph will extract
the position that this field occupies within the template used as context and
also the type that the field has, and after that, the framework will dissect
the bytes of the packets that arrive by extracting those sequence of bytes that
correspond to the field sport of the template (in this case the 34, 35 and 36)
and making an interpretation of them according to the type of the field in the
template, in this case int.

10 Preconditions, Executions and Postconditions

Once the communication between two nodes of the network has been intercepted
and the packets passing through the intercepting machine are being intercepted
by the techniques described in the previous section, it is time to modify the
packets in real time.
This is one of the most relevant sections of the paper, and presents the abstrac-
tions that allow users to perform complex processing on any network packet
that implements any protocol in a relatively simple way.

10.1 Conditional functions

The conditional functions are the framework abstraction that will allow the user
to add code in the Python programming language that will be executed in real

16

time on the packets that are intercepted.

There are three types of conditional functions, preconditions, executions and
postconditions. The separation between the three types is logical, which means
that at the technical level there are no differences between them and what they
intend is to provide a degree of order and separation between the different pro-
cesses that may be required on a package.

The conditional functions will be executed sequentially and following the
order in which they were added, this means that the first to be executed will
be the preconditions, starting with the first precondition added by the user,
then the executions and finally the postconditions . The user can add as many
conditional functions as he needs. All the functions have the following structure:

de f new prec (packet) :

your code here

I f the cond i t i on i s meet
re turn packet

As can be seen, the structure is very simple. On the one hand, a function must
be defined in python, which can have any name and which must receive a pa-
rameter as an argument. This parameter corresponds to the packet that the
framework is intercepting in real time at that moment. Inside the function are
the instructions written by the user, this instructions can perform some pro-
cessing on the packet, or some generic processing such as displaying text on the
screen. After processing, the user has two possibilities, to return the packet
variable, which implies that the following conditional functions continue to be
executed, or to return None, which implies that the packet is forwarded with the
processing done up to that moment without execute more conditional functions.

The conditional functions are stored in the template, and are exported seri-
alized along with it. The objective of each of the types of conditional functions
is defined in depth below.

10.2 Precondition

When the user starts intercepting packets in real time with Polymorph, the
framework will probably intercept many more packets than the user wants to
modify. The objective of the preconditions is to provide a previous step of fil-
tering the packets until they have the desired packet. As explained in previous
sections, when packets are intercepted in real time, it is done in the context of
a template, which allows access in a simple way to the fields of the intercepted
packets without knowing in advance the protocols or structure that the packet
implements. The following is a use case in which the user wants to modify in
real time packages that implement the ICMP protocol.

17

(The specific syntax shown will be explained in depth in the next section)

Since we want to modify ICMP protocol packets, previously, packets of this
protocol must have been captured and transformed into a template, so that we
are working on a template similar to the packets that we want to modify. In
this case, it should be something Similar to the following:

−−−[ETHER]−−−
hex dst = 005056 e6721b (0 0 : 5 0 : 5 6 : e6 : 7 2 : 1 b)
. . .

−−−[IP]−−−
. . .
i n t proto = 1 (1)
i n t chksum = 34610 (34610)
hex s r c = c0a87385 (1 9 2 . 1 6 8 . 1 1 5 . 1 3 3)
hex dst = c0a80101 (1 9 2 . 1 6 8 . 1 . 1)
hex opt ions = c0a80101 ([])

−−−[ICMP]−−−
i n t type = 8 (8)
i n t code = 0 (0)
i n t chksum = 14180 (14180)
i n t id = 3997 (3997)
i n t seq = 2 (2)
. . .

As you can see in the template, within the IP layer there is a field called
proto that tells us the type of protocol in use. In this case it is type int and has
the value 1. Our precondition would be something similar to the following:

de f new prec (packet) :
t ry :

i f packet [” IP ”] [” proto ”] == 1 :
re turn packet

except :
r e turn None

With a precondition as simple as the one shown, all the packets belonging to
the ICMP protocol will be filtered, allowing only those that fulfill our precon-
dition to continue executing the rest of the conditions that have been defined,
and those that do not comply with it will be immediately forwarded.

10.3 Executions

As explained in previous sections, the difference between the conditional func-
tions is logical, therefore, the executions work in the same way as the precon-
ditions. The difference between both is at the organizational or functionality

18

level, the executions are designed to add functions that perform processing on
the intercepted packets, an example of execution could be the following:

de f new exec (packet) :
packet [” IP ”] [” l en ”] = 56
return packet

In this execution we would be modifying in real time the length field of the
IP layer of the packets that arrive and comply with our defined preconditions.

10.4 Postconditions

Postconditions, like executions, work in the same way as preconditions, but
their purpose is different. When modifying packets at the byte level, it is very
common that after the modification some control fields of the packet, such
as checksums or lengths become inconsistent. The purpose of this group of
functions is to process the packet to be completely consistent before sending it
to the destination machine. An example of a postcondition to recalculate the
control fields of the TCP/IP layers is the following one:

de f r e c a l c u l a t e t c p i p (packet) :
from scapy . a l l import IP
pkt = IP (packet . raw [1 4 :])
i f pkt . ha s l aye r (’ IP ’) and pkt . ha s l aye r (’TCP’) :

de l pkt [’ IP ’] . chksum
de l pkt [’TCP’] . chksum
de l pkt [’ IP ’] . l en
pkt . show2 ()
packet . raw = bytes (pkt)
re turn packet

As you can see, in the set of conditional functions you can use other frame-
works or tools to perform certain functions, this gives Polymorph more power
and flexibility. In this case, Scapy is used to recalculate the control fields.

11 Packets modification. Syntax and access meth-
ods

Once that have been presented the different methods to add custom functions
(preconditions, executions and postconditions) to a template that will be exe-
cuted in real time on the packets that are intercepted, it is time to explain the
syntax that can be used to build these conditional functions and modify the
packets in real time.

11.1 Reading the fields of a packet

As it has been explained several times throughout the paper, it is important to
remember that the interception is done in the context of a template, this means

19

that when you access a certain field of a packet that has been intercepted, you
are checking the position that the field occupies in the template and dissecting
that same position in the bytes of the intercepted packet. After this, the bytes
that have been extracted from the intercepted packet, are converted to the type
that the field has in the template (more information about this in section 10,
subsection 10.3).

Taking all this into account, the following is the syntax that should be used
to access the fields of a particular packet that has been intercepted based on
the template that is being used as context in the intercepting process.

Assuming you want to access the chksum field of the IP layer of all the
packets that the framework is intercepting in real time, and assuming that the
template that the user has generated and is using as intercept context has the
IP layer:

−−−[ETHER]−−−
hex dst = 005056 e6721b (0 0 : 5 0 : 5 6 : e6 : 7 2 : 1 b)
. . .

−−−[IP]−−−
. . .
i n t proto = 1 (1)
i n t chksum = 34610 (34610)
hex s r c = c0a87385 (1 9 2 . 1 6 8 . 1 1 5 . 1 3 3)
hex dst = c0a80101 (1 9 2 . 1 6 8 . 1 . 1)
hex opt ions = c0a80101 ([])

The syntax to access this field would be the following:

packet [” IP ”] [” chksum ”]

First the user must specify the layer in square brackets and finally the field that
the user wants to access in square brackets. In the next example we will use this
syntax within a precondition that displays all the chksums of the intercepted
packets:

de f new prec (packet) :
t ry :

p r i n t (packet [” IP ”] [” chksum ”])
except :

r e turn None

11.2 Insertion of new values in the packets

The insertion of new values in the intercepted packets is similar to the query of
a value. If you want to add a new value for the chksum field of the IP layer, as
shown in the previous section, it can be carried out using the following syntax:

20

packet [” IP ”] [” chksum ”] = new−value

One of the most important things that should be taken into account when
adding a new value, is the type that field has in the template that is being used
as intercepting context. If we go back to the template showed in the previous
section, the field chksum, has type int, which means that the user must assign
a value of type int when inserting. The type of the field in the template can be
modified by the user prior to the interception process.

11.3 Own methods of the package

In addition to accessing all the fields that are specified in the template that
is being used as the interception context and the assignment of new values to
them, Polymorph provides a series of simple methods that can be applied to the
packets that are captured and whose objective is to facilitate the calculation of
certain lengths or the assignment of new values to the packet.

• raw: It is a property of the packet and returns its bytes. It is useful if the
user uses other frameworks that modify the bytes of the packet. It can be
used as follows:

de f new prec (packet) :
Imprimimos por pa n ta l l a l o s bytes de l paquete ac tua l
p r i n t (packet . raw)
asignamos nuevo va l o r a l paquete
packet . raw = b”\x00”
return packet

• len: Provides the total length of the packet or the different layers of the
packet. It can be used as follows:

de f new prec (packet) :
Imprime l a l ong i tud de l paquete
p r i n t (l en (packet))
Imprime l a l ong i tud de l a capa IP
pr in t (l en (packet [” IP ”]))
re turn packet

11.4 Global variables

There are certain occasions in which it is required to maintain global variables
that are persistent between conditional functions and between intercepted pack-
ets. Polymorph allows the option to define a global variable whose value will
be maintained for all packets that are intercepted. The way to define these
variables is as follows:

de f c r e a t e g l o b a l v a r s (packet) :
t ry :

21

packet . i n s e r t
except Att r ibuteError :

s e t a t t r (packet , ’ i n s e r t ’ , Fa l se)

This will create a variable called insert that will be maintained even though
the current packet is forwarded and can be accessed through the packet.insert
statement. This can be useful if the user wants to start executing a certain
execution function after a certain event occurs. For example, if a certain packet
is received, the variable insert is set to True and from that moment all the
packets that are intercepted are modified.

12 Dynamic dissection of packet fields

At this point of paper we have already explained many of the key concepts of
the framework that is presented. In this section we present another abstraction
that will allow the user to dissect fields of different lengths of a packet inter-
cepted in real time, the concept of Struct.

If the previous sections of paper have been followed, and the concept of tem-
plate has been understood along with the relation it has with the interception
and modification of the packets in real time, probably someone has noticed the
following casuistry:

• Assuming that the user has generated a template similar to the following,
with the aim of modifying packets that implement the MQTT protocol:

−−−[ETHER]−−−
. . .
−−−[IPV6]−−−
. . .
−−−[TCP]−−−
. . .
−−−[RAW]−−−
. . .
−−−[RAW.MQTT]−−−
s t r h d r f l a g s = 0 (0 x00000030)
i n t msgtype = 48 (3)
i n t dupf lag = 48 (0)
i n t qos = 48 (0)
i n t r e t a i n = 48 (0)
i n t l en = 10 (10)
i n t t o p i c l e n = 4 (4)
s t r t op i c = t e s t (t e s t)
s t r msg = hola (hola)

• If the user would like to display the msg field of the RAW.MQTT layer of

22

all the packets that are intercepted, the necessary precondition function
would be something similar to the following:

de f new prec (packet) :
t ry :

p r i n t (packet [”RAW.MQTT”] [” msg ”])
except :

r e turn None

• The way in which Polymorph will perform this action, is looking for the
position that the field msg occupies in the template, in this case, from
byte 94 to 98, and it will try to dissect these four bytes of the intercepted
packets and transform them to the type the field has in the template, in
this case str.

• As you can see, there is a problem if the msg field is a variable length field,
so if the intercepting packet has a value in the msg field equal to Hello
how are you, the framework, will only dissect the first four bytes (the ones
that occupy this field in the template), and will display the value Hell
omitting o how are you.

To avoid this problem, polymorph implements the concept of Struct, that
allows the user to indicate the size of a field based on the size of other fields in
the template. The Structs will be stored in the template when it is exported.

These structures are defined from the framework itself in the context of a
given layer, and have two main components:

• Start byte: The start byte of the field that you want to recalculate
dynamically

• Expression: The expression used to calculate the new length of the field,
can be simple or complex

For the use case that was shown in the previous example, the msg field of
the RAW.MQTT layer can be recalculated dynamically, defining the following
Struct in Polymorph:

PH: cap/ t14 /RAW.MQTT > r e c a l c u l a t e −f msg −sb ”70 +
t h i s . t o p i c l e n ” −e ” t h i s . l en − 2 − t h i s . t o p i c l e n ”

It is important to emphasize that to refer to fields of the layer itself in both
the start byte(-sb) and the expression(-e) the prefix this. must precede the field.

13 Creating custom layers and fields

To finish with the concepts implemented in the framework, a characteristic is
presented that allows the user to modify the templates to add their own layers

23

or fields.

As noted throughout the paper when packets are intercepted and modified,
it is done in the context of a template, and will be the template fields and the
position they occupy in the packet bytes the attributes that will allow the dis-
section of the new packets that are intercepted. In some cases, it is possible
that Polymorph is not able to properly dissect some bytes of the packet, either
because the protocol is not correctly defined, or because it is a private proto-
col without public specification. For these cases, Polymorph allows the user to
manually create layers and fields, so that in the interception phases you can
access them in a simple way as shown in previous sections.

The process of adding layers and fields is carried out from the template and
layer interface and is a simple process. The command that is used to add a new
layer is the following:

PH: cap/ t14 > l a y e r −a NEW LAYER
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 86 DD 60 04
00000010: D4 1C 00 2C 06 40 00 00 00 00 00 00 00 00 00 00
00000020: 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00
00000030: 00 00 00 00 00 01 BA 74 07 5B 1D 54 4B D8 B2 F1
00000040: 6C F5 80 18 01 56 00 34 00 00 01 01 08 0A 81 A2
00000050: 17 74 81 A2 17 70 30 0A 00 04 74 65 73 74 68 6F
00000060: 6C 61

Star t byte o f the custom l a y e r :

Polymorph will show all the bytes of the packet and request two values:

• Start byte: The start byte of the layer

• End byte: The byte in which the layer ends

Once the user has entered these values, the new layer is added to the tem-
plate, and in the same way, you can begin to define fields by means of the
statement:

PH: cap/ t14 /NEW LAYER > f i e l d −a newf i e l d
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 86 DD 60 04
00000010: D4 1C 00 2C 06 40 00 00 00 00 00 00 00 00 00 00
00000020: 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00
00000030: 00 00 00 00 00 01 BA 74 07 5B 1D 54 4B D8 B2 F1
00000040: 6C F5 80 18 01 56 00 34 00 00 01 01 08 0A 81 A2
00000050: 17 74 81 A2 17 70 30 0A 00 04 74 65 73 74 68 6F
00000060: 6C 61

Star t byte o f the custom f i e l d :

Indicating in this case,

24

• Start byte: The beginning byte of the field

• End byte: The byte in which the field ends

• type: The type of the field you want to create (int, hex, bytes, str)

From this point, the user can begin to modify the value of the layer and the
field by accessing it through the different interfaces of the framework.

25

14 ANNEX 1: Practical case: Modifying MQTT

14.1 Approach of the case

It is intended to perform the modification in real time of network packets be-
longing to the MQTT protocol. Specifically, it is intended to modify the message
that is carried in the packets of type MQTT publish.

14.2 Intercepting communication between two nodes in
the network

The first thing that the user must do is to intercept the communication be-
tween two nodes of the network that will be communicated through the MQTT
protocol. To perform this step, the user can use the spoof command from the
Polymorph main interface.

Figure 1: MQTT ARP Spoofing

To check if the poisoning is taking effect, you can access one of the poi-
soned machines and make a traceroute to the other legitimate machine. The
communication must flow through the attacking machine.

Figure 2: Testing the ARP Spoofing

14.3 Capturing packets and generating templates

Once the communication between the legitimate machines has been intercepted,
the next step is the capture of packets belonging to the MQTT protocol, among
which a packet MQTT publish must be found. Once these packets are captured,

26

Polymorph will automatically convert them into templates.
You can start capturing packets as shown in figure 3.

Figure 3: Sniffing with Polymorph

After stopping the capture process, it can be seen that the framework has
automatically entered the interface where a list of templates is displayed, with
the command show we can see the generated templates. Figure 4 shows the
execution of the command.

Figure 4: Show template list

27

It is important to understand that at this point, the generated templates
correspond to each of the packets captured in the sniffing process, and their
representation in relation to the protocols implemented by each of the captured
packets is the one that Scapy provides. If you look closely, Scapy has not been
able to dissect the MQTT layer, therefore, the user must use the command
dissect, to use more advanced dissectors on the bytes of these packets, that will
finish interpreting all their layers. Figure 5 shows the execution of the command.

Figure 5: Dissection of the Templates

Once more advanced dissectors have been used to interpret all the layers of
the packets, you can see how templates appear with the MQTT layer, to access
one of the generated templates and check if it belongs to a MQTT publish packet,
the user must use the command template with the number of the template he
want to access. Figure 6 shows the execution of the command.

If you have captured a large number of templates, and you need to perform
an exhaustive search among all generated templates, you can use the wireshark
command, which will open the capture with Wireshark in .pcap format, so that
the user can quickly select the templates that he wants to modify.

14.4 Modifying the Template

Once a template with the MQTT layer has been selected, the framework auto-
matically redirects the user to the Template interface. To show the contents of

28

Figure 6: Choosing a Template

the selected template, use the command show. Figure 7 shows the execution of
the command.

It is important to stop for a moment in this phase to understand the values
that this command shows on the screen. On the left, whe can see all the layers
of the template, below each layer, we can see all the fields belonging to each
layer preceded by the type that the field has in the template. The type, as will
be seen later, is a very important feature when writing the conditional functions
of the template. On the right, there is, in white, the value that the field has
in the template and in blue, an orientative value that the dissectors have taken
from the field. It is important to realize that the value with which the user must
operate is the one that is in white color.

If you pay attention to the fields of the RAW.MQTT layer that appear in
figure 7, you can locate a field called msgtype, this is the field that determines
the type of MQTT package, that in this case, corresponds to a 48 (MQTT Pub-
lish). As can be seen, the field has a small difference between the value that
the template has and the value produced by the dissectors, this is because Poly-
morph has interpreted the complete byte and converted it to integer, while the
value 3 originated by the dissectors, is extracted only from the first 4 bits of the
byte, and is the one that actually represents the type of message. If you want
to check the value of the field in more detail, you can access the layer with the
command layer raw.mqtt and the field with the command field msgtype, with
the command show you can see the characteristics of the field.

Once a field has been determined within the template that uniquely identifies

29

Figure 7: Show command

the type of packets that we want to modify, the user can write a precondition
so that, at the moment of interception, all the packets are filtered and only the
desired packets are obtained. A precondition that would filter the packets by

30

the msgtype field could be the following:

de f new prec (packet) :
t ry :

i f packet [’RAW.MQTT’] [’ msgtype ’] == 48 :
re turn packet

except :
r e turn None

In the precondition we access the msgtype field of the packets that are inter-
cepted in real time by the framework, and it is checked if the value that is in
that position in the bytes of the intercepted packet corresponds to a 48. If this
is the case the framework continue executing the conditional functions (return
packet), otherwise the execution of the functions is broken and the packet is
forwarded (return None). It is important to take into account the type that the
field has in the template when comparing it with a new value. In this example,
the field is of type int and therefore in the conditional functions it must be com-
pared or assigned with values of type int. The type of the field in the template
can be modified from the field interface. Figure 8 shows the command needed
to add the precondition.

Figure 8: Add precondition

Once the precondition that will filter the MQTT Publish packets is added,
we are going to add a simple execution function, which shows on the screen the
msg field of the intercepted packets. The execution function is the following:

de f new exec (packet) :
p r i n t (packet [’RAW.MQTT’] [’ msg ’])
r e turn packet

En la figura 9 se muestran los comandos necesarios para añadirla.

Figure 9: Add execution

After adding the execution function, the user can begin to intercept packets
in real time, these packets will be filtered with the precondition and will go to

31

the execution, where the field msg will be shown on the screen as it is described
in the template which is used as an interception context. To start intercepting
packets, the user can use the command intercept as shown in image 10.

Figure 10: Intercept

If messages start to be published among the legitimate machines, we will
observe how the framework starts capturing the packets, filtering the MQTT
Publish packets and displaying the msg field.

Although everything seems correct, it is easy to notice that the values that
appear on the screen, in certain occasions, are cut off and only the first 4 letters
of the message are shown. This is because in the template that is being used as
the intercept context, the field msg has a length of 4 bytes, and therefore in the
incoming packets the framework only dissects those 4 bytes. If the user would
like to dissect the field msg dynamically in function of the control fields of the
layer RAW.MQTT, it should add a Struct, and this is done in the following way
(figure 11).

Figure 11: Recalculate field

With this statement the user tells Polymorph that the msg field will have a
variable length. The first thing that is indicated is the start byte (-sb), which
will be the byte where the field will begin within the set of bytes of the packet,

32

finally it must be indicated an expression (- e) which will indicate how the
length of the field should be calculated. To refer to the content of fields within
the template, the user must use the prefix this.

If after adding the Struct, we return to intercept packets, we can see how
this time the dissection of the msg field is done dynamically and the messages
sent from one legitimate machine to the other appears on the screen.

14.5 Modifying the package in real time

Once the user has added a precondition to filter the MQTT Publish packages
and a function to recalculate the msg field dynamically, modifying this field is a
simple task. The only thing that the user must do is add a set of executions and
postconditions to make sure that after inserting the value, the package remains
consistent.

In this case, if we modify the value of the msg field of the RAW.MQTT
layer, these would be the control fields that would be inconsistent:

• packet[’IP’][’len’]

• packet[’IP’][’chksum’]

• packet[’TCP’][’chksum’]

• packet[’RAW.MQTT’][’len’]

The following postconditions (which may be reused for other use cases) re-
calculate those fields.

de f mqt t l en r e c (packet) :
packet [’RAW.MQTT’] [’ len ’] = packet [’RAW.MQTT’] [’ t o p i c l e n ’]

+ 2 + len (’ a t ta cke r value ’)
r e turn packet

de f r e c a l c u l a t e t c p i p (packet) :
from scapy . a l l import IP
pkt = IP (packet . raw [1 4 :])
i f pkt . ha s l aye r (’ IP ’) and pkt . ha s l aye r (’TCP’) :

de l pkt [’ IP ’] . chksum
de l pkt [’TCP’] . chksum
de l pkt [’ IP ’] . l en
pkt . show2 ()
packet . raw = bytes (pkt)
re turn packet

So, adding the precondition for filtering MQTT Publish packets, an execu-
tion to insert a new value in the msg field of the RAW.MQTT layer:

33

de f new exec (packet) :
packet [’RAW.MQTT’] [’ len ’] = ’ a t ta cke r value ’

And the postconditions cited above, we could begin modifying MQTT pro-
tocol packets in real time (figure 11).

Figure 12: Inserting value

34

15 ANNEX 2: Case of study: Modifying WIN-
REG protocol

15.1 Approach of the case

In this case study, it is intended to perform real-time modification of network
packets belonging to the Windows remote registry protocol. Specifically, we
intend to modify the setvalue packet , in order to introduce a value modified
by the attacker in the registry of a victim’s machine. The packets that imple-
ment the Remote Registry Protocol have the protocol stack shown in Figure 13,
which, a priori, makes its modification difficult.

To configure the environment, you can follow the following video: https://www.youtube.com/watch?v=fzkeEJG7l4Q

Figure 13: Winreg packet

15.2 Generating the template

As in the previous case, in this case, the user needs to intercept the communica-
tion between the two machines (Windows) that communicate with the Remote
Registry Protocol using one of the techniques offered by the tool (or other
techniques that implement other frameworks). The objective of this step is to
capture a package of type setvalue belonging to the Remote Registry Protocol
and generate a template. With this template, different processing will be per-
formed and packets will be intercepted and modified in real time. Figure 14
shows the steps to follow to capture packets and generate the list of templates.

35

Figure 14: Capture process

As can be seen in Figure 14, the list of templates can be very long. To
speed up the process of filtering the template that interests us, we will use the
command wireshark, which will open the Wireshark tool in another window,
where we can apply filters to find the corresponding packet number with the
message setvalue. Figure 15 shows the process.

15.3 Modifying the template

Once we have located the packet number in wireshark, we access the template
using the command template (it is important to keep in mind that the number

36

Figure 15: Openning Wireshark

in the framework is equal to the number of wireshark - 1). Once inside the
template interface, we use the show command to display its contents on the
screen. Figure 16 shows the contents.

At this point we can observe how the packets of this protocol are complex and
implement several protocols that Polymorph has been able to dissect. However,
if we look closely, we can see how in the RAW.WINREG layer there is no value
field in which the message sent by a legitimate user to the other legitimate user
appears. If we use the dump command as shown in figure 17, we can see in what
position within the packet bytes this message is found.

If we go back to the capture in Wirehsark, we can see how the package, in
the Winreg layer, does not have a specific field where the value that is sent in
the message is specified, the tshark dissectors do not generate it, and that’s why
it does not appear in Polymorph. Since this value will be modified in this use
case, we will create a new field in the RAW.WINREG layer with the value of
the user. Figure 18 shows the process.

In the figure we can see how a new field is added. First, we must be in the
context (interface) of the layer where we want to add the new field. Once there
we execute the command shown in figure 18 and we will request the start and
end bytes of the field, and the type of the field, we can check these values in the
dump that is shown, or in the capture that we had open in Wireshark. After
performing this process, if we use the command show in the context of the layer,
we can observe the new field created with the value of the user. Figure 19 shows
the result of the command.

After adding the new field, what we are going to do is build a Struct, in
such a way that the field is recalculated dynamically when we are capturing
depending on other fields of the layer. When we add a Struct it is necessary to
take into account that the field that is used to recalculate the length must be
before the actual field that is being recalculated. If we look at Wireshark, we
can see that there is a length field just before the message begins. Polymorph

37

Figure 16: SetValue Template

Figure 17: Dump of the Template bytes

38

Figure 18: Add Value field

Figure 19: Show Value field

has not dissected this field correctly, so let’s create it. In figure 20 its creation
is shown.

If we access the interface of the new field created and show its value with
the command show, we can see how the value that appears does not match the
one shown by Wireshark or the dissectors, this is because polymorph interprets

39

Figure 20: Add Size field

by default all int values as big endian, and in this case the Windows Remote
Registry protocol introduces them in the package as little endian, to modify the
field type, the only thing that we have to do is use the sentence shown in figure
21.

Once we have found and interpreted the control field that determines the
length of the value field that we have previously added, we are going to add the
Struct to recalculate this field dynamically. Figure 22 shows the script.

In addition to creating the Struct, we can use the -t option to verify that it
is correctly formed. The result should be the user’s field value.

To finish, and before starting to write the conditional functions, we are going
to convert another field to little endian, the opnum field of the RAW.DCERPC
layer. This field will be used to write the precondition that filters the setValue
protocol packages. Figure 23 shows the script.

Before starting with the next section, we will save the template in case any
problem occurs that causes an unexpected shutdown of the application. Figure
24 shows the necessary commands.

15.4 Adding conditional functions

Once we have the template fields that interest us correctly interpreted and we
have also saved it in disk in case an unexpected event happens, we will start
with the conditional functions that will process the packets in the air.

We are going to start by adding a simple precondition that filters all the

40

Figure 21: Change the order of the field

Figure 22: Recalculate Value field

intercepted packets and stays with the setValue packets, for that we are going
to use the opnum field of the RAW.DCERPC layer as filter. The precondition
is shown below.

de f w in r eg s e tv a l u e (packet) :
t ry :

i f packet [”RAW.DCERPC”] [” opnum ”] == 22 :
re turn packet

except :
r e turn None

We are going to also add an execution that takes out the value of the value
field from the RAW.WINREG layer on the screen, in this way we would have

41

Figure 23: Change opnum order

Figure 24: Save option

built a small sniffer of the WINREG protocol. The execution is shown below.

de f p r i n t v a l u e (packet) :
p r i n t (packet [’RAW.WINREG’] [’ value ’])
r e turn packet

Finally, we use the command intercept to start intercepting packages and
execute the conditional functions that we have added on them. Figure 25 shows
the execution of all the previous commands and the result of sending a few
setValue packets from one legitimate machine to the other.

As you can see, at this point we would be intercepting all setValue packets
of the legitimate user and printing them on the screen. To end the case study,
we will add the execution and postcondition necessary to modify the value in-
troduced by the legitimate user.

42

Figure 25: Adding funcs and intercepting

Let’s start by seeing the format in bytes that the value field has in the packet.
To do this, we return to the Polymorph interface, access the field and transform
it into type bytes. In figure 26 you can see the process.

Figure 26: Value in bytes

As can be seen, the value has null bytes interspersed, we will leave it in type
bytes, which implies that in the execution that we develop the value that we
assign to the field must be type bytes. The execution that we are going to use
is the following.

de f i n s e r t v a l u e (packet) :
f l e n = packet [’RAW.WINREG’] [’ v a l u e s i z e ’]
i v a l u e = b ’ a\x00t\x00t\x00a\x00c\x00k\x00e\x00r\x00 ’
i v a l u e += b ’\ x00 ’ ∗ (f l e n − l en (i v a l u e))
packet [’RAW.WINREG’] [’ value ’] = i v a l u e
re turn packet

As can be seen, the execution will not be useful for all use cases. In order to

43

not make the case too long and complicated, values that are smaller than the
original will be inserted and then padding will be made with null bytes up to
the size of the original field. In this way we do not leave all the control fields
related to the size of the packet inconsistent.

To finish, we are going to reuse a postcondition that we used in the previous
section to recalculate the chksum control fields of the IP and TCP layers.

de f r e c a l c u l a t e t c p i p (packet) :
from scapy . a l l import IP
pkt = IP (packet . raw [1 4 :])
i f pkt . ha s l aye r (’ IP ’) and pkt . ha s l aye r (’TCP’) :

de l pkt [’ IP ’] . chksum
de l pkt [’TCP’] . chksum
pkt . show2 ()
packet . raw = bytes (pkt)
re turn packet

Once these conditional functions have been inserted, the only thing left for us
is to put the framework to intercept packages. The result should be something
similar to Figure 27, and the value that must be set in the registry of the remote
machine must be the value entered by the attacker (Figure 28).

44

Figure 27: Value inserted

Figure 28: Regedit value

16 ANNEX 3: All commands and their function

This section describes all the commands of each of the interfaces of the frame-
work, as well as all the options they have.

45

16.1 Main interface

• capture: Capture packets from a specific interface and transform them
into a template list.

Options :
−h p r i n t s the he lp .
−f a l l ows packet f i l t e r i n g us ing the BPF notat ion .
−c number o f packets to capture .
−t stop s n i f f i n g a f t e r a g iven time .
− f i l e read a . pcap f i l e from di sk .
−v v e r b o s i t y l e v e l medium .
−vv v e r b o s i t y l e v e l high .

• spoof : Performs an ARP spoofing between machines in the network.

Options :
−h p r i n t s the he lp .
−t t a r g e t s to perform the ARP spoo f i ng . Separated by ’ , ’
−g gateway to perform the ARP spoo f ing
− i network i n t e r f a c e .

• clear: Clears the screen.

16.2 Template List interface

• show: Prints information about the list of templates.

Options :
−h p r i n t s the he lp .
−t show a p a r t i c u l a r template .

• dissect: Dissects the captured packets with the Tshark dissectors and
generates a template from the packet.

Options :
−h p r i n t s the he lp .
−t d i s s e c t s u n t i l a p a r t i c u l a r template .

• template: Access the content of a particular template.

Options :
−h p r i n t s the he lp .

• wireshark: Opens the captured file with Wireshark.

Options :
−h p r i n t s the he lp .
−p i n d i c a t e a new path to the wireshark binary .

• back: Returns to the previous interface.

46

16.3 Template interface

• show: Prints information about the template.

Options :
−h p r i n t s the he lp .
− l shows a p a r t i c u l a r l a y e r .

• name: Manages the name of the Template.

Options :
−h p r i n t s the he lp .
−n s e t a new name to the template .

• layer: Access and manage the layers of the Template.

Options :
−h p r i n t s the he lp .
−a adds a new l a y e r to the Template .
−d d e l e t e s a custom l a y e r from the Template .

• dump: Dumps the packet bytes in different formats.

Options :
−h p r i n t s the he lp .
−hex dump the packet bytes encoded in hexadecimal .
−b dump the packet bytes without encoding .
−hexs t r dump the packet bytes as an hexadecimal stream .

• layers: Prints the layers of the Template.

Options :
−h p r i n t s the he lp .
−c p r i n t s the custom l a y e r s .

• preconditions: Will run when a packet arrive. This functions receive
a parameter that is the packet that will arrive when intercepting in real
time. Furthermore, this functions must return the same packet if the user
want to continue with the execution of the next conditions. There are
three different types of conditions, Preconditions, which are associated
with some input requirements that the packets must meet, Executions,
which will do processing actions to the previously filtered packets and
Postconditions, which have to be with actions that must be performed
before forwarding the packet (ex. checksum reclaculations).

Options :
−h p r i n t s the he lp .
−a adds a new cond i t i on to the s e t .
−d d e l e t e s a cond i t i on from the s e t .

47

−e open a text e d i t o r that i s in the path with
the e x i s t i n g cond i t i ons , by d e f a u l t p i co .

−s p r i n t s the c o n d i t i o n s with the source code .
− i import a func t i on from a f i l e .
−sa p r i n t s a l l the c o n d i t i o n s on d i sk .
−sa s p r i n t s a l l the c o n d i t i o n s source on d i sk .

• postconditions: Will run when a packet arrive. This functions receive
a parameter that is the packet that will arrive when intercepting in real
time. Furthermore, this functions must return the same packet if the user
want to continue with the execution of the next conditions. There are
three different types of conditions, Preconditions, which are associated
with some input requirements that the packets must meet, Executions,
which will do processing actions to the previously filtered packets and
Postconditions, which have to be with actions that must be performed
before forwarding the packet (ex. checksum reclaculations).

Options :
−h p r i n t s the he lp .
−a adds a new cond i t i on to the s e t .
−d d e l e t e s a cond i t i on from the s e t .
−e open a text e d i t o r that i s in the path with

the e x i s t i n g cond i t i ons , by d e f a u l t p i co .
−s p r i n t s the c o n d i t i o n s with the source code .
− i import a func t i on from a f i l e .
−sa p r i n t s a l l the c o n d i t i o n s on d i sk .
−sa s p r i n t s a l l the c o n d i t i o n s source on d i sk .

• executions: Will run when a packet arrive. This functions receive a
parameter that is the packet that will arrive when intercepting in real
time. Furthermore, this functions must return the same packet if the user
want to continue with the execution of the next conditions. There are
three different types of conditions, Preconditions, which are associated
with some input requirements that the packets must meet, Executions,
which will do processing actions to the previously filtered packets and
Postconditions, which have to be with actions that must be performed
before forwarding the packet (ex. checksum reclaculations).

Options :
−h p r i n t s the he lp .
−a adds a new cond i t i on to the s e t .
−d d e l e t e s a cond i t i on from the s e t .
−e open a text e d i t o r that i s in the path with

the e x i s t i n g cond i t i ons , by d e f a u l t p i co .
−s p r i n t s the c o n d i t i o n s with the source code .
− i import a func t i on from a f i l e .
−sa p r i n t s a l l the c o n d i t i o n s on d i sk .

48

−sa s p r i n t s a l l the c o n d i t i o n s source on d i sk .

• intercept: Starts intercepting packets in real time.

Options :
−h p r i n t s the he lp .
− i p t i p t a b l e s r u l e f o r ipv4
−i p6 t i p t a b l e s r u l e f o r ipv6

• timestamp: Shows the timestamp of the Template.

• save: Saves the Template to disk.

Options :
−h p r i n t s the he lp .
−p path where the Template w i l l be wr i t t en .

• version: Manages the version of the Template.

Options :
−h p r i n t s the he lp .
−n s e t s a new ve r s i o n .

• description: Manages the description of the Template.

Options :
−h p r i n t s the he lp .
−n s e t s a new d e s c r i p t i o n .

• spoof : Performs an ARP spoofing between machines in the network.

Options :
−h p r i n t s the he lp .
−t t a r g e t s to perform the ARP spoo f i ng . Separated by ’ , ’
−g gateway to perform the ARP spoo f ing
− i network i n t e r f a c e .

• back: Returns to the previous interface.

16.4 Layer interface

• show: Prints information about the layer.

Options :
−h p r i n t s the he lp .
−f shows a p a r t i c u l a r f i e l d .

• field: Access and manage the fields of the layer.

49

Options :
−h p r i n t s the he lp .
−a adds a new f i e l d to the l a y e r .
−d d e l e t e s a custom f i e l d from the l a y e r .

• fields: Prints the fields of the layer.

Options :
−h p r i n t s the he lp .
−c p r i n t s the custom f i e l d s .

• dump: Dumps the layer bytes in different formats.

Options :
−h p r i n t s the he lp .
−hex dump the packet bytes encoded in hexadecimal .
−b dump the packet bytes without encoding .
−hexs t r dump the packet bytes as an hexadecimal stream .

• recalculate: Creates a structure that relates a field to other fields of the
layer, so that its value can be calculated dynamically at run time.

Options :
−h p r i n t s the he lp .
−f f i e l d to be r e c a l c u l a t e d
−sb s t a r t byte o f the f i e l d that you want to r e c a l c u l a t e .
−e exp r e s s i on that r e c a l c u l a t e s the f i e l d
−t t e s t s a p r e v i o u s l y c rea ted s t r u c t u r e
−s shows the s t r u c t f o r a p a r t i c u l a r f i e l d
−d d e l e t e s a s t r u c t from a f i e l d .

• back: Returns to the previous interface.

16.5 Field interface

• show: Shows the characteristics of the field.

• value: Manages the field value.

Options :
−h p r i n t s the he lp .
−a add a new value to the f i e l d
−t type o f the value (’ hex ’ , ’ bytes ’ , ’ s t r ’ , ’ int ’) .

By d e f a u l t ’ s t r ’ .
−hex p r i n t s the value encoded in hex .
−b p r i n t s the value encoded in bytes .

• type: Manages the field type.

50

Options :
−h p r i n t s the he lp .
−a add a new type to the f i e l d (’ hex ’ , ’ s t r ’ , ’ bytes ’ , ’ int ’)
−o order f o r i n t type (’ big ’ , ’ l i t t l e ’)

• name: Manage the name of the field.

Options :
−h p r i n t s the he lp .
−n s e t a new name to the f i e l d .

• slice: Prints the slice of the field.

• custom: Manage the custom property of the field.

Options :
−h p r i n t s the he lp .
−s e t s e t the f i e l d as custom .
−unset unset the f i e l d as custom

• size: Prints the size of the field.

• dump: Prints the hex dump of the field.

• back: Returns to the previous interface.

51

	Introduction
	State of the art
	Introduction to Polymorph
	Polymorph Installation
	Download and installation on Linux (Recommended)
	Download and installation on Windows
	Docker installation

	Polymorph Interfaces
	Interception of the communication
	ARP spoofing

	Sniffing of network packets
	Template abstraction
	Structure of a template
	Template generation
	Template dissection
	Export Templates
	Import Templates

	Intercepting packages
	Interception in Linux
	Interception in Windows
	Templates in the interception process

	Preconditions, Executions and Postconditions
	Conditional functions
	Precondition
	Executions
	Postconditions

	Packets modification. Syntax and access methods
	Reading the fields of a packet
	Insertion of new values in the packets
	Own methods of the package
	Global variables

	Dynamic dissection of packet fields
	Creating custom layers and fields
	ANNEX 1: Practical case: Modifying MQTT
	Approach of the case
	Intercepting communication between two nodes in the network
	Capturing packets and generating templates
	Modifying the Template
	Modifying the package in real time

	ANNEX 2: Case of study: Modifying WINREG protocol
	Approach of the case
	Generating the template
	Modifying the template
	Adding conditional functions

	ANNEX 3: All commands and their function
	Main interface
	Template List interface
	Template interface
	Layer interface
	Field interface

