

1 | P a g e

 Deserialization vulnerability
 By Abdelazim Mohammed(@intx0x80)

Thanks to:

Mazin Ahmed (@mazen160)

Asim Jaweesh(@Jaw33sh)

2 | P a g e

Table of Contents
Serialization (marshaling): .. 4

Deserialization (unmarshaling): .. 4

Programming language support serialization: ... 4

Risk for using serialization: .. 5

Serialization in Java .. 6

Deserialization vulnerability in Java: .. 6

Code flow work... 11

Vulnerability Detection: .. 12

CVE: ... 17

Tools: .. 17

Vulnerable libraries lead to RCE: ... 18

Mitigation: .. 19

Serialization in Python .. 20

Deserialization vulnerability in Python: ... 21

Pickle instructions ... 25

Exploit vulnerability: .. 26

CVE: ... 29

Mitigation: .. 29

Serialization in PHP .. 30

Deserialization vulnerability in PHP: ... 30

Exploit vulnerability: .. 35

CVE: ... 39

Mitigation: .. 40

Serialization in Ruby ... 41

Deserialization vulnerability in Ruby: .. 42

Detect and exploit vulnerability: .. 44

CVE: ... 53

Tools: .. 53

Mitigation: .. 53

Conclusion: ... 56

3 | P a g e

Introduction :

The intention of this document is to help penetration testers and students as well as

to identify and test serialization vulnerabilities on future penetration testing

engagements via consolidating research for serialization penetration testing

techniques. In addition to that, serialization typically implemented in various

platform application server and also web Application. However, this technique had

some vulnerabilities and it was discovered in many application server, methods in

various web applications.

4 | P a g e

Serialization (marshaling):
It is the process of translating data structures or object state into bytes format that

can be stored on disk or database or transmitted over the network.

Deserialization (marshaling):
It is the opposite process, which means to, extract data structure or object from

series of bytes

Programming language support serialization:

They are many Object-oriented programming support serialization either by using

syntactic sugar element or using interface to implement it. This study consented on

deserialization vulnerabilities in Java, Python, PHP and Ruby as well as how can

these bugs detected, exploit, and Mitigations techniques.

5 | P a g e

Risk for using serialization:

The risk raisers, when an untrusted deserialization user inputs by sending

malicious data to be de-serialized and this could lead to logic manipulation or

arbitrary code execution.

In this document will take example to detect and exploit it in Java, Python, PHP

and ruby.

6 | P a g e

Serialization in Java

7 | P a g e

Deserialization vulnerability in Java:

Java provides serialization where object represented as sequence of bytes,

serialization process is JVM independent, which means an object can be serialized

in a platform and de-serialized on different platform.

Java implements serialization using class interface Java.io.Serializable, to serialize

an object to implement classes ObjectInputStream ,ObjectOutputStream those

classes contains several methods to write/read objects.

ObjectOutputStream ObjectInputStream

writeObject: The method writeObject is

used to write an object to the stream

readObject: Read an object from the

ObjectInputStream.

writeUTF: Primitive data write of this

String in modified UTF-8 format.

readUTF : Reads a String in modified

UTF-8 format

readObject it is the vulnerable method that leads to deserialization vulnerability it

takes serialized data without any blacklisting.

8 | P a g e

Example

From the above example, you can figure out that ñMyObjectò class implements

Serializable interface hence uses ñreadObjectò method to covert Serializable

stream to object again, take ñObject Input Streamò and read default to read no-

static and non-transient of current class and appended an exclamation mark to the

name, after that create object from serializeable class and add name to name

attribute and Serialize it to file or transmit over network using ñObject Output

Streamò to de-serialize it again from stream to object called ñObject Input Streamò

and use ñread Objectò method after converting it into object it will add exclamation

mark.

9 | P a g e

As seen above, Hexdump of serializeable object, observing bytes ac ed 00 05 73 72

of Java serialized object, also you find class name that implement serializeable

interface, and at bottom you find name bob without exclamation(!) mark.

Java uses object serialization in Java web application and Java application servers.

Serialized data could be found in HTTP requests, parameters, View State or

cookies. For example RMI itôs Java protocol is based on serialization, JMX (Java

Management Extensions) and it relies on serialized object begin transmitted.

After exploring where we could find serialized data, after we found it an

application server uses vulnerable library, if we need to achieve successful

exploration firstly the library would need to be on the Java Class Path variable and

the application would need to be de-serialized by trusted user input.

There are many application server using vulnerable library like commons

collections, Spring Framework, groovy, Apache Commons Fileupload<= 1.3.1

Commons collections library using of it can lead to remote code execution (RCE)

itôs extremely popular in Java.

10 | P a g e

The following is gadget chain for generating payload for Commonscollections

library.

Letôs explain the code

You can figure out Invoker Transformer class is vulnerable and can lead to RCE.

Invoker Transformer constructor requires three parameters:

1- Name of method

2- Parameters types the method accepts

3- Parameter value

Note:

 An InvokerTransformer instance accepts an object as input and outputs the

transformed object. The transformation is determined by the instantiation parameters.

The InvokerTransformer first finds a method with the method name as first parameter

then that accepts the given parameters types as second parameter on the incoming

object. Upon finding a matching method, the method on the incoming object and the

parameter values from third as passed as arguments into the method. The returned

value is the value of the method execution.

11 | P a g e

Code flow work
First step: the Object Input Stream calls the read Object() method on invocation,

the JVM looks for the serialized Object's class in the Class Path variable. If class is

not found it will throw exception(Class Not Found Exception), if itôs found ,read

Object of the identified class (Annotation Invocation Handler) is invoked. This

process is followed for all types of objects that are serialized with the Commons

Collections payload.

Second step: read Object method inside Annotation Invocation Handler invokes

entry Set method on Map Proxy.

Third step: the method invocation on the Proxy is transferred to Annotation

Invocation Handler corresponding to the Map Proxy instance along with the

method and a blank array.

Fourth step: the lazy Map attempts to retrieve a value with key equal to the method

name "entrySet".

Fifth step: since that key does not exist, the lazy Map instance goes ahead and tries

to create a new key with the name "entry Set".

Sixth step: since a chained Transformer is set to execute during the key creation

process, the chained transformer with the malicious payload is invoked, leading to

remote code execution.

Fortunately we will not code all of that. There are many tools that can exploit this

bug like commons collection which has gadget chain to be exploited like weôve

seen explained above, there are many gadget chains for many vulnerable libraries

these tools can make it easier for exploitation but you need some steps before

Generating payload involving the gathering as much information as possible before

generating payload for making sure you chose the correct payload.

In the next section, we will dwell into detection of vulnerability taking JBoss as

an example.

12 | P a g e

Vulnerability Detection:

Detecting vulnerability involves many steps which we are going to step to

explain these steps individually by working on JBoss-6.1.0 with the vulnerable

version to de-serialization vulnerability.

First step of detecting Java deserialization vulnerability is to detect if there is

vulnerable library used by the application server like commons-collection

library.

13 | P a g e

Detect vulnerable class in library as we mentioned above InvokerTransformer

class itôs vulnerable to RCE.

Second step: Now after we confirmed that application is vulnerable to

deserialization, itôs time to list open port related to application server to identify

where serialized data transmitted.

It lists ports related to Java process by ñlsofò command and makes some filtration

to confirm which port application server used it in its 8080 use by JBoss

application server.

14 | P a g e

Third step: after knowing which port application is used to transmit serialized data

,it is time to figure out where deserialization appears in some application server,

serialized bytes appear in request, normally you can figure out by focusing on

request body to find pattern [rO0AB] or dump to hex to find magic bytes in JBoss-

6.1.0 deserialization appears when you try to access invoker/JMKInvokerServlet

when accessed you will receive serialization bytes that download when you

access invoker/JMKInvokerServlet as you see in below.

To exploit this you must send serialized payload to invoker/JMKInvokerServlet.

15 | P a g e

To generate payload we will use ñYsoserialò as a proof of concept tool for

generating payload that exploits unsafe deserialization vulnerability

Firstly we generate payload using ysoserial

Generated payload is used to create file, after generating payload it should be sent,

but initially it must be changed to http method from GET to POST to submit

payload in http body.

You can notice that application/x-Java-serialized-object contains content type for

serialized objects in Java which is used to indicate the media type that is

understood by other application parts to de-serialize it.

After submission, letôs check the path to make sure that a new file was created.

16 | P a g e

Done files create, but sometimes deserialization does not lead every time to RCE

well, sometimes it leads to logical manipulation based on code flaw when using

read Object for RCE the application server runs on restricted environment in this

case RCE will be useless, to solve this you can use blind technique like blind SQL

injection giving target condition if it is true then it sleep target for a while or

otherwise it will do nothing and load page normally on the other hand it can use

DNS to send requests through DNS sever (out-of-band).

17 | P a g e

CVE for Deserialization bugs:

1- Weblogic(CVE-2015-4852)

https://www.cvedetails.com/cve/CVE-2015-4852/

2- WebSphere(CVE-2013-1777)

https://www.cvedetails.com/cve/CVE-2013-1777/

3- Jboss (CVE-2013-2165)

https://www.cvedetails.com/cve/CVE-2013-2165/

4- Jenkins (CVE-2015-8103)

http://www.cvedetails.com/cve/CVE-2015-8103/

5- Soffid IAM (CVE-2017-9363)

http://www.cvedetails.com/cve/CVE-2017-9363/

Tools:
1- JMET https://github.com/matthiaskaiser/jmet

2- Ysoserialhttps://github.com/frohoff/ysoserial

3- Java serial killer https://github.com/NetSPI/JavaSerialKiller

4- JavaDeserialization Scanner

https://github.com/federicodotta/Java-Deserialization-Scanner

https://github.com/matthiaskaiser/jmet
https://github.com/frohoff/ysoserial
https://github.com/NetSPI/JavaSerialKiller
https://github.com/federicodotta/Java-Deserialization-Scanner

18 | P a g e

Vulnerable libraries lead to RCE:

1. Apache Commons Collections <= 3.1

2. Apache Commons Collections <= 4.0

3. Groovy <= 2.3.9

4. Spring Core <= 4.1.4 (?)

5. JDK <=7u21

6. Apache Commons BeanUtils 1.9.2 + Commons Collections <=3.1 +

Commons Logging 1.2 (?)

7. BeanShell 2.0

8. Groovy 2.3.9

9. Jython 2.5.2

10. C3P0 0.9.5.2

11. Apache Commons Fileupload<= 1.3.1 (File uploading, DoS)

12. ROME 1.0

13. MyFaces

14. JRMPClient/JRMPListener

15. JSON

16. Hibernate

19 | P a g e

Mitigation:

There are no real mitigations to fix deserialization vulnerability because it takes

long time to be fixed, to make some mitigations you should identify the vulnerable

class and remove them and consequently test application after this operation to

make sure it runs fine without any errors or make some of blacklisting vulnerable

classes.

20 | P a g e

Serialization in

Python

21 | P a g e

Deserialization vulnerability in Python:

Python also provides serialization objects like Java and it has many modules

including Pickle, marshal, shelve, yaml and finally json it is a recommended

module when doing serialization and deserialization.

We could observe differences between Java and Python in deserialization

vulnerability, Python does not depend on code flow to create payload it simply

deserializes all classes this behavior may lead to RCE Serialization which could be

found in parameters or cookies.

Firstly we explore Pickle taking into account what is mentioned in Python

documentation.

Deserialized untrusted data can compromise the application.

Same thing with marshal and shelve itôs backed by pickle both modules are

vulnerable like pickle.

The pickle module implements a fundamental, but powerful algorithm for

serializing and de-serializing a Python object structure.

Warning: The pickle module is not secure against erroneous or maliciously

constructed data. Never un-pickle data received from an untrusted or

unauthenticated source

22 | P a g e

Pickle module provides functions for serialization and deserialization.

Dump Write serialized object to open file

Load Convert bytes stream to object again

Dumps Return serialized object as string

Loads Return deserialization process as string

Example:

Letôs explain the purpose of this code, itôs very simple by creating two functions

first serialization is to write object to file and another deserialization is to convert

bytes in file to object and return it, the list ranges from 1 to 5 and passed to two

functions. The result of first function will be.

23 | P a g e

And the result for second function is as follow

Now we understand how pickle works but if the deserialised data is untrusted like

we saw previously in which changing data in file to malicious data will lead to

RCE.

24 | P a g e

By comment serialization function and change file1 content to malicious data

It will run bash shell after running script to deserialize it, you will see bash shell

open.

Hereôs a note about pickle behavior before explaining malicious data

Note:

Pickle is a stack language which means pickle instructions are push data onto the stack or

pop data off of the stack and it operates totally like stack.

25 | P a g e

Pickle instructions

C Read to newline as module name, next read newline like object

system

(Insert marker object onto stack and paired with t to produce tuple

t Pop objects off the stack until (is popped and create a tuple object

containing the objects popped (except for the () in the order they

were /pushed/ onto the stack. The tuple is pushed onto the stack

S Read string in quotes and push it onto stack

R Pop tuple and callable off stack and call callable with tuple

argument and push result on to stack

. End of Pickle

26 | P a g e

Exploit vulnerability:

In this section we are going to take real world scenario for using pickle in order to

communicate to server that accepts serialized object and deserialized theme.

Firstly we are going through server, furthermore we will identify vulnerable points

that takeover application.

We can easily identify vulnerability in server function, itôs receive data and

proceed to loads to deserialize it, from here we can get RCE by craft serialized

object to get RCE .

27 | P a g e

We can find serialized objects in web framework based on Python sometime could

be found in cookie and many place you need just time to review code and figure

out where vulnerable point.

28 | P a g e

After identify the vulnerability now next we write exploit to get RCE.

Exploit code is very simple firstly an object is created to be serialized in this case

itôs a class pwn after we define class we explore important points to exploit pickle

vulnerability which involves __reduce__ function inside, we define our payload to

get reverse shell using netcat after that it must be returned to string or tuple to

reconstruct this Object on deserialization process.

Send craft payload to target and setup netcat for accept reverse shell and we got

RCE.

29 | P a g e

CVE:

1- OpenStack Object Storage(CVE-2012-4406)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4406

2- powerpc-utils (CVE-2014-8165)

http://www.cvedetails.com/cve/CVE-2014-8165/

3- Cisco Web Security Appliance(CVE-2015-0692)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=2015-0692

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/Cisco

-SA-20150410-CVE-2015-0692

4- The Qpid server(CVE-2015-5164)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5164

Mitigation:

Python provide secure module in order to implement serialization one of these

module is json isa lightweight data interchange format or could hmaced serialized

data to prevent it from any type of tampering.

 In many cases some Frameworks use signature cookies to prevent tampering

In this case you must get secret key from source code if itôs found or brute-force it

https://www.balda.ch/posts/2013/Jun/23/python-web-frameworks-pickle/#id8

30 | P a g e

Serialization in PHP

31 | P a g e

Deserialization vulnerability in PHP:
PHP is like Java and Python, PHP also supports serialization and issues of using

serialization it has two methods to implement serialization and deserialization we

explore theme and also a case where we can make web application vulnerable.

Serialize it simply by converting object to bytes that could be stored.

unserialize it simply by converting bytes to object again from here came

vulnerability like Python and Java which serializes untrusted data to expose web

application. Exploit deserialization in Java depends on code flaw and in Python

doesnôt depend on any flow in code, but in PHP depends on code flow inside

magic methods.

Serialization could be found in parameters, cookies.

PHP has serialized format when serialize object that can help unserialize method to

identitfy each element and get theme back.

Integer String Null array boolean

i:<value> s:<length>:ò<value>ò N; a:<length>:{key, value

pairs

b:<value>

b:1 //T

b:0 //F

i:1 //1 s:2:òhiò a:2:{s:2:òhiò;s:3:òhi1ò;}

//array(ñhiò=>òhi1ò);

Double

,d:<value>

d:1:9.9999900000000001

Warning: Do not pass untrusted user input to unserialize() regardless of the options

value of allowed classes. deserialization can result in code being loaded and

executed due to object instantiation and autoloading, and a malicious user may be

able to exploit this.

32 | P a g e

Now it is time to look at magic methods, used through serialization and

deserialization as we see in Python deserialization exploited we need to use

__reduce__ to reconstruct our payload when it deserializes something like PHP but

it depends on code flaw after calling magic method.

Magic method use with serialization:

__sleep is called when an object is serialized and must be returned to array.

Magic method use with deserialization:

__wakeup is called when an object is deserialized.

__destruct is called when PHP script end and object is destroyed.

__toString uses object as string but also can be used to read file or more than that

based on function call inside it.

33 | P a g e

Example:

34 | P a g e

The Above code explains the magic method flow of serialization and

deserialization, you can figure out serialized object firstly you call construct

method to construct object secondly you call sleep when it starts serialization

consequently we execute deserialization call wakeup to execute it and also execute

destruct with deserialization process, we are going to focus on both method

__wakeup and __destuct in building exploit.

O:8:òintx0x80ò:1 this part tells us there are objects having length 8 named

intx0x80 and has one property.

s:1:òsò;s:13:òHi this test ñ; second part explains that property inside object has

string and has length 1 and named ósô this part tells us to create variables without

initializing and second s:13:òHi this test ñ it varies with initializing when string

has length 13.

Note:

i

When private variable serialized will be added two (null bytes) to current length for

private variable

If variable length is 9 when serialized will be 11

35 | P a g e

Exploit vulnerability:

In this section we will learn how to detect and write some exploits, we have small

application to deserialize object then pass it.

First part is info.php which has function to display object when we unserialize it

uses _toString to display object content directly.

Second part is File.php it write to file you can see it has __destruct and inside

function to write to file.

36 | P a g e

We control what passes to deserialization process we can create exploit code like

exploit.php first including File.php because it has magic method __destruct and

create object from class File and initialize file name what file we want named and

content to PHP shell and finally serialize it

Exploit output.

37 | P a g e

Application when passed for serialized object, it will be unserialized and displayed

Now let us submit serialized exploited and see what happens, no error is returned

just blank page.

38 | P a g e

Now we going to check the file created.

 open shell and execute command.

39 | P a g e

CVE:

 This section lists vulnerable application to unserialize this small list in real life

they are many applications that still use it

 Wordpress 3.6.1(CVE-2013-4338)

https://www.cvedetails.com/cve/CVE-2013-4338/

1- Magento2.0.6(CVE-2016-4010)

https://www.cvedetails.com/cve/CVE-2016-4010/

2- Joomla 2.5.0 ï 3.0.2 (CVE-2013-1453)

https://www.cvedetails.com/cve/CVE-2013-1453/

3- vBulletin 5.x(CVE-2015-7808)

https://www.cvedetails.com/cve/CVE-2015-7808/

40 | P a g e

Mitigation:

Using safe standard data interchange format like json via json

encode(),json_decode() if you need pass serialized data to user ,but if you need to

use unserialize you must use hash hmac to add validation by making sure data is

not editable by anyone.

41 | P a g e

Serialization in Ruby

42 | P a g e

Deserialization vulnerability in Ruby:

Ruby is a dynamic, open source programming language and it also supports OOP

concept that supports build big application by dividing it into manageable classes

each one for specified purpose and for this reason ruby uses development web

application by combining it with rails and it is used by some companies taking

some examples like github, twitter, etc..., also ruby supports serialization and it has

its own methods to implement, however it suffers from deserialization

vulnerability like Java,Python,PHP.Also rails support serialization.

First before diving into deserialization vulnerability, first we will explore methods

use to implement it and when you can find it in application.

Ruby has two methods to implement serialization called marshal library first

method is dump. that converts object into bytes streams.

Second method is load to convert bytes stream to object again.

We shall take a small example and implement both methods.

43 | P a g e

In The above example we serialized x object using dump and saved serialized data

inside variable ñserò and passed to load to deserialize it and convert it to first

format.

Can you imagine with this mechanism we can get privilege escalation or RCE this

time we take how we can get privilege escalation, first let us to know where we can

find serialized data, serialize could be found in sessions client-side within a cookie

itôs common situation but itôs not easy as you can imagine to edit it, sessions

encodes it and adds another protection (HMACED) in order to be tamper-resistant.

Ruby is TLV serialization format that can encode almost any of their arbitrary

objects and HMACED it uses secret key which could be stored in various locations

depending on application and version of application which could be found in

following files.

config/environment.rb

config/initializers/secret_token.rb

config/secrets.yml

/proc/self/environ

If you canôt get a source code you can brute force secret key in the next section we

try to understand how to brute force and sign session to get privilege escalation.

44 | P a g e

Detect and exploit vulnerability:

We take small applications to explain the concept and detect vulnerability.

After login with credential test and user and password we get session

45 | P a g e

You can figure out the cookie name is rack.session itôs a library responsible for

cookie management after reviewing source code it can be found and it passes

cookies to load method in order to deserialize it , but there are problems, in which

serialized cookie was HMACED with secret key in order to prevent it from

tampering and add it to cookie and separate it from cookie using ñ - -ñ and encode

it with base64 and urlecode to prevent any issue with HTTP , when pass it to be

deserialized but first of all extract cookie and signature and decode cookies

using urldecode and base64 decode and calculate the HMAC and then compare it

with HAMC value which has cookie after ñ- -ñ it matches and will pass cookie to

load method in order to be deserialised if it does not match , it will redirect you to

login page.

46 | P a g e

In order to decode cookies we will need to implement these steps that will be

explained clearly in below code.

Before final code you can face some problems like:

This error tells us you canôt load undefined class named User, the first information

about serialized data includes class named User.

After class user is added, it tries to deserialize it once more however when we face

this error itôs tell us that serialized data uses DataMapper class after adds it we get

another error.

This time this error can tell use the serialized data itôs has database sqlite to solve

this problem we create database DataMapper.setup(:default,'sqlite3::memory'),after

add it and run script again we get the following output.

47 | P a g e

Serialized data include session id , login name test you can figure out admin=false

attribute in order to escalate our privilege we must change it to True, but can we

edit without resign cookie with secret key in order to detect secret key use it can be

found in location that we listed in the previous section or you can brute force it.

To brute force it first understand how sign could be implemented and how to build

brute force tool to find secret key.

In order to answer the question of how sign could be implemented first you need to

read rack library source code which could be found in project repository or in file

lib/rack/session/cookie.rb.

48 | P a g e

After review source code we find generate_hmac method use to sign cookie

Sign cookie combine (data,hmac) where hmac=hmac-sha1(secret,data) in order to

brute force it we have hmac for cookie and equation will be.

 Hmac-sha1(secret,data)=hmac we will brute force secret and compare the result

to hmac if matched will display secret key use to sign cookie.

now we have secret key we can sign any data and send to application in order to

escalate our privilege when we need to change admin property from false to true.

49 | P a g e

We define class User and made admin property accessible and deserialize object

and edit property to deserialize object admin property and encode it them sign it

using secret key, now we it can b submited we now have administrator privilege.

We see how to escalate privilege using deserialization vulnerability now we go to

explain how to get RCE same steps above but differently will be a raise in payload

that used.

The following ruby code will execute command on server.

50 | P a g e

Above serialized object is instance of ActiveSupport::Deprecation::

DeprecatedInstanceVariableProxy

Code=ò`id`ò

"\x04\x08" +"o" +

 ":\x40ActiveSupport::Deprecation::DeprecatedInstanceVariableProxy" +"\x07" +

 ":\x0E@instance" +

 "o" + ":\x08ERB" + "\x06" +

 ":\x09@src" +

Marshal.dump(code)[2..-1] +

 ":\x0C@method" + ":\x0Bresult"

51 | P a g e

Full class

classDeprecatedInstanceVariableProxy<DeprecationProxy

def initialize(instance, method, var = "@#{method}",

deprecator = ActiveSupport::Deprecation.instance)

 @instance = instance

 @method = method

 @var = var

 @deprecator = deprecator

end

private

def target

 @instance.__send__(@method)

end

def warn(callstack, called, args)

@deprecator.warn(

 "#{@var} is deprecated! Call #{@method}.#{called} instead of " +

 "#{@var}.#{called}. Args: #{args.inspect}", callstack)

end

end

52 | P a g e

Deprecated Instance Variable Proxy class inherits from Deprecation Proxy which

define method_messing

In Deprecated Instance VariableProxy an ERB object placed like instance and

method set to result, the src variable of this ERB object itôs controllable after

deserialization method_missing will be called when a method on the object is

called which doesnôt exist ,any method in deserialization object is called will

passed to method_missing all instance have been undefined , method_missing first

we will call warn and after that call target which it will be sent the method result

to ERB object ,the result will be interpreted and code attached in ERB object as

src.

defmethod_missing(called, *args, &block)

warn caller, called, args

target.__send__(called, *args, &block)

end

53 | P a g e

CVE:

1- IBM Tivoli Endpoint Manager Mobile Device Management(CVE-2014-

6140)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6140

2- RubyGems v 2.0.0 ï 2.6.13(CVE-2017-0903)

https://www.cvedetails.com/cve/CVE-2017-0903/

3- GitHub Enterprise

https://packetstormsecurity.com/files/141826/Github-Enterprise-Default-

Session-Secret-And-Deserialization.html

Tools:
Metasploit Framework has module to exploit ruby deserialization vulnerability

Mitigation:

Use strong random secret key that cannot easily brute force it, but it uses json for

serialization, since rails 4.1 use json for serialization.

exploits/multi/http/rails_secret_deserialization

54 | P a g e

References:

Java:

1- foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-

jenkins-opennms-and-your-application-have-in-common-this-vulnerability

2- https://docs.oracle.com/Javase/tutorial/jndi/objects/serial.html

3- https://www.Javaworld.com/article/2072752/the-Java-serialization-

algorithm-revealed.html

Python:

1- https://docs.Python.org/2/library/pickle.html

2- https://www.cs.uic.edu/~s/musings/pickle/

3- https://blog.nelhage.com/2011/03/exploiting-pickle/

55 | P a g e

PHP:

1- https://PHP.net/manual/en/function.serialize.PHP

2- http://PHP.net/manual/en/function.unserialize.PHP

3- https://securitycafe.ro/2015/01/05/understanding-PHP-object-injection

4- http://websec.wordpress.com

Ruby:

1- https://ruby-doc.org/core-2.2.0/Marshal.html

2- https://journal.larrylv.com/objects-serialization-in-ruby/

3- https://martinfowler.com/articles/session-secret.html

4- http://phrack.org/issues/69/12.html

56 | P a g e

Conclusion:

In the end, we explored various implementations for serialization and

deserialization vulnerabilities. Good news for developers is that most of these

vulnerabilities are fixed and others are partially fixed by adding layers of

protection using signatures to prevent packets from tampering.

Developers must keep some basic security awareness and stay away from

vulnerable methods when dealing with serialization if it must be used these

vulnerable methods must be add some layer of protection as mentioned above.

Some for library and frameworks has good guide to implement secure

application you can take it as roadmap to build secure application.

