Hypervisor From Scratch — Part 2: Entering VMX Operation ©2
Published September 3, 2018 by Sinaei

Entering VMX Operation

Hypervisor From Scratch

Hi guys,

It’s the second part of a multiple series of a tutorial called “Hypervisor From Scratch”, First |
highly recommend to read the first part (Basic Concepts & Configure Testing Environment)
before reading this part, as it contains the basic knowledge you need to know in order to
understand the rest of this tutorial.

In this section, we will learn about Detecting Hypervisor Support for our processor, then we
simply config the basic stuff to Enable VMX and Entering VMX Operation and a lot more
thing about Window Driver Kit (WDK).

Configuring Our IRP Major Functions

Beside our kernel-mode driver (“MyHypervisorDriver“), | created a user-mode application
called “MyHypervisorApp* first of all (The source code is available in my GitHub), | should
encourage you to write most of your codes in user-mode rather than kernel-mode and that’s
because you might not have handled exceptions so it leads to BSODs, or on the other hand,
running less code in kernel-mode reduces the possibility of putting some nasty kernel-mode
bugs.

If you remember from the previous part, we create some Windows Driver Kit codes, now we
want to develop our project to support more IRP Major Functions.

https://rayanfam.com/topics/hypervisor-from-scratch-part-1/
https://github.com/SinaKarvandi/Hypervisor-From-Scratch/
https://rayanfam.com/topics/hypervisor-from-scratch-part-1/

IRP Major Functions are located in a conventional Windows table that is created for every
device, once you register your device in Windows, you have to introduce these functions in
which you handle these IRP Major Functions. That’s like every device has a table of its Major
Functions and everytime a user-mode application calls any of these functions, Windows
finds the corresponding function (if device driver supports that MJ Function) based on the
device that requested by the user and calls it then pass an IRP pointer to the kernel driver.

Now its responsibility of device function to check the privileges or etc.

The following code creates the device :

NtStatus = STATUS_SUCCESS;
uilndex = 0;
pDeviceObject = NULL;
usDriverName, usDosDeviceName;

("[*] DriverEntry Called.");

(&usDriverName, L"\\Device\\MyHypervisorDevice");
(&usDosDeviceName, L"\\DosDevices\\MyHypervisorDevice");

NtStatus = (pDriverObject, 0, &usDriverName, FILE_DEVICE_UNKNOWN,
NtStatusSymLinkResult = (&usDosDeviceName, &usDrive

Note that our device name is “\Device\MyHypervisorDevice“.

After that, we need to introduce our Major Functions for our device.

if (NtStatus == STATUS_SUCCESS && NtStatusSymLinkResult == STATUS_SUCCESS)
{

for (uilIndex = @; uiIndex < IRP_MJ_MAXIMUM_FUNCTION; uilIndex++)
pDriverObject->MajorFunction[uilndex] = DrvUnsupported;

("[*] Setting Devices major functions.");
pDriverObject->MajorFunction[IRP_MJ_CLOSE] = Drv(Close;
pDriverObject->MajorFunction[IRP_MJ_CREATE] = DrvCreate;
pDriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DrvIOCTLDispatcher;
pDriverObject->MajorFunction[IRP_MJ_READ] = DrvRead;
pDriverObject->MajorFunction[IRP_MJ_WRITE] = DrvWrite;

pDriverObject->DriverUnload = DrvUnload;

}

else {

}

("[*] There was some errors in creating device.");

You can see that | put “DrvUnsupported” to all functions, this is a function to handle all MJ
Functions and told the user that it’s not supported. The main body of this function is like this:

CIN DeviceObject, IN Irp)
("[*] This function is not supported :(!'");

Irp->IoStatus.Status = STATUS_SUCCESS;

Irp->IoStatus.Information = 0;
(Irp, IO_NO_INCREMENT);

return STATUS_SUCCESS;
ks

We also introduce other major functions that are essential for our device, we’ll complete the
implementation in the future, let’s just leave them alone.

(IN DeviceObject, IN Irp)
("[*] Not implemented yet :C !");
Irp->IoStatus.Status = STATUS_SUCCESS;
Irp->IoStatus.Information = 0;

(Irp, IO_NO_INCREMENT);

return STATUS_SUCCESS;
ks

(IN DeviceObject,IN
("[*] Not implemented yet :(!'");
Irp->IoStatus.Status = STATUS_SUCCESS;
Irp->IoStatus.Information = 0;

(Irp, IO_NO_INCREMENT);

return STATUS_SUCCESS;
ks

(IN DeviceObject, IN

("[*] Not implemented yet :(!");

Irp->IoStatus.Status = STATUS_SUCCESS;
Irp->IoStatus.Information = 0;
(Irp, IO_NO_INCREMENT);

return STATUS_SUCCESS;
ks

(IN DeviceObject, IN
("[*] Not implemented yet :C !");
Irp->IoStatus.Status = STATUS_SUCCESS;
Irp->IoStatus.Information = 0;

(Irp, IO_NO_INCREMENT);

return STATUS_SUCCESS;
ks

Now let’s see IRP MJ Functions list and other types of Windows Driver Kit handlers routine.

IRP Major Functions List

This is a list of IRP Major Functions which we can use in order to perform different
operations.

Every major function will only trigger if we call its corresponding function from user-mode.

For instance, there is a function (in user-mode) called CreateFile (And all its variants like
CreateFileA and CreateFileW for ASCIl and Unicode) so everytime we call CreateFile the
function that registered as IRP_MJ_CREATE will be called or if we call ReadFile

then IRP_MJ_READ and WriteFile then IRP_MJ_WRITE will be called. You can see that

Windows treats its devices like files and everything we need to pass from user-mode to
kernel-mode is available in PIRP Irp as a buffer when the function is called.

In this case, Windows is responsible to copy user-mode buffer to kernel mode stack.

Don’t worry we use it frequently in the rest of the project but we only support
IRP_MJ_CREATE in this part and left others unimplemented for our future parts.

IRP Minor Functions

IRP Minor functions are mainly used for PnP manager to notify for a special event, for
example, The PnP manager sends IRP_MN_START_DEVICE after it has assigned hardware
resources, if any, to the device or The PnP manager sends IRP_MN_STOP_DEVICE to stop a
device so it can reconfigure the device’s hardware resources.

We will need these minor functions later in these series.

A list of IRP Minor Functions is available below:

IRP_MN_SET_LOCK

Fast I/O

For optimizing VMM, you can use Fast 1/O which is a different way to initiate I/O operations
that are faster than IRP. Fast I/O operations are always synchronous.

According to MSDN:

Fast 1/0 is specifically designed for rapid synchronous I/0 on cached files. In fast /0
operations, data is transferred directly between user buffers and the system cache,
bypassing the file system and the storage driver stack. (Storage drivers do not use fast 1/0.) If
all of the data to be read from afile is resident in the system cache when a fast I/O read or
write request is received, the request is satisfied immediately.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/irps-are-different-from-fast-i-o

When the |/O Manager receives a request for synchronous file I/O (other than paging 1/0), it
invokes the fast 1/0 routine first. If the fast I/O routine returns TRUE, the operation was
serviced by the fast I/O routine. If the fast I/O routine returns FALSE, the |/O Manager creates
and sends an IRP instead.

The definition of Fast I/O Dispatch table is:

typedef struct
SizeOfFastIoDispatch;
FastIoCheckIfPossible;
FastIoRead;
FastIoWrite;
FastIoQueryBasicInfo;
FastIoQueryStandardInfo;
FastIolock;
FastIoUnlockSingle;
FastIoUnlockAll;
FastIoUnlockAl1ByKey;
FastIoDeviceControl;
AcquireFileForNtCreateSection;
ReleaseFileForNtCreateSection;
FastIoDetachDevice;
FastIoQueryNetworkOpenInfo;
AcquireForModWrite;
MdlRead;
Md1lReadComplete;
PrepareMdlWrite;
MdlWriteComplete;
FastIoReadCompressed;
FastIoWriteCompressed;
Md1ReadCompleteCompressed;
Md1lWriteCompleteCompressed;
FastIoQueryOpen;
ReleaseForModWrite;
AcquireForCcFlush;
ReleaseForCcFlush;

} FAST_IOQ_DISPATCH, *PFAST_IO_DISPATCH;

Defined Headers

| created the following headers (source.h) for my driver.

(void);
(void);

(C pDriverObject,
DriverObject);

(IN DeviceObject, IN Irp);

(IN DeviceObject, IN Irp);
(IN DeviceObject, IN Irp);
(IN DeviceObject, IN Irp);

(IN DeviceObject, IN Irp);
(IN DeviceObject, IN

(CountChars) BufferAddress,
Irp);

Now just compile your driver.

Loading Driver and Check the presence of Device

In order to load our driver (MyHypervisorDriver) first download OSR Driver Loader, then run
Sysinternals DbgView as administrator make sure that your DbgView captures the kernel
(you can check by going Capture -> Capture Kernel).

3% DebugView on \\SINA (local) - O X
File Edit | Capture Options Computer Help

| = & & ~ CaptureWwini2 Crl+W i
Capture Global Win32

Debug Primt
1 « Capture Kernel Ctrl+K [6208] Suspending
2

Enable Verbose Kernel Qutput [6208] Suspending

Pass-Through

+» Capture Events Ctrl+E

Log Boot

After that open the OSR Driver Loader (go to OsrLoader -> kit-> WNET -> AMD64 -> FRE) and
open OSRLOADER.exe (in an x64 environment). Now if you built your driver, find .sys file (in
MyHypervisorDriver\x64\Debug\ should be a file named: “MyHypervisorDriver.sys”), in OSR
Driver Loader click to browse and select (MyHypervisorDriver.sys) and then click to “Register
Service” after the message box that shows your driver registered successfully, you should
click on “Start Service”.

Please note that you should have WDK installed for your Visual Studio in order to be able
building your project.

https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk

B OSR Driver Loader ? X

Open Syztems Resources, Inc. Exit

105 Route 1014 Suite 19 Hel
Armherst, MH 03031 O=p
Ph: [B03) 595-6500
Faw: [B03) 5956503
Yer V3.0 - Sept B, 2007

ServicelroupOrder

Achve Services

Reqgizty Key: vourdrivernanme

Crniver Fath; ppervizorDivere b \DebughtyHypervizarDiver. zys | | Browse
Diriver Verzion:

Diriver Size:

Dirniver File Time:

Dizplay Marme: pourdrivernanme
Service Start: Demand bl
Load Group: Mone w | [Group Load Order
Order In Group: T 2 Tvpe Diver « Emar| Kaomal '
Depend On Group(z): | AudioGroup e

Baze

Boot Bus Extender

Boat File Syztem W
Laszt Status:

tiniFilter Settings
Default Instance: Altitude: 0

AlhtudedndFlags
Flags: U

Beaister Service Lnregister Service EEtartSewice Stop Service

Now come back to DbgView, then you should see that your driver loaded successfully and a
message “[*] DriverEntry Called. ” should appear.

If there is no problem then you’re good to go, otherwise, if you have a problem with DbgView
you can check the next step.

Keep in mind that now you registered your driver so you can use Sysinternals WinObj in
order to see whether “MyHypervisorDevice” is available or not.

£ WinObj - Sysinternals: www.sysinternals.com

=}

File View Help
v\ Name + Type SymlLink
ArcName [#]MacHALDriver SymbolicLink \Device\MacHALDriver
EZE’::’:E"OW“‘ [@marsLor SymbolicLink \Device\Mailslot
Do [#MountPointManager SymbolicLink \Device\MountPointManager
- [@MpsDevice SymbolicLink \Device\MPS
DriverStores [F]MSSECFLTSYS SymbolicLink \Device\MSSECFLTSYS
©. FileSystem [#|MSSGRMAGENTSYS SymbolicLink \Device\MSSGRMAGENTSYS
Filters [@ MyHypenvisorDevice SymbolicLink \Device\MyHypervisorDevice
. | GLOBALY? (@ nativewifip SymbolicLink \Device\nativewifip
KemelObjects [@npis SymbolicLink \Device\Ndis
KnownDlls [# Ndisuio SymbolicLink \Device\Ndisuio
KnownDIls32 [#|Ndiswan SymbolicLink \Device\NdisWan
NLS [# NDPROXY SymbolicLink \Device\NDProxy
ObjectTypes [#NduloDevice SymbolicLink \Device\NduloDevice
RPC Control [NPF {04342DBC-514B... SymbolicLink \Device\NPF {04342DBC-5148-48CA-85C4-2AB1085...
Security [NPF_{0471EF45-1884-... SymbolicLink \Device\NPF_{0471EF45-18B4-4B60-ABBB- 1B4F7CS0...
Sessions [@]NPF_{0F23CB7A-ADFT... SymbolicLink \Device\NPF_{0F23C87A- ADF7-4EB0-8B75-DC3DBF1...
\“MM:F("W"‘“"““"“"“’“ [#NPF_{2007DBF0-B39C... SymbolicLink \Device\NPF _{2097DBF0-B39C-4358-BSEE-232DD079...
indows

ENPF_(ZBFT E380-DC12..

SymbolicLink

‘\Device\NPF_{2BF1E380-DC12-4627-97C6-B7153A02...

[#NPF_{325D7DAE-89CF... SymbelicLink
ENPF_(BBDHQM—Z&O&... SymbolicLink
ENPFﬁ(SSBODZAQJCZC... SymbolicLink
ENPF_(SQMOTW-FWS-M SymbolicLink
ENPF_(SSEZ&AU'OD&S'... SymbolicLink
ENPF,(95793F34-1FB5-," SymbolicLink
ENPF_(AWSDED}‘QBDT... SymbolicLink
(@NPF_{A84C8432-0195-... SymbolicLink
@NPF_(BQFZSW-IlCEAm SymbolicLink
@NP[(CZAZMAD'FFC... SymbolicLink
ENPF,(DSSESSES-OB?-... SymbolicLink
E‘NPF_(EBSOH&FWAV... SymbolicLink
[@NPF_{EE951840-1CDC... SymbelicLink

‘\Device\NPF_{325D7DAE-89CF-4B7D-A35E-2CT6EB4..,
‘\Device\NPF_{3BD479B4-2808-4F20-ABBA-DBES0A4...
‘\Device\NPF_{55B0D2A3-3C2C-4015-92B2-25921497.
‘\Device\NPF_{59140177-FF73-47CC-B241-82019C99F...
‘\Device\NPF_{68E284E7-0D68-4FAQ-888E-099CFDAG...
‘\Device\NPF_{95793F34-1FB5-4D09-8D04-EFD14B77...
‘\Device\NPF_{A175D6D3-4BD1-4F71-A586-3586AFFE...
‘\Device\NPF_{A24C2432-0195-494C-924A-6017478A...
‘\Device\NPF_{B9F25844-4CEA-4BFO-80ES-4A03FD4B...
‘\Device\NPF_{C2A241AD-FFCC-481A-87FE-6FCE3C...
\\Device\NPF_{D8385365-0239-4682-9564-0F200C236...
‘\Device\NPF_{E6360328-F17A-45FB-8899-283FBC55...
‘\Device\NPF_{EE951840-1CDC-4ECC-BTAS-8FB6C3A. ..

[#nsi SymbolicLink \Device\Nsi

[@nts SymbolicLink \Ntfs

[#nuL Symboliclink \Device\Null

[#INXTIPSECDevice SymbolicLink \Device\NXTIPSEC

[#PartmgrControl SymbolicLink \Device\PartmgrControl

[#IPCI#VEN_1002&DEV._... SymbolicLink \Device\NTPNP_PCI0018

[@[PCI#VEN_10028DEV._... SymbolicLink \Device\NTPNP_PCI0018

[@JPCI#VEN_144D&DEV_... SymbolicLink \Device\NTPNP_PCI0020

[@]PCI#VEN_144D&DEV_... SymbolicLink \Device\NTPNP_PCI0020 .
— .

\GLOBAL?MACPI#Genuinelntel_-_Intel64_Family 6 Model 94 -_Intel(R)_Core(TM)_i7-6820HQ_CPU_@ 2.70GHz#_6#{dbe4373d-3c81-40ch-aced-e0e3d05f0cof}

The Problem with DbgView

Unfortunately, for some unknown reasons, I’m not able to view the result of DbgPrint(), If you
can see the result then you can skip this step but if you have a problem, then perform the
following steps:

As | mentioned in part 1:

In regedit, add a key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Debug Print Filter

Under that, add a DWORD value named IHVDRIVER with a value of OxFFFF

Reboot the machine and you’ll good to go.

It always works for me and | tested on many computers but my MacBook seems to have a
problem.

In order to solve this problem, you need to find a Windows Kernel Global variable

called, nt!Kd_DEFAULT_Mask, this variable is responsible for showing the results in
DbgView, it has a mask that I’'m not aware of so | just put a Oxffffffff in it to simply make it
shows everything!

To do this, you need a Windows Local Kernel Debugging using Windbg.
1. Open a Command Prompt window as Administrator. Enter bcdedit /debug on

2. If the computer is not already configured as the target of a debug transport,
enter bededit /dbgsettings local

https://rayanfam.com/topics/hypervisor-from-scratch-part-1/

3. Reboot the computer.

After that you need to open Windbg with UAC Administrator privilege, go to File > Kernel
Debug > Local > press OK and in you local Windbg find the nt!Kd_DEFAULT_Mask using the
following command :

prlkd> x nt!

fffff801" nt!Kd_DEFAULT_Mask = < information>

Now change it value to Oxffffffff.

1kd> fffff801° ff

File Edit View Debug Window Help

SHEREREHAR®TE VO BREEECRE OO EER A E
Disassembly

Local kernel - WinDbg:10.0.15063.400 AMD64 — O X

Offset: nt ! DbgBreakPointWithStatus | Previous = Next
fEEEF801° £4£fbb080 cc int 3

fEEFF801" £4fbb081 3 ret

fEEFFB01 £4fbb082 cc int 3

FEEFFB01 £4£fbb083 cc int 3

EfE£E801 £4£bb084 cc int 3

EfE£EB01 £4£bb085 cc int 3

EEE££801° £4£bb086 cc int 3

FEEEEB01" £4£bb087 cc int 3

fEEFF801° £4fbb088 0f1£840000000000 nop dword ptr [rax+rax]

nt!DbgBreakPointWithStatus:
fffff801 f4fbb090 cc

fEf£f£f801 £4£fbb0%1 c3 ret

nt!DbgBreakPointWithStatusEnd:

fE££f801 £4fbb0392 cc int 3

fE£E££F801°£4fbb093 cc int 3

fEEEfFf801° £4fbb094 cc int 3

fEfEFf801° £4fbb095 cc int 3

fEfff801 " £4fbb096 cc int 3

Command - Local kernel - WinDbg:10.0.15063.400 AMD64 -

1kd> x nt!kd Default Mask

fEfffB801°£5211808 nt!Kd DEFAULT Mask = <no type information>

lkd> eb fffff801°£5211808 ff ff ff ff

lkd> dc fEf£f££f801°£5211808

fEEEF801°£5211808 fEffffffFf 00000001 00000001 00000001 . .nnioonnonn..
fE£f£F801°£5211818 00000001 00000001 00000001 00000001noonnannn.
fEEfr801°£5211828 00000001 00000001 00000001 00000001 ..o .o.ioonnn.o..
fEf£f£801°£5211838 00000001 00000001 00000001 00000001
fE£££f801°£5211848 00000001 00000001 00000001 00000001 ..v.iiweennnnnn.
fE£££801°£5211858 00000001 00000001 00000001 00000001 ..v.iiwevnnnnnn.
fEE££fFf801°£5211868 O0000£££ff 00000001 00000001 00000001 ..vuiiwvvnnnnnnn
fEEFFB01°£5211878 00000001 00000001 00000001 00000001 ..viiwevnnnnnnn

Pkd> ‘

Ln 0, Col 0 Sys 0:<None> Proc 000:0 Thrd 000:0 ASM OVR CAPS NUM

After that, you should see the results and now you’ll good to go.

Remember this is an essential step for the rest of the topic, because if we can’t see any kernel
detail then we can’t debug.

File Edit Capture Options Computer Help

lzEd@ Q) @&» @ BEBT| 9P | A

Time Debug Print

1 0.00000000 [*] DriverEntry Called.

O Type here to search

B OSR Driver Loader ? X
Open Systems Resources, Inc. Exit
105 Route 1014 Suite 13 el
. Amherst, NH 03031 ep
Ph: (E03) 5956500
o 200 2em c203 ServiceGroupDider
Ver: V30 - Sept 6, 2007 Active Services
Reisty Key: MyHypervisorDriver
Diiver Path [CUsers\Sina\DesktopMyHypervisorDiiversys | [Browse]
Driver Version:
Diiver Size: 760 Bytes

Driver File Time: Friday, August 24, 2018 16:14:23

Display Name MyHypervisoDriver
Service Start: Demand v
Load Group: None || Group Load Order

Ordet In Group: 12| Tope: [Driver o) Enot[Nomal v

Depend On Groupls))

v

The specified path is invalid

Last Status:
MinFiler Settings
Default Instance: Alitude: 0

AlitudeAndFlags
Flags: 0

Register Service Unregister Service [Start Service | | Stop Service

Detecting Hypervisor Support

Discovering support for vmx is the first thing that you should consider before enabling VT-x,
this is covered in Intel Software Developer’s Manual volume 3C in section 23.6

DISCOVERING SUPPORT FOR VMX.

You could know the presence of VMX using CPUID if CPUID.1:ECX.VMX[bit 5] = 1, then VMX

operation is supported.

First of all, we need to know if we’re running on an Intel-based processor or not, this can be
understood by checking the CPUID instruction and find vendor string “Genuinelntel”.

The following function returns the vendor string form CPUID instruction.

string O
{

char SysType[13];
string CpulD;

{

XOR EAX,
CPUID

EAX,
SysType[0],
SysType[1],
EAX, 16
SysType[Z],
SysType[3], ah

EAX,
SysType[4],
SysType[5],
EAX, 16

SysType[6],
SysType[7],

EAX,
SysType[&],
SysType[9],
EAX, 16
SysType[10],
SysType[11],
SysType[12], 00

}

CpulD. (SysType, 12);

return CpulD;

}

The last step is checking for the presence of VMX, you can check it using the following code :

bool
{

bool VMX = false;
{

xor eax,

ecx, Ox5
VMXNotSupport :

VMXSupport :
VMX, Ox1

NopInstr :

nop

}

return VMX;

As you can see it checks CPUID with EAX=1 and if the 5th (6th) bit is 1 then the VMX Operation
is supported. We can also perform the same thing in Kernel Driver.

Allin all, our main code should be something like this:

int @)
{
string CpulD;
CpulD = O;
cout << "[*] The CPU Vendor is : " << CpulD << endl;
if (CpuID == "Genuinelntel™)
{
cout << "[*] The Processor virtualization technology is VT-x. \n";
}
else
{
cout << "[*] This program is not designed to run in a non-VT-x environemnt !\n";
return 1;

}

if ()
{

cout << "[*] VMX Operation is supported by your processor .\n";

}

else

21 {

22 cout << "[*] VMX Operation is not supported by your processor .\n";
23 return 1;

24 1}

25 OF
26 return 0;
27

The final result:

B ' C:\Users\Sina\Desktop\Hypervisor\MyHypervisorApp\Debug\MyHypervisorApp.exe — m} X

N
FDcCh Tt
(NS N N Y B I

N/
)
—/\

[*] The CPU Vendor is : GenuinelIntel
[*] The Processor virtualization technology is VT-x.
[*] VMX Operation is supported by your processor .

Enabling VMX Operation

If our processor supports the VMX Operation then its time to enable it. As | told you
above, IRP_MJ_CREATE is the first function that should be used to start the operation.

Form Intel Software Developer’s Manual (23.7 ENABLING AND ENTERING VMX OPERATION):

Before system software can enter VMX operation, it enables VMX by setting CR4.VMXE[bit 13]
= 1. VMX operation is then entered by executing the VMXON instruction. VMXON causes an
invalid-opcode exception (#UD) if executed with CR4.VMXE = 0. Once in VMX operation, it is
not possible to clear CR4.VMXE. System software leaves VMX operation by executing the
VMXOFF instruction. CR4.VMXE can be cleared outside of VMX operation after executing of
VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH). This MSR
is cleared to zero when a logical processor is reset. The relevant bits of the MSR are:

e Bit0isthe lock bit. If this bit is clear, VYMXON causes a general-protection exception. If
the lock bit is set, WRMSR to this MSR causes a general-protection exception; the MSR
cannot be modified until a power-up reset condition. System BIOS can use this bit to

provide a setup option for BIOS to disable support for VMX. To enable VMX support in
a platform, BIOS must set bit 1, bit 2, or both, as well as the lock bit.

e Bit1enables VMXON in SMX operation. If this bit is clear, execution of VMXON in SMX
operation causes a general-protection exception. Attempts to set this bit on logical
processors that do not support both VMX operation and SMX operation cause general-
protection exceptions.

e Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of VMXON
outside SMX operation causes a general-protection exception. Attempts to set this bit
on logical processors that do not support VMX operation cause general-protection
exceptions.

Setting CR4 VMXE Bit

Do you remember the previous part where | told you how to create an inline assembly in
Windows Driver Kit x64?

Now you should create some function to perform this operation in assembly.

Just in Header File (in my case Source.h) declare your function:

Then in assembly file (in my case SourceAsm.asm) add this function (Which set the 13th
(14th) bit of Cr4).

PUBLIC

rax ;

Xor rax,rax ;
rax,

or rax,02000h ; the 14th
cr4,

rax ;

Also, declare your function in the above of SourceAsm.asm.

PUBLIC Enable_VMX_Operation

The above function should be called in DrvCreate:

(IN DeviceObject, IN Irp)

@K
("[*] WMX Operation Enabled Successfully !");
return STATUS_SUCCESS;

}

At last, you should call the following function from the user-mode:

hWnd = CL"™\\\\.\\MyHypervisorDevice",

GENERIC_READ | GENERIC_WRITE,

https://rayanfam.com/topics/inline-assembly-in-x64/

FILE_SHARE_READ |
FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL |
FILE_FLAG_OVERLAPPED,
NULL);

If you see the following result, then you completed the second part successfully.

[*] The CPU Vendor is : GenuinelIntel
[*] The Processor virtualization technology is VT-x.
[*] VMX Operation is supported by your processor .

B OsR Driver Loader ? X

Open Systems Resources., Inc. Exit
105 Route 1014 Suite 19
Amherst, NH 03031

Ph: [603) 535-6500

Fax: [603) 595-6503

Help

ServiceGroupOrder

‘ = u ﬂ .% ‘ 5:,3 » ‘ a E B - < = Iy Wer 3.0 - Sept B, 2007 Active Services
: Time Debug Print Registry Key: MyHypervisorDriver
1 0.00000000 [*] DriverEntry Called. Driver Path: ‘C:\Usels\Sina\Desktnp\Hypervisor\MyHypewisorD Browse
2 0. 001284 [*] Setting Devices major functions. Driver Version:
3 5.93839645 [*] VMX Operation Enabled Successfully ! et ersion:
Drriver Size: 8832 Bytes
Driver File Time: Tuesday, September 04, 2018 01:08:38
Display Name: MyHypervisorDiriver
Service Start: Demand e
Load Group: None ~ || Group Load Order
Order In Group: 1 2] Tvpe: | Diver | Emor:| Nomal -

File Edit Capture Options Computer Help

Depend On Groupls): | Audios ~

v

Last Status: The operation completed successfully.
MiriFilter Settings
Default Instance: Altitude: 0
AltitudesndFlags —
Flags: U

Redgister Service. Unregister Service, | Start Service Stop Service

Important Note: Please consider that your .asm file should have a different name from your
driver main file (.c file) for example if your driver file is “Source.c” then using the name
“Source.asm” causes weird linking errors in Visual Studio, you should change the name of
you .asm file to something like “SourceAsm.asm” to avoid these kinds of linker errors.

Conclusion

In this part, you learned about basic stuff you to know in order to create a Windows Driver Kit
program and then we entered to our virtual environment so we build a cornerstone for the
rest of the parts.

In the third part, we’re getting deeper with Intel VT-x and make our driver even more
advanced so wait, it’ll be ready soon!

The source code of this topic is available at :

https://github.com/SinaKarvandi/Hypervisor-From-Scratch/

References

[1] Intel® 64 and 1A-32 architectures software developer’s manual combined volumes 3
(https://software.intel.com/en-us/articles/intel-sdm)

[2] IRP_MJ_DEVICE_CONTROL (https://docs.microsoft.com/en-us/windows-
hardware/drivers/kernel/irp-mj-device-control)

[3] Windows Driver Kit Samples (https://github.com/Microsoft/Windows-driver-
samples/blob/master/general/ioctl/wdm/sys/sioctl.c)

[4] Setting Up Local Kernel Debugging of a Single Computer Manually
(https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-local-
kernel-debugging-of-a-single-computer-manually)

[5] Obtain processor manufacturer using CPUID
(https://www.daniweb.com/programming/software-development/threads/112968/obtain-
processor-manufacturer-using-cpuid)

[6] Plug and Play Minor IRPs (https://docs.microsoft.com/en-us/windows-
hardware/drivers/kernel/plug-and-play-minor-irps)

[7] _FAST_IO_DISPATCH structure (https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/content/wdm/ns-wdm-_fast_io_dispatch)

[8] Filtering IRPs and Fast 1/O (https://docs.microsoft.com/en-us/windows-
hardware/drivers/ifs/filtering-irps-and-fast-i-o)

[9] Windows File System Filter Driver Development (https://www.apriorit.com/dev-blog/167-
file-system-filter-driver)

https://software.intel.com/en-us/articles/intel-sdm
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control
https://github.com/Microsoft/Windows-driver-samples/blob/master/general/ioctl/wdm/sys/sioctl.c
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-local-kernel-debugging-of-a-single-computer-manually
https://www.daniweb.com/programming/software-development/threads/112968/obtain-processor-manufacturer-using-cpuid
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/plug-and-play-minor-irps
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/ns-wdm-_fast_io_dispatch
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filtering-irps-and-fast-i-o
https://www.apriorit.com/dev-blog/167-file-system-filter-driver

PAGES

Blog Map
Tools & Scripts

Tutorials

L
v
d W™

Sinaei

Judas tree , What kind of mystery is this, that every spring, Comes with our hearts'
mourning, Judas tree, You be elate, You sing my unsang song...

¥y 0

Published in CPU, Hypervisor and Tutorials

Creating Virtual Machine Hypervisor Tutorials Intel VT-x Tutorial
Setting up Virtual Machine Monitor VMM Tutorials VMX Implementation VMX Tutorials

Sina & Shahriar's Blog

An aggressive out-of-order blog...

The contents of this blog is licensed to the public under a Creative Commons Attribution 4.0 license.

https://rayanfam.com/
https://creativecommons.org/licenses/by/4.0/
https://rayanfam.com/blog-map/
https://rayanfam.com/tools/
https://rayanfam.com/tutorials/
https://rayanfam.com/topics/author/sina/
https://twitter.com/Intel80x86
https://github.com/SinaKarvandi
https://rayanfam.com/topics/category/cpu/
https://rayanfam.com/topics/category/hypervisor/
https://rayanfam.com/topics/category/tutirials/
https://rayanfam.com/topics/tag/creating-virtual-machine/
https://rayanfam.com/topics/tag/hypervisor-tutorials/
https://rayanfam.com/topics/tag/intel-vt-x-tutorial/
https://rayanfam.com/topics/tag/setting-up-virtual-machine-monitor/
https://rayanfam.com/topics/tag/vmm-tutorials/
https://rayanfam.com/topics/tag/vmx-implementation/
https://rayanfam.com/topics/tag/vmx-tutorials/

