
Using dual-mappings to evade automated unpackers

skape
mmiller@hick.org

Abstract

Automated unpackers such as Renovo, Saffron, and
Pandora’s Bochs attempt to dynamically unpack ex-
ecutables by detecting the execution of code from re-
gions of virtual memory that have been written to.
While this is an elegant method of detecting dynamic
code execution, it is possible to evade these unpack-
ers by dual-mapping physical pages to two distinct
virtual address regions where one region is used as
an editable mapping and the second region is used
as an executable mapping. In this way, the editable
mapping is written to during the unpacking process
and the executable mapping is used to execute the
unpacked code dynamically. This effectively evades
automated unpackers which rely on detecting the ex-
ecution of code from virtual addresses that have been
written to.

1 Background

There are a number of automated unpackers that rely
on detecting the execution of dynamic code from vir-
tual addresses that has been written to. This section
provides some background on the approaches taken
by these unpackers.

1.1 Malware Normalization

Christodorescu et al. described a method of nor-
malizing programs which focuses on eliminating
obfuscation[2]. One of the components of this nor-
malization process consists of an iterative algorithm
that is meant to produce a program that is not
self-generating. In essence, this algorithm relies on
detecting dynamic code execution to identify self-
generated code. To support this algorithm, QEMU
was used to monitor the execution flow of the input
program as well as all memory writes that occur. If
execution is transferred to an address that has been
written to, it is known that dynamic code is being
executed.

1.2 Renovo

Renovo is similar to the malware normalization tech-
nique in that it uses an emulated environment to
monitor program execution and memory writes to
detect when dynamic code is executed[5]. Renovo
makes use of TEMU as the execution environment
for a given program. When Renovo detects the exe-
cution of code from memory that was written to in
the context of a given process, it extracts the dynamic
code and attempts to find the original entry point of
the unpacked executable.

1.3 Saffron

Saffron uses two approaches to dynamically unpack
executables[7]. The first approach involves using
Pin’s dynamic instrumentation facilities to monitor
program execution and memory writes in a direc-
tion similar to the emulated approaches described
previously[4]. The second approach makes use of
hardware paging features to detect when execution is
transferred to a memory region. Saffron detects the
first time code is executed from a page, regardless
of whether or not it is writable, and logs informa-
tion about the execution to support extracting the
unpacked executable. This can be seen as a more
generic version of the technique used by OllyBonE
which focused on using paging features to monitor a
specific subset of the address space[10]. OmniUnpack
also uses an approach that is similar to Saffron[6].

1.4 Pandora’s Bochs

Pandora’s Bochs uses techniques similar to those used
by Christodorescu and Renovo[1]. Specifically, Pan-
dora’s Bochs uses Bochs as an emulation environment
in which to monitor program execution and memory
writes to detect when dynamic code is executed.

1.5 Justin

Justin is a recently developed dynamic unpacking sys-
tem that was presented at RAID 2008 after the com-
pletion of the initial draft of this paper[3]. Justin
differs from previous work in that is uses hardware
non-executable paging support to enforce W ⊕X on
virtual address regions. When an execution attempt
occurs, an exception is generated and Justin deter-
mines whether or not the page being executed from
was written to previously. The authors of Justin cor-
rectly identified the evasion technique described in
the following section and have attempted to design
their system to counter it. Their approach involves
verifying that the protection attributes are the same
across all virtual addresses that map to the same
physical pages. This should be an effective counter-
measure, although there is certainly room for attack-
ing implementation weaknesses, should any exist.

2 Dual-mapping

The automated unpackers described previously rely
on their ability to detect the execution of dynamic
code from virtual addresses that have been written to.
This implicitly assumes that the virtual address used
to execute code will be equal to an address that was
written to previously. While this assumption is safe
in most circumstances, it is possible to use features
provided by the Windows memory manager to evade
this form of detection.

The basic idea behind this evasion technique in-
volves dual-mapping a set of physical pages to two vir-
tual address regions. The first region is considered an
editable mapping and the second region is considered
an executable mapping. The contents of the unpacked
executable are written to the editable mapping and
later executed using the executable mapping. Since
both mappings are associated with the same physi-
cal pages, the act of writing to the editable mapping
indirectly alters the contents of the executable map-
ping. This evades detection by making it appear that
the code that is executed from the executable map-
ping was never actually written to. This technique is
preferable to writing the unpacked executable to disk
and then mapping it into memory as doing so would
enable trivial unpacking and detection.

Implementing this evasion technique on Windows
can be accomplished using fully supported user-
mode APIs. First, a pagefile-backed section (anony-
mous memory mapping) must be created using the

CreateFileMapping API. The handle returned from
this function must then be passed to MapViewOfFile
to create both the editable and executable mappings.
Finally, the dynamic code must be unpacked into the
editable mapping through whatever means and then
executed using the executable mapping. This is illus-
trated in the code below:

ImageMapping = CreateFileMapping(

INVALID_HANDLE_VALUE, NULL,

PAGE_EXECUTE_READWRITE | SEC_COMMIT,

0, CodeLength, NULL);

EditableBaseAddress = MapViewOfFile(ImageMapping,

FILE_MAP_READ | FILE_MAP_WRITE,

0, 0, 0);

ExecutableBaseAddress = MapViewOfFile(ImageMapping,

FILE_MAP_EXECUTE | FILE_MAP_READ | FILE_MAP_WRITE,

0, 0, 0);

CopyMemory(EditableBaseAddress,

CodeBuffer,CodeLength);

((VOID (*)())ExecutableBaseAddress)();

The example code provides an illustration of using
this technique to execute dynamic code. This tech-
nique should also be fairly easy to adapt to the un-
packing code used by existing packers. One consider-
ation that must be made when using this technique is
that relocations must be applied to the unpacked exe-
cutable relative to the base address of the executable
mapping. With that said, the relocation fixups them-
selves must be applied to the editable mapping in
order to avoid tainting the executable mapping.

An additional evasion technique may also be neces-
sary for dynamic unpackers that monitor code execu-
tion from any virtual address, regardless of whether
or not it was previously written to. This is the case
with Saffron’s paging-based[7] automated unpacker.
For performance reasons, Saffron only logs informa-
tion the first time code is executed from a page. If the
contents of the code changes after this point, Saffron
will not be aware of them. This makes it possible to
evade this form of unpacking by executing innocuous
code from each page of the executable mapping. Once
this has finished, the actual unpacked executable can
be extracted into the editable mapping and then ex-
ecuted normally. This evasion technique should also
be effective against Justin due to the fact that Justin
does not trap on subsequent execution attempts from
a given virtual address[3].

While these evasion techniques are expected to be
effective, they have not been experimentally verified.
There are a number of reasons for this. No pub-
lic version of Pandora’s Bochs is currently available.

2

However, its author has indicated that this technique
should be effective. Renovo provides a web interface
that can be used to analyze and unpack executables.
No data was received after uploading an executable
that simulated this evasion technique. The authors of
Saffron have indicated that they expected this tech-
nique to be effective.

3 Weaknesses

Perhaps the most significant weakness of the dual-
mapping technique is that it is not capable of evading
all automated unpackers. For example, dynamic un-
packing techniques that strictly focus on control flow
transfers, such as PolyUnpack[9] and ParaDyn[8],
should still be effective. However, this weakness could
be overcome by incorporating additional evasion tech-
niques, such as those mentioned in cited work[9].

Automated unpackers could also attempt to in-
validate the dual-mapping technique by monitoring
writes and code execution in terms of physical ad-
dresses rather than virtual addresses. This would
be effective due to the the fact that both the ed-
itable and executable virtual mappings would refer
to the same physical addresses. However, this ap-
proach would likely require a better understanding
of operating system semantics since memory may be
paged in and out at any time.

4 Conclusion

The dual-mapping technique can be used by pack-
ers to evade automated unpacking tools that rely on
detecting dynamic code execution from virtual ad-
dresses that have been written to. While this evasion
technique is expected to be effective in its current
form, it should be possible for automated unpackers
to adapt to handle this scenario such as by monitor-
ing writes to physical pages or by better understand-
ing operating system semantics that deal with virtual
memory mappings.

References

[1] L. Bohne. Pandora’s bochs: Automatic unpacking of mal-
ware. Jan 2008.

[2] Mihai Christodorescu, Johannes Kinder, Somesh Jha, Ste-
fan Katzenbeisser, and Helmut Veith. Malware normal-
ization. Technical Report 1539, University of Wisconsin
and Madison, Wisconsin, USA, November 2005.

[3] Fanglu Guo, Peter Ferrie, and Tzi cker Chiueh. A study
of the packer problem and its solutions. In RAID, pages
98–115, 2008.

[4] Intel. Pin. http://rogue.colorado.edu/pin/.

[5] M. Gyung Kang, P. Poosankam, and H. Yin. Ren-
ovo: A hidden code extractor for packed exe-
cutables. http://www.andrew.cmu.edu/user/ppoosank/

papers/renovo.pdf, Oct 2007.

[6] L. Martignoni, M. Christodorescu, and S. Jha. Omni-
unpack: Fast, generic, and safe unpacking of malware.
http://www.acsac.org/2007/papers/151.pdf, December
2007.

[7] Danny Quist and Valsmith. Covert debugging: Circum-
venting software armoring techniques. BlackHat USA,
Aug 2007.

[8] K. Roundy. Analysis and instrumentation of packed
binary code. http://www.cs.wisc.edu/condor/PCW2008/

paradyn presentations/roundy-packedCode.ppt, Apr
2008.

[9] P. Royal, M. Haplin, D. Dagon, R. Edmonds, and W. Lee.
Polyunpack: Automating the hidden-code extraction of
unpack-executing malware. 22nd Annual Computer Se-
curity Applications Conference, Dec 2005.

[10] J. Stewart. Ollybone. 2006.

3

http://rogue.colorado.edu/pin/
http://www.andrew.cmu.edu/user/ppoosank/papers/renovo.pdf
http://www.andrew.cmu.edu/user/ppoosank/papers/renovo.pdf
http://www.acsac.org/2007/papers/151.pdf
http://www.cs.wisc.edu/condor/PCW2008/paradyn_presentations/roundy-packedCode.ppt
http://www.cs.wisc.edu/condor/PCW2008/paradyn_presentations/roundy-packedCode.ppt

	Background
	Malware Normalization
	Renovo
	Saffron
	Pandora's Bochs
	Justin

	Dual-mapping
	Weaknesses
	Conclusion

