as

Title:

Reverse Engineering:
Anti-Cracking Techniques

Date:

April 12w 2008

Website:
http://www.astalavista.com

Author:

Nicolaou George

Mail:
ishtus@astalavista.com

Author:

Charalambous Glafkos
Mail:
glafkos@astalavista.com

s

1oL e Lo 1V Lo} 4 o o H PO PP PP TP PP PPPPRPP 3
L5 1O T TSP U PR OPPRTRUPPPPPTPP 3
Reverse Engineering TOOIS ... 3
Reverse Engineering ApPproaches ... 4
EXAMPIE SOTIWAIE ... e e e e e e e e e et r e e e e e e e e rraa e aeeaes 4
Program ANGIYSIScooiiiiiiiiiiie et e et e e et e e e e s 4
Approach NO1 (String REFEIENCES)uviiiiiiiiiiiiiiii e e e 5
51U Te o (1S 1 T0] g EST (Y o] o] g = Tl 1N N o 1) 7
Approach No2 (Breakpoint 0N WINAOWS APuuiiiiiiiiiiiiiieiie et 8
YU Te o (XS 1 To] g ET €AY o] o] £ =Tl 1N N [12 9
APProach NO3 (STACK TraCiNg) ...ccooiueiiireeieeee ettt e e e e reeeeeas 10
Suggestions (APProACH NO3)uuui e ———— 12
Binary Code PatChiNg: ... it e e e e e e e e e e e e 13
Approach Nol (Branch PatChing)..........ccccciiii 20
Approach NO2 (Replace fUNCLIONS)uiiiiieiiiiiiii e a e 21
YT AT U T T=T = L1 o 22
(070 To (3w d=ToTo] 0 153 111 [1 Vo [P 22
(000 (=3 2] o] o] 1 o TP P PP TP PPPPPPPPPTPP 23
(@1 =T PP P PP PP PPPPP 24

s

Introduction
This paper is a guide into better understanding most of the approaches a reverse engineer can follow in

order to achieve his goal. Additionally, it includes a number of advices on how to better protect your
software against tracing its sensitive information, like serial key checks and authentication procedures.
This paper is not about changing anyone’s ideals; this paper is about people that believe that reverse
engineering can create a safer world. So if you are not one of those individuals then stop reading, for this
is not for you.

Note that this paper might not cover the wide range of techniques used by reverse engineers so if you
feel that something is missing, please do not hesitate to email with your suggestions.

TODO

Subjects to cover:
- PE packers and crypt tools
- Online checks
- Malware analysis
- x64 reverse engineering
- Discovering and exploiting vulnerabilities

Any other suggestions are welcome. If you feel that you have something to contribute and/or offer, do
not hesitate to email.

Reverse Engineering Tools
A number of reverse engineering tools are available over the net, a number of them are free and others

need purchasing. Some of the most advanced disassembling and debugging tools out there are:
- OllyDBG [http://www.ollydbg.de/] (Version 2 expected soon)
- IDA Pro Disassembler and Debugger [http://www.hex-rays.com/]
- W32Dasm [http://www.google.com] (Old, but you will be amazed with some of its functions)
- SoftICE (Stopped being supported from April 2006)
- WinDbg [http://www.microsoft.com/whdc/devtools/debugging/default. mspx]

Additionally, a number of other tools can be used as well. The names of the tools and their description are
listed below:
- PROTECTION iD [http://pid.gamecopyworld.com/]
Used for scanning windows system executables for known packer/encryprtor signatures and
identifying the compiler of the program [http://en.wikipedia.org/wiki/Executable _compression]
- Import REConstructor [http://www.google.com/]
Used for repairing damaged import table (IAT) of executables
- System Internals [http://technet.microsoft.com/en-us/sysinternals/default.aspx]
Programs like FileMon, RegMon can be used to monitor the program’s behavior. An
alternative approach to this is a sandbox that provides information for all program activities.

Ay

Reverse Engineering Approaches
We will begin looking into the approaches a reverse engineer uses. The preferred debugger used in this
section will be a modified version of OllyDBG, the original version will do as well.

Example Software

Program Name: Example.v1.0.exe (Serial Check)
Md5sum: 4¢c78179f07c33e0f9ec8f2b0509bd069
Compiler: Borland Delphi

Program Analysis

To begin with, we need to analyze the program functionality in order to determine our approach and
better understand how it works.

As you can see, the program form is simple. The
Serial Check main functionality is a username and serial check.
Our first step is to insert random data inside the Text
boxes, click “Check” and observe the program
response.

MessageBox Check

sername: ||

Serial: |

The result gives us a hint that
.iish:. before the serial check algorithm we
should expect a function that
The Serial number wou entered is too shark or koo long checks if the Serial string length
within the given boundaries by the
ok programmer.

| CTTECE I

Next, we move to the stage of disassembling and debugging the application in order to gather more
information regarding the way it works. What is going to follow is a number of approaches a reverse
engineer might use and some suggestions on hardening your software.

HE4S6F DS
2a45eF 2B
aad4EeFAS
HEd45aFEE
Ba45aFCE
gad4SeFDg

GE45 T EE
GE457E14
Sa457aZ4
SR4ETEIZ
02457837

Approach Nol (String References)

Step 1:
Right Click > Search for > All referenced text strings

W T ET

Search For 2 Mame (label) in current module Cerl4+M
Find references to > Marme in all modules
Wienw »

Cormand Ckrl+F
Copy ko executable [2

. Sequence of commands Chrl+5
Analysis » Camskant
onskan

Help on symbolic name Zhrl+F1))

Binary skring trl+B
Detach Process]

All inkermodular calls
Process Patcher All commands
Analyze This! All sequences

] All constants
AsmzClipboard .
Eookmark All switches
ooRmEr All referenced kext skrings
Code Ri
Ho= iR User-defined label
Cata Ripper User-defined comment
Step 2:

As you can see, the message text string easily links to the dialog box. By double clicking on the string,
you get transferred directly to the dialog procedure

FUSH Enxample_. BB4SEFAS ASCII ™.:ishz."™

shz.."
EEE?IEHaMDLﬁ_.BB456FBB ASCII "Ths Serial number wou entersd is too short o too lonat™
f.zisha."

ASCII ""The Serial numbe""
ASCII "r wou entered st
HSCII "™ too short o toff
ASCITI "o long™,. @
FPUSH Example_.BE455FFC ASCII -zishz."
EgS? EHanDle_.BBgS?BB4 HASCII ""The Serial number wou entered is not walid™r

Tazishi.",
ASCII ""The Serial numbe""
HSCII "¢ wou enteced is""
ASCII ™ not walid',@
FUSH Enample . @@457E44 ASCII ".:ish=z."

ASCII "Thank You for registering.”™

Step 3:
Although the program Serial Check is coded with a level of difficulty, a reverse engineer with little

experience can trace where this function is called and patch the program flow
[5] [2] a] -

R

I
I
I
I
I
5]

Step 4:
For now, we set a Label on the start of this function (for easier reference). We do that by:
nght C|ICk > Label

Backup

Copy

EBinary

Azsemble Space
Label

=
-
-

And set a Label: “Long/Short Error”

Step 5:
As you can see at the bottom, this function is called from 3 different addresses which are fairly close to
each other

Evample .Long-~Short Error

Commen t

Step 6:
We trace back to the first occurred call (004571B7)
Right Click > Go to CALL from 004571B7
<
Local calls from
Copy pane ko clipboard
Erample_.Lon il rror 3o ko CaLL FI"DITI O04571B7

G0 ko CALL from 00457 10E

o ko CALL From O045721F

=

45 EC
FF

CE1SFEF
70_FF 34

Suggestions (Approach Nol)
In order to avoid tracing sensitive program functions through looking up string references, a programmer
could follow the steps:
- Store strings in global variables or better inside arrays and then reference to them when
needed.
Pseudo Code Example:

array[] myMsges = {'The Serial number you entered is too short or too long',
‘The Serial number you entered is not valid',
"Thank You for registering."}

/ICode omitted

function registrationCheck():

if(invalid_length) then
sendMessage(myMsges[0])

if(invalid_serial) then
sendMessage(myMsges[1])

if(valid_serial) then

sendMessage(myMsges[2])

Additionally, the programmer could encrypt the strings inside the array and decrypt them
when they are needed (there is no need for an advanced encryption, just a simple algorithm)

as

/[This can be done separately.
/[Let's assume that the result of this code will be: ‘dkg$2 kF2 gkfoaplk’

string thank_you = ‘Thank You for registering’
for(each letter in thank_you) do

add_5_to_ascii_value(letter)
print thank_you

/lprogram serial check
If(valid_serial) then
sendMessage(decrypt(‘dkg$2 kF2 gkfoaplk’))

- Store strings inside a file or registry

Approach No2 (Breakpoint on windows API)

In this approach we will make use of a breakpoint on MessageBoxA APIl. Some programs might use
MessageBoxW, MessageBoxExA or MessageBoxExW.

Step 1:
(Usmg Ollydbg’s Command Bar plug-in)
MessageBoxA” and then Hit enter

e
afffia]
Al
Al]
Al] |E|
Al] |E|
Al] |E|
Al]
Al]
Al] |E|
Al] |:|

(Ll
Al]
Al]

Cormmand : |I:-|:- MeszmageBoxa - | BF addres==, siring — Brealk. with condition

| Program entre point

(Using Ollydbg’s Names window)
Press Alt+E to switch to “Executable Modules” list > Select your executable and click Ctrl+N > Find
MessageBoxA > Right Click > ”Toggle breakpoint on import”

LI L HU LSS« A=K DL L |

Import y=erss . MessageBoxsA

Import |userzZZ.MessageBonA Ackualize

Eaer gﬁaga?EEDHEHE e I H

nport odu leEntruFolnt Follow import in Disassembler

Import gdi32. MoweToEx F

Import | kerne 22, MulDiv Fallow in Durnp

Import kerne 22 My Lt iButeTo . .

Import | uzer2Z.0emToCharA Find references ko import Enter
Import Wserd2. IFfsetRect .

%mpurt ad 13§épgt E k&ﬁ . View call tree

mpoct userdz. PeekMessage .

Import |userzZZ.PeekMeszagell Help an symbalic name Ckrl+F1
%mpnrt uiergg.gnitgegiﬁgeﬁ

mport userds, Postiy itHessa 3 3

Import wserd2. PtInRect Toggle breakpoint on import

IF"IDDI"".'- kernel3Z.RaiseEx cept i rmdibiom sl hreaslonmink Aamirmmerk

Step 2:
Run the program > Insert random data > Press Check
Now you break at MessageBoxA APl inside User32

HMoL EOT, EDT

EEF
MDY EEF, ESP
JORD P 4714BC], 0

EIIIII RO PTR [EEF+141]
OWoRD FT _ IZEE:F'+1_E1]

Step 3:

OWoRD FTRE
DWoRD FPTR
l TR

Step 4:

As you can see we ended up in the same place we did in Approach Nol, Step 3.

Suggestions (Approach No2)

In order to avoid tracing your program through setting breakpoints using API breakpoints a programmer
should limit their uses. Code your programs with the minimum of API calls; create your own message
boxes instead of using API’s.

as

Approach No3 (Stack Tracing)

Another interesting approach a reverse engineer can use is “stack tracing”. Stack tracing, is the technique
of tracing back your steps through the stack.

When the “CALL <procedure>" instruction is executed by the CPU, the value of the Instruction Pointer
(EIP), plus the number of bytes until the next instruction, is pushed inside the stack. When the procedure
finishes and the “RETN” instruction is reached the processor pops the value from the stack and returns to
the previews function.

Let's assume:
Offset Opcode

1 PUSH 0 When “CALL OxF” runs, the value of
2 CALL OxF offset 3 is pushed inside the stack

TEST EAX,EAX

Offset _Opcode When RETN runs the value of offset 3

F MOV EAX,1 POPs from the stack and placed into
10 RETN EIP
11 NOP

Step 1:

Run the program > Enter random data > Click Confirm > Pause the program
File Wiew D[Debug Plugins Options ‘Window Help

5] e oel] 03] 00 e e8] ﬂﬂﬂ &)] v | wi | (6]])

Step 2:
Open the “Call stack” window
in thread, module Example_]

:u_lg F"Iugins Opti-:uns wlindions Help
[T

10

)

There are a number of functions calling each other. The function we can use to trace into the main
program registration routine is MessageBoXEXA but that is not efficient. We need to see what calls that
function.

Address | Stack Frocedure « arguments Called from
AE12FBEC| YE419402 | Includes ntdll.KiFastSustemCal LlRet | USERZZ2. PE419406
BE12FE7E| FE42E2EB2 | USERZ2. WaitMessage USER22. YE42EZAD
B812FBR4 | YE42636F | USERZ2. PE42EL2S USERZZ2. PE42636R
HE12FACC| YE43A93E| USERSZ. FE42E2E9 USER3Z2. FE43A939
AA12F38C| YE43A2A4 | USER3Z. Sof tModalMessageBon USERZ2. FE43AZ9F
AE12F40C| YE4556340| USERS2. FE43A12F USERSZ2. FE45656343
AE12F534| YE4663F2 | USERZ2. MessageBon T imeoutll USERZ2. FE46E3ED
BE12FS68| YE45687EF| * USERZ2.MessageBonT imeoutH USERZZ2. PE4567ER
BB12F588| FE456747 | * USERZ2.MessaasBoxERA USERZZ2. FE45G742
A8 12FSEC| ARBRAEAE hOwner = MULL

BE1ZF596 | BE455FBA Tent = "The Serial number wou ent

A1 2F594 | BA456FAS Title = ".zishz.™

AE12F595 | AREEEEEAE Stwle = ME_OKIME_APFPLHMOOAL

A8 12F59C| AREEEEAE LanguageID = @ (LAMG_HEUTRAL]

Step 3:

Right Click > Follow address in stack

BE12F534| FE4663F 2| USERZ2. MessageBon T imeoutll USERZ22. PE4653ED
BE12FE62| FE4ERV2F| Y ISERZ2. Messag9eBon T imeoutA SERZZ. PE450 2R
BE12F583 FE4EB747| ¥ USERZ2. Messag=BorERA HEERAA-SEAELS A
B812F55C| BRRAAAAE| hOwner = HULL Actualize

BEl2F598) Bo4EoFER Tewt = "The Serial numbe

BE12F594) BR4EEFAD Title = ".2ish:.™ Hide arguments Space

HA12F598 | AaEERRaEA Stule = MB_OKMBE_HFPFLMOO
HA12F59C | AaEEAREREA LanguagsID = @ [LAMG_HEU -
Follow address in stack

Show procedure Enter
Show call
Execute ko return F4

number wou entered is too short or too long™

i= too short or too Long™

RETURN to USER32.7E450747 from USER32.MessageBoxExA
It is obvious that USER32.7E450747 is MessageBoxA
(If you don’t know why, look at the code inside user32.dll)

11

Suggestions (Approach No3)

Avoiding stack tracing is a hard technique. One might argue that we could do so by replacing all the
sensitive procedure “CALL” and “RETN” instructions inside your program with “JMP”. This is called
“Binary Code Obfuscation”.

Code Obfuscation is the technique of transforming the original program binary code thus rendering it
unreadable and harder to analyze by static disassembly. Although this confuses reverse engineers, it

doesn’t protect the software; it only delays the code analysis.

The basic idea behind CO is to combine Data and Code sections. Additionally, obfuscation replaces the
following OPCODES in order to avoid disassembly and stack tracing:

Replace of CALL with PUSH, POP, RET and JMP. And replace JMP with PUSH and RET.

For example:

Original Code:
PUSHO

CALL 7E450747

Original Code:
MOV EBX,1
RETN

Original Code:
JMP 00456F94

Obfuscated Code:

PUSH 0

PUSH EIP + <bytes to next instruction>
JMP 7E450747

Obfuscated Code:
POP EAX
JMP EAX

Obfuscated Code:
PUSH 00456F94
RETN

Replace JMP branches with conditional branches (e.g.: JE, JNZ, JL) that are always
satisfied. Additionally, this way you can confuse reversers and lead them to a junk code

section.

Original Code:
JMP 00456F94

Add partial instructions at unreachable areas.

12

Obfuscated Code:
MOV EAX, 1

CMP EAX, 0

JE <JUNK_CODE>
JNE 00456F94

- Avoid using direct references to offsets (e.g.: IMP 00456F94). Use simple calculations to
obfuscate that offset and then call it. For example:

MOV EAX, 00456000 ; EAX = 00456000
ADD EAX, 00000F94 ; EAX = 00456F94
JMP EAX ; JMP 00456F94

Binary Code Patching:

As you can sle;_e”frgmlﬁpproach No1l, Step 6:

[(e ' e —

[EEF-141
EEBP-11

R e e e e e e e e e e e o e e e e e o e e e -

This is the actual algorithm that determines whenever the serial code inserted is valid or not and
informs the user of his “mistake” to properly validate his registration.

There is a number of ways reversers use in order to successfully patch the code and control its flow.
Before we do that, we have to analyze the actual code and understand where our actual goal lies at.

13

Step 1:
Scroll up and set a breakpoint near or at the function start (To set a breakpoint select the instruction you

would like to break on and then press F2) > Run the program

Step 2:
Step each instruction and try to understand what this code is for.

As you can see in the images below, the CALL instruction at offset 0045716F returns the pointer of the
string given by the user inside the “Username:” text box.

Current Instruction:
A5 =1l F5 ~CFOFEFE ISR Fuamoles o AR4SSFa4 | |

[ASCII "ishtus™]

CII "isht

RETURM to Ex
RETURM to E
c| RETURM to E

14

O N P A 12 S
VCLVI V/NICLAY

The following CALL instruction at offset 0045718F returns the pointer of the string given by the user
inside the “Serial:” text box.

Cod Scton:

Current Instruction:

| - Fo crPrPEEE o Ellooy. opaceraa | |

Stack:

I L ST o

T T T P e P e
alalolalalalalalol

-
=

The following code loads the serial number given by the user into EAX, then checks if it is equal to null.

Apparently the value pointed by 0045E5A8 (see offset 0045719C) is the given serial ASCII value which
eventually is loaded into EAX at offset 004571A4.

If (EAX == null) {
//do something
}

FTR
TR _D

15

)

4 Example_.B8842320¢<

Erample_.@8845E71A9

As you can see there is another length check. This time ESI holds the current length of our serial (in our
case its OxA Hexadecimal = 10 Decimal) which is compared with the hexadecimal number 0x01 which is
equal to decimal 1. If the length of our serial is equal to one, then “Long/Short Error” is called (see
Approach No1l, Step 4)

Code Section:
. E_@1

=
ez m
=T
moQ

ML
LER
ului

mmm __ Mmg
[whn] s

-

]
I
mc

The following highlighted code compares the first string character from the serial decimal length (10) with
the ASCII value 0x31, which is equal to “1". For those who are wondering how the length was converted
into an ASCII string you can follow the call at the offset 004571C3 then have a look at the following loop:

0040840D |>/31D2 /XOR EDX,EDX
0040840F |. |F7F1 IDIV ECX
00408411 |. |4E IDEC ESI

00408412 |. |80C2 30 |ADD DL,30

00408415 |. |8OFA 3A |CMP DL,3A

00408418 |. |72 03 |JB SHORT Example_.0040841D
0040841A |. |80C207 |ADD DL,7

0040841D |>|8816 MOV BYTE PTR DS:[ESI],DL
0040841F |. |09CO |OR EAX,EAX
00408421 |N75 EA \JNZ SHORT Example_.0040840D

OIu
DEC
E! oo oL

F
1
5
u]
F
L

16

Code Sect|on

The following does the same thing like above, but for the second number. In this case, the second

number must be equal to 0x34 ASCII (“4")
ETEE [EEF-1C]
: CEEP-11]

N BmmE e

So the code of this program until now should look like this:

char first = getChar(length,1,?); //Get first character
if (first 1="1") {
char second = getChar(length,2,?); //Get second character
if(second = 4") {
/lcontinue with serial check

else {
sendLongShortError();
}
else {
sendLongShortError();
}

Note: the character “?” shows an unknown value which most likely is the data type the returned value is stored in.
(Delphi compiler).

Most likely, the serial number you inserted does not have the valid length of 14 characters. Therefore you
can press F9 and type the serial again.

17

Step 3:

Step 4:
Let’s have a look at the code below

00457068
00457069
0045706A
0045706B
0045706C
0045706F
00457074
00457079
0045707B
0045707D
00457082
00457087
00457088
00457089
0045708C
0045708E
00457093
00457097
0045709B
0045709D
0045709F
004570A2
004570A4
004570A6
004570A8
004570AD
004570B3
004570B8
004570BA
004570BB
004570BC
004570BE
004570C3
004570C8
004570CD
004570D0
004570D2
004570D5
004570D6
004570D7
004570D9
004570E0
004570E2
004570E7
004570E9

I$ 53

. 56

. 57

55

. 83C4F8

|. BB 01000000
|. BE ACE54500
|> 8BCE

. 8BD3

|. A1 ABE54500
E8 BDFEFFFF
43

46

|-

|

|

|. 83FB OF

|.~ 75 EB

. Al AAE54500
894424 04
8B4424 04

. 85C0

. 7405

. 83E8 04

. 8B00

|> 85C0

. 7TE 16

|. BB 01000000
|> 8B15 A4E54500

|. OFB6541A FF

. 03EA

. 43

. 48

|.~ 75 EF

|> BB OE000000

|. B8 ACE54500

|. BA BCE54500

|[> OFB608

. 890A

. 83C204

. 40

. 4B

|.A 75 F4

|[> 803D ACE54500>

. 7407

|. BF 01000000

. EB 46

|[> 8BC5

PUSH EBX

PUSH ESI

PUSH EDI

PUSH EBP

ADD ESP,-8

MOV EBX,1

MOV ESI,Example_.0045E5AC
/MOV ECX,ESI

IMOV EDX,EBX

[MOV EAX,DWORD PTR DS:[45E5A8]
|CALL Example_.00456F44

[INC EBX

[INC ESI

|CMP EBX,0F

\JNZ SHORT Example_.00457079
MOV EAX,DWORD PTR DS:[45E5A4]
MOV DWORD PTR SS:[ESP+4],EAX
MOV EAX,DWORD PTR SS:[ESP+4]
TEST EAX,EAX

JE SHORT Example_.004570A4
SUB EAX,4

MOV EAX,DWORD PTR DS:[EAX]
TEST EAX,EAX

JLE SHORT Example_.004570BE
MOV EBX,1

/MOV EDX,DWORD PTR DS:[45E5A4]
|[MOVZX EDX,BYTE PTR DS:[EDX+EBX-1]
|ADD EBP,EDX

[INC EBX

IDEC EAX

\JNZ SHORT Example_.004570AD
MOV EBX,0E

MOV EAX,Example_.0045E5AC
MOV EDX,Example_.0045E5BC
IMOVZX ECX,BYTE PTR DS:[EAX]
[MOV DWORD PTR DS:[EDX],ECX
|ADD EDX,4

[INC EAX

IDEC EBX

\JNZ SHORT Example_.004570CD
/CMP BYTE PTR DS:[45E5AC],7B
|JE SHORT Example_.004570E9
[MOV EDI,1

[JIMP SHORT Example_.0045712F
IMOV EAX,EBP

18

004570EB |. B9 0A000000
004570F0 |. 99

004570F1 |. F7F9

004570F3 |. OFB605 ADE545>
004570FA |. 3BDO

004570FC |. 75 06

004570FE |. 830424 02
00457102 |. EB 2B

00457104 |> BB 0C000000

00457109 |.

BE ADE54500

0045710E [> OFB606

00457111 |. B9 OAO00000
00457116 |. 33D2
00457118 |. F7F1
0045711A |. 8BCA
0045711C |. 83F9 OE

0045711F |. 73 0A
00457121 |. 83F9 01
00457124 |. 76 05
00457126 |. E8 O5FFFFFF
0045712B |> 46
0045712C |. 4B
0045712D |.~ 75 DF
0045712F |> 83FF 01
00457132 |~ 75 A5
00457134 |. 8B0424
00457137 |. 83E8 02
0045713A |. 7505
0045713C |. E8 ATFEFFFF
00457141 |> 59
00457142 |. 5A
00457143 |. 5D
00457144 |. 5F
00457145 |. 5E
00457146 |. 5B
00457147 \. C3

s

[MOV ECX,0A

|ICDQ

[IDIV ECX

IMOVZX EAX,BYTE PTR DS:[45E5AD]
|[CMP EDX,EAX

[JINZ SHORT Example_.00457104
|ADD DWORD PTR SS:[ESP],2
[JMP SHORT Example_.0045712F
[MOV EBX,0C

[IMOV ESI,Example_.0045E5AD
[/IMOVZX EAX,BYTE PTR DS:[ESI]
[[IMOV ECX,0A

[XOR EDX,EDX

[IDIV ECX

[IMOV ECX,EDX

||CMP ECX,0E

[[INB SHORT Example_.0045712B
[[CMP ECX,1

[|[JBE SHORT Example_.0045712B
||CALL <Example_.thank you>
[IINC ESI

[[IDEC EBX

[\INZ SHORT Example_.0045710E
|CMP EDI,1

\UNZ SHORT Example_.004570D9
MOV EAX,DWORD PTR SS:[ESP]
SUB EAX,2

JNZ SHORT Example_.00457141
CALL <Example_.invalid number>
POP ECX

POP EDX

POP EBP

POP EDI

POP ESI

POP EBX

RETN

This code runs the actual serial checking. As you can see when you analyze the code while debugging,
there is a number of jumps that lead you away from the desired call, which is located at offset 0045713C.
Usually there are a number of approaches towards reaching your desired result. Those involve patching,
analyzing, reconstructing or even ripping (the assembly) the code. In this software there are a limited
number of approaches. As you can see, the above code only deals with checking the serial key and
invoking the appropriate message to inform the user for his success or failure to validate his user/serial

identity.

The following approaches might not apply in the real world, but they provide a basic and simple idea on

how reversers work.

19

Approach Nol (Branch Patching)
One way of patching the program flow is by modifying the conditional branches.

There are a number of places where the serial validation algorithm determines that the serial given by the
user is invalid. Those are:

Check Nol:

As shown in the binary analysis above, the function converts the serial length into a string ASCII data
type then takes the first letter and compares it with the hex value 0x31 which is equal to ASCII character
1

A simple patch can be placed by:

Double click on the opcode at offset 004571DC >

replace “JE SHORT 004571E5”

with “JMP SHORT 004571E5”

Therefore then the CALL at 004571DE is never called
GiEELE

Therefore, the code in Step2, Binary code patching changes into:

char first = getChar(length,1,?); //Get first character
if(true) { //This is always true
char second = getChar(length,2,?); //Get second character
if(true) { //This is always true
/[continue with serial check

}
else {
sendLongShortError(); /[This is never called
}
}
else {
sendLongShortError(); /[This is never called
}

20

Check No3:

SHORT Example_.HH
* BYTE FTR OS5

In general, that should do it. Although there are a few bugs, | believe you understood the basic idea
behind it.

Approach No2 (Replace functions)

A simpler approach is to alter the error message functions and point them at the success function. As
shown below:

SPEEERER

=
=
Ll
Ll
Ll
-
-
-
Ll
Ll

AOD E

MO E

MOV E 1o le_ . BE4SESAC ASCII "™&1i:
AL

R I

21

Note: This will most likely not work if you, as a coder, are smart enough not to put everything inside one
function.

Serial Generating
(known as keygening)

In this category, a “cracker” analyzes the program code and reconstructs the registration algorithm in
such a way that instead of determining that the inserted serial is correct, it generates a correct serial key
that will always be valid (without taking into consideration any external constrains). Some of the
techniques used for constructing/reconstructing Serial Generating algorithms are:

Code Reconstructing

The careful analysis of an algorithm (usually by debugging) in order to understand the behavior of a
function or set of functions in such a way that a reverser can transform the low-level assembly into a
higher level programming language code (like C, C++, or as high as .NET and Java)

For example:

Low-level:

004570AD |>/MOV EDX,DWORD PTR DS:[45E5A4] ; Load username string in EDX

004570B3 | |[MOVZX EDX,BYTE PTR DS:[EDX+EBX-1] ; Get letter in position EBX-1 (in each loop the pointer is incr by 1)
004570B8 |. |ADD EBP,EDX Add the hexadecimal ASCII value of the letter in EBP (UserCount)
004570BA |. |INC EBX Increase the pointer (EBX)

004570BB |. |IDEC EAX Decrease the loop counter

004570BC |.A\JNZ SHORT Example_.004570AD Stop branching only when the loop counter reaches zero(0)
004570BE |> MOV EBX,0E

004570C3 |. MOV EAX,Example_.0045E5AC

004570C8 |. MOV EDX,Example_.0045E5BC

004570CD |> /MOVZX ECX,BYTE PTR DS:[EAX] ; Get the ASCII char stored in memory at EAX (Serial string pointer)
004570D0 |. [IMOV DWORD PTR DS:[EDX],ECX ; Store it an array of integer (see next operation)?

004570D2 |. |ADD EDX,4 Move 4 bytes to the right => An array of 32bit Integer values
004570D5 |. |INC EAX Move memory pointer one(1) byte to the right

004570D6 |. |DEC EBX ; Decrease loop counter

004570D7 |.~\JNZ SHORT Example_.004570CD ; Stop branching when loop counter reaches zero(0)

004570D9 |> CMP BYTE PTR DS:[45E5AC],7B Compare first character from the ASCII value with 0x7B ("{")
/ICode omitted

High-Level (Java)

String username = getUsername();

int sum = 0;

for(int i = 0;i < username.length(); i++) {
sum += username.charAt(i);

}

String serial = getSerial();
int[] array = new int[255];
if(serial.length()<=255) { //Well, Java is safe but we don’t need exceptions popping around.
for(int i = 0;i < serial.length(); i++) {
array[i] = serial.charAt(i);

22

s

If(serial.charAt(0) == ‘() {
//Code omitted

Code Ripping

This is the use of various techniques to copy the binary code of a program into another program or
embed it inside a higher programming language that support direct assembly coding. This had nothing
to do with Code Reconstructing since in Code Ripping the effort and time spend on debugging is reduced
significantly.

For Example:

Low-level:

004570AD |>/MOV EDX,DWORD PTR DS:[45E5A4] ; Load username string in EDX

004570B3 | |MOVZX EDX,BYTE PTR DS:[EDX+EBX-1] ; Get letter in position EBX-1 (in each loop the pointer is incr by 1)
004570B8 |. |ADD EBP,EDX ; Add the hexadecimal ASCII value of the letter in EBP (UserCount)
004570BA |. |INC EBX ; Increase the pointer (EBX)

004570BB |. [DEC EAX
004570BC |.A\JNZ SHORT Example_.004570AD
004570BE |> MOV EBX,0E
004570C3 |. MOV EAX,Example_.0045E5AC
004570C8 MOV EDX,Example_.0045E5BC
004570CD |> /MOVZX ECX,BYTE PTR DS:[EAX] ; Get the ASCII char stored in memory at EAX (Serial string pointer)
004570D0 |. |MOV DWORD PTR DS:[EDX],ECX Store it an array of integer (see next operation)?
004570D2 |. |ADD EDX,4 Move 4 bytes to the right => An array of 32bit Integer values

|

Decrease the loop counter
Stop branching only when the loop counter reaches zero(0)

004570D5 |. |INC EAX ; Move memory pointer one(1) byte to the right

004570D6 |. |DEC EBX ; Decrease loop counter

004570D7 |.~\JNZ SHORT Example_.004570CD ; Stop branching when loop counter reaches zero(0)
004570D9 |> CMP BYTE PTR DS:[45E5AC],7B ; Compare first character from the ASCII value with Ox7B ("{")

/ICode omitted
High Level Rip:

/ICode omitted
getUsername(username);
getPassword(password);
user_length := length(username);
pass_length := length(password);
asm

@loop1:

MOV EAX,user_length

MOV EBX,1

MQV EDX,&username
MOVZX EDX,BYTE [EDX+EBX-1]
ADD EBP,EDX

INC EBX

DEC EAX

JNZ @loopl

//Code omitted

end;

23

s

Other

The use of licensing services could increase the risks of reverse engineering and keygenning. | am neither
against implementing 3™ party components into your software nor do | believe they are a security risk.

What renders them a security risk is the weak implementation and the lacks of time spend
understanding that software.

24

	Introduction
	TODO
	Reverse Engineering Tools
	Reverse Engineering Approaches
	Example Software
	Program Analysis
	Approach No1 (String References)
	Suggestions (Approach No1)
	Approach No2 (Breakpoint on windows API)
	Suggestions (Approach No2)
	Approach No3 (Stack Tracing)
	Suggestions (Approach No3)

	Binary Code Patching:
	Approach No1 (Branch Patching)
	Approach No2 (Replace functions)

	Serial Generating
	Code Reconstructing
	Code Ripping

