

2008-04-14 © MWR InfoSecurity Page 1 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

Security Implications of
Windows Access Tokens –
A Penetration Tester’s Guide

By

Luke Jennings

14th April 2008

2008-04-14 © MWR InfoSecurity Page 2 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

Contents

1 Abstract ... 4

2 Introduction ... 5

3 Post-Exploitation ... 6
3.1 Metasploit ... 6
3.2 Windows Access Tokens ... 6

4 Windows Access Tokens: An Overview ... 7
4.1 The Role of a Token... 7
4.2 Process Tokens .. 7
4.3 Thread Tokens ... 7
4.4 Security Levels... 8

4.4.1 Creation of “Impersonate” Level Tokens 8
4.4.2 Creation of “Delegate” Level Tokens 8

5 Token Abuse .. 10
5.1 Domain Privilege Escalation .. 10
5.2 Local Privilege Escalation .. 10

6 Tool Requirements for Penetration Testing.. 12
6.1 Enumerating Tokens .. 12

6.1.1 NtQuerySystemInformation() 12
6.1.2 NtQueryObject() 12
6.1.3 Other Token Information 13

6.2 Creating Processes ... 13
6.3 Other Post-Exploitation Tasks ... 13

7 Incognito – Practical Exploitation .. 14
7.1 Meterpreter Incognito Extension ... 15

8 Unexpected Exposure .. 18
8.1 Expected Behaviour ... 18
8.2 Actual Behaviour ... 18
8.3 Exposure from Terminal Services.. 19

9 Locating Tokens on a Network .. 21

2008-04-14 © MWR InfoSecurity Page 3 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

9.1 Messenger Service ... 21
9.2 Problems With Messenger Service Approach .. 22
9.3 NetWkstaUserEnum()... 22

10 Targeted Penetration Testing Methodology ... 23

11 Evidence of Organisational Exposure to Token Abuse 24

12 Defence ... 25
12.1 No Patch ... 25
12.2 Defensive Techniques.. 25

12.2.1 Limit the Use of Privileged Accounts 25
12.2.2 Enterprise Wide Security 25
12.2.3 “Account is Sensitive and Cannot Be Delegated” 26
12.2.4 A Different Risk-Based Approach 26

13 Conclusion ... 27

14 References.. 28

 Abstract

2008-04-14 © MWR InfoSecurity Page 4 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

1 Abstract

This whitepaper discusses the security exposures that can occur due to the manner in which
access tokens are implemented in the Microsoft® Windows Operating System. A brief
overview of the intended function, design and implementation of Windows access tokens is
given, followed by a discussion of the relevant security consequences of their design. More
specific technical details are then given on how the features of Windows access tokens can
be used to perform powerful post-exploitation functions during penetration testing, along with
a basic methodology for including an assessment of the vulnerabilities exposed through
tokens in a standard penetration test. Discussion is also included about why many corporate
environments (assessed during penetration tests conducted by MWR InfoSecurity) have been
found to not be operating in a manner which limits the risk of such issues. Finally, best
practice advice is given on how to defend against these attacks.

It must be noted that the security issues discussed in this white paper do not represent a flaw
in the Microsoft® Windows Operating System but are an expected consequence based on the
design and implementation of Windows access tokens. The important point is that many
corporate environments do not account for these issues within their security strategy and,
consequently, the controls in many of these environments are not sufficient to withstand the
techniques discussed here.

Additionally, it is acknowledged that the security implications of Windows access tokens
have been discussed before both in general terms and to different degrees of technical detail.
This document is not intended to present such discussions as being fundamentally new;
instead it is intended to collate some of the existing knowledge, introduce some new findings
and to demonstrate why many years after the general principles discussed were highlighted,
many corporate environments are still vulnerable to these issues.

This paper is based upon research originally presented by the author at Defcon 15 [1] and
Chaos Computer Congress (CCC) 2007 [2].

 Introduction

2008-04-14 © MWR InfoSecurity Page 5 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

2 Introduction

Since the turn of the century, information security has become an increasingly important area
and consequently the security industry has expanded greatly. This has led to increasingly
secure software being offered by some of the major vendors.

Microsoft is a particularly good example of this. Since their Trustworthy Computing Initiative
[3], the security of their software has arguably improved dramatically. Additionally,
Microsoft’s software is very pervasive and so it would be reasonable to assume that the vast
majority of organisations’ information security is strongly dependent on the security of
Microsoft’s software.

Owing to the increasing sophistication of technical security controls, compromising systems
has become more difficult for attackers. Consequently, post-exploitation techniques have
become increasingly important, as the need to make the most effective use of a compromised
system becomes more pressing. Post-Exploitation can have important consequences on the
overall security of a network or system and so it is important that it is well understood in
order that accurate risk management decisions can be made.

This whitepaper will discuss the relevant security issues represented by the design and
implementation of Windows access tokens (which are a fundamental building block of the
Windows access control model) and how they can be leveraged for powerful post-
exploitation attacks.

 Post-Exploitation

2008-04-14 © MWR InfoSecurity Page 6 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

3 Post-Exploitation

Post-Exploitation covers the tasks normally performed by an attacker after achieving an initial
successful compromise. It can generally be divided into either further exploitation or
maintaining access and the covering of an attacker’s tracks. This paper is primarily concerned
with the former.

In order to help guard against exploitation of a system, it is necessary to understand the
techniques utilised by attackers. In a similar fashion, it is necessary to understand post-
exploitation in order to provide good defence in depth against compromises. There has been
some effort focused on post-exploitation in the past. One particularly good example is
Metasploit [4], which is discussed briefly below.

3.1 Metasploit

Metasploit is a good example of a tool that has incorporated powerful post-exploitation
options within the past few years. Of particular note is the Meterpreter, which provides
powerful control over a compromised host, which can help facilitate further exploitation and
stealthy access. Additionally, PassiveX payloads have demonstrated how reliable control can
be maintained over a system exploited via a browser weakness even in the presence of strict
outbound network filtering and an authenticated web proxy server.

3.2 Windows Access Tokens

Windows access tokens can be utilised for powerful post-exploitation tasks but have not been
fully discussed in this context before. Pass-the-hash techniques have been discussed for years,
with varying success in terms of practical code produced to exploit the issues; however, none
of these discussions have addressed the full extent of the issue. Consequently, the potential
security exposure that access tokens can represent has not been fully appreciated by systems
architects, network administrators and others involved in the security and management so
mitigating controls have not received the attention they deserve.

Another potential reason why the issue has not received as much security attention is because
the countermeasures are mainly procedural, which presents much more difficulty than a
simple application of a patch. Many security practices observed by MWR InfoSecurity could
leave the organisations vulnerable to attacks based on the abuse of Windows access tokens.

 Windows Access Tokens: An Overview

2008-04-14 © MWR InfoSecurity Page 7 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

4 Windows Access Tokens: An Overview

Windows access tokens are integral to Microsoft’s authentication, access control and single
sign-on (SSO) model and are created and managed by the Local Security Authority Subsystem
Service (LSASS). However, in general they do not appear to be as well understood by system
designers and administrators as their counterpart on UNIX based operating systems, user and
group IDs. There are two predominant reasons for this: -

• Access tokens and the general Windows access control model are significantly more

complex than the UNIX model.
• Windows tends to hide the implementation details from users. On UNIX systems, the

access control model is generally more exposed and gaining an understanding of it is
integral to learning to use UNIX.

Although a complete description of access tokens and the Windows access control model is
outside the scope of this document, a simple overview is discussed below that should be
suitably self contained in order to understand the issues discussed later in this document.
More information can be found in [5,6].

4.1 The Role of a Token

An access token is primarily responsible for describing the security context of a process or
thread. This includes the associated user, groups and privileges. Based on this information,
the Windows kernel can then make access control decisions based on privileged operations
requested by a process. Tokens are generally associated with a particular process or thread
and are kernel objects. In user space, they are uniquely identified by a handle.

4.2 Process Tokens

There are two main types of tokens; primary tokens and impersonation tokens. All processes
in Windows have a primary token associated with them. These dictate the privileges of the
associated process. When a new process is created, the default action is for the child process
to inherit the primary token associated with its parent.

4.3 Thread Tokens

Windows is a multi-threaded operating system and a process will always have at least one
associated thread. By default, a thread will operate under the same security context as its
parent process, utilising the primary token. However, Windows also uses the concept of
impersonation, which allows a thread to temporarily impersonate a different security context
if given access to a different access token. This is normally performed using impersonation
tokens.

The most common use of this functionality is to enable application developers to allow the
Windows kernel to handle the bulk of access control. For example, consider an FTP Server
running as a service account. Without impersonation, the server would have to manually
enforce access control to files by comparing the username and groups associated with a
client and the ACLs present on files and directories. Impersonation allows all this work to be
left to the Windows kernel by ensuring the serving thread executes under the security context

 Windows Access Tokens: An Overview

2008-04-14 © MWR InfoSecurity Page 8 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

of the client’s user account. This could be viewed as the Windows analogue of the UNIX
setuid() family of functions.

Some of the more common API calls for achieving this are given below: -

• ImpersonateLoggedOnUser() – allows the calling thread to impersonate the security

context of a supplied token
• ImpersonateNamedPipeClient() – allows the calling thread to impersonate the security

context of a client that has connected to a named pipe
• RevertToSelf() – allows the calling thread to revert its security context to that of the

primary token associated with its parent process

4.4 Security Levels

Tokens have different security levels associated with them. These further identify the privilege
level that a given token represents. A token can have one of four security levels: -

• Anonymous
• Identify
• Impersonate
• Delegate

The security levels with the greatest security implications are Impersonate and Delegate
because they can be used to assume a different security context; Anonymous and Identity do
not have this ability and are therefore not discussed here. The Impersonate level allows a
thread to impersonate the security context of the token on the local system but does not allow
access to external systems using that token. However, the Delegate level allows a thread to
impersonate the security context of the token on any system because it stores the relevant
authentication credentials. The majority of risk exposed through access tokens is a
consequence of the presence of Delegate tokens; however, it will be shown how Impersonate
tokens can also introduce security risk in some circumstances. This is discussed further in
Section 5.

4.4.1 Creation of “Impersonate” Level Tokens

These tokens are normally created as the result of a non-interactive login. A common
example of this would be the example given previously with regard to an FTP server.

4.4.2 Creation of “Delegate” Level Tokens

These tokens are normally created as the result of an interactive login. Examples of this would
include conventionally logging into the console, logging in remotely using Terminal Services
or using other remote access solutions such as Citrix.

There are also some cases when non-interactive logins can result in these tokens being
created. These are generally when computers or user accounts have been trusted for
delegation. An example of this would be a remote file server configured to use the Encrypted
File System (EFS) [7]. EFS requires access to users’ authentication credentials in order to
decrypt files. Consequently, a non-interactive login via a mapped network share would

 Windows Access Tokens: An Overview

2008-04-14 © MWR InfoSecurity Page 9 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

require access to a Delegate token in order to function correctly. Therefore, in this scenario
the EFS file server will often be trusted for delegation.

 Token Abuse

2008-04-14 © MWR InfoSecurity Page 10 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

5 Token Abuse

During the normal operation of a system, there will be tokens of some variety present
depending on the function of the server and its current usage environment. If the system is
compromised then it may be possible to achieve some form of privilege escalation by
utilising these tokens, depending on the level of access that has been obtained to the system.
Such escalation would normally be divided into two main forms: Domain Privilege Escalation
and Local Privilege Escalation.

5.1 Domain Privilege Escalation

Domain Privilege Escalation refers to the ability to use a Delegate token to access other
systems, which may otherwise be secure from direct attack. This is possible because Delegate
tokens contain authentication credentials and so can be used to access external systems for
which those credentials are valid.

In order to perform this type of attack, it is usually necessary to have administrative privileges
on the compromised system. This is because impersonating a token requires the
“SeImpersonate” privilege, as of Windows XP SP2, Windows 2003 and Windows 2000 SP4;
additionally, Delegate tokens are normally the result of interactive logins and so
administrative access is required in order to access the tokens present in all user processes on
the system. Other privileges may also be required (such as “SeAssignPrimaryTokenPrivilege”
and “SeCreateTokenPrivilege”) depending on the specific post-exploitation task performed.

There are, however, some exceptions to this. For example, if an attacker were to compromise
a service account that was trusted for delegation then they may be able to perform this attack,
since services are normally given the “SeImpersonate” privilege. Additionally, on systems
before “SeImpersonate” was introduced it may be possible to perform this attack from a low
privileged user account under certain circumstances.

A good example of a use case for this type of attack would be as part of compromising a
critical database server. If an attacker were unable to compromise the database server directly
then they could turn their attention to the DBA’s workstation, since their user account will
often have legitimate access to the database servers themselves. If they successfully
compromised the workstation then they could use the tokens present to access the database
server.

5.2 Local Privilege Escalation

Under some circumstances, tokens can enable local privilege escalation. This is most likely to
occur if an attacker has compromised a low privileged service. Services that allow clients to
connect via Windows authentication will normally gain access to an Impersonate token for
the client. This would normally be used by the thread serving the client to impersonate the
client’s security context. If the connecting client was an administrator then the attacker could
use this token to escalate their privileges on the system to gain administrative access.

A good example of this would be if an attacker had compromised an instance of Microsoft
SQL Server running as a low privileged service account. If a DBA, who was a local
administrator of the system, connected to SQL Server via Windows authentication then the
attacker could use his token to gain administrative control of the server [8]. This is because
his token would be kept within SQL Server’s process address space.

 Token Abuse

2008-04-14 © MWR InfoSecurity Page 11 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

Another example would be if an attacker were to compromise a server running under the
“NETWORK SERVICE” built-in service account. This has reduced privileges compared to the
“SYSTEM” account, to help provide defence in depth against some attack classes, namely
those that do not allow direct code execution. However, if it is possible to execute arbitrary
code under the security context of this account then it is possible to escalate privileges to
“SYSTEM” because it can access a “SYSTEM” Impersonate token.

 Tool Requirements for Penetration Testing

2008-04-14 © MWR InfoSecurity Page 12 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

6 Tool Requirements for Penetration Testing

Given the important security implications introduced by the use of Windows access tokens, it
is necessary for evaluation and exploitation of any token related security issues to be
incorporated into a penetration testing methodology.

In order to assess these issues within a penetration test it is necessary to have suitably generic
tools for investigating and exploiting tokens present on compromised systems. The main
features that would be required from such a tool are as follows: -

• Enumerate tokens on a compromised system

• Which are accessible from the current security context
• What security level is associated with each token
• What user accounts and groups are associated with the tokens

• Impersonate tokens and perform common post-exploitation tasks using them

• Execute processes
• Manage users, groups
• Extract LANMAN/NTLM hashes
• Other common post-exploitation tasks

6.1 Enumerating Tokens

Tokens are, in essence, kernel data structures. From user space, tokens are referenced using
handles. These handles can then be passed to the relevant Windows API calls in order to
operate on the desired token. The most comprehensive method with which to enumerate all
the tokens on the system is to enumerate all the handles on the system and then determine
which handles represent tokens. In order to do this it is necessary to utilise the low level API
calls exported by ntdll.dll.

6.1.1 NtQuerySystemInformation()

The NtQuerySystemInformation() API call [9] can be used to query a large amount of system
information. The function prototype is given below: -

NTSTATUS WINAPI NtQuerySystemInformation(
 __in SYSTEM_INFORMATION_CLASS SystemInformationClass,
 __inout PVOID SystemInformation,
 __in ULONG SystemInformationLength,
 __out_opt PULONG ReturnLength
);
Figure 6.1 – NtQuerySystemInformation() function prototype, sourced from [9]

By specifying a SYSTEM_INFORMATION_CLASS of “SystemHandleInformation” (numeric
value 16), it is possible to retrieve information regarding all the handles currently present on
the system.

6.1.2 NtQueryObject()

The NtQueryObject() API call [10] can be used to query information regarding kernel objects
based on a supplied handle. The function prototype is given below: -

 Tool Requirements for Penetration Testing

2008-04-14 © MWR InfoSecurity Page 13 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

NTSTATUS NtQueryObject(
 __in_opt HANDLE Handle,
 __in OBJECT_INFORMATION_CLASS ObjectInformationClass,
 __out_opt PVOID ObjectInformation,
 __in ULONG ObjectInformationLength,
 __out_opt PULONG ReturnLength
);
Figure 6.2 – NtQueryObject() function prototype, sourced from [10]

By specifying an OBJECT_INFORMATION_CLASS of “ObjectTypeInformation”, it is possible
to determine the type of object referenced by the supplied handle. This can be used to
determine which handles on the system reference tokens.

6.1.3 Other Token Information

To determine other important information associated with tokens, such as security level, user,
groups etc the enumerated token handles can then be supplied to more conventional API
calls such as GetTokenInformation(), LookedupAccountSid() etc.

6.2 Creating Processes

One common post-exploitation technique is to create a new process using a specified token
that has been located on the compromised system. Normally, in order to create a new
process on Windows it is necessary to the utilise the CreateProcess() API call. However, when
creating a new process under the context of a different token, it is not sufficient to simply
impersonate the token and call CreateProcess(). This is because, by default, CreateProcess()
will create a new process using the primary token of the parent process instead of the calling
thread’s current token.

In order to create a new process using a specified token it is necessary to utilise the
CreateProcessAsUser() API call. This allows the handle to a token to be specified, which will
then be used as the primary token for the newly created process.

6.3 Other Post-Exploitation Tasks

Most other common post-exploitation tasks can be achieved simply by impersonating a token
and then making the relevant API calls. For example, it may be desirable to impersonate an
administrative token and then utilise NetUserAdd() and NetGroupAdd() in order to add new
users and manage group memberships.

 Incognito – Practical Exploitation

2008-04-14 © MWR InfoSecurity Page 14 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

7 Incognito – Practical Exploitation

Incognito [11] is a tool that was developed whilst conducting this research. It is primarily
aimed at penetration testers, security consultants and system administrators and can be used
to demonstrate the security issues presented as a consequence of gaining access to systems
with sensitive tokens present.

Incognito currently offers the following functionality: -

• Enumerate tokens present, sorted by unique username or group
• Create new processes with a specified token

o Interaction can be via a GUI or console (e.g. remote command shell)
• Attempt to add a user to a host with all accessible tokens
• Attempt to add a user to a group on a host with all accessible tokens
• Can be used remotely with communication over named pipes (i.e. in a similar fashion to

pwdump)

Some screen shots demonstrating the use of the tool are given below: -

Figure 7.1 – Listing the tokens present on a remote system by connecting with a local administrator
account. Note the presence of the domain administrator delegation token. The domain administrator
was logged in at the console.

 Incognito – Practical Exploitation

2008-04-14 © MWR InfoSecurity Page 15 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

Figure 7.2 – Creating remote command shell running as the domain administrator on the same server as
in Figure 7.1

Figure 7.3 – Demonstrating the possibility to escalate privileges from “NETWORK SERVICE” to
“SYSTEM”

7.1 Meterpreter Incognito Extension

Metasploit’s Meterpreter is a sophisticated command interpreter payload. It does not rely
upon the ability of the exploited process to access cmd.exe, does not create a new process,
can be used to tunnel further network connections behind firewalls and offers many other
features that can be very useful during post-exploitation.

One important aspect of the Meterpreter’s design is that it runs as a thread within the
exploited process’s address space. Additionally, it is also very extensible as its functionality
can be extended at run-time by loading additional DLLs. These two features naturally lend
themselves towards adding Incognito’s functionality as an extension. By adding the ability to
enumerate tokens and instruct the Meterpreter thread to impersonate a different token, it
would then be possible to utilise all of the existing functionality of the Meterpreter under the
context of different tokens.

Incognito’s code was ported to create a new Meterpreter extension in order to achieve this. At
the time of writing, this is not part of the current Metasploit SVN source tree. However, a
patch for the current release of Metasploit is available from Incognito’s sourceforge page [11].

 Incognito – Practical Exploitation

2008-04-14 © MWR InfoSecurity Page 16 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

Some screenshots demonstrating the use of the Meterpreter extension are given below: -

Figure 7.4 – Loading the incognito extension in the Meterpreter

Figure 7.5 – Available commands

 Incognito – Practical Exploitation

2008-04-14 © MWR InfoSecurity Page 17 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

Figure 7.6 – Listing available tokens, instructing the Meterpreter thread to impersonate the domain
administrator’s token and then calling RevertToSelf() to revert to the primary token

 Unexpected Exposure

2008-04-14 © MWR InfoSecurity Page 18 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

8 Unexpected Exposure

Everything that has been discussed so far is the expected behaviour of tokens based on their
design and use. However, there are some cases when the behaviour observed is not in line
with what would be expected, which can introduce an elevated level of risk to a network.

8.1 Expected Behaviour

It would be reasonable to expect that accounts are only exposed to these issues when they
are logged on or otherwise interacting with a particular system. Without being logged on,
there should be no reason for an account’s token to be present. However, in the case of
service accounts it would be expected that their tokens are always present whilst the service
is running since they are in constant use. Additionally, it would be expected that tokens
would be destroyed when a session ends; for example, logging off in the case of an
interactive login. Consequently, it would be expected that an account would no longer be
exposed to these techniques once the user had logged off. However, as discussed below, this
expected behaviour is not always followed.

8.2 Actual Behaviour

It was discovered by MWR InfoSecurity that prior to Windows 2003 SP1, tokens were not
destroyed after a user logged out of an interactive session. The following points were found to
apply: -

• Tokens remain after logoff but are reported as Impersonate tokens

• Though reported as Impersonate tokens, when used they will operate effectively as

Delegate tokens and so can still be used to access external systems

• The tokens do not disappear until the system is rebooted

Some screenshots are given below demonstrating a token being used to compromise an
external system when it is reported as an Impersonate token after the user has logged off: -

Figure 8.1 – Enumerating tokens from a compromised Windows 2000 domain member server. The
domain administrator token is present but reported as an Impersonation token. The domain
administrator is not currently logged on.

 Unexpected Exposure

2008-04-14 © MWR InfoSecurity Page 19 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

Figure 8.2 – Creating a remote command shell on the Windows 2000 system running with the domain
administrator’s token. Despite it being reported as an impersonation token, it is possible to map a file
share to the administrative C$ share on the Windows 2003 domain controller. It is also possible to
perform any other task, such as adding users.

This can lead to a large and unexpected increase in exposure in many corporate
environments in which vulnerable systems are present; also, the problem generally increases
with network size. For example, many server systems are often not rebooted for long periods
of time, which can sometimes total several months. If a highly privileged account is used to
log into a vulnerable test or development system just once, then that can lead to the network
being exposed to an elevated level of risk until the system is rebooted, not just for the small
window of time that represents the actual login session. Additionally, the older systems
affected by this issue are more likely to be compromised due to missing security patches.

8.3 Exposure from Terminal Services

There are some other circumstances that can lead to the unexpected disclosure of tokens. The
most common vector for this is the (mis-)use of Terminal Services. In order to log off a
Terminal Services session, it is necessary to invoke the Windows log off button in the same
way as a console logon. However, Terminal Services also allows a user to simply close the
window using the normal Windows close button in the top right corner. Whilst this closes the
window, it leaves the actual Terminal Services session open such that the user can return to
their session at a later date with all the programs that were running still in the same state.

Whilst this functionality may be useful under some circumstances, it often may also be used
for other reasons. The following common use cases of this functionality are presented below:-

• Some people use this functionality intentionally. For example, it may be desirable to leave

software running and come back to it at a later date when it has completed.

• Some people intend to use this functionality but then forget the connection has been left
open – potentially for a long time.

• Some people do not intend to use this functionality and click close because that is quicker
and easier than formally logging out, not knowing that their session remains open.

 Unexpected Exposure

2008-04-14 © MWR InfoSecurity Page 20 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

However this situation arises, it can often lead to the unexpected exposure of tokens for much
longer periods than may have been expected. Similar to the persistent token issue, this
problem often increases as a network grows larger.

 Locating Tokens on a Network

2008-04-14 © MWR InfoSecurity Page 21 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

9 Locating Tokens on a Network

During penetration testing, the most common and often most serious way that tokens can
lead to a compromise is through domain privilege escalation. The techniques presented thus
far provide an easy way to determine possible routes for privilege escalation once a system
has been compromised, as any tokens present can be enumerated and their properties
analysed. However, they do not provide an easy way for a penetration tester to locate systems
that hold tokens that could be used to compromise other valuable targets. Currently, a
penetration tester would have to compromise hosts en masse in a brute force effort to reliably
locate a token that could be used to compromise a critical target that had withstood
conventional penetration attempts.

9.1 Messenger Service

It is possible to locate the presence of tokens on a system without requiring full administrative
access. There are two main ways this can be achieved. The first method is by using the
Messenger service. When this service is running it is possible to determine the name of the
user logged on locally by observing the Messenger service output returned as the result of a
NBTSTAT query sent via the NetBIOS Name service. This is a well known technique and
screen shots demonstrating this issue using common tools such as nbtstat and nbtscan [12]
are shown below: -

Figure 9.1 – The Administrator account can be seen to be logged on locally via the Messenger service
output from nbtstat.

Figure 9.2 – The Administrator account can be seen to be logged on locally via the output from nbtscan

 Locating Tokens on a Network

2008-04-14 © MWR InfoSecurity Page 22 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

9.2 Problems With Messenger Service Approach

The Messenger service is disabled by default as of Windows 2003 and Windows XP SP2.
Consequently, this technique cannot be used on more recent systems or other systems that
have had the service disabled. Additionally, it has the problem of only reporting one locally
logged on user. It will not report multiple users logged on via Citrix or Terminal Services.
However, in order to deal with this problem, another approach can be taken.

9.3 NetWkstaUserEnum()

The API call NetWksaUserEnum() [13] can be used to enumerate all the users currently
logged onto a system. This can be extremely useful as it can enumerate large numbers of
users present on centralised Citrix or Terminal Servers. In order to execute the function, it is
necessary to have low privileged access to a system. For example, in a domain environment a
standard low privileged domain user account should be sufficient to execute the call on
member servers and workstations. It is reasonable to expect that an attacker would have
access to an account of this form and so it would often be possible for them to determine the
users currently logged onto all systems in a Windows domain or forest, depending on
configuration. This would effectively allow them to sweep a network looking for systems
holding tokens which they are interested in compromising, and then focusing their
penetration attempts on these.

A caveat for this technique is that it will list entries for service and batch logins as well as
standard interactive logins. One consequence of this is that it can often list users that have
since logged off (and which would not reset until a reboot); this may lead to false positives.
However, this could also sometimes be desirable for an attacker; for example, when dealing
with older systems vulnerable to the issues described in Section 8.2 it would be desirable to
locate users that had previously logged onto a system even if they had since logged off.

The find_token tool supplied with Incognito [11] can be used to demonstrate this technique
and a screen shot is given below demonstrating its use against a domain member server. In
this case the administrator account was logged on locally, the db_admin account was logged
on via Terminal Services and the app_user account had been logged on previously but had
since logged off: -

Figure 9.3 – Enumerating logged on users from a Windows 2000 domain
member server using NetWkstaUserEnum()

In practice on penetration tests, this tool can be passed a file containing a list of hosts and
will then sweep the network enumerating the users logged into these, assuming the supplied
account has the necessary privileges.

 Targeted Penetration Testing Methodology

2008-04-14 © MWR InfoSecurity Page 23 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

10 Targeted Penetration Testing Methodology

The security issues that arise from the design and use of tokens in Windows environments can
be incorporated into a standard penetration testing methodology. The techniques themselves
lend themselves particularly well to targeted penetration testing within a larger overall
network. For example, if internal penetration testing is to focus on business critical Windows
database servers, this technique can be used to expand the scope to help locate other systems
that could expose risk by holding tokens which could be used to access these servers. This
can often produce much more accurate and valuable results, if overall risk is to be
investigated.

A simple methodology for incorporating this research into conventional penetration testing is
outlined below: -

1) Determine core targets.

2) Conduct conventional penetration testing activities.

3) If penetration attempts fail, enumerate the users who have access to the system (this

should have already have been determined in step 2).

4) Assuming it is agreed in the scope with the client, sweep the Windows network to locate
other systems which these accounts are logged into.

5) Attempt to penetrate these systems.

6) If successful, use tokens from compromised hosts to compromise primary targets.

 Evidence of Organisational Exposure to Token Abuse

2008-04-14 © MWR InfoSecurity Page 24 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

11 Evidence of Organisational Exposure to Token Abuse

The tool Incognito was originally developed along with this research in early 2007 and has
been used extensively on penetration tests conducted by MWR InfoSecurity since then.
During this time, evidence as to the level of risk faced by many organisations due to these
issues has been collected, with domain administrator access having been obtained through
the exploitation of a vulnerability and the subsequent use of these techniques in 100% of the
“open-scope” internal penetration tests conducted. The results of this have helped the
organisations in question better understand these issues and adapt their security strategies to
mitigate the threat. The evidence obtained during these engagements is summarised below: -

• Penetration tests conducted since the development of these techniques have suggested

that many different corporate environments are exposed to these techniques, mainly as a
result of administrative practices.

• The relatively common use of Domain Admin accounts for server administration has led
to many instances of full Windows domain and/or forest compromises as the result of a
compromise of a single domain member system.

• The common occurrence of high privileges being assigned to standard user accounts,
rather than the use of separate admin accounts, makes employee desktops and laptops a
particularly attractive target.

• The unexpected disclosure of tokens as discussed in Section 8 often leads to a much
higher exposure on servers than would otherwise be expected. This level of exposure is
often not recognised by system administrators or the security function.

The predominant causes for this high level of exposure have normally been found to be a
lack of awareness of these issues among system administrators and security staff and also that
the methods for protecting against these issues are largely procedural, which tend to require
more effort to implement than some other security controls.

 Defence

2008-04-14 © MWR InfoSecurity Page 25 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

12 Defence

Protecting against the techniques outlined in this paper is not a simple task. However, there
are several measures that can be taken that, when combined, will greatly reduce the risk an
organisation faces.

12.1 No Patch

There is no “patch” for this issue, it is not a software bug; it is the intended behaviour of the
Microsoft Windows access control model. That does not mean that any given Microsoft
Windows system or network is insecure. It does mean these techniques need to be
understood properly so that countermeasures can be effectively deployed in order to secure
an environment from these attacks.

12.2 Defensive Techniques

The countermeasures for this issue are largely procedural and operational in nature.
Consequently, some of them can be challenging to implement in certain environments
because they can require changes in how system administrators utilise their systems.
However, many of these countermeasures are also largely generic. Therefore, if security best
practice is currently followed by an organisation then the level of risk exposed by these issues
may already be reduced.

12.2.1 Limit the Use of Privileged Accounts

• Ensure all users with high privileges (such as system administrators) have separate
accounts for administration and use standard user accounts to log into their desktops.

• Use RunAs [14] to run processes which need higher privileges.

• RunAs also prevents the exposure of tokens after logoff on older systems as discussed in
Section 8.

• Ensure Domain Admin accounts are only used to administer domain controllers. Separate

domain accounts should be created and given delegated administrative authority over
particular organisational units.

• Compartmentalise administrative functionality between organisational units to help

contain breaches to a smaller subset of information assets.

• Ensure administrator accounts for development and test systems are different from critical

production systems.

12.2.2 Enterprise Wide Security

One problem commonly encountered is a mindset that operates on the basis that securing
critical servers, such as domain controllers and database servers, is enough to provide a good
level of security within an organisation. However, in addition to the range of techniques used
to gain access to critical systems after compromising other systems (e.g. cracking shared local

 Defence

2008-04-14 © MWR InfoSecurity Page 26 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

account passwords), the issues highlighted in this paper further demonstrate that this
approach is not sufficient to achieve a high level of security. It is important to achieve a
generally high level of security across all workstations and servers if a high level of security
assurance is to be obtained. This is especially important with regard to administrators’
workstations.

12.2.3 “Account is Sensitive and Cannot Be Delegated”

The “Account is Sensitive and Cannot Be Delegated” option within Active Directory can be
set on a per-user account basis. This can help prevent the abuse of particularly sensitive
accounts by prohibiting delegated authentication. However, it is important to note that this
only applies to non-interactive logins. Interactive logins will still result in the creation of
Delegate level tokens, which can be used to access external network resources.

12.2.4 A Different Risk-Based Approach

Security against technical attacks is often considered from a system-based viewpoint and an
account-based viewpoint. For example, an individual system’s security is considered to be
dependent on the effectiveness of its own security controls, the security level of any trusted
systems and the security level of any trusted user accounts (e.g. password strength). However,
the issues outlined in this paper show that there is a greater degree of dependency between
systems and accounts, even though the systems involved that might not normally be seen as
directly related or relevant.

Information assets are only as secure as the weakest system that any trusted account is
currently logged into. The more accounts that can be used to access a system and the more
systems those accounts are used to access will greatly increase the level of risk.
Consequently, to achieve a high level of security there is a requirement for policies governing
the security requirements that a system needs to meet in order to be administered using a
particular account. This strategy will help prevent weaker systems from leading to a
compromise of information held on other more secure systems.

 Conclusion

2008-04-14 © MWR InfoSecurity Page 27 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

13 Conclusion

Windows access tokens are a fundamental building block of the Windows access control
model. When used correctly they are powerful and help provide a seamless user experience
in a domain environment as well as providing much flexibility for client/server based
applications. However, without a sound working knowledge of the consequences of their
operation it is possible to introduce a high level of risk within a corporate network that is
otherwise seen as secure. Without a vulnerability being present in a system then these
techniques do not introduce further risk; however, in practice there are no proven methods
for formally verifying this. Based on evidence gained from conducting security testing
engagements it is reasonable to expect that most real-world environments have some
vulnerabilities present at any given time. Therefore, they will be operating at a higher level of
risk due to these techniques if suitable countermeasures have not been applied.

It is recommended that testing techniques that utilise tools such as Incognito are incorporated
into security management strategies. This will help security managers to assess an individual
environments’ level of exposure to these techniques in order to guide any required
remediation strategies.

 References

2008-04-14 © MWR InfoSecurity Page 28 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

14 References

[1] Luke Jennings, “One Token To Rule Them All: Post-Exploitation Fun in Windows
Environments”, Defcon 15
http://www.defcon.org/html/defcon-15/dc-15-speakers.html#Jennings

[2] Luke Jennings, “One Token To Rule Them All: Post-Exploitation Fun in Windows
Environments”, 24C3 Chaos Computer Congress (CCC)
http://events.ccc.de/congress/2007/Fahrplan/events/2235.en.html

[3] Microsoft's Trustworthy Computing Initiative
http://www.microsoft.com/mscorp/twc/twc_whitepaper.mspx

[4] Metasploit
http://www.metasploit.com/

[5] What Are Access Tokens?
http://technet2.microsoft.com/windowsserver/en/library/9364c4b8-38a0-4aa5-b1d7-
c9b42cb4df941033.mspx?mfr=true

[6] Access Tokens
http://msdn2.microsoft.com/en-us/library/aa374909.aspx

[7] Encrypting File System (EFS)
http://msdn2.microsoft.com/en-us/library/ms995356.aspx

[8] David Litchfield, "Why should I never logon to a Windows database server if I've got
admin privileges?"
http://www.databasesecurity.com/dbsec/db-sec-tokens.pdf

[9] NtQuerySystemInformation() API Call
http://msdn2.microsoft.com/en-us/library/ms724509.aspx

[10] NtQueryObject() API Call
http://msdn2.microsoft.com/en-us/library/bb432383(VS.85).aspx

[11] Incognito security tool
http://sourceforge.net/projects/incognito

[12] Nbtscan security tool
http://www.inetcat.net/software/nbtscan.html

[13] NetWkstaUserEnum() API Call
http://msdn.microsoft.com/library/en-us/netmgmt/netmgmt/netwkstauserenum.asp

[14] RunAs
http://technet2.microsoft.com/windowsserver/en/library/0a688988-b5d1-494a-be98-
61e3434c57151033.mspx?mfr=true

http://www.defcon.org/html/defcon-15/dc-15-speakers.html#Jennings
http://events.ccc.de/congress/2007/Fahrplan/events/2235.en.html
http://www.microsoft.com/mscorp/twc/twc_whitepaper.mspx
http://www.metasploit.com/
http://technet2.microsoft.com/windowsserver/en/library/9364c4b8-38a0-4aa5-b1d7
http://msdn2.microsoft.com/en-us/library/aa374909.aspx
http://msdn2.microsoft.com/en-us/library/ms995356.aspx
http://www.databasesecurity.com/dbsec/db-sec-tokens.pdf
http://msdn2.microsoft.com/en-us/library/ms724509.aspx
http://msdn2.microsoft.com/en-us/library/bb432383(VS.85).aspx
http://sourceforge.net/projects/incognito
http://www.inetcat.net/software/nbtscan.html
http://msdn.microsoft.com/library/en-us/netmgmt/netmgmt/netwkstauserenum.asp
http://technet2.microsoft.com/windowsserver/en/library/0a688988-b5d1-494a-be98

 Error! No text of specified style in document.

2008-04-14 © MWR InfoSecurity Page 29 of 29
 Security Implications of Windows Access Tokens – A Penetration Tester’s Guide

MWR InfoSecurity
St. Clement House
1-3 Alencon Link

Basingstoke, RG21 7SB
Tel: +44 (0)1256 300920
Fax: +44 (0)1256 844083

mwrinfosecurity.com

	1 Abstract
	2 Introduction
	3 Post-Exploitation
	3.1 Metasploit
	3.2 Windows Access Tokens

	4 Windows Access Tokens: An Overview
	4.1 The Role of a Token
	4.2 Process Tokens
	4.3 Thread Tokens
	4.4 Security Levels

	5 Token Abuse
	5.1 Domain Privilege Escalation
	5.2 Local Privilege Escalation

	6 Tool Requirements for Penetration Testing
	6.1 Enumerating Tokens
	6.2 Creating Processes
	6.3 Other Post-Exploitation Tasks

	7 Incognito – Practical Exploitation
	7.1 Meterpreter Incognito Extension

	8 Unexpected Exposure
	8.1 Expected Behaviour
	8.2 Actual Behaviour
	8.3 Exposure from Terminal Services

	9 Locating Tokens on a Network
	9.1 Messenger Service
	9.2 Problems With Messenger Service Approach
	9.3 NetWkstaUserEnum()

	10 Targeted Penetration Testing Methodology
	11 Evidence of Organisational Exposure to Token Abuse
	12 Defence
	12.1 No Patch
	12.2 Defensive Techniques

	13 Conclusion
	14 References

