lo gin

http://www.nologin.org

ActiveX - Active Exploitation

01,/2008

warlord
warlord@nologin.org
Share what I know, learn what I don’t

http://www.nologin.org

Contents

1 Foreword 2
2 Introduction 3
3 Control and functionality enumeration 4
3.1 ProgIDso)
32 TheKillBit)
3.3 User Specific Controls 5
3.4 Determining Exported Functions 6

4 Examples 7
4.1 MWG6 Technologies QRCode ActiveX 3.0 7
4.1.1 Enumerating Exported Interfaces 8

4.1.2 Exploitation. o o 9

4.2 HP Info Center 10
4.3 Vantage Linguistics AnswerWorks 11

5 Summary 12
5.1 Acknowledgements o 12

Chapter 1

Foreword

First of all, I'd like to explain what this paper is all about, and especially, what
it is not. A few months ago I got into the technical details of ActiveX for
the first time. Prior to this point I only had some vague ideas and a general
understanding of what it is and how it works. What I did first is probably
quite obvious: I googled. To my surprise though, I could not find a single paper
discussing ActiveX and how to exploit it. My next step was to contact some
generally smart and knowledgable friends to harvest the required information
from them. I was even more surprised to find that some of the most skilled
people out there lacked the same knowledge that I did. Perhaps it’s our common
background, coming from the Unix/Linux world, but whatever the reason, I had
to work to collect the information I now possess. But still, I feel like I'm the
one-eyed man explaining what the world looks like to the blind.

The fact that there are tons of ActiveX exploits on MilwOrm which would suggest
that the knowledge is out there by now. I wonder why no one took the time to
write it all up so the less knowledgable may get into this theater as well. It’s
the intention of this paper to fill this gap. If you already know everything about
ActiveX, if you've found your own Oday and exploited it successfully, I probably
can’t teach you any new tricks. Everyone else I invite to read on.

Chapter 2

Introduction

ActiveX]1] is a Microsoft technology introduced in 1996 and based on the Com-
ponent Object Model (COM) and Object Linking and Embedding (OLE) tech-
nologies. The intention of COM has been to create easily reusable pieces of
code by creating objects that offer interfaces which can be called by other COM
objects or programs. This technology is widely used for what Microsoft calls
ActiveX[2] which represents the integration of COM into Internet Explorer.
This integration offers the ability to interface with Windows as well as third-
party applications with the MS browser. This allows for the easy extension of
functionality in the Internet Explorer by giving software developers the ability
to create complex applications which can interface with websites through the
browser.

There are various ways for an ActiveX control to end up on any given machine.
Besides all the controls which are part of IE or the operating system, programs
may install and register ActiveX controls of their own to offer a diverse set of
functions in IE. Another way of installing a new control is through web sites
themselves. Depending on Internet Explorer security settings, a website may
try to instantiate a control, for example Shockwave Flash, and failing to do so
may prompt the user to install the Shockwave Flash ActiveX control.

Security issues seems to be a constant problem with ActiveX controls. In fact,
it seems most vulnerabilities in Windows nowadays are actually due to poorly-
written third-party controls which allow malicious websites to exploit buffer
overflows or abuse command injection vulnerabilities. Quite often these controls
make the impression of their authors not having realized their code can be
instantiated from a remote website.

The following chapters will describe methods to find, analyze, and exploit bugs
in ActiveX controls will be presented to the reader.

Chapter 3

Control and functionality
enumeration

Any given Windows installation is likely to have a significant number of reg-
istered COM objects. For the purpose of this paper, however, we are only
interested in controls which may be instantiated from a website. Quite a num-
ber of the following details are taken out of the excellent The Art of Software
Security Assessment[3], a book I strongly recommend to anyone interested in
application security.

ActiveX controls are usually, but not always, instantiated by passing their
CLSID to CoCreatelnstance. The respective class identifier (CLSID) is used
as a unique value which is associated with each control in order to distinguish it
from its peers. A list of all the existing CLSIDs on a given Windows installation
can be found in the registry in HKEY_CLASSES_ROOT\CLSID, which actually is
nothing but an alias to HKEY_LOCAL_MACHINE\Software\Classes\CLSID.

Within the CLSID key there are thousands of different class identifiers, all of
them specifying ActiveX controls. However, only a subset of those can be instan-
tiated by a website. Controls marked as safe for scripting are granted this abil-

ity. To determine whether a certain control has this ability, it has to be part of

the respective category. Specifically, the category can be found in the registry in

the form: HKEY_CLASSES_ROOT\CLSID\<control clsid>\Implemented Categories.
If a control is safe for scripting it may indicate this by having a subkey with the
GUID 7DD95801-9882-11CF-9FA9-00AA06C42C4. Similarly, the ’safe for ini-
tialization’ category is listed in the same location, but with a slightly different
GUID. Its value is 7DD95802-9882-11CF-9FA9-00AA06C42C4.

In the end though, not being part of these categories doesn’t necessarily mean
that a control cannot be called from IE. The component may dynamically report

itself as being safe for scripting when it is instantiated through IE. The only
surefire way is to try and instantiate a control and see if it can be used. Axman[5]
is an ActiveX fuzzer written by HD Moore which can automate this check for
all of the different CLSIDs on a system. Another tool to enumerate the controls
in question is iDefense’s ComRaider[4], another ActiveX fuzzer, which has the
ability to build a database of controls that IE should be able to instantiate.

3.1 ProglIDs

Besides the long and rather hard to memorize CLSID there is often a second
way of instantiating a certain control. This can be accomplished through the
use of a control’s program ID (progID). Quite similar to IP addresses and the
domain name system(DNS), progIDs can be looked up to determine the match-
ing CLSID. Once the right one has been determined, Internet Explorer goes on
as if the CLSID had been provided in the first place.

For this technique to work for a given control, two requirements must be met.
First, a control must have a ProglD subkey under their CLSID key in the
register. ProgIDs are usually in the form Program.Component.Version such as
SafeWia.Script.1. Second, as there is no point for Windows to walk through
up to 2700 CLSIDs(in my example) to find the specified ProgID, the program
ID itself must have a key in HKEY_CLASSES_ROOT with a subkey named CLSID
which describes makes the association.

3.2 The Kill Bit

In some cases it is desirable to restrict a control from ever being instantiated
in IE. This can bee accomplished through the use of a kill bit. The kill bit can
be defined by setting the 0x00000400 bit in the CompatibilityFlags DWORD
associated with a given CLSID:

HKLM\SOFTWARE\Microsoft\Internet Explorer\ActiveX Compatibility\<CLSID>

3.3 User Specific Controls

With Windows XP, Microsoft introduced support for user-specific ActiveX con-
trols. These do not require Administrator-level access to install because the
controls are specific to a certain user, as the name already implies. These con-
trols can be found under HKEY_CURRENT_USER\Software\Classes. While this
functionality exists, most ActiveX controls are installed globally.

3.4 Determining Exported Functions

ActiveX controls implement various COM interfaces in the same manner as any
other COM object. COM interfaces are well-defined definitions of what func-
tions and properties a COM class must implement and support. COM provides
the ability to dynamically query a COM class at runtime using Querylnterface
to see what interfaces it implements. This is how IE determines if a control
supports the safe for scripting interface (which is called I0bjectSafety).

Chapter 4

Examples

4.1 MWG6 Technologies QRCode ActiveX 3.0

In this section the previously provided information will be demonstrated with
the help of a recent public ActiveX vulnerability and exploit. The vulnerable
control is from a company called WM6 and comes with their “QRCode ActiveX”
version 3.0. When I downloaded the software in January 2008, several months
after the exploit was posted on MilwOrm in September, the vulnerable control
was still part of the package.

The control itself has a CLSID of 3BB56637-651D-4D1D-AFA4-C0506F57EAFS.
After the installation of the software, it can be found in the registry in:

HKEY_CLASSES_ROOT\CLSID\{3BB56637-651D-4D1D-AFA4-CO506F57EAF8}.

The DLL that implements this control can be found on the harddrive in the file
that is specified in the ”"InprocServer32” key. In this example it is:

C:\WINDOWS\system32\MW6QRC~1.DLL

A screenshot of what the entire registry entry for this control looks like:

EEE C] {3BESAGIT-6510-401D-AFA4-COS06FS FEAFTT

£ contral
I:] Inprocsetver3s
[Insertable

F-127] MiscSkatus
& ProglD |
£ Programmable
[ToolboxEitmap32
[TwpeLib
I:] Version
(£ versionIndependentProglD
[Implemented Categories

There are two interesting things to note here. For one, the ProgID key has
a default value of MW6QRCode.QRCode.1. At the ProgID’s corresponding
location in the registry, namely HKCR\MW6QRCode .QRCode. 1, the CLSID subkey
contains the CLSID of that control. This tells us that this control can be
instantiated using both its CLSID and ProgID. Another point of interest in the
screenshot is the absence of the "Implemented Categories” key. This means
that this control is neither part of the ”safe for scripting” nor the ”safe for
initialization” category. However, it appears that the control must implement
IObjectSafety since it is still possible to instantiate the control from IE. The
following simple HTML code tries to instantiate the control.

<body>

<object classid=’clsid:3BB56637-651D-4D1D-AFA4-CO506F57EAF8’ id=’test’>
</object>

</body>

The result of this snippet of code is the appearance of a little picture in IE. As
this works just fine without Internet Explorer complaining about being unable
to load the control, the next examination step is in order.

4.1.1 Enumerating Exported Interfaces

By now it has been shown that the example control can be instantiated from IE
just fine. The question now is what kind of interfaces the control provides to the
caller. By submitting the specific CLSID of the control that is to be examined
to ComRaider, the tool lists all of the controls implemented functions as well as
the kind and number of expected parameters. An alternative to ComRaider is
the so-called OLE-COM object viewer that comes with the platform SDK and
Visual Studio.

&' COMRaider Only showing class {3BB56637-651D-4D1D-AFA4-COS06F57EAFB}

COM Server |CINDDWS aystem325MWwWELRC™1.DLL 7| ¥ Show onily fuzzable

W tWWEORCODELL Sub SaveAsBHP (
= [#] ORCade ByVal FileMame ns String
=0 [QRCods)
- BackColor
&5 BarColor
&5 BorderStyle
&5 Data
5 Fieldyal
=% GetbotualRC
= GetbotualSize
=% GetPatternD ata
5 Level
5 Mask
&5 Orientation
=% Render
=
=% Savedsw
=% SetSize
&5 Version Usze right click menu on treeview to generate fuzz files

MF

Mot Mest >

4.1.2 Exploitation

After playing around with various functions, it soon becomes obvious that
SaveAsBMW and SaveAsWMF happily accept any path provided to save the gen-
erated graphic in the specified location. This can make it possible to overwrite
existing files with the picture if the user running IE has sufficient access. This is
a perfect example of a program using untrusted data and operating on it with-
out any kind of checks. It is likely that the control’s author did not consider
the security implications of what they were doing.

A sample exploit for this vulnerability, written by shinnai, can be found on
MilwOrm: http://www.milwOrm.com/exploits/4420.

http://www.milw0rm.com/exploits/4420

4.2 HP Info Center

On December 12th, 2007, a vulnerability in an ActiveX control which was
shipped by default with multiple series of Hewlett Packard notebooks was dis-
closed. The issue itself was found in a piece of software called the HP Info
Center. The vulnerability allowed remote read and write access to the registry
as well as the execution of arbitrary commands. By instantiating this control
in Internet Explorer and calling the vulnerable functions it was possible to run
software with the same level of access as the user running IE. Porkythepig found
and disclosed this serious threat and wrote a detailed report as well as a sample
exploit covering three attack vectors.

The HP control with the CLSID 62DDEB79-15B2-41E3-8834-D3B80493887A
was responsible for the listed vulnerabilities. By default it installs itself into
C:\Program Files\Hewlett-Packard\HP Info Center. In his advisory, porky
listed three potentially insecure methods as well as the expected parameters:

e VARIANT GetRegValue(String sHKey, String sectionName, String key-
Name);

e void SetRegValue(String sHKey, String sSectionName, String sKeyName,
String sValue);

e void LaunchApp(String appPath, String params, int cmdShow);

While the first and second method allow for remote read and write access to the
registry, the third function runs arbitrary programs. For example, an attacker
could execute cmd.exe with arbitrary arguments.

In this example the vulnerable control provided remote access to the victims
machine. Sample code to exploit all three functions can once again be found on
MilwOrm: http://www.milwOrm.com/exploits/4720.

10

http://www.milw0rm.com/exploits/4720

4.3 Vantage Linguistics AnswerWorks

The third and last example of various ActiveX vulnerabilities is in the Vantage
Linguistics AnswerWorks. Advisories covering this vulnerability were released in
December, 2007. The awApid.AnswerWorks.1 control exports several functions
which are prone to stack-based buffer overflows. The functions GetHistory (),
GetSeedQuery() and SetSeedQuery() fail to properly handle long strings pro-
vided by a malicious website. The resulting stack-based buffer overflow allows
for the execution of arbitrary code, as "e.b.” demonstrates with a proof of con-
cept that binds a shell to port 4444 when the exploit succeeds.

When the exploit is loaded from a webserver it instatiates the CLSID and links
the created object to a variable named obj. It then calls the GetHistory()
function with a carefully crafted string which consists of 214 A’s to fill the
buffer followed by a return address which overwrites the one saved on the stack.
After those 4 bytes come 12 NOPs and then finally the shellcode. As one can
easily see, this exploit is based on the same techniques that can be seen in many
other stack-based exploits.

The exploit mentioned in this example can also be found on MilwOrm: http:
//www.milwOrm.com/exploits/4825.

11

http://www.milw0rm.com/exploits/4825
http://www.milw0rm.com/exploits/4825

Chapter 5

Summary

This paper has provided a brief introduction to ActiveX. The focus has been
on discussing some of the underlying technology and security related issues that
can manifest themselves. This was meant to equip the reader with enough
background knowledge to examine ActiveX controls from a security point of
view. The author hopes he managed to describe the big picture in enough
detail to provide readers with enough information on the matter to base further
research on the aquired knowledge.

5.1 Acknowledgements

wastedimage - For answering the first questions

deft - For providing lots of answers and examples

rjohnson - For filling in details deft forgot to mention
skape - For background knowledge on underlying functions
hdm - For knowing all the rest

12

Bibliography

[1] ActiveX Controls @ Wikipedia
http://en.wikipedia.org/wiki/ActiveX_control

[2] ActiveX Controls
http://msdn2.microsoft.com/en-us/library/aa751968.aspx

[3] The art of software security assessment
http://taossa.com

[4] ComRaider

http://labs.idefense.com/software/fuzzing.php#more_comraider

[5] Axman ActiveX Fuzzer
http://wuw.metasploit.com/users/hdm/tools/axman/

13

http://en.wikipedia.org/wiki/ActiveX_control
http://msdn2.microsoft.com/en-us/library/aa751968.aspx
http://taossa.com
http://labs.idefense.com/software/fuzzing.php#more_comraider
http://www.metasploit.com/users/hdm/tools/axman/

	Foreword
	Introduction
	Control and functionality enumeration
	ProgIDs
	The Kill Bit
	User Specific Controls
	Determining Exported Functions

	Examples
	MW6 Technologies QRCode ActiveX 3.0
	Enumerating Exported Interfaces
	Exploitation

	HP Info Center
	Vantage Linguistics AnswerWorks

	Summary
	Acknowledgements

