1 Information Management

High-Level Reverse Engineering

An IRM Research White Paper by

Matthew Lewis

[
1 nlnformation Management HIGH-LEVEL REVERSE ENGINEERING

High-Level Reverse Engineering

This paper aims to present a methodical framework for high-level reverse engineering. The methodology is a
culmination of existing tools and techniques within the IT security research community, which presents ways to
identify process operation at a higher-level of abstraction than traditional binary reversing. Here, we focus our
attention on application DLLs and the functions that they implement and export, which includes process
interactions with other applications and various operating system function calls. We use existing tools and
techniques to derive ways of quickly identifying how applications are constructed, the functions that they use and
how they use them. Following this high-level reverse engineering, the researcher is then free to take further steps

at reversing specific functions with the more traditional lower-level binary analysis.

It is anticipated that analysing applications in this way will allow the researcher to focus his/her attentions on
specific functions that appear more “interesting” from a security perspective. For example, identifying a commonly
called function within an application that processes user-supplied input is a far better choice for further analysis at
lower levels, as the function may be susceptible to inappropriate data handling resulting in one or more of the
common overflow-type vulnerabilities that can lead to system compromise. The techniques described within this
paper will also allow the researcher to identify specific points within the application which may be fuzzed, allowing

for further vulnerability investigations into the application and its functions.

This whitepaper is specific to Microsoft Windows operating system applications; however the methods and
techniques could be developed and applied to any other operating system capable of function hooking. A worked
example is presented throughout the paper, providing an investigation of the Microsoft Fingerprint Reader
functionality (manufactured by Digital Persona). The device connects to a Microsoft Windows operating system via
USB, and is used to provide fingerprint-based authentication for system and web application logon. We identify the
DLLs and system calls that the device and application invokes, providing methods to intercept and manipulate

these calls in ways that allow the researcher to perform security investigations on specific components.

The key tools required and used throughout the methodology are the Universal Hooker (uhooker) by Core Security
Technologies [1], the Interactive Disassembler (IDA) [2] and the OllyDbg debugger [3]. It is assumed that the
reader is already familiar with these tools. Further information on these tools and their operation can be found

from the references section at the end of this document.

Brief Overview of the Universal Hooker

The Universal Hooker (uhooker) is a tool to intercept execution of programs. It enables the user to intercept calls
to API functions inside DLLs and also arbitrary addresses within the executable file in memory. Uhooker builds on
the idea that the function handling the hook is the one with the knowledge about the parameter types of the
function it is handling. Uhooker only knows the number of parameters of the function and obtains those (DWORDS)
from the stack. Hook handlers are written in python, which eliminates the need for recompiling the handlers when
modification is required. Uhooker is implemented as an OllyDbg plugin, which takes care of function hooking using

software breakpoints [1].

uhooker components comprise the uhooker core (OllyDbg plugin), a configuration file, a server (server.py) which
handles communication with the uhooker core, a python library (proxy.py) containing functions to communicate
with uhooker, such as read/write memory, and a python handler module written by the researcher that contains

the code to execute on hooked functions and/or addresses [1].

© IRM PLC OCTOBER 2007 Page 2 of 11

[
1 nlnformacion Management HIGH-LEVEL REVERSE ENGINEERING

As part of this whitepaper, we present methods for automating the generation of configuration and handler files.

For the handler files, stub code is generated, which allows the researcher to quickly implement the desired hook

functionality on specific functions or addresses.

Phase One: Identifying Relevant Components

For this whitepaper, we embark on investigation of the Microsoft Fingerprint Reader from a ‘black-box’ perspective,
meaning that our first phase demands identification of the core components of the system under investigation. A
number of methods are available to us at this stage; which primarily depend on the nature of the system being
investigated. For example, open-source research from Internet resources can often yield valuable insight into

implementation details of specific systems.

The obvious starting points include inspection of specific drivers that are used. Here, the operating system itself

will often provide much information on the drivers and their system locations, as shown in Figure 1 below:

System Restore | Automatic [I_pg.a_tgs _ Femate
~ General Computer Name | Hardware | Advanced

File Action Wiew Help

EES 2 8B

=] &z Biometric ~
&g Microsaft Fingerprint Reader |
1) Computer
e Disk drives
| f§ Display adapters — o
), DVDJCD-ROM drives Gereral | Driver | Details|
@ Floppy disk controllers
] ﬂ Floppy disk drives @ Microsoft Fingerprint Feader
1% IDE ATAJATAPT controller
2 Keyboards
~) Mice and ather pointing d Driver Provider:
[+ EE Metwork adapters Driver Date: -
,,—)Ji Parts (COM & LPT) ‘@ Microsalt Fingerprint Readsr
[+ #8% Processors Drriver Version:
H @%l 551 and RAID controller: Digital Gigner: Diri

files:
=@, sound, video and game ¢ e
@, fudio Codecs CAwWINDOW S hapstem324dpD OB RO di

~ @, Creative AudioPCI (E: ¥ CAWINDOWS hsystem32dpdevetl di
@, Game Port For Creati a}’ CAWINDOWS hepstem32hdpdevdat.dll
L @, Leaacy Audio Drivers = o WM DO S hsystem328dpl 0B «01 .l

S CAWINDOWS system 32 divershdpKDBADT sys
.a? CAWINDOWS hapstem32hdrivershusbdpfp. sys
| Foll Back Criver

Figure 1. Identification of core driver modules of the Fingerprint Reader from System Manager

- - - - ;+ -

Here, we see the various DLLs and drivers that are used to control the device, which will serve as a good starting

point to our High-Level understanding of the device and system operation.

The next step in this phase should typically include examination of the system’s interaction with the underlying
operating system. Again, a number of tools exist for this purpose - the well-known Sysinternals tools [4] regmon,
filemon and process explorer provide a great avenue for exploring process interaction with the registry, file system
and other processes respectively. Findings from this step should be documented by the researcher, as they will
form the basis of later phases.

© IRM PLC OCTOBER 2007 Page 3 of 11

[
1 nlnformation Management HIGH-LEVEL REVERSE ENGINEERING

Once the relevant processes, DLLs and files have been identified, simply the names of these components can often

yield clues as to their implemented functionality. In our worked example, the following table presents just some of

the components identified during this phase, and their likely functionality (purely based on the filename):

ST (SR e Likely Functionality

Filename
DPHost.exe Digital Persona Host — Main host application
Crypt32.dll and Encryption / Decryption Functionality (Fingerprint images are purportedly
DPSecret.dll encrypted between device and host)
Dpdevetl.dll dD|g|_ta| Persona Device Control - Control commands for the fingerprint
evice
Dpdevdat.dll glg[tal Persona Device Data - Functions for handling data received from the
evice
DPCFtrEx.dil Digital Persona.Featur.e E>.<tract|on - functions for extracting biometric
features from fingerprint images
DpCmpMgt.dll Digital Persona Comparison/Component Management
DPCRecEn.dlI Dlgltal_ Persona_Recogmtlon Engine - functionality relating to the biometric
matching algorithm

Table 1. Identifying possible system functions from filenames alone

The minor information leakage in the filenames above might go some way in assisting the researcher to quickly

identify the functionality of the system that he/she is more interested in researching further.

Having identified a core process or application within our system (such as DPHost.exe listed in Table 1 above), one
final method noted here for identifying the components used by the application involves the use of OllyDbg’s
Executable Modules Window. By attaching the debugger to the interested process, this window lists all executable
modules currently loaded by the debugged process. Figure 2 below demonstrates the modules used within our
Microsoft Fingerprint Reader system. This window confirms the system modules identified in other stages
mentioned above, while it also identifies those system modules that are loaded by our process, such as
kernel32.dll and advapi32.dll. ldentification of these modules will prove useful during the next phase of our
investigation.

© IRM PLC OCTOBER 2007 Page 4 of 11

[
1 nlnformation Management HIGH-LEVEL REVERSE ENGINEERING

OllyDbg - DpHost.exe - [Executable modules]

@Fila View Debug Plugins Options ‘Window Help

(B x] »[l [] = L|E[M[T|W[H|[c]/[K]B[R].]5&] 2]
Base Size Entry Hame. [spsten) |File wersion Path
B171aaae | ABASSE08 | B172AS5S DPCFErEX. <Modu leEntryPointy | DFCFTrER -8.8, 1545 Ci~Frogram FileshDigitalPersona~Ein~DFCFTrER. dLL
aA 1F B1BAE22E DpCmpMat.<Modu leEntryPoint DDCMDHQ': 2B.8, 1242 Files~DigitalPersona~Bin~DpCrpHat.dlL
24 81363328 OPCOper.<Modu leEntryPoint Oper -8.8,1243 Files~DigitalPersonarBin~0PCOper.dll
1D B11FA44C DPCRecEn . <Modu leEntrgF’olnt) DPCRecEn -8.8,1243 Files-DigitalPersona~Bin~DPCRecEn.dl L
S5 81376085 DPOE.{Moduy leEntryPoint > «B.8,1543 Files~DigitalPersona~Ein~DFDE.dl L
BERAIEELT DPDeuvAgt. <Moduy leEntryF'olnt) DPDEUQgt L@@, 1242 Files~DigitalPersona™Bin~DPDavAgt.dlL
A 2 B1AB0EZ2E DPOtObj<=. <Modu LeEntryPoint> | DPDEObis -8.8,1243 Files-DigitalPersona~Bin~DPDt0bjs. dL L
BE41CC43 DpHost. <Modu leEntryPoint DpHost -B.8.1843 Files-DigitalPersona~Bin~DpHost.ex
I BACA4ESS DPILFPers.<ModuleEntryPoint’> |DFILFers 2 0.8,1543 Files-DigitalPersona~Ein~DFILPers., dL L
4 18816502 DPPS. {Modu leEntryPoint > OFPS -B.@. 1242 Files~DigitalPersona~Bin~DPPS.dLL
S0 2 B150FAA? DPSecret.<ModuleEntryPointy |DPSecret -8.8,1243 Files-DigitalPersona~Bin~DPSecret.dll
D4 10 71041 2E0 actzprxy.<ModuleEntryPointy | actapray (swstem) 08,2988, 2188 [wpsp_sp2_rtm. B4 M2 NACt HDTHY .
FroD 7r0D7E04 ADVAFISZ. <ModyleEntryPoint |ADVAFISZ (systen) «1.2608,21 B (HDSD_SDZ_I‘tN. a4a M3z -ADVAFISZ. dL L
FEFDI 7| FEFO2115 CLBCATR. <Modu leEntruPoint> | CLBCATE (sustem) ARl 124414, ~CLBCATE. OLL
S0 s S0AI34EA comet | 1. <Modu leEntryPoint’ |comotl_1 (swstem) 2 [Hpsp. 68825 BE4E) mI2comnct 122, dL L
wro! ICS| TrAS18sS COMRes.<Modu leEntryPoint > COMRes [systen) BE1. 12,4414, 32 ~COMRes. dl L
TR 7rAS1642 CRYPT3Z.<Modu leEntryPoint> |CRYPT3IZ (swsten) . 131, 2608, 2 188 lspsp_sp2_rtn. @ mIZ~CRYPTI2.d1L1L
&F 27 TEFZA0IF DMSAPI. <Modu leEntruPoint OMSART [susten] - 2E@E.2938 (wpsp_sp2_gdr. BEA ~OMSART. dL L
Bieza F B18368A12 dpDevCt | <Modu leEntryPoint |dpDevCtl (system) 187 m32 dpOewit L. dL L
alave ZEB) B18vsela dpDevDat,<Modu leEntryPoint’> | dpDewbat [systen) 7 mI2~dpleyvDat. dl L
77k 1476 7rF16597 GDIZ2, {Hodu leEntryPoint > G0Is2 [systen) . l#psp_spZ_gdr. &7 mIZ~G0I32.d1 L
TFELC FECO1260 IMAGEHLP. {Modu leEntryPaointy | IMAGEHLF (sustem) (npsp_spe_rtm. B4 \IHRGEHLP dll
v 100 FE3912CA IMMEZ2. {Modu leEntryPoint > IMM22 (swsten) [xpsp_spZ_rtm. 84 1 32.
7Ca F FCEEBSAE kerne |32, <Modu leEntryPoint? |kernel32 [systen) [#psp_spZ_gdr. @7 T \ker‘ne 132.dLL
7rE 12 77 2 MSASH1.<Modu leEntryPoint > MSASHL (systen) .1 . (HpsSp_spE_rtm. 32 ~MSASHL L
77C 53 FPLIF2AL mswert,<Modu leEntryPoint MEMEEE (systen] m32 msvcrt. dl L
B EB263395 METAPISZ. <{ModuleEntryPoint> |HETAPISZ (system) W1 - [wpsp_spZ_gdr. mZ2~HETAPISZ2. dL L
7LD FCA13156 ntdll.<Modu leEntryPoint > ntdll (systen) - 1. - (#pSp_spZ_rtm. 8d m3Zwntdll.dll
Frdl 300 Fr4FDEAL oled2, {Hodu leEntryFoint > ole22 [systen) .1 . (npsp_sp2_gdr. B85 o le22.dlL
77l SE! 77121562 OLEAUT22, <Modu leEntryPoint} | OLEAUTSZ (susten) a1 . mZ2~0LEAUTS2. dL L
TEF! PEFCL42F rasadhlp. <Modu leEntryPoint’ |rasadhlp (system) -1 . [HDSD_SD2_gdr. 86 mZ2~rasadh lp.dlL
FTET! TTET6Z54 RPCRT4.<Modu leEntryFoint > RFCRT4 (systen) -1 . (HDSp_SpZ_rt 32 ~RPCRT4. dl L
BFFD! BFFEZ4E1l rsaenh.<ModuleEntryPoint> reaenh (systen) .1 . (Hpsp. 348786 162 ~rsaenh.dlL
77FEl FPFE2131 Secur32.<ModuleEntryPoint? |Secur32 (swstem) - 1. . (#psp_sp2_rtm. Bd m32~Secur32.dll
7rozl 7PA21590 SETUPAPI. <Modu leEntryPoints | SETUPAPL (system) a1 - (wpsp_sp2_rtm. 84 mZ2~SETUPART. AL L
FLOCH 1 TC3 66 SHELL3Z.<Modu leEntryFoint > | SHELL3Z (swsten) .08, 8, 1 [#psp_spZ_gdr. & mIZ~SHELLS2. d L1
FTFEl I 7rF FE SHLWAPI.<ModuleEntruPoint> | SHLWARPI (sustem) . BE. . 1 (wpsp_sp2 _qfe.@ ~SHLWAPT. AL L
TE41 FE42E266 USER2Z.UserClientDLlLlInitial i USER3Z (systen) e = (#psp_sp2_gdr. @7 mI32~ISERS2. dL L
EAO7 SAD7P1626 uwtheme.<Modu leEntryPoint? |untheme [systen) -Ba] B [Hpsp_sp2_rtm. B4 m32nuntheme.dll
Frea 7rLO1135 VERSION.<HModu leEntryPoint> |UERSION (systen) .1 . (#psp_spZ_rtm. B4 M2 ~UERSION. AL L
200 WIMMM. <Modu leEntruPoint > WIHMM (gusten) -1 L (xpsp_sp2_rtm. B4 STMEAM. L L
TECI ZE! FELILE22 WIMTRUST. <Modu leEntryPoint |WINTRUST (system) -2180 [4psp_spa_rtm. 32 INTRUST. dL L
7 1AAI F1AALE42 WSZHELP.<Modu leEntryPoint> |WSZHELP (system) 1 [#psp_sp2_rtm. B4 mZ2~WSZHELP. AL L
T 1RAE! 17 T1AELZ7S WsZ_52.<Modu leEntryFoint> Ws2_gz (systen) 1 (#psp_spZ_rtm. B4 mEE~W=Z_S2.d1L
20631 CEl npEplres (sustenl 1 Inpsp_sp2_rtm. B4 mupepZres.dl L
7730 83 FP304246 comet |32, {Modu leEntryPoint’ | comotl32 . S-B840) WinSu5w86_Microsoft.Windows. Comman—Cc

Figure 2. The OllyDbg Executable Modules window identifies modules loaded by our debugged process

Phase Two: Identifying Component Functions

To further our High-Level reverse engineering, the next phase involves examination of the components identified
during Phase One for those functions that are exported, or may appear interesting for further analysis. Again, a
number of tools and techniques are available to us at this stage. Initially, we are interested in identifying named
and exported functions; and various API calls. One such tool that can be used here is the DLL Export Viewer, which
displays a list of all exported functions and their virtual memory addresses for a specified DLL file [5], as shown in
Figure 3 below:

|E DLL Export Viewer
File Edit Wiew Options Help

% [NE |

Function Marne Address Relative Address | Crdinal Filename
OFD_ClaseDevice 0510009570 000009570 3(0w3) dpdewctl.dll
D FO_CloseDeviceManager 0310009020 000009020 4 {0x4) dpdewetl.dl
@ FO_DllGetYersion 10001460 0x000014b0 101} dpdewctl.dll
@ FD_Entry 010009810 000009510 5 (0x5) dpdevetl.dl
& FD_FrumerateDevice 010009180 000009150 6 (0xE) dpderctl.dll
@ FO_izetDataFarmat 010009380 000009330 70T dpdesectldll
& FD_GetDeviceInfo 0 100092b0 000009200 8 (0xE) dpdesectldll
& FD_GetParameter 0 100035F0 0x000095F0 9 {09 dpdesctldll
@ FD_OpenDevice 010009450 0x00009450 10 (Oxa) dpderctldll
O FO_OpenDeviceManager O 10003dan 0x00002da0 11 (Oxb) dpderctldll
O FD_SetParameter 10009770 000009770 12 (D) dpdewctldll
O FD_TestDevice O 100093f0 Ox00002sf0 2(0x2) dpdewctl.dll

Figure 3. DLL Export Viewer identifies the exported functions of a given DLL (dpdevctl.dll)

© IRM PLC

Page 5 of 11

[
1 nlnformation Management HIGH-LEVEL REVERSE ENGINEERING

IDA Pro can also be used to identify this information, by examining the Exports window of an auto-analysed DLL.

At this stage, we present an automated tool to assist in the identification of functions, and auto-generation of the
required configuration and code handler files for use with uhooker. The following IDC script (uhooker.idc) identifies
each function within a DLL/module, and generates a uhooker-compatible configuration file. A python stub code file
is also generated, which includes a simple function handle for each identified function. If a function is not exported,
the configuration file is appended with a hook on the function’s address. That way, we can still hook on
undocumented or non-exported functions, as identified within IDA. The function handlers simply print to standard
output when an exported function is called, or the memory location of a non-exported function is accessed. Figure
4 below details the IDC script. We note that the script is extremely generic, and further functionality or automation
is left as an exercise to the motivated reader.
// IDC auto-generation of uhooker configuration and handler files
// Matt Lewis - IRM plc 2007
#include <idc.idc>
static main() {

auto ea, x,num_args, func_name, file, filename;

auto hook_type,config_file,stub_file,config_line;

auto stubll, stubl2, stubl3, stubl4, stubl5;

// these are stub code lines for our python handlers
// the stubs simply print to stdout when the handler is called

stubll = "def ";

stubl2 = "\tmyproxy = hookcall.proxy\n";
stubl3 = "\tprint \"";

stubl4 = "\thookcall.sendack () \n";
stubl5 = "\treturn\n\n";

// we set this to the type of hooks that we want to invoke:

// Type A: Hook after the function returns

// Type B: Hook before entering the function

// Type *: Hook when execution reaches this address

hook_type = 'B';

Message ("\n\n------ Creating uhooker configuration and handler files.... ———————- \a™) g
file = GetInputFile();

filename = substr(file,0,strstr(file,"."));

// the uhooker configuration file is written to...

config_file = fopen(filename + ".cfg", "w");
// the uhooker python handler stub code is written to...
stub_file = fopen(filename + ".py", "w");
for (ea=NextFunction(0); ea != BADADDR; ea=NextFunction (ea)) {
// get the function name
func_name = GetFunctionName (ea) ;

// get the number of function arguments
// divide by four for 32-bit machine
num_args= (GetFunctionAttr (ea, FUNCATTR_ARGSIZE)) / 4;
Message ("$s:%s:%d:%s.%s_handle:%c\n", file, func_name, num_args, filename, func_name, hook_type) ;
X = GetFunctionFlags (ea);
if (strstr (func_name, "sub_") == 0) {
// this is not an exported function, therefore we hook on its address, rather than name

config_line = "dummy.dll:0x" + ltoa(ea,16) + ":0:" + filename + "." + func_name +
"_handle:*\n\n";
} else {
// this is an exported function, therefore we hook on its exported name
config_line = file + ":" + func_name + ":" + ltoa(num_args,10) + ":" + filename + "." +

func_name + "_handle:" + hook_type + "\n\n";
}
// write to config file
writestr (config_file,"# Insert Comment Here...\n");
writestr (config_file,config_line);
// write to stub code file
writestr (stub_file,stubll + func_name + "_handle (hookcall) :\n" + stubl2 + stubl3 + func_name
+ "_handle called\"\n" + stubl4 + stubl5);
}
fclose (config_file);
fclose (stub_file);
}
Figure 4. IDC code for auto-generation of uhooker configuration and handler files

© IRM PLC OCTOBER 2007 Page 6 of 11

[
1 nlnformation Management HIGH-LEVEL REVERSE ENGINEERING

An excerpt of the auto-generated configuration file of the Dpdevctl.dll module can be seen in Figure 5 below. The

difference can be seen between those functions that are exported, and those that are not. In its default state, the
above script generates hooks to functions before they are entered or their start memory addresses are accessed.
This can be changed in the script, or manually via the configuration file, should the researcher wish to hook after
the function returns for example. A default comment placeholder is also added, should the researcher wish to pass

comment on specific function calls.

Insert Comment Here...

dummy .d11:0x10001000:0:dpdevctl.sub_10001000_handle:*
Insert Comment Here...

dummy .d11:0x10001160:0:dpdevctl.sub_10001160_handle:*
Insert Comment Here...

dummy .d11:0x10001270:0:dpdevctl.sub_10001270_handle:*
Insert Comment Here...

dummy .d11:0x10001350:0:dpdevctl.sub_10001350_handle:*
Insert Comment Here...

dummy .d11:0x100013F0:0:dpdevctl.sub_100013F0_handle:*
Insert Comment Here...

dummy .d11:0x100014A0:0:dpdevctl.sub_100014A0_handle:*
Insert Comment Here...
dpdevctl.dll:FD_DllGetVersion:1l:dpdevctl.FD_DllGetVersion_handle:B
Insert Comment Here...

dummy .d11:0x10001550:0:dpdevctl.sub_10001550_handle:*
..<remainder omitted for brevity>

Figure 5. Example of an auto-generated configuration file for use with uhooker

For each of the function calls and hook handles generated within the uhooker configuration file, the IDC script
generates a corresponding python handler file. Figure 6 below shows an example of the auto-generated stub code.
As explained earlier, initially, the stub code merely prints to standard output when a function call is made. This will
allow us to quickly identify the system calls that a process or application makes.
def sub_10001000_handle (hookcall) :

myproxy = hookcall.proxy

print "sub_10001000_handle called"

hookcall.sendack ()

return
def FD_DllGetVersion_handle (hookcall) :

myproxy = hookcall.proxy

print "FD_DllGetVersion_handle called"

hookcall.sendack ()
return

Figure 6. Example of auto-generated stub code for each function

System Libraries and Functions

Until now, we have primarily been focussed on identifying the functions that specifically relate to the device or
system under investigation. We noted in Phase One that applications will often implement calls to operating system
functions, and so it would be wise to include as much detail as possible about such calls within our uhooker
configuration and handler files, in order to examine how the system truly interacts with its underlying operating
system.

For this purpose, we can use our IDC script above on any system modules that we choose, such as kernel32.dll
and advapi32.dll. The huge benefit of generating configuration files and handlers for the functions within these
modules is reuse. This allows the researcher to quickly build reusable libraries to be used in future High-Level
reverse engineering tasks. Another benefit in this area relates to the wealth of information within the public domain

on specific libraries. Many of the system functions provided by Microsoft are well documented both by Microsoft

© IRM PLC OCTOBER 2007 Page 7 of 11

[
1 nlnformation Management HIGH-LEVEL REVERSE ENGINEERING

themselves [6] and open-source forums [7]. Knowing the types of function arguments will prove extremely useful

in the final phase of our research.

For example, Figure 7 below shows a configuration file for some of the registry and cryptographic functions
exported by advapi32.dll. These are wise choices to include in our investigations as Windows applications will
commonly interact with the system registry. In the example below, our comments have been extended with
information gained from [6] and [7], whereby it has been possible to identify the function names, their arguments
and types.

LONG WINAPI RegCreateKey (HKEY hKey, LPCTSTR lpSubKey,PHKEY phkResult) ;

Creates the specified registry key. If the key already exists in the registry, the function
opens it.

advapi32.dll:RegCreateKeyA:3:advapi32.RegCreateKeyA _handle:B

LONG WINAPI RegCreateKeyEx (HKEY hKey, LPCTSTR lpSubKey,DWORD Reserved,LPTSTR lpClass, DWORD
dwOptions, REGSAM samDesired,

LPSECURITY_ATTRIBUTES lpSecurityAttributes,PHKEY phkResult, LPDWORD lpdwDisposition) ;

Creates the specified registry key. If the key already exists, the function opens it. Note that
key names are not case # sensitive.
advapi32.dll:RegCreateKeyExA:9:advapi32.RegCreateKeyExA_handle:B

BOOL CryptGenKey (HCRYPTPROV hProv,ALG_ID Algid,DWORD dwFlags, HCRYPTKEY* phKey)

Generates a random cryptographic session key or a pub/priv key pair.
advapi32.dll:CryptGenKey:4:advapi32.CryptGenKey_handle:B

BOOL CryptGenRandom (HCRYPTPROV hProv,DWORD dwlLen,BYTE* pbBuffer)

Fills a buffer with cryptographically random bytes.
advapi32.dll:CryptGenRandom:4:advapi32.CryptGenRandom_handle:B

Figure 7. A sample of advapi32.dll functions to be used with uhooker

Bringing it all together

Once we have identified as much information as possible regarding the components and functions that our system
under research executes, we can begin to bring these components together for the next phase of investigation.
While our code handlers reside in distinct python modules, we note here that uhooker works with one configuration
file only, meaning that before we progress, we must concatenate all of the required configuration files into one.
Again, this brief manual process is yet another example of further automation that could be introduced within the

IDC script presented above.

Phase Three: High-Level Functional Analysis

Now that we have defined our uhooker configuration file and python handlers, we are ready to begin examining
system operation at the function call level. A major benefit with what we are doing is that our investigation is
focussed on a specified process. Once attached to our process of interest, uhooker will hook on the addresses and
function calls that relate to that process only, meaning that we will not need to perform any filtering on the results.

We note that this could become problematic with truly multi-threaded applications.

Figure 8 below presents a screenshot of a minimal uhooker configuration file while attached to the DPHost.exe
application. The screenshot shows some of the system calls made when attempting to enrol an addition finger

within the system.

© IRM PLC OCTOBER 2007 Page 8 of 11

[
1 nlnformation Management HIGH-LEVEL REVERSE ENGINEERING

IEHgHFEEPFQP ! ~ Reglster‘s LFPUY 4

!JJJ wn] w] s3]] +f LE[mM[T(w]H]c[/[K[B[R[..[5] E[F
[

lIniversal Hooker server started
waiting for connections...

connection received from 127.8.8.1
processing hook entry tahle.

hum entries: 5

exception: 'advapild2’
ladvapi32 .dll: :RegCreateKeyExA called
lexception: * d

el

Co—wNDUn M

called
'6\’*L.NG_BFN . E)

called 10 eroty 1. 0%634a0849608045 160
ty 4SETazETO
: SAmniesoBaqacni3es
called 14303506451 1368

aduap132 dll::RegCreateKeyExA called i i i i i
D Bt Data fand o eaqted Fingerprint Registration Wizard
called

called
called

Register a Fingerprint

@
e

“You must successfully scan your fingarprint four times in order to register right ring finger.

advapi32 .dll::RegCreateHeyExA called
FD_GetData_handle called

~ The scan was successful, Place your finger on the -~
‘ fingerprint reader again.
< Back] [Mext >] [Cancel]
2k Lo —_—
[EE | *C’-Jl‘
| iR e |agETes | czéoFois) 5 _ »
Thread D0000BAL terminated, =xit code 0 | | Running

Figure 8. Example of uhooker examining function calls with the Microsoft Fingerprint Reader

We see that calls to RegCreateKeyExA, CryptGenKey and FD_GetData are made. While on the surface this may not
seem like much, this information is extremely useful in identifying the sequence of function calls. The benefit of
this High-Level approach, as opposed to diving into low-level reversing, is that the application or process being

researched tells us how it operates. We are able to quickly identify which functions are called, and when.

With the method above, we are able to freely use the system and allow it to tell us which function calls it is
making. It is during this ‘learning’ phase that the researcher is likely to become au fait with the system, and is able
to identify those functions that may be interesting for further investigation (e.g. functions that process user-

supplied input).

Where Next?

uhooker implements an API for use within hook handlers. While until now we have merely been printing when our
functions are called, we can take our research further by implementing more specific functionality within our
handlers. Again, the reader is referred to [1] for more information on the API - fundamentally, we can use the API

to read/write memory and CPU registers, convert memory bytes to ASCII strings, create and free memory.

The next step is to identify the types of the parameters passed to the functions. For some of the system functions,
we can ascertain this from a number of sources. For example, the following handler code for RegCreateKeyExA

would allow us to identify the actual registry keys that are created/opened during execution.

© IRM PLC OCTOBER 2007 Page 9 of 11

1 nlnformation Management HIGH-LEVEL REVERSE ENGINEERING

def RegCreateKeyExA handle (hookcall) :
myproxy = hookcall.proxy
print "advapi32.dll::RegCreateKeyExA called"
keyname = hookcall.params[1]
print "Attempting to create/open: " + myproxy.readasciiz (keyname)
hookcall.sendack ()
return

Figure 9. Reading String arguments within handlers
With the CryptGenKey handler, we might be able to identify the algorithm ID, the key type and key:

def CryptGenKey_handle (hookcall) :
myproxy = hookcall.proxy
print "advapi32.dll::CryptGenKey"
algorithmID = hookcall.params[1]
keyType = hookcall.params[2]
keyAddress = hookcall.params[3]
print "Algorithm ID: " + str(algorithmID)
print "Key Type: " + str (KeyType)
myproxy .readmemory (keyAddress, 32)
hookcall.sendack ()
return

Figure 10. Reading memory addresses within handlers

While the two examples above show only reading of memory, the implications of the ability to write/set memory
and registers in this way should be obvious. The researcher is able to use these techniques to test boundaries and
program control flow in ways that might be difficult via other means. Again, we note the possibilities of writing
fuzzers around specific handlers for example, which provides for a more focussed and direct approach than blind
fuzzing or bounds checking. From this point, the potential possibilities are only limited by the imagination of the

researcher with respect to further investigations into the system being assessed.

Conclusions

In concluding this whitepaper, we re-iterate our initial point that this paper does not present any new tools, but is
a culmination of existing tools and techniques that are already available within the IT security research community.
We have merely scratched the surface of the possibilities within this domain, and it is envisaged that an entire

suite of security auditing tools could be developed around the way of working presented in this document.

Function hooking can provide an extremely quick method of identifying system implementation and operation,
while it also provides direct access to the application’s memory and CPU space in ways that can be both read and
written. As a matter of responsibility, we note here the intentions of this whitepaper as a document of methods for
vulnerability research only. The aim of such research should be conducted in order to identify vulnerabilities so that

subsequent patching and fixing can be invoked in order to mitigate any problems discovered.

© IRM PLC OCTOBER 2007 Page 10 of 11

[
1 nlnformation Management HIGH-LEVEL REVERSE ENGINEERING

References

[1] The Universal Hooker (uhooker) - http://oss.coresecurity.com/uhooker/doc/index.html

[2] The Interactive Disassembler (IDA) - http://www.datarescue.com/
[3] The OllyDbg Debugger - http://www.ollydbg.de/

[4] Sysinternals Tools - http://www.microsoft.com/technet/sysinternals/default.mspx

[5] DLL Export Viewer - http://www.nirsoft.net/utils/dIl _export viewer.html

[6] Microsoft Technet - http://technet.microsoft.com

[7] Open Source Microsoft Windows API - http://source.winehqg.org/WineAPI/advapi32.html

About the Author

Matthew Lewis is a Security Consultant at Information Risk Management Plc (IRM) where he performs a range of
consultancy services including providing advice to clients on the use of biometrics. Prior to working at IRM,
Matthew spent three years at CESG (the UK Government's Information Assurance arm) researching the security
capabilities of biometric systems and advising Government about their use. Matthew has presented at many

international conferences on the subject of biometrics and co-administered the UK Biometrics Working Group.

About IRM

Information Risk Management Plc (IRM) is a vendor independent information risk consultancy, founded in 1998.
IRM has become a leader in client side risk assessment, technical level auditing and in the research and
development of security vulnerabilities and tools. IRM is headquartered in London with Technical Centres in Europe
and Asia as well as Regional Offices in the Far East and North America. Please visit our website at www.irmplc.com

for further information.

© IRM PLC OCTOBER 2007 Page 11 of 11

