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IOS Exploitation Techniques

I0S EXPLOITATION TECHNIQUES

It has been more than a year since Michael Lynn first demonstrated a reliable code execution exploit on Cisco I0S
at Black Hat 2005. Although his presentation received a lot of media coverage in the security community, very little
is known about the attack and the technical details surrounding the 1I0S check_heaps() vulnerability. This paper is
a result of research carried out by IRM to analyse and understand the check_heaps() attack and its impact on
similar embedded devices. Furthermore, it also helps developers understand security-specific issues in embedded
environments and developing mitigation strategies for similar vulnerabilities. The paper primarily focuses on the
techniques developed for bypassing the check heaps() process, which has traditionally prevented reliable
exploitation of memory-based overflows on the IOS platform. Using inbuilt I0OS commands, memory dumps and
open source tools IRM was able to recreate the vulnerability in a lab environment. The paper is divided in three
sections, which cover the ICMPv6 source-link attack vector, IOS Operating System internals, and finally the

analysis of the attack itself.

ICMPv6 Router Solicitation source-link vulnerability

To understand the check_heaps() vulnerability we first need to analyse the attack vector used for the exploit. It
should be noted that the check_heaps() issue exploited by Lynn was highly vulnerability-dependant, as a specific

memory layout is required in order to successfully exploit this condition.

The vulnerability used to demonstrate the attack was in the implementation of IPv6 ND (Neighbor Discovery)
protocol. The new IPv6 standard introduced the ND protocol, mainly as a replacement for overcoming the design
limitations and problems associated with ARP. The ND protocol is primarily responsible for managing all link
communications between remote hosts via control message exchanges. These messages provide data necessary

for host auto-configuration and utilise ICMPv6 control messages for data exchange.

Without delving into further details of the protocol options, we focus on the ICMPv6 Router Solicitation message
which forms the main attack vector for the check _heaps() vulnerability. For further information about the ND
protocol the reader should refer to RFC 2461.

A Router Solicitation messages is generated when a new host is initialised on a network, in order to generate
immediate Router Advertisement responses. The packet takes a Type Length Value sub option, where Value is a
128 byte source link IPv6 address. This address is used by the router to determine the physical address of the

sending host for generating the correct Router Advertisement responses.

The vulnerability specifically lies in the processing of this sub option, as the length and size fields of the source-link
option are not correctly checked by the Neighbor Discovery parser, which allows an internal I0S pool buffer to
overflow within the heap memory space. From an attacker’s perspective, the vulnerability is quite unique as the
size field controls the amount of heap memory to be allocated for our buffer. It was also observed that the

overflow was a non-string-based overflow which allowed “null” bytes to be sent in the data stream.
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IO0S internals

I0S EXPLOITATION TECHNIQUES

To fully understand the check_heaps() attack we need to familiarise ourselves with the basic I0OS subsystem and
some of the underlying processes. The check_heaps() and watchdog timer are covered below as these process

play a critical role in bypassing the check_heaps() process.

The check_heaps() Process

As I0S does not deploy full virtual memory support unlike most modern operating systems, there is no concept of
process address space segregation for a single running process. This means that all processes share the same
memory space and can modify the contents of memory regardless of the privilege associated with them.
Furthermore, the above scenario also makes it extremely difficult to debug and detect software bugs and memory
leaks in such an environment. As a result, the check_heaps() process was introduced to overcome these problems

and provide programmers with helpful information for tracing memory leaks and overflows under IOS.

Watch Dog Timer

For process debugging support and CPU resource management, IOS implements a process watchdog timer to
detect the presence of unresponsive processes from blocking the CPU resources. When a process is scheduled to
run under IOS, the scheduler starts a watch dog timer for the running process. A timeout value of two seconds is
used by default before the process timer expires at which point a "SYS-3-CPUHOG"” message is generated by the

router.

An execution trace of the Watchdog timer expiry event is shown in figure 1.

%$SYS-3-CPUHOG: Task ran for 4844 msec (0/0), process = Check heaps, PC = 80475E90.

Figure 1: Watch dog timer expiration trace
If the process watchdog timer encounters a second expiry event, the scheduler relinquishes control from the

running process. Based on different I0S configurations and the process priority levels, the process is either

temporarily suspended or simply terminated.
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The I0S check_heaps() Attack

I0S EXPLOITATION TECHNIQUES

The attack involving check_heaps() resulted primarily from design issues in the check_heaps() error logging
functionality and was further exploitable due to the lack of memory protection support between processes. The first
ever known exploit to demonstrate memory based code execution under IOS was researched and developed by FX
of Phenoelit. His technique relied on the fact that an attacker must obtain certain variable values associated with
heap management structures in advance to reliably achieve code execution. This was mainly performed to bypass
the check_heaps() process from detecting memory corruption after an overflow had occurred, which would result
in the router being immediately reloaded, thus thwarting all attempts of a successful buffer overflow attack leading
to arbitrary code execution. Further information on his techniques is documented in his excellent paper on I0S

buffer overflow exploitation in Phrack 60 article “Burning the bridge”.

Like all modern operating systems, I0S implements functionality for logging debugging information in the event of
a system crash using inbuilt logging capabilities. The check_heaps() process utilises these functions for logging
crash-related information after detecting a corrupt memory block. Following is a list of checks performed by

check_heaps() before the router is reloaded
e Check and log the process which called the check_heaps() function
. Log all events related to the memory corruption which includes the particular process trace

. Finally, reboot I0S, based on the switch configuration register, either in "ROMMON” mode or normal

configuration

As noted above, the first check performed by IOS determines the process which invoked check_heaps() to flag a
memory corruption. This is performed by initialising a Boolean variable which is initially set to zero. For simplicity,
let us call this variable crashing_already, as described in Lynn’s presentation. When the check_heaps() process
initiates a crash sequence, it checks whether this variable is set to a non-positive value before passing control to
the crash logging and debugging functions within the check_heaps() functionality. If crashing_already has
previously been set to a positive value, the check_heaps() function simply returns to the caller. This has been
implemented as a failsafe mechanism to avoid two concurrent processes from crashing simultaneously, which

would otherwise make these error conditions difficult to detect and debug.

As mentioned previously, one of the main motivations for bypassing the check heaps() process was to achieve
exploit reliability, while at the same time maintaining access to the system without crashing the device. From an
attacker’s perspective, the above mechanism can be exploited to achieve this scenario by changing the value of the
crashing_already variable to a non-zero value. In a default configuration, when the check_heaps() process detects
a memory corruption, it tries to gracefully shutdown the router. However as the crashing_already variable is
marked to indicate a crash in progress, every instance of check_heaps() would simply return true when an attacker

initiated overflow is detected.

Figure 2 shows a flow chart of the check_heaps() process.
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Figure 2: The check_heaps() process flow

Now that we know how check_heaps() can be bypassed, we can demonstrate the above by overwriting the

crashing_already flag using the following two techniques:
e Uncontrolled pointer exchange overwrite
e  Kernel timer structure linked lists overwrite
Uncontrolled pointer exchange technique

As the check_heaps() process thoroughly checks the heap “PREVIOUS” pointer to verify memory integrity of the
freeing chunk, we can only overwrite up until the "NEXT” pointer in the heap management structure. This provides
the opportunity to overwrite an arbitrary value in the user-supplied address when the memory chunk is unlinked.
Using this technique an attacker can overwrite the address of crashing_already in the “NEXT” pointer, which will

result in an arbitrary non-zero value being written to the variable when the chunk is unlinked.
Kernel timer structure linked lists overwrite

A recent Cisco security advisory describes a fix in the operating system timers which allowed code execution on
I0S. While debugging the ICMPv6 vulnerability, it was observed that similar error messages were generated
related to timer issues. One such error message generated by the crashing device was the “SYS-3-MGDTIMER”
error which was further analysed. As shown in figure 3, the address in the error code (0x82FCBB18) is a pointer to

the system timer structure, which remained constant during the tests. Once this was confirmed, several triggers

© IRM PLC JUNE 2007 Page 5 of 9



1 n InformationRiskManagement

were generated by overwriting specific elements of the timer data structure. Using this technique, the crash dumps

I0S EXPLOITATION TECHNIQUES

were collected and analysed, all returning similar error messages related to timer structure corruption. Figure 3

shows some of the timer errors captured during the test.

#*Mar 1 00:02:49.515: $SYS-3-MGDTIMER: Uninitialized timer, timer stop, timer = 82FCBB18.
#-Process= "IPv6 ND", ipl= 0, pid= 133

#-Traceback= 80477D34 80478E10 817AE1CC 8048F680 80492BC8

#*Mar 1 00:02:54.499: $%$SCHED-3-UNEXPECTEDTIMER: Unknown timer expiration, timer = 82FCBB18,
type 16705.

#-Process= "IPv6 ND", ipl= 0, pid= 133

#-Traceback= 817AE1C4 8048F680 80492BC8

#*Mar 1 00:00:39.911: %$SYS-3-MGDTIMER: Timer not a leaf, set_exptime, timer = 82FCBB18.
#-Process= "IPv6 Input", ipl= 0, pid= 84

#-Traceback= 80477D78 80478500 80478610 817AA414 817AC184 817ACEB4 817B48C4 817B1CCC 817B1FBO
817B18F4 817B13BC 817B8F24 80488

#*Mar 1 00:00:44.895: %SCHED-3-STUCKMTMR: Sleep with expired managed timer 0, time O0xAF64
(00:00:00 ago) .

#-Process= "IPv6 ND", ipl= 6, pid= 133

#-Traceback= 8047FEFC 804802BC 817AE060 8048F680 80492BC8

#*Mar 1 00:04:42.023: %$SCHED-3-UNEXPECTEDTIMER: Unknown timer expiration, timer = 82FCBB1S,
type 16705.

#-Process= "IPv6 ND", ipl= 0, pid= 133

#-Traceback= 817AE1C4 8048F680 80492BC8

#*Mar 1 00:04:47.039: $SYS-3-MGDTIMER: Uninitialized timer, timer stop, timer = 82FCBB18.
#-Process= "IPv6 ND", ipl= 0, pid= 133

#-Traceback= 80477D34 80478E10 817AE1CC 8048F680 80492BC8

Figure 3: Captured timer errors

The data surrounding the timer pointer was further analysed using the show memory and show context
commands. The memory dump revealed (Refer to Figure 4) these addresses pointed to similar structures in

memory, suggestive of an I0S timer linked list data structure.

#82FCBB10: 00000000 82FCBB18 ..... I8 o
#82FCBB20: 82D89218 82FCBAE8 00000000 004B4760 .X...|:h..... KG"
#82FCBB30: 00014240 00000000 00000000 004B33D8 ..B@......... K3X
#82FCBB40: 00000000 004B33D8 00000004 00000000 ..... K3¥oooocooo

#82FCBB50: 00000000 00000000 00000000 00000000 ....uuvvvnnonn...
#82FCBB60: 00000000 00000000 00000000 00000000 ....vvvennenn...
#82FCBB70: 00000000 00000000 00000000 00000000 ....uvvennonn...
#82FCBB80: 00000000 00000000 00000000 00000000 ....uvvennenn...

Figure 4: Memory dump indicating timer linked list data structure

I0S system timers are similar to the UNIX timer implementation and managed in a linked list for some particular

processes. By overwriting the timer linked list with attacker supplied data, it might be possible to achieve code
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execution, which was tested my manipulating these addresses. It was observed that the fourth element of the

I0S EXPLOITATION TECHNIQUES

timer structure was processed by IOS and modified by some timer functions. To test this, the structure was
replaced by the address of the crashing_already address using the ICMPv6 vulnerability as an overflow vector. It
was observed that this structure was later processed by IOS resulting in the crashing_already address to change
into a positive number. When the check _heaps() process detected memory corruption due to our overflow, the
router initiated the crashing process. However as the crashing_already variable had been overwritten, after
dumping the contents of the memory, it resumed normal operation without rebooting the router. A screenshot of

the router console output is attached in Appendix A.

It should be noted that this technique was only used to demonstrate the bypassing of the check_heaps() process.
Furthermore, it is possible to exploit these timer structures by overwriting context pointers and callback
information to achieve complete code execution; however details regarding this are beyond the scope of this

paper.

Conclusions

The check_heaps() vulnerability was mainly due to design issues and further exploitable due to the lack of memory
protection support between processes. Many embedded system vendors still rely on choosing performance and
speed over security. As more and more “intelligence” is built into consumer and commercial devices using
embedded operating systems and software, the more significant these potential vulnerabilities may become.
Therefore, embedded systems vendors need to be aware of the potential attacks against their systems and the fact
that many hackers are getting bored with researching traditional operating systems and are turning to embedded

devices for a new challenge.
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Appendix A

I0S EXPLOITATION TECHNIQUES

fattack#

fattack#

#*Mar 1 00:01:53.043:
82FCBB18.

#-Process= "IPv6 Input", ipl= 0, pid= 84

#-Traceback= 80477DBC 80478090 80478508 80478610 817AA414 817AC184 817ACEB4 817B48C4
817B1CCC 817B1FBO 817B18F4 817B13BC 817B8F24 8048F680 80492BC8

%$SYS-3-MGDTIMER: Parent is a leaf, set_exptime_internal, timer

ff========= Dump bp = 82FC895C

#

#82FC885C: 82FC8868 82B24504 82E90FF8 82FC8858 82FC8878 82B244D0 82E90FF8 82FC8868
#82FC887C: 82FC8888 82B2449C 82E90FF8 82FC8878 82FC8898 82B24468 B82E90FF8 82FC8888
#82FC889C: 82FC88A8 82B24434 82E90FF8 82FC8898 82FC88B8 82B24400 82E90FF8 82FC88AS8
#82FC88BC: 82FC88C8 82B243CC 82E90FF8 82FC88B8 82FC88D8 82B24398 B82E90FF8 82FC88CS8
#82FC88DC: 82FC88E8 82B24364 82E90FF8 82FC88D8 82FC88F8 82B24330 82E90FF8 82FC88ES
#82FC88FC: 82FC8908 82B242FC 82E90FF8 82FC88F8 82FC8918 82B242C8 82E90FF8 82FC8908
#82FC891C: 82FC8928 82B24294 82E90FF8 82FC8918 82FC8938 82B24260 82E90FF8 82FC8928
#82FC893C: 82FCT7EEQ 82B24228 82E90FF8 0 0 0 0 FDO110ODF
#82FC895C: AB1234CD 54 8334B7CC 826282B4 817AATB8 82FCBBB8 82FC8368 8000191A
#82FC897C: 2 0 0 0 0 0 0 40
#82FC899C: 60 700080 S5F 1 1 S5F 5C 210000
#82FC89BC: 82CE7B2C 49507636 204E4420 7461626C 65000000 82FC8B58 82FCBB58 82FC8B68
#82FC89DC: 82FC8BE8 82FC8C68 82FC8CE8 82FC8D68 82FCB8DE8 82FC8E68 82FC8EE8 82FC8F68
#82FC89FC: 82FC8FE8 82FC9068 82FC90E8 82FC9168 82FC91E8 82FC9268 82FC92E8 82FC9368
#82FC8A1C: 82FC93E8 82FC9468 82FC94E8 82FC9568 82FC95E8 82FC9668 82FC96E8 82FC9768
#82FC8A3C: 82FC97E8 82FC9868 82FC98E8 82FC9968 82FC99E8 82FC9A68 82FC9AE8 82FCI9B68
f========= Dump bp->next = 82FCBBBS

#

#82FCBABS : 0 0 0 0 0 0 0 0
#82FCBAD8: 15A3C78B 1 817AA860 82FC8984 0 830FF914 20000001 10001
#82FCBAFS8: 2112FFF FEl4E6F2 1414141 44444444 44444444 A4444444 44444444 44444444
#82FCBB18: 0 82FCBB18 82FCBAE8 828DD61B 0 294E794 14240 0
#82FCBB38: 0 20202020 0 1B998 3 BBBBBBBB CCCCCCCC 80818283
#82FCBB58: 80CBB76 808A8B8C 51515151 52525252 20 828DD684 828DD684 828DD634
#82FCBB78: 828DD684 828DD684 828DD684 828DD684 828DD684 828DD684 828DD684 828DD684
#82FCBB98: 828DD684 828DD684 828DD684 828DD684 828DD684 828DD684 828DD684 FDO111DF
#82FCBBB8: AB1234CD FFFFFFFF 0 81DA6944 80487020 82FCBC10 82FC8970 80000018
#82FCBBD8: 1 0 832BDE14 BB8 A2C 82466764 0 0
#82FCBBF8: 0 0 0 0 0 FDO110DF AB1234CD FFFFFFFE
#82FCBC18: 0 81DA7020 80484554 82FCC40C 82FCBBCC 800003EA 1 8046650C
#82FCBC38: 82FCC434 83460658 0 0 83032FES 64 77 coooc
#82FCBC58: 0 1115 1115 1E C 10000 82CE7B2C 52656720
#82FCBC78: 46756E63 74696F6E 20310000 82FCBE68 82FCC3FC 82FCBE68 82FCBE74 82FCBES80
#82FCBC98: 82FCBE8C 82FCBE98 82FCBEA4 82FCBEBO 82FCBEBC 82FCBEC8 82FCBED4 82FCBEEOQ
#========== Dump bp->previous = 82FC8368

#

#82FC8268: 82B235FC 82E90FF8 82FC8260 82FC8280 82B235C8 82E90FF8 82FC8270 82FC8290
#82FC8288: 82B23594 82E90FF8 82FC8280 82FC82A0 82B23560 82E90FF8 82FC8290 82FC82B0
#82FC82A8: 82B2352C 82E90FF8 82FC82A0 82FC82C0 82B234F8 82E90FF8 82FC82B0 82FC82DO0
#82FC82C8: 82B234C4 82E90FF8 82FC82C0O 82FC82E0 82B23490 82E90FF8 82FC82D0 82FC82F0
#82FC82E8: 82B23414 82E90FF8 82FC82E0 82FC8300 82B233E0 82E90FF8 82FC82F0 82FC8310
#82FC8308: 82B233AC 82E90FF8 82FC8300 82FC8320 82B23378 82E90FF8 82FC8310 82FC8330
#82FC8328: 82B23344 82E90FF8 82FC8320 82FC78D8 82B23310 82E90FFS8 0 0
#82FC8348: 0 0 FDO110DF AB1234CD FFFFFFFE 0 82FAF4F0 80476940
#82FC8368: 82FC895C 82FC7D60 800002F0 1 804664F4 0 82FC22FC 82FC776C
#82FC8388: 82FAF328 82FAF4B4 32 46 100010 0 0 0
#82FC83A8: 0 10 830000 82CE7B2C 4C697374 20456C65 6D656E74 73000000

© IRM PLC JUNE 2007 Page 8 of 9




1 n InformationRiskManagement

I0S EXPLOITATION TECHNIQUES

#82FC83C8: 82FC84E8 82FC8948 82FC84E8 82FC84F8 82FC8508
#82FC83E8: 82FC8548 82FC8558 82FC8568 82FC8578 82FC8588
#82FC8408: 82FC85C8 82FC85D8 82FC85E8 82FC85F8 82FC8608
#82FC8428: 82FC8648 82FC8658 82FC8668 82FC8678 82FC8688
#82FC8448: 82FC86C8 82FC86D8 82FC86E8 82FC86F8 82FC8708

#

#

#*Mar 1 00:02:03.043: %SYS-3-MGDTIMER: Uninitialized timer,

828DD64B.

#-Process= "IPv6 ND", ipl= 0, pid= 133

82FC8518
82FC8598
82FC8618

82FC8528
82FC85A8
82FC8628
82FC86A8
82FC8728

82FC8698
82FC8718

timer stop,

#-Traceback= 80477D34 80478E10 817ADB94 817AEQOE4 8048F680 80492BCS8

#*Mar 1 00:02:04.039:
#*Mar 1 00:02:04.039:
#current memory block, bp 0x82FC895C
#memory pool type is Processor

#*Mar 1 00:02:04.039: data check, ptr
#*Mar 1 00:02:04.039:

#next memory block, bp 0x82FCBBBS,
#memory pool type is Processor

validblock_diag

#*Mar 1 00:02:04.039: data check, ptr
#*Mar 1 00:02:04.039:
#previous memory block, bp = 0x82FC835

#memory pool type is Processor
#*Mar 1 00:02:04.039: data check, ptr
#*Mar 1 00:02:08.867:

nose, code 1

’

0x82FC8984

0x82FCBBEO

4,

0x82FC837C

%$SYS-3-OVERRUN: Block overrun at 82FC895C

(red zon

#-Traceback= 8047383C 80470E44 80466510 80475E7C 8048F680 80492BCS8

#*Mar 1 00:02:08.867: $SYS—-6-MTRACE:
# 82FC8984,8046650C 8351C6C0,8046650C
# 832BFFBC,8046650C 831EB8D4,8046650C
#*Mar 1 00:02:08.867: $SYS—-6-MTRACE:
# 8348A6D4,8046650C 834DBD64,8046650C
# 8347833C,8046650C 8346D04C,8046650C
#*Mar 1 00:02:08.867:
alloc 817AA7B8, InUse,

dealloc 0, rfcn

mallocfree: addr,
831ED6C8,8046650C
8349E860,8046650C
mallocfree: addr,
8348B54C, 8046650C
8346CA44,8046650C

%$SYS-6-BLKINFO: Corrupted redzone blk 82FC895C,

t 2

pc
834A0F9C,8046650C
8349C124,8046650C
pc

8347AAT78,8046650C
8345EADC, 8046650C
WO

82FC8538
82FC85B8
82FC8638
82FC86B8
82FC8738

timer

e FDO111DF)

rds 6426,

#-Traceback= 8046A574 8047384C 80470E44 80466510 80475E7C 8048F680 80492BC8

#*Mar 1 00:02:08.871: %$SYS-6-MEMDUMP: 0x82FC895C: 0xAB1234CD 0x54 0x8334B7CC
0x826282B4

#*Mar 1 00:02:08.871: %$SYS—-6-MEMDUMP: 0x82FC896C: 0x817AA7B8 O0x82FCBBB8 0x82FC8368
0x8000191A

#*Mar 1 00:02:08.871: %$SYS-6-MEMDUMP: 0x82FC897C: 0x2 0x0 0x0 0xO0

#*Mar 1 00:02:08.871: %SYS—-3-CPUHOG: Task ran for 4844 msec (0/0), process = Check
heaps, PC = 80475E90.

#-Traceback= 80475E94 8048F680 80492BCS8

fattack#

fattack#

#attackfshow memory 0x828dd684
#%% Low on memory; try again later

#828dd684: 0x00300000 0x00000000 0x000
#%% Low on memory; try again later
#attack#

00000
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