
 1 

Cracking String Encryption in Java Obfuscated Bytecode 
 

subere@uncon.org 
 

November 2006 
 
Abstract 
 
This paper discusses in technical detail the type of String Encryption used by popular java obfuscation 
tools. The main motivation behind this work lies within the identification of attack vectors as well as 
potential entry points of a given obfuscated application. Following a brief introduction, a methodology for 
reverse engineering Java bytecode is presented. We focus on the encryption techniques deployed by the 
following obfuscators: Zelix KlassMaster (version 4.5.0), RetroGuard (version 2.2.0), JShrink (version 
2.3.7) and Dash-O (version 3.2.0). Ways to crack the corresponding levels of String encryption as well as 
potential further attack vectors that such obfuscators might introduce are also examined. The findings of 
this paper show that cracking String encryption within the above obfuscators is a task which can be 
performed even in an automated way. In order to mitigate against the problem a brief proposal is outlined 
stating the need for polymorphic obfuscators that have the ability to select from an algorithm pool 
depending on the type of application as well as the level of obfuscation required.  
 
1. Introduction 
 
The practice of obfuscating intermediate platform independent code, such as Java bytecode or Microsoft 

Intermediate Language (MSIL now CIL1) code often carries an element solely dedicated to the 
“encryption”2 of String values embedded within the code. As the encryption taking place is part of the 
obfuscation process it cannot affect the behaviour of the program or deviate from the original program 
operations. Thus, at runtime, the Virtual Machine needs to be able to reverse any such process of 
encryption within the obfuscated code.  
 
This paper examines standard “decryption” techniques which can be applied to obfuscated Java bytecode 
that has been reverse engineered. As the algorithm and any keys used to encrypt the Strings are 
embedded within the application, a proof of concept is presented whereby the original String 
representations can be decrypted from the obfuscated code. In this analysis, typically the key value does 
get altered while the algorithm deployed stays the same. In order to thus expand on the proof of concept 
scenarios presented within this paper, we have to facilitate the change of keys within the obfuscated code.  
 
Identifying string values within obfuscated code, can assist in the detection of any important parameters 
(such as embedded passwords), in addition to revealing the entry points that could be used as further 
attack vectors on the application using reverse engineering techniques.  
 
Typical patterns involve identifying the areas within the source code where application text is being 
stored. Examples include interface names, error messages as well window and panel labels. Knowing 
which class holds within it, say, the String representation of an error message seen by user, automatically 
helps categorise obfuscated components and classes to user interface elements, architecture classes, data 
holders, etc.  
 
Finally, String encryption can serve as a fingerprinting tool with respect to the obfuscator used. This 
implies that knowing the type of String encryption present could automatically narrow down the expected 
changes in other areas of the code. Such changes would not relate to the String encryption process but to 
other operations of the obfuscator.  
 
Even though obfuscation tools offer a wide selection of options towards altering an application, narrowing 
down the obfuscator and having the ability to understand how it performs on particular code snippets, 
yields further information towards bypassing the obfuscation process for a given application.  
 

                                                 
1 Within early releases of .NET, The Common Intermediate Language (CIL) was originally known as Microsoft Intermediate 

Language (MSIL). Due to standardization of C# and the Common Language Infrastructure (as well as the involvement of non-

Microsoft organisations), the bytecode is now officially known as CIL. This is despite the Phoenix project still using the term MSIL 

(http://research.microsoft.com/phoenix/). Because of this legacy, CIL is still frequently referred to as MSIL, especially by long-

standing users of the .NET framework. 

 
2 Out of respect to the field of cryptanalysis (especially in the vicinity of Cheltenham Spa), crypto terminology used within this paper 

will be initially presented in quotes, as no decent or complex algorithms where identified throughout this project. Obfuscator designers 

have never claimed to use strong crypto; some of them are completely against doing so; still, this footnote aims to serve those who 

might be offended by XOR operations being classified as cryptographic.  



Cracking String Encryption in Java Obfuscated Bytecode subere@uncon.org
 November 2006

 

 2 

2. The process of reverse engineering Java bytecode 
 
Java files which have been written according to the specification of the programming language are 
compiled to bytecode using the java compiler (javac). Unlike .NET java uses 8-bit code known as bytecode 
while .NET uses 16-bit code that can be labelled as wordcode.  
 
In a “Hello World” scenario, let us consider the simple program below and investigate what the 
disassembling process for such a class would be:  
 
package elucidate; 

 

public class PasswordCheck { 

  private static final String password = "ThisIsMyPassword"; 

 

  public static void main(String[] args) { 

    if(args.length != 1) { 

      System.out.println("Please supply argument as password"); 

      System.exit(1); 

    } 

    if(args[0].equals(password)) 

      System.out.println("Password Correct!"); 

    else 

      System.out.println("Password Error"); 

  } 

} 

 

 
This program checks the single argument provided by the user against a hardcoded password; depending 
on the value entered it notifies the user. As any first year Computer Science student can tell you, using 
the java compiler on the source code files yields the corresponding class file, which can then be executed 
as follows: 
 
$> java elucidate.PasswordCheck MyArgument 

Password Error 

 

$> 

 

Creating the corresponding jar file for the class yields: 
 

$> jar cvfm PasswordCheck.jar elucidate\MANIFEST.MF elucidate\PasswordCheck.class 

added manifest 

adding: elucidate/PasswordCheck.class(in = 634) (out= 413)(deflated 34%) 

 

$> java -jar PasswordCheck.jar MyArgument 

Password Error 

 

$> 

 
Despite the fact that any class file holds a binary representation of the corresponding compiled bytecode, 
Sun Microsystem’s Java Development Kit (JDK) includes a class file dissassembler (javap) which offers the 
ability to effectively disassemble class files into syntactically valid java bytecode statements.  
 
$> javap -c elucidate.PasswordCheck 

Compiled from "PasswordCheck.java" 

public class elucidate.PasswordCheck extends java.lang.Object{ 

public elucidate.PasswordCheck(); 

  Code: 

   0:   aload_0 

   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V 

   4:   return 

 

public static void main(java.lang.String[]); 

  Code: 

   0:   aload_0 

   1:   arraylength 

   2:   iconst_1 

   3:   if_icmpeq       18 

   6:   getstatic       #2; //Field java/lang/System.out:Ljava/io/PrintStream; 

   9:   ldc     #3; //String Please supply argument as password 



Cracking String Encryption in Java Obfuscated Bytecode subere@uncon.org
 November 2006

 

 3 

   11:  invokevirtual   #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V 

   14:  iconst_1 

   15:  invokestatic    #5; //Method java/lang/System.exit:(I)V 

   18:  aload_0 

   19:  iconst_0 

   20:  aaload 

   21:  ldc     #6; //String ThisIsMyPassword 

   23:  invokevirtual   #7; //Method java/lang/String.equals:(Ljava/lang/Object;)Z 

   26:  ifeq    40 

   29:  getstatic       #2; //Field java/lang/System.out:Ljava/io/PrintStream; 

   32:  ldc     #8; //String Password Correct! 

   34:  invokevirtual   #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V 

   37:  goto    48 

   40:  getstatic       #2; //Field java/lang/System.out:Ljava/io/PrintStream; 

   43:  ldc     #9; //String Password Error 

   45:  invokevirtual   #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V 

   48:  return 

 

} 

 

 

$> 

 
Note that in the above example, String values are included as comments within the disassembled code. 
Often, compiling the source code without any debug information prevents this from happening. In his book 
“Hacking Exposed J2EE & Java”, Art Taylor describes this as a generic countermeasure that should be 

taken during compilation: 
 
$> javac -g:none elucidate\PasswordCheck.java 

 
In the case of the java compiler, using the above command to generate the class files still yields their 
corresponding String values when this file is disassembled.  
 
Provided an attacker is willing to allocate enough time and resources into understanding specifications of 
the Java bytecode, virtually any class file can be reverse engineered into disassembled bytecode 
statements using the above technique. 
 
In addition to the approach of reverse engineering Java bytecode through the process of disassembling 
the file into valid bytecode statements, there is also the more popular approach of attempting to obtain a 
version of the corresponding source code from the class file. 
 
In order to gain meaningful results from the decompilation process correct tools must be used. Using the 
right decompiler can produce source code that is as almost an exact copy of the original source from 
which the class file was generated. 
 
There are many decompiler tools available for java class files. In his book “Covert Java”, Alex Kalinovsky 
offers a brief review of the following three Java decompilers, giving them a ranking of excellent or fair: 
 

• JAD (Free for non-commercial use) / Excellent 

• JODE (GNU Public license) / Excellent 
• Mocha (Free) / Excellent 

 
For the purposes of this paper, the investigation and selection of a decompilation tool is left as an exercise 
for the reader. Using such a tool will speed up the process of cracking the encryption on any obfuscated 
code, mainly due to not having to interpret virtual machine statements.  
 
Typically, decompilers tend to not provide source code that can be recompiled without any further 
modifications. This is a cross derivative of how well a decompiler supports advanced features of java, such 
as inner classes and javax packages.  
 
Parsing our original class file through our selected decompiler yields: 
 
package elucidate; 

import java.io.PrintStream; 

public class PasswordCheck { 

    private static final String password = "ThisIsMyPassword"; 

    public static void main(String[] array1) 

    { 



Cracking String Encryption in Java Obfuscated Bytecode subere@uncon.org
 November 2006

 

 4 

        if( array1.length != 1 ) 

        { 

            System.out.println( "Please supply argument as password" ); 

            System.exit( 1 ); 

        } 

        if( array1[0].equals( "ThisIsMyPassword" ) ) 

            System.out.println( "Password Correct!" ); 

        else 

            System.out.println( "Password Error" ); 

    } 

} 

 
Thus, we have demonstrated two ways, one through disassembly and the other through decompilation of 
recovering the embedded password of the simple program above. 
 
Obfuscation techniques aim to further complicate this process by breaking down compiled code into 
something that is less meaningful to the human programmer (bytecode), which still executes in exactly 
the same way through the Java Virtual Machine. As the next section shows they also use a number of 
techniques to further limit the exposure of any string values within the code. 
 
3. Embedded String values and Obfuscation 
 
For the purpose of cracking String encryption in Java, choosing a decompiler that has the ability to provide 
valid source code is not critical. Ultimately, we are looking for a signature pattern that provides the 
following information: 
 

• The obfuscator used 
• The encryption technique (algorithm) 
• The value of any key used in the algorithm 

 
The latter two points bypass the need to know what obfuscator has been used. Inversely, knowing which 
obfuscator was used and the encryption techniques that it uses allow us to proceed directly into the 
decryption phase.  
 
The remainder of this section presents the encryption techniques used by known obfuscation tools. Again, 
using Alex Kalinovsky’s Covert Java as a guide, we present the most popular obfuscators for Java as 
described in the book. These are: 
 

• Zelix KlassMaster 
• Retro Guard 
• JShrink 
• Dash-O 

 
We will investigate each one separately in an attempt to identify the type of String Encryption used in 
each one. 
 
4. Zelix KlassMaster 
 

Zelix KlassMaster (version 4.5.0) offers three methods for encrypting String literals: Normal, Aggressive 
and Flow Obfuscate. The algorithm used for all three appears to be identical. Yet, the keys used change at 
every obfuscation attempt. This program will also trim any final static values identified and has a number 
of features that can be combined together. This makes obfuscated source code from Zelix much harder to 
be interpreted by a decompiler.  
 
Having used the most paranoid settings within Zelix KlassMaster (trimming, deleting attributes, aggressive 
control flow obfuscation, etc.) we attempt to recover the value of the password in our original test 
program. Parsing the obfuscated file of PasswordCheck.class through the javap dissassembler yields the 
following string values: 
 
   6: ldc #8; //String ,bw:)�q`i��qv,=�\" 

   14: ldc #6; //String (km:��N}�?�ps&,� 

   22: ldc #3; //String ,oa(-↓#w<.♀o}i?♫dq$;↕w$(-\se:-♂lv- 

   30: ldc #9; //String ,bw:)‼q`i←♫qk; 

 
 
It is worth noting that this output is in Unicode format. Java has the ability of not only interpreting special 
characters such as \n, but also Unicode octal (\777) as well as Unicode hexadecimal (\FFFF). 



Cracking String Encryption in Java Obfuscated Bytecode subere@uncon.org
 November 2006

 

 5 

 
In its current version, KlassMaster uses a simple XOR encryption algorithm to encrypt each character 
within a given string against a five character key. Within the obfuscated code, two methods are typically 
embedded inside the class containing String values. The first is the encryption method for single 
characters while the second is the encryption method for every String of length greater or equal to 2. This 
method takes an array of characters as its argument. 
 
Having the above description of the algorithm and the encrypted strings, all that remains is to identify the 
key values used. For this, we review the output from parsing the obfuscated file of PasswordCheck.class 
through the javap dissassembler. 
 
Typically, the key values are located after a tableswitch statement which is followed by multiple ixor 
operations. This represents the calls for encrypting each character of the String (or char array) with the 
corresponding key value: 
 
   64: tableswitch{ //0 to 3 

  0: 96; 

  1: 101; 

  2: 105; 

  3: 109; 

  default: 114 } 

   96: bipush 124 

   98: goto 116 

   101: iconst_3 

   102: goto 116 

   105: iconst_4 

   106: goto 116 

   109: bipush 73 

   111: goto 116 

   114: bipush 94 

   116: ixor 

   117: i2c 

 
The key values in the above disassembled output are: 124 3 4 73 94 
 
Indeed, using these values on the previously identified obfuscated Strings yields the following: 
 
Found 4 Strings in file 

Found 5 Keys in file 

 124 3 4 73 94 

Deciphering... 

-Original: ,bw:)‼q`i↔‼qv," 

->Decoded: Password Correct! 

-Original: (km:↨☼N}↓?☼ps&,↑ 

->Decoded: ThisIsMyPassword 

-Original: ,oa(-↓#w<.♀o}i?♫dq$;↕w$(-\se:-♂lv- 

->Decoded: Please supply argument as password 

-Original: ,bw:)‼q`i←♫qk; 

->Decoded: Password Error 

 
The makers of Zelix KlassMaster have defended the use of a weak algorithm in their obfuscation product. 
This implementation may be revisited in  future versions of the product. 
 
5. JShrink 
 
JShrink (version 2.3.7) uses a different approach to the encryption of string values. It creates a new file 
which stores an encrypted version of all the String values found within a specified class. This file is stored 
in a newly created package (directory) which also holds the corresponding class with the algorithm used to 
decrypt the parts of the file corresponding to a particular String.  
 
Using the javap dissassembler on the obfuscated version of the PasswordCheck.class file reveals that 
there are no further String values embedded within the code. 
 
Compiled from elucidate.PasswordCheck 

public class elucidate.PasswordCheck extends java.lang.Object{ 

public elucidate.PasswordCheck(); 

  Code: 

   0:   aload_0 



Cracking String Encryption in Java Obfuscated Bytecode subere@uncon.org
 November 2006

 

 6 

   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V 

   4:   return 

 

public static void main(java.lang.String[]); 

  Code: 

   0:   aload_0 

   1:   arraylength 

   2:   iconst_1 

   3:   if_icmpeq       20 

   6:   getstatic       #2; //Field java/lang/System.out:Ljava/io/PrintStream; 

   9:   iconst_1 

   10:  invokestatic    #48; //Method I/I.I:(I)Ljava/lang/String; 

   13:  invokevirtual   #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V 

   16:  iconst_1 

   17:  invokestatic    #5; //Method java/lang/System.exit:(I)V 

   20:  aload_0 

   21:  iconst_0 

   22:  aaload 

   23:  bipush  62 

   25:  invokestatic    #48; //Method I/I.I:(I)Ljava/lang/String; 

   28:  invokevirtual   #7; //Method java/lang/String.equals:(Ljava/lang/Object;)Z 

   31:  ifeq    48 

   34:  getstatic       #2; //Field java/lang/System.out:Ljava/io/PrintStream; 

   37:  bipush  79 

   39:  invokestatic    #48; //Method I/I.I:(I)Ljava/lang/String; 

   42:  invokevirtual   #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V 

   45:  goto    59 

   48:  getstatic       #2; //Field java/lang/System.out:Ljava/io/PrintStream; 

   51:  bipush  97 

   53:  invokestatic    #48; //Method I/I.I:(I)Ljava/lang/String; 

   56:  invokevirtual   #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V 

   59:  return 

 

} 

 
From the above, two things become apparent. Firstly, extensive trimming has taken place on the static 
final value of the password and secondly, any statement that involved a string value has been replaced by 
a method call within the newly created package. Method I.I.I appears to be taking an integer as input. 
 
Parsing the class file using the decompiler provided with the obfuscator, provides the following code: 
 
package elucidate; 

 

import java.io.PrintStream; 

 

public class PasswordCheck { 

 

    private static final String password = "ThisIsMyPassword"; 

 

    public static void main(String[] String_1darray1) 

    { 

        if( String_1darray1.length != 1 ) 

        { 

            System.out.println( I.I.I( 1 ) ); 

            System.exit( 1 ); 

        } 

        if( String_1darray1[0].equals( I.I.I( 62 ) ) ) 

            System.out.println( I.I.I( 79 ) ); 

        else 

            System.out.println( I.I.I( 97 ) ); 

    } 

} 

 
Thus, we need to focus our attention on the newly created package and its corresponding elements. 
 
One of the new files within the ‘I’ package has as name I.gif. However, this file is not an image file. By 
examining the contents of the file, we can see that it does not have a valid GIF header: 
 
00000000h: 00 00 6F 53 6F 6E 6D 6C 6B 6A 69 68 6F 57 6F 56 ; ..oSonmlkjihoWoV 

00000010h: 67 66 65 64 63 62 61 60 6E 57 6E 56 7F 7E 7D 7C ; gfedcba`nWnV�~}| 



Cracking String Encryption in Java Obfuscated Bytecode subere@uncon.org
 November 2006

 

 7 

00000020h: 7B 7A 6F 6E 6D 6C 6B 6A 69 68 6F 57 6F 56 67 66 ; {zonmlkjihoWoVgf 

00000030h: 65 64 63 62 61 60 6E 57 6E 56 7F 7E 7D 7C 7B 7A ; edcba`nWnV�~}|{z 

00000040h: 7F 3B 07 06 1C 26 1C 22 16 3F 0E 1C 1C 18 00 1D ; �;...&.".?...... 

00000050h: 0B 7E 3F 0E 1C 1C 18 00 1D 0B 4F 2C 00 1D 1D 0A ; .~?.......O,.... 

00000060h: 0C 1B 4E 61 3F 0E 1C 1C 18 00 1D 0B 4F 2A 1D 1D ; ..Na?.......O*.. 

00000070h: 00                                              ; . 

 
Decompiling the file I.class which holds the encryption information yields: 
 
public class I { 

 

  static byte[] SDQU; 

  static String[] append = new String[256]; 

  static int[] close = new int[256]; 

 

  public static synchronized final String I(int int1){ 

    int int2 = int1 & 0xFF; 

    if( close[int2] != int1 ) { 

      String String3; 

      close[int2] = int1; 

      if( int1 < 0 ) { 

        int1 = int1 & 0xFFFF; 

        String3 = new String( SDQU, int1, SDQU[int1 - 0x1] & 0xFF ).intern(); 

        append[int2] = String3; 

      } 

      return append[int2]; 

    } 

 

    static { 

      try { 

        Object Object1 = new I().getClass().getResourceAsStream( "" + 'I' + '.' + 'g' + 

'i' + 'f' ); 

        if( Object1 != null ) { 

          int int2 = ((InputStream) Object1).read() << 0x10 | ((InputStream) 

Object1).read() << 0x8 | ((InputStream) Object1).read(); 

          int int3; 

          byte byte4; 

          byte[] byte_1darray5; 

 

          SDQU = new byte[int2]; 

          int3 = 0; 

          byte4 = (byte) int2; 

          byte_1darray5 = SDQU; 

          while( int2 != 0 ) { 

            int int6 = ((InputStream) Object1).read( byte_1darray5, int3, int2 ); 

 

            if( int6 == -1 ) 

            break; 

            int2 -= int6; 

            int6 += int3; 

            while( int3 < int6 ) { 

              byte_1darray5[int3] = (byte) (byte_1darray5[int3] ^ byte4); 

              ++int3; 

            } 

          } 

          ((InputStream) Object1).close(); 

        } 

      } 

      catch( Exception Exception7 ) { } 

    } 

} 

 
The above represents the encryption technique used within the current version of JShrink in order to 
encrypt any non static final String values. 
 
The contents of I.gif are read from file using a static method. Note the caution taken to split up the 
filename into individual characters. Furthermore, note the operations taking place within the read process 
that is responsible for creating the array of values used by the synchronised method ‘I’. 
 



Cracking String Encryption in Java Obfuscated Bytecode subere@uncon.org
 November 2006

 

 8 

From an attacker’s perspective, the newly created package can be treated as a ‘black box’. As the 
encryption algorithm is provided within an accessible method, all that is needed are the integer arguments 
to any String function call. Understanding the above algorithm is not necessary in order to decrypt any 
String values that have been obfuscated by JShrink. Still, for completeness, this is included above. 
 
In spite of offering a completely different approach to encrypting String values, JShrink introduces a 
vulnerability in its current method of encryption. 
 
Any call to method I with an argument other than the integer values used, causes an exception to be 
thrown, as the String index appears to be out of bounds for the decryption operation performed. 
 
If we look at the method calls in the decompiled PasswordCheck.class file, these are: 
 
    System.out.println(I.I(1)); 

    System.out.println(I.I(62)); 

    System.out.println(I.I(79)); 

    System.out.println(I.I(97)); 

 
Adding the following print statements within the application: 
 
    System.out.println(I.I(56)); 

    System.out.println(I.I(80)); 

    System.out.println(I.I(62)); 

 
Causes the following exception to be thrown: 
 
Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index out of 

range: 160 

        at java.lang.String.checkBounds(Unknown Source) 

        at java.lang.String.<init>(Unknown Source) 

        at I.I.I(I.java:26) 

        at elucidate.RetrieveStrings.main(RetrieveStrings.java:13) 

 
Fortunately, this is not a language such as C, as that would imply that any obfuscated code by this 
application would potentially be vulnerable to a buffer overrun. Still, the damage is done. 
 
6. RetroGuard 
 
RetroGuard (version 2.2.0) does not offer String encryption in the obfuscation process. 
 
7. Dash-O 
 
Dash-O (version 3.2.0) uses a similar approach to encrypting any embedded Strings as that of Zelix 
KlassMaster. Essentially, a method is invoked within the class files, taking as argument String and 
returning String. This method is typically called A_B_C_D and has the format seen below: 
 
 
    public static String A_B_C_D(String s) 

    { 

        char ac[] = new char[s.length()]; 

        s.getChars(0, s.length(), ac, 0); 

        char c = '\0'; 

        for(int i = 0; i < ac.length; i++) 

            ac[i] = (char)(ac[i] - 1 ^ c++); 

 

        return new String(ac); 

    } 

 

Thus, a typical call to the method would be of the form: 
 

 

A_B_C_D("!\"#$%&'()*+mdzb0P^"); 

 

Such code has the following bytecode signature: 
 
280: invokestatic    #230; //Method A_B_C_D:(Ljava/lang/String;)Ljava/lang/String; 

 



Cracking String Encryption in Java Obfuscated Bytecode subere@uncon.org
 November 2006

 

 9 

As it can be seen from the code above, this method performs basic XOR on each character of the input 
String against an incrementing character value. Despite the fact that a single algorithm is used to encrypt 
String values with this version of Dash-O, a number of variations on the above can be obtained, 
depending on the level of obfuscation (through other parameters) applied to the original code. As a result, 
the above method can also be found embedded within a separate class in the following form: 
 
    public static String A_B_C_D(String s) 

    { 

        char ac[] = new char[s.length()]; 

        s.getChars(0, s.length(), ac, 0); 

        char c = '\0'; 

        int i = 0; 

        do 

        { 

            if(i >= ac.length) 

                return new String(ac); 

            ac[i] = (char)(ac[i] - 1 ^ c++); 

            i++; 

        } while(true); 

    } 

 

The underlying algorithm stays the same; simply the for loop, which has a well known bytecode 
representation is replaced with a do-while statement using an incremental integer counter to reach the 
return state. As with other obfuscators, Dash-O does not perform any encryption on String literals that 
have been declared static and final.  
 

8. Conclusions 
 
Obfuscation as a process, aims to make code harder to understand when reverse-engineered. As this 
process should have no effect on the functionality of code, it is by definition a reversible process. What 
popular obfuscators aim to achieve is an increase in the amount of time required in order to reverse 
engineer the code.  
 
As seen with encrypted String literals within Java bytecode, typically the encryption process (algorithm) 
stays the same. This not only allows for an attacker to easily decrypt any Strings, but also yields the 
obfuscator tool that has been used in the process.  
 
With the increase in use of bytecode languages, obfuscator tools will require to carry a certain degree of 
polymorphism regarding the algorithms and processes they deploy.  
 
Polymorphism would be defined with respect to obfuscation as the ability to select and cross-combine the 
algorithms of obfuscation used from a pool of available algorithms. This selection process would be 
dependant on the required level of security for the given application.  
 
In order to establish a quantitative, but not definite measure, the level of security offered by the usage of 
an algorithm during obfuscation would be inversely proportional to the level of previous known usage of 
the algorithm for the similar obfuscation processes. This would yield that the pool of algorithms is not 
publicly available and that different operations of an obfuscator at different times produce distinct results.  
 
Such polymorphism should allow for the random selection of particular obfuscation techniques (including 
String encryption) depending on the type of application, as well as the permitted level of exposure (in 
terms of time) to reverse engineering. Despite of this effectively going against Kerckhoffs' principle (also 
known as Shannon’s maxim) stating that all information apart from the key should be made available to 
an attacker, obfuscation as a process falls more in the category of “security through obscurity” and should 
be treated as such. As a result the levels of obscurity introduced should change dynamically and 
depending on the type of source code, thus leading to polymorphic obfuscation techniques.  
 


