
ARC: A Synchronous Stream Cipher from Hash

Functions

Angelo P. E. Rosiello
Roberto Carrozzo

22nd December 2005

Copyright 2005 c© Rosiello Security

Permission to make digital or hard copies of all or part of this work for personal
use is granted without fee provided that copies are not made for pro�t or commercial
advantage and that copies bear this notice and the full citation on the �rst page. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee.

Copyright 2005 c© Obsidis n◦1 22/12/2005

1

Contents

1 Basic Notions 3
1.1 Algorithm Requirements . 4
1.2 Areas of Application . 4

2 Vision 5
2.1 The perfect algorithm . 5
2.2 ARC: Overview . 6

3 Design of the Algorithm 6
3.1 Generation of the key . 6

3.1.1 The function HMAC . 6
3.1.2 Stream cipher's key . 7

3.2 Generation of the keystream . 7

4 Security Analysis 8
4.1 One-time pad compare . 8
4.2 Hash Function Properties . 9
4.3 Stream cipher's key . 11
4.4 Keystream: Keyed hash function . 12
4.5 Keystream: A very lucky attacker 13

5 Conclusions 14

2

Abstract

We consider a simple and secure way to realize a syn-
chronous stream cipher from iterated hash functions. It is
similar to the OFB mode where the underlying block cipher
algorithm is replaced with the keyed hash function, adopt-
ing the secret su�x method[20]. We analyzed the key, the
keystream and the necessary properties to assume from the
underlying hash function for the stream cipher to be consid-
ered secure. Motivated by our analysis we conjecture that
the most e�cient way to break the proposed stream cipher
is to break the hash function or through exhaustive search
for the keyspace K of k bits, that requires O(2k) operations.

Keywords : stream cipher, key, keystream, one-time pad cryp-
tosystem, hash function, keyed hash function.

1 Basic Notions

Stream Cipher Stream ciphers are an important class of encryption
algorithms. They encrypt individual characters (usually binary
digits) of a plaintext message one at a time, using an encryption
transformation which varies with time.

Keystream A stream cipher generates what is called a keystream (a
sequence of bits used as a key) usually to be XOR-ed with the
plaintext or the ciphertext.

Synchronous Stream Cipher A synchronous stream cipher is one
in which the keystream is generated independently of the plain-
text message and of the ciphertext.

One-Time Pad A one-time pad is a cryptosystem that uses a string
of bits that is generated completely at random. The keystream is
the same length as the plaintext message and the random string
is combined using bitwise XOR with the plaintext to produce the
ciphertext.

Hash Function A hash function (in the unrestricted sense) is a func-
tion h which has, as a minimum, the following two properties[18]:
1. compression - h maps an input x of arbitrary �nite bitlength,

to an output h(x) of �xed bitlength n.
2. ease of computation - given h and an input x, h(x) is easy

to compute.
Keyed Hash Function A keyed hash function is a hash function

with a secondary input, the secret key K.

3

MAC A message authentication code (MAC) is an authentication tag
derived by applying an authentication scheme, together with a
secret key, to a message.

1.1 Algorithm Requirements

The algorithm should have a �at keyspace allowing any random bit
string to be a possible key.

The algorithm should make easier the key-management for software
implementations.

The typed password should not become directly the key, else the
actual keyspace is limited to keys constructed with the 95 characters
of printable ASCII1.

The algorithm should be easily modi�able satisfying minimum or
maximum requirements.

Moreover, according to basic engineering software theories, the al-
gorithm does not have to bind developers with static use of pre-de�ned
logical block functions, but it is important to let wide alternatives dur-
ing the implementation of the software[13, 17].

The algorithm should be simple to code, otherwise programmers
could make implementation mistakes if the structure is too complicated[13].

1.2 Areas of Application

Nowadays encrypting information has become a `must`, which means
that a good crypto algorithm must give to the community the possi-
bility to manage safe data.

Practical applications pertain to:

• Bulk Encryption: data �les or a continuous data stream (e.g.
important information saved on hardisks such as databases or
any kind of secret document);

• Data Transmission: a lot of communication mediums need a
secure way to crypt exchanged information (e.g. Internet packets,
wireless connections, radio signals, etc.);

• Small Encryption: banks and commercial companies need se-
cure encryption methodologies to interact with customers by small
encryption technologies.

De�nitely, a good algorithm should be suitable for lots of disparate
situations.

1Non ASCII codi�cations can be considered, too.

4

2 Vision

The paradigm is to approach, as much as possible, to the ideal features
constituting the one-time pad cryptosystem.

2.1 The perfect algorithm

The one-time pad cipher is unconditionally secure as Shannon proved
in his seminal paper[9].

According to the one-time pad cipher design, the length of the key
must be at least as long as the plaintext and it must be completely
random[3, 9].

The Shannon Theorem shows that the one-time pad is secure but
does not express a paradigm for the perfect cryptosystem. We decided
to describe it with the language of �rst order logic[5].

D = N : Domain
x1, x2, x3, x4: messages
⊕: operator2
|x| : |∅| = 0 ∧ |x|.′y′ = |x|+ 1
crypt(x1, x2) : predicate; crypt(x1, x2) ↔ x1⊕ x2
random(x) : predicate3

A1. x1 = x1
A2. x1 = x1 ∧ x2 = x3 → x1 = x3
A3. x1 = x2 ∧ x2 = x1
A4. x1⊕ x2 = x2⊕ x1
A5. x1⊕ x2 = x3 → x2⊕ x3 = x1 ∧ x1⊕ x3 = x2
A6. x1⊕ x2 = x3 → ¬(∃x4)x4⊕ x3 = x1 ∧ x4 6= x2
A7. |x1| = |x2| = |x3| = |x4|
A8. crypt(x1, x2) → random(x2)

A model4 of this theory realizes the perfect cryptosystem.
The one-time pad is a model of this theory and even though it can

o�er a maximum security, it is hard and really expensive to be realized,
in fact the secure distribution of the required keying material would
pose an enormous logistical problem if the one-time pad were used on
a large scale.

2Not necessary the bitwise exclusive-OR operation.
3The predicate random(t) guarantees that all the numbers of the domain have the same

probability to be taken to compose the message t and they are not correlated[14, 12].
4A model of a theory of the �rst order satis�es the axioms of the theory in the chosen

domain[5].

5

2.2 ARC: Overview

Similarly to all the existing stream ciphers, ARC presents two main
periods:

1. During the �rst period the key and the keystream are generated
using a hash function5 with scienti�c criteria.

2. The second period will apply to �nal computational step, pro-
ducing the ciphertext.

Definitions:

plaintext message m is a sequence of bits m0m1 · · ·mn−1;
ciphertext message c is a sequence of bits c0c1 · · · cn−1;
keystream is a pseudo-random sequence of bits k0k1 · · · kn−1;

ci = mi ⊕ ki

for 0 ≤ i ≤ n− 1 where ⊕ denotes bitwise exclusive-or.

3 Design of the Algorithm

In this chapter the design of the algorithm will be described in its
theoretical essence, hinting sometimes at his probable practical imple-
mentation.

3.1 Generation of the key

During this phase the key is generated applying HMAC[11] to the input
password.

3.1.1 The function HMAC

HMAC is an adaptation of NMAC[11] that uses directly the iterated
hash function(with its de�ned and �xed IV) as the basic black-box to
build the MAC.

Denoted with F the (iterated and keyless) hash function initialized
with its own IV value, with x any input of arbitray length and with k
the key:

HMACk(x) = F (k‖pad1‖F (k‖pad2‖x))

5The properties of the hash function will be faced in �4.2

6

where pad1 and pad2 are distinct strings of su�cient length to pad
k out to a full block for the compression function of the hash function.

3.1.2 Stream cipher's key

The key is the result of the function HMAC to the input password k:

key = F (k‖pad1‖F (k‖pad2‖k)) = HMACk(k)

where F is the hash function with properties required in �4.2.

3.2 Generation of the keystream

During this phase the whole keystream is generated constantly depend-
ing on the key and its past.

The process is realized applying two similar functions named p and
q and de�ned as follows:

Let p : {0, 1}+ → {0, 1}+ be a function such that,

p(x) = LSBn(x),
|x|
2
≤ n ≤ |x|

Let q : {0, 1}+ → {0, 1}∗ be a function such that,

q(x) = LSBm(x), 0 ≤ m ≤ |x|

Once that n is �xed it must be the same for all the generation of the
keystream while m can assume di�erent values for a monodimensional
matrix M = (m1,m2, . . . ,mi) so that q(xi) = LSBmi

(xi), ∀i ≥ 1.

The keystream is generated as follows:

y(1) = f_hash(key);

y(2) = f_hash(p(y(1)) ‖ key);

y(3) = f_hash(p(y(2)) ‖ q(y(1)) ‖ key);

...

y(n) = f_hash(p(y(n−1)) ‖ q(y(n−2)) ‖ . . . ‖ q(y(n−(n−1))) ‖ key);

7

keystream = y(1) ‖ y(2) ‖ . . . ‖ y(n);

Denoted with l the length of the hash function's output, the func-
tion p guarantees a good level of security for the stream cipher and
at least 2

l
2 di�erent possible outputs of the hash function6. However,

it's not the optimal security choice considering only the function p to
realize the cipher without a signi�cant contribution from the function
q.

It is strongly suggested to set n = l
2 and m1 + m2 + . . . + mi = l

2
(more bits could compromise the performance without any security
advantage) possibly not restricting only to m1, to achieve a better se-
curity and to let the range of the hash function, theoretically(excluding
collisions), equal the codomain(i.e. 2l). The exact value of each mi

should be set in relation to the context. For example, in order to min-
imize the collision e�ects of the hash function(if it is weakly collision
resistant, even if it shouldn't be7), one should take some bits from
di�erent positions of the past keystream, in fact, under certain condi-
tions, a collision could compromise the security of the stream cipher,
as shown in the proof of Theorem 2 in �4.2.

4 Security Analysis

To demonstrate the e�ectiveness of the stream cipher, it is compared
to the one-time pad theory. Moreover, it is proposed an analysis of the
necessary properties to assume from the hash function for the stream ci-
pher to be considered secure. An analysis of the key and the keystream
is brought, too

4.1 One-time pad compare

The goal here is to show that ARC is a "model" of the one-time pad
theory.

It is self evident that axioms A1...A7 are satis�ed.
The analysis is done to show that A8 comes true by a relativistic

interpretation. In fact, if the password is not known and the keystream
can't be deduced or guessed without it so that the keystream is com-
putationally indistinguishable from a truly random binary string, the
keystream can be considered, in this context(and then interpretation),
absolutely random as the one of the one-time pad cryptosystem, sat-
isfying A8. Observe that ARC can never be information-theoretically

6In this case the outputs of the hash function are the pieces of the keystream.
7See �4.2.

8

secure as the one-time pad because the keystream is not truly ran-
dom(even if computationally indistinguishable from a truly random
one); it is only computationally secure.

Theorem 1 The stream cipher generates a pseudo-random keystream
computationally indistinguishable from a truly random string of bits
only depending on the input password.

Proof of Theorem 1: The keystream is composed by concate-
nated strings8 of bits thanks the underlying keyed iterated hash func-
tion. For hypothesis the considered hash function produces pseudo-
random strings of bits computationally indistinguishable from a uni-
form binary string9 and the design of the stream cipher10 guarantees
at least 2l/2 di�erent possible strings, where l denotes the length of
the hash function's output. Therefore, for basic probability properties,
the whole keystream is a pseudo-random string computationally indis-
tinguishable from a truly random string of bits and only depending
on the input password, because composed by concatenated pseudo-
random substrings computationally indistinguishable from truly ran-
dom strings and only depending on the input password by the key.

�

ARC is a model of the one-time pad theory in the above interpre-
tation11.

4.2 Hash Function Properties

The hash function f is the cryptographic core of the stream cipher.
It must belong to the MD4-family(i.e. iterated hash functions) and
satisfy some important requirements.

Properties:

• Preimage resistance. Given a hashed value h, it should be
computationally infeasible to �nd an input x such that h = f(x).

• Partial-preimage resistance. It should be as di�cult to re-
cover any substring as to recover the entire input. Moreover,
even if part of the input is known, it should be di�cult to �nd
the remainder(e.g., if t input bits remain unknown, it should take
on average 2t−1 hash operations to �nd these bits).

8See �3.2.
9Check the hash function properties in �4.2.
10See �3.
11The approach is to consider the pseudo-random binary string as truly random if

computationally indistinguishable from a truly random binary string, the seed is unknown
and an exhaustive attack on the seed is not computable in acceptable time.

9

• Collision resistance. It should be computationally infeasible
to �nd two inputs x, y with x 6= y such that f(x) = f(y).

• Mixing-Transformation. On any input x, the output hashed
value h = f(x) should be computationally indistinguishable from
a uniform binary string. Here, the computational indistinguisha-
bility follows De�nition 4.15 (in �4.7) in [8].

Theorem 2 Let f be the underlying iterated hash function of the
stream cipher designed in �3. The following properties of f are nec-
essary condition for the security of the stream cipher: preimage re-
sistance, partial-preimage resistance, collision resistance and mixing-
transformation.

The theorem states that all above hash function's properties are
necessary for the security of the stream cipher, thus, if one of them
should not be respected the security would be compromised(at least
theoretically).

Proof of Theorem 2:

1. Preimage resistance. Let f be the underlying hash function
of the secure stream cipher and h the hashed value. Suppose, for
absurd, that f isn't preimage resistant, therefore, it is feasible to
�nd the input x such that h = f(x). In a known-plaintext at-
tack the adversary can recover the key, that is in the keystream's
preimage with probability 1 and minimum computational power,
contradicting the stream cipher's above mentioned security.

2. Partial-preimage resistance. Let f be the underlying hash
function of the secure stream cipher and h the hashed value. Sup-
pose, for absurd, that f isn't partial-preimage resistant, therefore,
it is feasible to �nd the whole input x, such that h = f(x), if x is
partially known. In a known-plaintext attack the adversary, that
knows part of the input x(except the key) used to generate the
keystream, can smoothly recover the remaining input contain-
ing the key, contradicting the stream cipher's above mentioned
security.

3. Collision resistance. Let f be the underlying hash function
of the secure stream cipher. Suppose, for absurd, that f isn't
collision resistant, therefore, it is recurrent to �nd two inputs
x, y with x 6= y such that f(x) = f(y). During the generation
of the stream cipher's keystream, if n has the same value of the
length of the hash function's output and M is the banal matrix,
it can happen that a very short cycle of bits build the keystream,
as shown below:

y(1) = f(key);

10

y(2) = f(p(y(1)) ‖ key);

Suppose p(x) = x and a collision happened:

y(2) = y(1);

Suppose that:

M = (0, 0, . . . , 0) =⇒ ∀x q(x) = ε

where ε denotes the empty string, then:

y(3) = f(p(y(2)) ‖ q(y(1)) ‖ key) = f(p(y(1)) ‖ key) = y(2) = y(1);

...

y(1) = y(2) = y(3) = . . . = y(n).

In a known-plaintext attack, the adversary can reproduce the
whole keystream, that is the same cyclical set of few bits, re-
covering the plaintext, contradicting the stream cipher's above
mentioned security.

4. Mixing-Transformation. Let f be the underlying hash func-
tion of the secure stream cipher. Suppose, for absurd, that f
doesn't realize a mixing-transformation, therefore, the output
hashed value h = f(x) is polinomially distinguishable from a
truly random binary string. The attacker may be able to pre-
dict the input/output with non-negligible advantage ε > 0, re-
covering the keystream, contradicting the stream cipher's above
mentioned security.

�

At last, hash functions with less than 160 bits of output should not
be considered.

4.3 Stream cipher's key

The stream cipher's key is obtained using the function HMAC. The
security of HMAC is based on the security of the NMAC construction,
which is stated from Theorem 4.1 and its proof in [11]. HMAC is a
particular case of NMAC where k1 and k2 derive using the compres-
sion function f of the hash function h and they can't be distinguished

11

by the attacker from truly random keys. De facto, a weak pseudo-
randomness of f is required since the attacker that is trying to �nd
out the dependecies of k1 and k2 can't see directly the output of the
pseudo-random function on any input.

In summary, as claimed by Bellare, Canetti and Krawczyk in [11]:

Attacks that works on HMAC and not on NMAC are
possible, in principle. However, such an attack would re-
veal signi�cant weaknesses of the pseudorandom properties
of the underlying hash function, contradicting in a strong
sense the usual assumptions on these functions.

4.4 Keystream: Keyed hash function

Last years several ways were proposed to key with k bits an unkeyed it-
erated hash function h of n output bits, mainly to realize a secure MAC.
The most important are described below, evidencing their known weak-
nesses.

• The Secret Pre�x Method. This method consists of prepend-
ing a secret key K to the message x before the hashing opera-
tion: MAC(x) = h(K‖x). This MAC is insecure, in fact, a single
text-MAC pair contains information essentially equivalent to the
secret key, independent of its size[10].

• The Secret Su�x Method. This method consists of append-
ing a secret key K to the message x before the hashing operation:
MAC(x) = h(x‖K). Adopting this way, an o�-line collision at-
tack on the hash function may be used to obtain an internal col-
lision; therefore by a birthday attack �nding a collision requires
O(2n/2) o�-line operations. Besides, given one known text-MAC
pair, it is possible to performe an existential MAC forgery if a
second preimage attack on the hash function is feasible. If t text-
MAC pairs are known, �nding a MAC second preimage requires
2n/t trials; if the length of the message is not appended t denotes
the number of blocks rather than the number of messages[10]. In
order to recover the key are needed O(2k) operations and dk/ne
known MAC-text pairs for the veri�cation.

• The Envelope Method. This method combies the pre�x and
the su�x methods. It consist of prepending a secret key K1 and
appending a secret key K2 to the message x before the hash-
ing operation: MAC(x) = h(K1‖x‖K2). As shown in [10], this
method is also subject to the forgery and it is possible to apply
a divide and conquer key recovery attack on K1 and K2 so that
with 2n/2 known text-MAC pairs, one can recover the key with
2k1 + 2k2 instead of 2k1+k2 trials.

12

• MDx-MAC/NMAC/HMAC. These methods are dedicated
constructions to build a secure MAC from an unkeyed hash func-
tion and to avoid all the known attacks.

In the proposed stream cipher, the generation of the keystream
is done by keying the iterated hash function with the secret su�x
method, because it is evidently more e�cient than the dedicated MAC
constructions(i.e. MDx-MAC, NMAC, HMAC) but, in this context
secure, too.

The secret su�x method is shown to be weak to the forgery12 if
a second preimage attack on the hash function is feasible[10], but as
speci�ed in �4.2, the hash function has to be collision resistant which
implies the second preimage resistance.

In a known-plaintext attack scenario, where dk/ne text-MAC pairs
are known, the adversary should compute O(2k) o�-line operations to
recover the key[10].

Finally, in a known-key attack scenario, where t bits of the key re-
main unknown and dk/ne text-MAC pairs are known, it should take on
average 2t−1 hash operations to �nd these bits because of the partial-
preimage resistance of the hash function.

4.5 Keystream: A very lucky attacker

The keystream is computationally indistinguishable from a truly ran-
dom string of bits, as claimed by Theorem 1. A collision attack, as
the one discussed in the proof of Theorem 2, is not plausible when
the underlying hash function is collision resistant(even weakly), but a
similar scenario could still happen.

Denoted with f the hash function, l the length of the hash function's
output13 and k the stream cipher's key, suppose that:

p(x) = LSBx/2(x),

M = (0, 0, . . . , 0) =⇒ ∀x q(x) = ε

The keystream y is the concatenation of di�erent blocks of bits, as
shown below:

y = y(1)l‖y(1)r︸ ︷︷ ︸
y(1)

‖ y(2)l‖y(2)r︸ ︷︷ ︸
y(2)

‖ y(3)l‖y(3)r︸ ︷︷ ︸
y(3)

‖ . . . ‖ y(n)l‖y(n)r︸ ︷︷ ︸
y(n)

(1)

12Even if theoretically it can be considered weak, an attack is still computationally
infeasible.

13Observe that l < 160 bits are not considered, as required in �4.2.

13

where, ∀i ≥ 2 y(i) = f(p(y(i− 1))‖k) = f(y(i− 1)r‖k).
Now, since the blocks of the keystream contain a �nite number of

bits:

∃i, j ∧ i 6= j : p(y(i)) = p(y(j)) =⇒ y(i)r = y(j)r (2)

When (2) occurs, substituting (2) in (1)(for some i and j) one can
notice that the keystream is a cycle of the same bits from y(i + 1) to
y(j). If the "very lucky" attacker knows all blocks from y(i)r to y(j)r

he can build the following keystream.
We de�ned the above attacker "very lucky" because of the low

probability of (2) to happen, in fact:
Let be the event E = ”p(y(i)) = p(y(j))”, then:

P [E] =
2

l
2

2l
=

1

2
l
2

Moreover, the adversary should know all or a signi�cant number of
blocks from y(i)r to y(j)r to realize a successful attack.

For this reason(and also to maximize the range of the hash function)
in the design of the stream cipher it is strongly suggested to set n = l/2
and m1 + m2 + . . . + mi = l/2 (possibly not restricting only to m1),
drastically reducing the probability of such an attack.

5 Conclusions

An important aspect of this work is to consider the hash function as
a black-box that satis�es the requirements analyzed in �4.2. In fact,
the hash function can be seen as a module that can be replaced in case
serious weaknesses are found in the hash function or when new more
secure or e�cient hash function are designed.

We conjecture that the most e�cient way to break the proposed
stream cipher is to break the underlying hash function or through ex-
haustive search for the keyspace K of k bits, that requires O(2k) oper-
ations. In fact, it is true that the pseudo-randomness of the keystream
is unconditionally secure only under the random oracle model but a
ROM-based security proof suggests that for a real world encryption
scheme which uses real world hash functions rather than ROs, the most
vulnerable point to mount an attack is the hash function used in the
scheme[8]. Since breaking suitable real world iterated hash functions
such as RIPEMD-160[2] or SHA-1[1] is considered a hard problem,
breaking the stream cipher shold be, too.

The complexity of the algorithm is embedded in the one-way hash
function.

ARC is unpatented. Anyone can use it at any time, in any way,
royalty-free.

14

Kryptor14 is a freeware tool implementing a sub-version of ARC-
256 bits and can be found at http://www.rosiello.org under projects
voice.

14http://www.rosiello.org/archivio/kryptor-0.1.2.tar.gz Kryptor uses MD5 as hash
function that was recently broken, but it can't be considered vulnerable to those col-
lision attacks since they should happen during the keystream generation and attackers
can't control that phase.

15

References

[1] Secure Hash Standard. http://www.itl.nist.gov/�pspubs/�p180-
1.htm, 1995 April 17

[2] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-
160. http://www.esat.kuleuven.ac.be/ bosselae/ripemd160.html

[3] M.J.B. Robshaw. Stream Ciphers. RSA Laboratories Technical Re-
port TR-701 Version 2.0|July 25, 1995

[4] RSA Laboratories. Answers to Frequently Asked Questions About
Today's Cryptography Revision 2.0, RSA Data Security Inc., 5 Oct
1993.

[5] E. Mendelson. The language of �rst order logic. Cambridge Uni-
versity Press, 1993.

[6] Dominic Welsh. Codes and Cryptography. Oxford University Press,
1988.

[7] Thomas H. Cormen, Charles E: Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. The MIT Press, Cambridge, MA, 1990.

[8] Wenbo Mao. Modern Cryptography Theory and Practice. Prentice
Hall PTR, 2004.

[9] C.E. Shannon. Communication theory of secrecy systems. Bell Sys-
tem Technical Journal, 28:657-715, 1949.

[10] Bart Preneel, Paul C. van Oorscot. MDx-MAC and Building Fast
MACs from Hash Functions. Springer-Verlag LNCS, August 1995.

[11] M. Bellare, R. Canetti, and H. Krawczyk Keying Hash Functions
for Message Authentication. Advances in Cryptology - Crypto 96
Proceedings, Lecture Notes in Computer Science Vol. 1109, N.
Koblitz ed, Springer-Verlag, 1996.

[12] Stephen Bernstein, Ruth Bernstein, Schaums. Schaum's Outline
of Elements of Statistics I: Descriptive Statistics and Probability.
McGraw-Hill, 1998.

[13] Barbara Liskov, John V. Guttag. Abstraction and Speci�cation in
Program Development. McGraw Hill Text, December 1986.

[14] Paolo Baldi. Introduzione alla Probabilità con elementi di Statis-
tica. McGraw-Hill, 2003.

[15] Cli�ord A. Sha�er. A Practical Introduction to Data Structures
and Algorithm Analysis. Prentice Hall, 1998.

[16] B. Schneier. Applied Cryptography. JohnWiley & Sons, New York,
1994

[17] Frederick P.Brooks. The Mythical Man-Month: Essays on Soft-
ware Engineering. Addison-Wesley, Reading, MA, 1975.

16

[18] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Ap-
plied Cryptography. CRC Press, 1996.

[19] R.J. Enbody and H.C. Du. Dynamic Hashing schemes. Computing
surveys., 1988.

[20] G.Tsudik. Message authentication with one-way hash functions.
ACM Computer Communications Review, Vol. 22, No. 5, 1992,
pp. 29-38.

[21] P. Gutmann, personal communication, 1993.

17

