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1 Abstract

We analyze a Web vulnerability that allows an attacker to perform an email-based
attack on selected victims, using standard scripts and agents. What differentiates
the attack we describe from other, already known forms of distributed denial of
service (DDoS) attacks is that an attacker does not need to infiltrate the network in
any manner— as is normally required to launch a DDoS attack. Thus, we see this
type of attack as apoor man’s DDoS. Not only is the attack easy to mount, but it
is also almost impossible to trace back to the perpetrator. Along with descriptions
of our attack, we demonstrate its destructive potential with (limited and contained)
experimental results. We illustrate the potential impact of our attack by describing
how an attacker can disable an email account by flooding its inbox; block compe-
tition during on-line auctions; harm competitors with an on-line presence; disrupt
phone service to a given victim; disconnect mobile corporate leaders from their
networks; and disrupt electronic elections. Finally, we propose a set of counter-
measures that are light-weight, do not require modifications to the infrastructure,
and can be deployed in a gradual manner.
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2 Introduction

The competitive advantage of most industrialized nations depends on a well-oiled
and reliable infrastructure, much of which depends on the Internet to some extent.
We show how one very simple tool can be abused to bring down selected sites, and
argue how this in turn — if cunningly performed — can do temporary but serious
damage to a given target. Here, the target may be a person, business or institution
relying on the Internet or the telephone network for its daily activities, but may also
be more indirectly dependent on the attacked infrastructure. In the latter situation,
the target may not be the least prepared for an attack of the type it would suffer. For
example, if voters are allowed to cast votes using home computers or phones (as in
recent trials in Britain [10]), then an attack onsomevoters or servers may invalidate
theentireelection, requiring all voters to cast their votes again — for fairness, this
would include even those who used traditional means in the first place. Other
potential examples of secondary damage include the general mobile phone system,
the infrastructure for delivery of electricity from power plants to consumers, and
the traffic-balancing of the Interstate highway system, given that these allow for
load balancing via the Internet in many places.

When assessing the damage a potential attack can inflict, it is important to
recognize that attacks may carry a substantial cost to society even if they do not
obliterate their targets — in particular if repeatedly perpetrated, which becomes
easier if the attacks are difficult to trace back to their perpetrators. Furthermore,
one should not only take the direct costs into account, but also the indirect costs
associated with not being able to rely on the infrastructure.

Approach The attack described here is illustrated in Figure 1. It involves Web
crawling agents that, posing as the victim, fill forms on a large set of third party
Web sites (the “launch pads”) causing them to send emails or SMSs to the victim,
or have phone calls placed. The launch pads do not intend to do damage; they
are mere tools in the hands of the attacker. This idea is not new — it is similar to
sending pizzas to someone else’s address. However, we demonstrate how easily
one can exploit Web forms to do real damage and quantify such damage.

Our attack takes advantage of the absence in the current Web infrastructure of a
(non-interactive) technique for verifying that the submitted email address or phone
number corresponds to the user who fills in the form. This allows an automated
attacker to enter a victim’s email or number in a tremendous number of forms, caus-
ing ahugevolume of messages to be directed to the victim’s mailbox. Depending
on the quantity of generated messages, this may cost the victim anything from lost
time (sorting out what messages to delete); to lost messages (if the mailbox fills
up, causing the Internet Service Provider (ISP) to bounce legitimate emails); to a
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Figure 1: Illustration of the attack.

crash or other unavailability of some of the victim’s or ISP’s machines.

Potential victims An attacker could target any user with a known or guessable
email address. The list of targets that are vulnerable to the attack because of public
email addresses is large. It includes banks, journalists, law enforcement officers,
customer service and technical support centers, email-based chatrooms, and politi-
cians. An attacker could target people with certain opinions or inclinations by har-
vesting email addresses from selected bulletin boards or by performing a focused
crawl for given keywords on personal Web pages. Given that many companies use
predictable formatting for email addresses, it may be possible to mount an attack on
people believed to work for a company, or on people with common names, which
in the end may amount to an attack of the company itself. The attack can also be
used to affect the outcome of online auctions: some eBay users appear to use their
email addresses as identifiers, making it trivial to block these from any competi-
tion during an auction. A large portion of the remaining set of eBay users can be
conned into giving out their email address: simply ask them an innocuous question
relating to a previous transaction of theirs (using the supplied Web interface) and
the reply will contain their email address.

Our attack is also applicable to mobile devices, such as cell phones and PDAs,
by targeting addresses that result in text messages being sent to those devices. Not
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only does this generate network congestion and unwanted costs, but it also causes
the text messaging feature of a mobile phone to be disabled once memory is filled
up. According to a quick test of ours, the memory of a common cell phone model
fills up after around 80 messages — an attack we performed in a few seconds. We
note that an attacker would not have to know what cell phone numbers are in use
in order to mount a general attack on theservice provider— he can simply at-
tack large quantities of numbers at random, many of which will be actual numbers
given the high density of used numbers. Beyond inconveniencing everyday users
of SMS, an attacker could stop medical doctors from being paged. If a large num-
ber of random mobile devices are attacked during an electronic election, it is highly
probable that some voters will be unable to cast their vote. This may cause the fair-
ness of the results to be questioned. This may especially be so if the targeted phone
numbers correspond to particularly rich or poor voting districts, or to districts with
higher proportions of certain minorities. Moreover, an attacker can target all email
accounts with names likely to correspond to a given corporate leader and thereby
render her mobile device unable to receive meaningful messages.

The common telephony infrastructure (both mobile and wired) can be attacked
in an analogous manner: by agents entering a victim’sphone numberin numerous
forms. If the remaining entered information is not consistent or accurate, this may
result in a representative of the corresponding company placing a phone call to
straighten things out, possibly after trying to send one or more messages to the
email address entered in the form. Given the higher cost of placing a phone call
— compared to sending an email — many companies prefer responding by email,
which is likely to require a larger number of forms to be filled in by an attacker,
in order to cause a comparable call frequency. On the other hand, phone calls
being more disruptive than email messages, the impact of the attack types may be
comparable for a given attack size.

Defenses What complicates the design of countermeasures is the fact that there
is nothingper sethat distinguishes a malicious request for information from a
desired request in the eyes of the launch pad site, making the latter oblivious to the
fact that it is being used in an attack. This also makes legislation against unwanted
emails, SMSs and phone calls [9] a meaningless deterrent: without the appropriate
technical mechanisms to distinguish valid requests from malicious ones, how could
a site be held liable when used as a launch pad? To further aggravate the issues,
and given that our attack is a type of DDoS attack, it will not be possible for the
victim (or nodes acting on its behalf) to filter out high-volume traffic emanating
from a suspect IP address, even if we ignore the practical problems associated with
spoofing of such addresses.
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The “double opt-in” defense routinely employed by mailing list managers
against impersonation of users is not useful to avoid the generation of network
traffic. Some sites attempt to establish that a request emanated with a given user
by sending the user an email to which he is to respond in order to complete the
registration or request. However, as far as our attack is concerned, it makes little
difference whether the emails sent to a victim are responses to requests, or simply
emails demanding an acknowledgment.

While it may appear that the simplicity and generality of the attack would make
it difficult to defend against, this is fortunately not the case. We propose (1) simple
extensions of known techniques whereby well-intentioned Web sites can protect
themselves from being exploited as launch pads for our attack, and (2) a set of
heuristic techniques whereby users can protect themselves against becoming vic-
tims. Our countermeasures are light-weight and simple, require no modifications
of the communication infrastructure, and can be deployed gradually.

3 Related Work

The automatic recognition and extraction of forms from Web pages using simple
heuristics is not a new concept. For example, it has been applied to the design of
comparison shopping agents aimed at searching for products from multiple vendor
sites [4]. The problem is only a bit harder if an account must be set up before a
a form can be submitted. For instance many sites allow only registered users to
send SMSs to any number. However, setting up an account is free and can easily
be automated — this is why, e.g., Hotmail and Yahoo use CAPTCHAs to prevent
spammers from setting up fake accounts automatically.

During a denial of service attack a large number of connections is set up with
a victim, thereby exhausting the resources of the latter. A distributed denial of
service attack is mounted from multiple directions, thereby making it more difficult
to defend against. There exist many automated tools to mount DDoS attacks [2, 3,
5]. These require that the attacker takes control of a set of computers from which
he will launch the attack. This, in turn, makes DDoS attacks more difficult to
perform for a large portion of potential offenders. It also offers a certain degree of
traceability since the take-over of launch pad computers may set off an alarm. The
poor man’s DDoS attack illustrated here can be mounted without the need to take
over any launch pad computer, and offers the offender an almost certain guarantee
of untraceability — due both to its swiftness and to the fact that it utilizes only
steps that are also performed by benevolent users.

The attack we describe herein [6] is an extension and variant of the recent work
by Byers, Rubin and Kormann [1], in which an attack was described where victims
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are inundated byphysicalmail. While the underlying principles are the same —
to request something for somebody else — the ways the attacks are performed,
and what they achieve, are different. By generalizing to mostly all types of com-
munication, our attack becomes a weapon in the hands of an attacker wishing to
attack secondary targets as well as primary ones. This, along with the “real-time”
aspect of our attack, makes it a potential threat to national security as well as to our
communication infrastructure, and companies relying on the latter.

The defenses proposed in [1] and [6] vary considerably, given both the differ-
ence in threat situations and the difference in terms of the systems to be secured.
The work of [1] discusses how to secure sites against being exploited as launch
pads, but for the physical attack they describe only mitigating measures seem pos-
sible. On the other hand, for the email based attacks described here, we show that
the vulnerability of current Web forms can easily and completely be eliminated.
Furthermore, we also consider how to secure entities against becoming victims.
This strengthens our defenses in the face of poorly behaved Web sites, and non-
compliant sites. Given that most sites are likely to belong to this category, the de-
fense mechanisms described in [1] do not offer a good degree of protection against
our variant of the attack.

Yet another difference between the two studies lies in the analysis; while no
analysis is performed in [1], we describe experimental results illustrating the strength
of our attack. These results show how long it takes for a typical adversary (a per-
son with access to a standard computer and Internet connection) to disable a typical
account. From this can be extrapolated how long it takes for a more powerful ad-
versary to mount larger attacks. This highlights the danger of malware mounting a
synchronized large-scale attack from multiple infected machines.

4 The Attack

4.1 Description of Vulnerability

Many sites allow a visitor to request information or subscribe to a newsletter. A
user initiates a request by entering her contact information in a form, possibly along
with additional information. Figure 2 shows the HTML code for a typical form.

Our attack takes advantage of the fact that, in the current Web infrastructure
(e.g., HTTP protocol), there is no way to verify that the information a user enters
corresponds to the true identity or address of the user. Thus it is possible to request
information on behalf of another party. Agents — or automated scripts acting
as users — allow this to be performed on a large scale, thereby transforming the
illegitimate requests from a poor practical joke to an attack able of bringing down
the victim’s site.
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<form action="newsletter.php"
method="POST">

<input type="text"
name="Email"
value="your email here!">

<input type="submit"
name="submit"
value="Subscribe">

</form>

Figure 2: HTML code of a typical Web form that can be exploited by our attack;
this can be used to detect, parse, and submit the form.

4.2 Finding the Victim

In many instances, the attacker may know the email address or phone number of
the victim, or may be able to extract it from postings to newsgroups, replies in an
auction setting, etc. In other cases, the address may be unknown. If the attacker
wishes to target the corporate leaders of a given company, he has to determine what
their likely addresses are, which typically are limited to a few combinations of first
and last names. In order to target mobile devices, such as Blackberries, the attacker
would also target the appropriate wireless service providers, again targeting all
names that match the victim(s). In order to target a service provider, a massive
attack of this type is also possible. To wreak havoc in an electronic election in
which users are allowed to use their own computers and wireless devices, it suffices
to target a few voters, who will later complain that they were locked out. It is even
possible for an attacker to block his own device (stoppinghimselffrom voting) in
order to later be able to lodge a complaint and have the election results questioned.

4.3 Phase I: Harvesting Suitable Forms

Many Web sites use forms to execute scripts that will collect one or more email
addresses and add them to one or more lists. There are many legitimate ways in
which the collected emails can be used: mailing lists for newsletters, alert services,
postcards, sending articles or pages to friends, etc. There are less legitimate uses
as well, for example many sites collect emails by advertising freebies of various
sorts, and then sell the email lists to spammers as “opt-in” requests.

One way for an attacker to automatically locate and collect forms to be used as
launch pads is by employing a topic-driven crawler [7, 8]. Such a software searches
the Web in a focused way trying to find pages similar to a given description. The
description could be a query that yields many pages with email-collecting forms.

An even more straightforward approach is for an agent to harvest forms from
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base = (free email newsletter);
list = (alert subscribe opt-in list spam porn contest

prize stuff travel ezine market stock joke sign
verify money erotic sex god christ penis viagra
age notify news recipe gratis libre livre);

foreach set = subset(list) {
query(base plus(set) minus(list - set));

}

Figure 3: Pseudocode illustrating how queries can be designed to harvest Web
forms from a search engine.

the Web by posting appropriate queries directly to some search engine. The agent
can then fetch the hit pages to extract forms. For example search engines return
millions of hits for queries such as"free newsletter" or "send this"
and hundreds of thousands of hits for"send SMS" . However, search engines of-
ten do not return more than some maximum number of hits (say, 1,000). One way
for the attacker’s software to get around this obstacle is to create many query com-
binations by including positive and/or negative term requests. These combinations
can be designed to yield large sets of hits with little overlap. Figure 3 illustrates
how to create such queries automatically.

Once a potential page is identified, it must be parsed by the agent to extract
form information. The page may actually not contain a form, or contain a form
that cannot be used as a launch pad. A heuristic approach can be used to identify
suitable forms. For example, there must be at least one text input field and either
its name or its default value must match a string like “email.” Such a heuristic
identifies potential launch pad forms with high probability. In our experiments,
using a search engine with queries as shown in Figure 3 leads to a form harvest
rate of about 40%. In other words, the heuristic yields about 4 potential launch pad
forms from each 10 search engine hits.

Once suitable Web form URLs are collected, they could be shared among at-
tackers much like email address lists are exchanged among spammers. The harvest
rate would then be 100%. It is easy to write software that parses the HTML code
of a Web page and extracts form information. This consists of a URL for the form
action, the method (GET/POST), and a set of input fields, each with a name, a
type/domain, and possibly a default value. The form information can be stored in a
database. This first phase of the attack can be carried out offline, before the victim
is even identified (cf. left-hand side of Figure 1).
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4.4 Phase II: Automatically Filling Forms

A form can be filled and submitted automatically, either immediately upon discov-
ery, or at a later time based on the stored form’s information. Heuristics can be
used to assign values to the various input fields. These include the victim’s email
address and, optionally, other information such as name, phone, etc. Other text
fields can be left blank or filled with junk. Fields that require a single value from
a set (radio buttons, drop-down menus) can be filled with a random option. Fields
that allow multiple values (checkboxes, lists) can be filled in with all options.

Once all input names have an associated value, an HTTP request can be assem-
bled based on the form’s method. Finally, sending the request for the action URL
corresponds to submitting the filled form. For efficiency, forms can be filled and
submitted in parallel by concurrent processes or threads.

This second phase of the attack (cf. right-hand side of Figure 1) requires a
form database, which could be a simple text file, and a small program that fills
forms acting like a Web user agent (browser). The program could be executed
from a public computer, for example in a library or a coffee shop. All that is
required is an Internet connection. The program could be installed from a floppy
disk, downloaded from a Web or FTP server, or even invoked via an applet or a
virus.

4.5 Poorly Behaved Sites

There are many poorly behaved sites that may not care whether the entered contact
information corresponds to the Web page visitor or a potential victim. The reason
is simple: these sites derive benefit from the collection of valid email addresses,
whatever their origin may be. The benefit may be the actual use of these addresses,
or the sale of the same. For example, it is believed that the age verification scripts
of many porn sites are simply disguised collectors of email addresses. We note that
posting an email address to such a site may result in what we refer to as asnow-ball
effect, i.e., a situation in which a submitted email address results in several emails,
as the email address is bought, sold, and used.

The snow-ball effect can be exploited to maximize damage by generating a
large-volume, persistent stream of email toward the victim. An efficient approach
to maximize the number of spammers who obtain the victim’s email is to post it
on newsgroups and chatrooms, which are regularly and automatically scanned by
spammers to harvest fresh email addresses. This approach does not even require
one to collect and fill Web forms; but it has a more delayed, long-term effect.
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4.6 Well Behaved Sites

While it is evident that the vulnerability we describe is made worse if the launch
pads of the attack are poorly behaved sites, we argue that an attacker also can
take advantage of well behaved sites. These are sites that may not sell the email
address entered in the form, and who may wish to verify that it corresponds to a
legitimate request for information. However, as previously mentioned, the double
opt-in procedure typically involves sending an email to the address entered in the
form, requesting an acknowledgment before more information is sent. This email,
while perhaps not as large as the actual requested information, also becomes part
of the attack as confirmation messages flood the victim’s mailbox.

Moreover, if the intention of the form is to allow a user to send information to
a friend, the above measures of caution are not taken. Examples of sites allowing
such requests are electronic postcard services, many online newspapers, and more.

An attacker may also pose as a buyer to an e-commerce site, entering the vic-
tim’s email address along with other information, such as an address and potentially
incorrect credit card information. This would cause one or more emails to be sent
to the victim. Given that the victim would not likely respond to any of these, the
company may attempt to call the phone number entered in the form, which would
constitute a potential attack in itself.

4.7 On the Difficulty of Tracing an Attacker

As described, the attack consists of two phases: one in which suitable forms are
harvested and a second in which the forms are filled and submitted. While it is
possible for a site to determine the IP address of a user filling a form, not all sites
may have the apparatus in place to do so. Moreover, given the very short duration
of the second phase (see section 5), it is easy for an attacker to perform this part of
the attack using a public machine as shown above.

While the first phase of the attack typically takes more time, this can be per-
formed once for a large number of consecutive attacks. Even if the first phase of
the attack takes place from an identifiable computer and using a search engine,
it is difficult for the search engine to recognize the intent of an attacker from the
queries, especially considering the large numbers of queries handled. And it is im-
possible for a launch pad site to determine how its form was found by the attacker,
whether a search engine was used, which one, and in response to what query. In
other words, the second phase of the attack cannot be traced to the first (possibly
traceable) phase.

Finally, the possibility of an attack — or parts thereof — being mounted by a
virus (and therefore, from the machine of an innocent person) further frustrates any
remaining hopes of meaningful traces.
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5 Experimental Data

5.1 Experimental Setup

Here we report on a number of contained experiments carried out to demonstrate
the ease of mounting the attack and its potential damage. We focus on email (as
opposed to SMS) attacks in these experiments. We are interested in how many
email messages, and how much data, can be targeted to a victim’s mailbox as a
function of time since the start of an attack. We also want to measure how long it
would take to disable a typical email account.

Clearly these measurements, and the time taken to mount an attack, depend on
the number of forms used. It would not be too difficult to mount an attack with,
say,105 or 106 forms. However, much smaller attacks suffice to disable a typical
email account by filling its inbox. Furthermore, experimenting with truly large-
scale attacks would present ethical and legal issues that we do not want to raise.
Therefore we limit our experiments to very contained attacks, aiming to observe
how the potency of an attack scales with its computational and storage resource
requirements. We created a number of temporary email accounts and used them as
targets of attacks of different sizes. Each attack used a different number of Web
forms, sampled randomly from a collection of about 4,000 launch pads, previously
collected.

In the collection phase of the attack, we used a “form-sniffing” agent to search
the Web for appropriate forms based on hits from a search engine, using the tech-
nique described in section 4. The MSN search engine was used because it did not
disallow crawling agents via the robot exclusion standard.1 This was done only
once.

The collection agent was implemented as a Perl script using no particular op-
timizations (e.g., no timeouts) and employing off-the-shelf modules for Berke-
ley database storage, HTML parsing, and the LWP library for HTTP. The agent
crawled approximately 110 hit pages per minute, running on a 466 MHz Pow-
erMac G4 with a shared 10 Mbps Internet connection. This configuration is not
unlike what would be available at a copy store. From our sample we measured a
harvest rate of 40% (i.e. 40 launch pad forms per 100 search engine hits) with a
standard error of 3.5%. At this harvest rate, the agent collected almost 50 launch
pad forms per minute, and almost 4,000 forms in less than 1.5 hours. If run in the
background (e.g., in the form of a virus), this would produce as many as 72,000
forms in one day, or a million forms in two weeks — probably in significantly less
time with some simple optimizations.

1We wanted to preserve the ethical behavior of the agent used in our experiments; an actual
attacker could use any search engine since the robot exclusion standard is not enforceable.
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Figure 4: Messages received by victim versus time for attacks of different size.

The second phase, repeated for attacks of different size, was carried out us-
ing the same machinery and similarly implemented code. A “form-filling” agent
took a victim’s information (email and name) as input, sampled forms from the
database, and submitted the filled forms. The agent filled approximately 116 forms
per minute. We callattack timethe time required to mount an attack with a given
number of forms. All the attack simulation experiments took place in April 2003.

5.2 Results

Figure 4 illustrates how the number of messages in the victim’s inbox and the inbox
size, respectively, grow over time after the attack is mounted. The plots highlight
two distinct dynamic phases. While the attack is taking place, some fraction of the
launch pad forms generate immediate messages toward the target. These responses
correspond to an initial high growth rate. Shortly after the attack is over, the initial
responses cease and a second phase begins in which messages continue to arrive at
a lower, constant rate. These are messages that are sent by launch pads at regular
intervals (e.g., daily newsletters), repeat acknowledgment requests, and spam. In
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Figure 5: Victim’s inbox storage versus time for attacks of different size. The
account is killed when the inbox reaches 2 MB.

the plots, we fit this dynamic behavior to the piecewise linear model:

MF (t) =

{
aF t 0 < t < t∗

bF t + (aF − bF )t∗ t ≥ t∗
(1)

whereMF (t) is the inbox size or number of messages at timet (t = 0 is
the start of the attack), for an attack withF forms. The short-term and long-term
growth rates,aF and bF (aF > bF ), and the transition time between the two
phases,t∗, are determined by a nonlinear least-squares fit of the model to the data.
In the initial phase, messages arrive at a high rateaF . Some time after the end
of the attack (determined byt∗), once the immediate responses have subsided, the
arrival rate goes down to the long-term growth ratebF .

The email traffic generated by our attacks was monitored until the size of the
inbox passed a threshold of 2 MB. This is a typical quota on free email accounts
such as Hotmail and Yahoo. No other mail was sent to the victim accounts, and
no mail was deleted during the experiments. When an inbox is full, further email
is bounced back to senders and, for all practical purposes, the email account is
rendered useless unless the victim makes a significant effort to delete messages.
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We call kill time the time between the start of an attack and the point when the
inbox size reaches 2 MB.

In Figure 5 we can observe that for the three smaller attacks (F = 514, 1026,
2050) kill time occurs well after the attack has terminated. For the largest attack
(F = 3911), kill time occurs while the attack is still being mounted. This is
mirrored by the fact that this attack is still in the initial phase of high response rate
when the inbox fills up.

One can use the data in Figure 5 and the model of Equation 1 to analyze how
large an attack would be necessary to kill an account in a given amount of time,
as a function of the account quota. Figure 6 shows the number of forms that in
our experiments would kill an account in one hour, corresponding to alunch hour
attack, in which the victim’s machine is disabled while she is temporarily away.
The number of forms scales sub-linearly, as a power lawF ∼ q0.7 whereq is the
account quota. We can think of this as a manifestation of the snow-ball effect —
periodic alerts and spam compound immediate responses making the attack more
efficient.

Figure 7 shows how the arrival rate of email in the victim’s mailbox scales with
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the size of the attack, for both the short and long term. The short-term arrival rate
for an attack of sizeF is given by the growth parameteraF , obtained by fitting
the model in Equation 1 to the data in Figure 5. As illustrated by the regression
in Figure 7, the short-term arrival rate grows linearly withF as one would ex-
pect (aF ≈ 1.5F ). The long-term arrival ratebF , obtained analogously, shows
a remarkable exponential growth withF (bF ≈ 2.7e0.002F ). Note that this fit is
significantly stronger statistically than a linear or power law fit. Such a non-linear
scaling behavior is another manifestation of the snow-ball effect. Even if the ar-
rival rate subsides after the end of the attack, it can be made very large with small
increases in attack size.

Finally, Figure 8 shows how attack time and kill time scale with the size of
the attack. As expected attack time is proportional toF . Kill time (cf. Figure 5)
scales as a power law:t ∼ F−3.2. Again, this non-linear scaling behavior is
a consequence of the snow-ball effect, which amplifies the destructive effect of
the attack and makes it possible to kill an email account efficiently. In fact the
intersection between attack and kill time in Figure 8 indicates that there is no need
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Figure 8: Attack time and time to fill a 2 MB inbox, as a function of attack size. The
linear regression for attack time and power law fit for kill time yieldR2 = 0.9952
and0.977, respectively.

to mount attacks with more thanF ≈ 212 forms if the goal is to disable an account
with a 2 MB quota.

6 Defense Mechanisms

We now describe a set of related defense techniques for our DDoS attack. A first
line of defense consists of a simplepreventivestep by which Web sites can avoid
being exploited as launch pads in our attack. For Web sites that have not yet com-
plied with this preventive step, as well as unscrupulous spammer sites that have no
intention to verify the legitimacy of requests, we describe a second line of defense
for the detectionandmanagementof such attacks by potential victims. The sec-
ond line of defense consists of a heuristic approach, whose use can be adapted to
different situations of interest.
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6.1 Prevention of Attacks

Many sites that allow users to subscribe to email services such as newsletters and
alerts employmailto links (either to a person or to a listserv manager, e.g., Ma-
jordomo). These sites cannot be exploited as launch pads, because the attacker
would need a mail transport agent, e.g. a machine running a SMTP server or an
external mail relay. Such an attack is possible, but more difficult to carry out from
a public computer and also more easily detectable and traceable. Open relays are
rare and often blocked by ISPs anyway (because they are used by spammers), and
a “legitimate” SMTP server requires some level of authentication that would allow
to identify or trace the attacker. The obvious preventive solution to the proposed at-
tack is thus to disable Web forms and enforce the use of email-based listserv tools
such as Majordomo. However, this would disallow useful Web forms in which
users can enter additional information — this cannot be done conveniently with a
simplemailto link to a listserv.

To allow for the use of forms as appropriate while still verifying the legiti-
macy of email service requests, well behaved sites currently send a message to the
submitted email address requesting confirmation that the address corresponds to
a legitimate user request. As we observed earlier this double opt-in procedure is
exploited in our attack because confirmation requests, even if not repeated (as they
often are), contribute to flooding the victim’s mailbox just as any other message.

It is possible to both enable Web form requests and verify the legitimacy of
requests, without becoming vulnerable to our attack. Web sites would use the fol-
lowing simple strategy. After the form has been filled out, the Web site creates
dynamically a page containing amailto link with itself as an addressee. Legiti-
mate users would send the message to validate their request. The email to the Web
site would then be used by the site’s mailing list manager to verify that the sender
matches the email address submitted via the Web form. Although the address of the
sender is not reliable because it can be spoofed in the SMTP protocol, the sender
cannot spoof the IP address of its legitimate ISP’s SMTP server. The site can thus
verify that the email address in the form request matches the originating SMTP
server in the validation message.

There are three caveats to this strategy. First, messages via open relays must
be discarded by the site. Second, if an attacker could guess that a user in a given
domain requests information from some site, she could request information from
the same site for other users in the same domain, potentially spoofing the valida-
tion created by the addressee. To prevent such an attack, the validation message
created by the site should contain a number with sufficient entropy that it is hard
to guess. Third, one could still attack victims who share their ISP’s mail server,
which would not affect the attacker himself in a notable way if there are quotas. In
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this case, however, the attack could be traced. Furthermore, our heuristic defense
mechanisms —presented next — will address such an attack.With these caveats,
our preventive strategy would afford the same security as double opt-in, but without
sending any any email to victims.

The above technique works for forms where a party requests information to
be sent to herself, but it does not cover common services such as sending newspa-
per articles or postcards to others. Sites wishing to allow this can use alternative
defenses. Namely, well behaved sites may make the harvesting of forms more diffi-
cult by not labeling forms using HTML, but rather, using small images. This would
increase the effort of finding and filling the forms. Given the relative abundance
of available forms, potential attackers are then likely to turn to other sites where
no image analysis has to be performed to find and fill the form. Doing this has
no impact on human users, except to a very small extent on the download time of
the form. A more robust version of this defense would use an inverse Turing test
or CAPTCHA (Completely Automatic Public Turing test to tell Computers and
Humans Apart) [12, 11], a technique already employed by many sites to prevent
agents from impersonating human users.

If legislation is brought in place that makes sites liable for any attacks mounted
using their facilities [9], then even poorly behaved sites may wish to employ pro-
tective measures as those described above to avoid being the defendants in lawsuits
by victims of the attack we describe.

6.2 Detection and Management of Attacks

In the previous subsection, we considered how well-behaved sites can protect them-
selves against being used as launch pads. Since it is not likely that all sites will
comply with these protective measures, we also need to consider protection against
poorly behaved and otherwise non-compliant sites. This protection will reside on
the machine or mail server of the potential victim, and rely on three tools:

Extended Address Book.Most users maintain an address book in which they en-
ter the email addresses of their most frequent correspondents. We consider
the use of an additionalextended address book.This contains the email ad-
dresses of all parties the user has sent email to or received email from, along
with a time stamp indicating when the last email was sent or received. To
reduce the required storage, we may allow users to have old entries automat-
ically removed. The extended address book is similar to the whitelists main-
tained by spam filters; the main difference is that it would only be used for
filtering purposes when an attack is suspected, as described below. Emails
of spammers might even be included. A set of users may share one and the
same extended address book.
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Attack Meter. We will let the system estimate the probability that a given user
is under attack at any given time. The parameters considered would be the
amount of traffic to the user in relation to the normal amount of traffic to her,
and relative to the traffic of other users; the proportion of emails arriving to
the user (and her peers) that originate from users that are not in their extended
address books; and the number of duplicate emails received by users handled
by the mail server. The calibration of the estimation may be performed with
a given threat situation in mind.

Cleaner. During a clean-up, a set of suspect emails are removed from the inbox
of the user. Depending on the situation, it may be that all suspect emails are
removed; all suspect emails of a certain minimum size; all suspect emails
from (or not from) given domains; or some other, potentially customized
selection of all suspect emails.

When a user accesses his account, he would be shown the likely probability,
according to the attack meter, that he is under attack. If the user indicates that he
believes he is under attack, the mail server would automatically mark all emails
that are from senders who arenot in the extended address book assuspect,and
proceed to perform a clean-up. This may also be induced by the system — without
the request of the user — if the user is not available, an attack is judged to likely
be under progress, and resources are scarce. If these defenses reside on the side of
the service provider, as appropriate for wireless devices, the attack meter can also
take the general attack situation in consideration when determining whether an
individual is being attacked. We note that this solution also secures list moderators
at the expense of not being able to receive messages from new posters during the
time of an attack; note also that the risk of the launch pads already being in the
extended address book of the moderator is slim.

For targets such as a politician, it may be typical to receive messages from users
who are not in the extended address book. However, many of the constituents are
likely to use accounts with one of a very small set of known ISPs. In contrast,
launch pads are likely not to have the same domains. Therefore, under attack, the
mail server could mark as suspect those emails that do not come from the known
ISPs likely to correspond to the wanted senders. Furthermore, the mail server may
mark emails as suspects if coming from other countries — when indicated by the
corresponding domain — as these are also unlikely to be from constituents.

6.3 Synergy between Defense of Launch Pads and Victims

It is important that the heuristic defense mechanisms proposed do not disrupt de-
sired functionality, thus it must still be possible for a user to fill forms and receive
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information sent to him. Indeed this will still be possible — even during a detected
attack — as long as the site with the form sends email from an address that is
present in the extended address book of the party requesting information.

In the strategy described above to prevent Web sites from being exploited as
launch pads, the user who submits a request through a form must send a validation
message (dynamically created and self-addressed) to the Web site. This step causes
the Web site’s email address to be entered into the user’s extended address book.
As a result the information sent to the user by the site is not filtered out. This
creates an incentive for sites to comply with the preventive strategy, not only to
avoid being exploited but also to keep their messages from being filtered out.

7 Conclusion

We investigated an automated, agent-based DDoS attack in which a victim is
swamped by communication from entities believing she requested information.
The primary tool of the attack is that of Web forms, which can be automatically
harvested and filled out by an agent. We also quantified the damage such an attack
could do by describing experimental results.

We described a very simple strategy by which Web sites can avoid being ex-
ploited in the poor man’s DDoS attack; once a majority of Web sites comply with
this strategy, such attacks will be prevented.

For the interim, we have proposed a set of heuristic techniques to inoculate
users against the poor man’s DDoS attack. These mechanisms only allow emails
to be filtered out if they are sent from sites that are not in a user’s extended address
book.

We have not investigated the generation of traffic by means of posting messages
to newsgroups, chatrooms and bulletin boards, purportedly from the victim, but
believe such attacks to be similar to those we discussed, and possible to defend
against in similar manners.

There are more drastic types of defense measures that can protect from the at-
tack described in this paper. Some ISPs are considering CAPTCHA based challenge-
response systems in conjunction with whitelists to combat spam.2 While such an
approach would indeed protect a potential victim from the email DDoS attack, it
would also decrease the accessibility of email. For example, it would violate the
Americans with Disabilities Act because CAPTCHAs discriminate against blind
people. Many email-based transactions, such as e-commerce confirmations, would
also be blocked. The defenses we have described are more targeted at the DDoS

2Earthlink has announced a beta version of such a system as of this writing.
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attack, more light-weight, and do not require modifications to the Web or email
infrastructure.

At a more general level, the kind of attack described here raises new issues
with social and political implications for the use of modern communication media
such as the Internet, electronic messaging, and mobile telephony. For example,
if users were required to identify themselves when using the Internet in order to
prevent such abuses, then one could no longer use a computer anonymously in a
public place such as a library. We hope that this work will lead to solutions that
can protect our inboxes as well as our privacy and freedom of speech.
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