
Abstract

In this paper we discuss the implications of MD4
collision attacks on the integrity of the eD2k P2P
network. Using such attacks it is possible to generate
two different files which share the same MD4 hash
value and therefore the same signature in the eD2k
network. Leveraging this vulnerability enables a
covert attack in which a selected subset of the hosts
receive malicious versions of a file while the rest of the
network receives a harmless one.

We cover the trust relations that can be voided as a
consequence of this attack and describe a utility
developed by the authors that can be used for a rapid
deployment of this technique. Additionally, we present
novel attack vectors that arise from this vulnerability,
and suggest modifications to the protocol that can
circumvent such attacks.

1. Introduction

File sharing peer-to-peer networks have affected the
evolution of internet, booming household connectivity
rates and demand for ever-increasing bandwidth. File
sharing networks provided accessibility to rich media
content on the internet before the availability of legit
online stores (like iTunes) and as such became widely
popular around the globe. According to a recent
research[13], up to 40 billion files were 'illegally file
shared' in the year of 2008. As a hub of un-regulated,
non-monitored high traffic file swapping activity, P2P
networks pose an ideal candidate for distribution of
malicious executables.

In recent years, efficient collision attacks have been
that target the MD4 and MD5 family of hash
algorithms have been discovered. These attacks enable
the rapid generation of pseudo-random colliding
blocks. Although not as useful as first and second
preimage attacks, a collision attacks is suffice to

generate colliding executables – two different
executables which share the same hash value.

In this paper we present attack vectors which use
such colliding executables into an elaborate attacks on
users of the eD2k network which uses the MD4 hash
algorithm in its generation of unique file identifiers.
By voiding the 'uniqueness' of the identifiers, the
attacks enable selective distribution – distributing a
specially generated harmless file as a decoy to garner
popularity among hosts in the network, and then
leveraging this popularity to send malicious
executables to a specific sub-group. Unlike
conventional distribution of files over P2P networks,
the attacks described give the attacker relatively high
control of the targets of the attack, and even lets the
attacker terminate the distribution of the malicious
executable at any given stage.

While the discussed vulnerability has been known
among the eMule developers community [10,11] no
real research/discussion of it have been conducted and
no modifications have been done to date to
countermeasure it.

2. Background

The eDonkey2000 file sharing network is a
decentralized peer to peer network originally designed
and released by MetaMachine as proprietary client and
server. The network allows search and retrieval of
files, and unlike other P2P network at the time allowed
multi-source downloads – downloading the same file
from multiple sources and benefiting from the joint
bandwidth of all available sources. In order to
maintain the integrity of files in the network, a scheme
incorporating a 128-bit MD4 checksum is deployed to
generate a unique identifier of each file in the
network[1]. This identifier, in conjunction with file
size, is used to identify unique search results and as a
main identifier of files in the eD2k URI scheme, mostly
used in websites dedicated for file sharing.

Hash Collision Attack Vectors on the eD2k P2P Network

Uzi Tuvian Lital Porat
Interdisciplinary Center Herzliya

E-mail: {tuvian.uzi,porat.lital}[at]idc.ac.il

Five years after the introduction of the
eDonkey2000 network, MetaMachine discontinued
support for the network after receiving a 'cease and
desist' letter from the RIAA[2]. The network has since
been 'taken over' by a few alternative clients and
servers (most notably the open-source eMule project)
that implemented the eD2k protocol using reverse
engineering techniques and extended it to support new
features and a server-free network structure.

3. Trust Relations in the eD2k Network

In order to locate a file in the eD2k network a user
can either import an eD2k URI from an external source
- usually a website, or perform a search through the
client (either a server based or a distributed search).
As is the case with most modern file sharing networks,
a user which intends on locating a specific file must use
certain techniques in order to identify true results and
avoid 'false positives' such as viruses and fake results.

One such widely used technique in the eD2k
network is searching and importing verified URIs from
websites and community forums where members of the
community share URIs to files that have already been
verified. This techniques facilitates a trust relationship
between the multiple members of the community –
each time a different member of the community invests
time and efforts into locating, validating and publishing
a file s.t the risk and efforts are distributed between the
members.

Another highly popular technique is using the
popularity of a file as a measure to its 'validity'; The
user deduces from the number of the users hosting the
file whether the file is 'worth downloading' by
following the hypothesis that most users would remove
a fake one (once spotted). Additionally, this strategy
promises the user, up to some probability, that the
download would go faster than more rare files due to
the multi-source nature of the network.

Both these techniques are built upon the uniqueness
of the file hash, as incorporated in the URI scheme and
search results, to verify that the file downloaded is
indeed the one matching the filtering criteria used to
identify the fitting files. The attack vectors discussed
in this article will leverage these trust relations by
deploying different files sharing the same MD4 hash
result and, hence, the same eD2k URI.

4. Hash Collision Attacks

A collision attack on a hash function is a process
which tries to locate two arbitrary inputs resulting in
the same hash value. Such operation is unfeasible in an

ideal hash function where, following to the 'Birthday
Problem', a successful collision attack on a given hash
of n bits will require up to hash function
evaluations. By using cryptanalysis to identify
weaknesses in the hash generation process, researchers
are able to define efficient collision attacks that enable
much faster generation of collisions.

The MD4 hash function has been first shown to be
vulnerable to such collision attacks in [3] dating back
to 1996. In [4] Wang et al. described an efficient
collision attack against the MD4 hash function (among
other functions of the same family); Their technique
was later improved by Sasaki et al. and described at
[5]. The results of these researches allow rapid
generation of collision at a very low cost (a few
microseconds of CPU time).

An implementation of Wang et al.'s efficient
collision attacks on MD4 and MD5 is freely available
for download as open source software from Patrick
Stach's website at [6]. This utility was used as a basis
for the experiments described in this article.

5. Description of the attack

The result of an MD4 hash generation is affected by
two parameters : 1. An Initialization Vector (IV) and 2.
The data block being digested. The IV is the initial
value used as input for the first round of the hash
generation and the data block is the data on which the
algorithm iterates during the digest generation process.
Since Wang et al.'s attack supports arbitrary IVs, we
can build an executable which incorporates the
generated colliding blocks within it (each version
containing a different block), and uses the different
blocks to differentiate its behavior. The hash result of
the binary data preceding the colliding blocks would be
used as an IV to the collision generator, and since the
resulting binaries are identical apart from the generated
blocks, the hash values of the complete binaries would
be the same.

Another possible (and more covert) scheme would
be to incorporate a cyphered block within the
executable. This block will contain the hidden code of
the executable and de-cyphering it will be possible
either directly – using one version of the colliding
block as a key, or in-directly, using the block to de-
cypher a longer key (which enables a stronger
encryption of the hidden code). This scheme
significantly lessens the chances of the harmless
executable being detected as malicious by anti-virus
applications.

Fig 1. Possible layouts of attacking executables : branching
according to colliding block version (top) and cyphering the
malicious code using the colliding block as key (bottom).

6. Methodology and Results

For our experiments we have adapted the 'evilize'
open source library [7] created by Peter Selinger of
Dalhousie University's Department of Mathematics and
Statistics to work alongside with Patrick Stach's
implementation of Wang et al.'s MD4 collision attack
algorithm. The resulting utility generates colliding
executables along the lines of the earlier technique
described above (using the colliding blocks to branch
between two different functions contained in the
executable). This process allows the generation of
same-size, MD4-identical, differently behaving
executables at a marginal cost.

Using the modified tool, two colliding executables
were generated. Generation of the executable took less
than a second on a Core 2 Duo processor. The eMule
[8] client was then used to generate 2 URIs for the
colliding files. Upon inspection, the URIs proved to be
identical. Additionally, eMule recognized both files to
be the same – grouping them together in the
application's UI. Then, both versions of the file were
put in the shared folder of a machine running the client
(one version at a time) and the URI was manually
entered to a client running on another machine
connected to the network. Both versions were located
and transferred this way across the network, either by
using the server-based search feature or searching
through the Kademlia distributed network. The same
behavior has also been observed using the aMule [9]
client.

The experiment was then repeated, using an
extended version of the URI, incorporating an AICH
(Advanced Intelligent Corruption Handling) field,
which is an extension of the original protocol used for
file corruption handling. Since AICH is based on a
SHA-1 hash tree, it could offer a limited
countermeasure to the attacks discussed in this article,
but since the current use of AICH by the clients is

Filename MD4 hash

good 88ede0373d0502705f09c472fed62379

evil 88ede0373d0502705f09c472fed62379

Filename AICH value

good VDFD35DNOIMNP2UZ7LX6YAH66GIKMGXB

evil CEZGAWJKHBMEEEP2EKQDTUHPKKRM5BRA

Fig 2. MD4 (top) & AICH results (bottom) as extracted from the
eD2k URIs of the generated colliding files. Although AICH values
of the files differed, same MD4 was sufficient to facilitate the
attack.

limited to cases where a corruption has been detected,
it did not come into affect during the experiments and
had no effect on the results.

The results of the experiments prove that it is indeed
possible to distribute differently behaving files
pretending to be the same on the eD2k network. These
results enable a few potential malicious attack vectors,
all of which are enabled by the fact that the attacker can
send different versions of the executable to different
hosts.

In our experiments we have concentrated on the
generation of colliding executables, but the
implications of this issue is by no mean limited to
executable files. Any file format that support behavior
branching (either by design or as a side effect) can
potentially be used to facilitate this attack.
Additionally, this article refers to files of less then
9500kB. The scheme used to generate the eD2k file
hash of files larger then 9500kB is not a 'straight
forward' MD4 hash, but nonetheless vulnerable to the
same attack using minimal modifications (which won't
be discussed in this paper).

7. Attack Vectors

Most of the potential attack vectors would raise
their success ratio by first distributing the harmless
copy of the file in order to gain 'reputation' and get a
higher 'rank' among the potential search results.
Additionally, the attacker might post the URI on a
community website and let the 'legit' version be verified
by the community members.

After this 'seeding period' the attacker might either
start distributing the malicious version and attack as
many hosts as possible, or distribute different versions
to different hosts according to various filtering
parameters.

One such filtering parameter is the host's IP address.
Using this parameter, the attack can be limited to
specific countries/regions (based on legal issues,

political agenda, cyber warfare) or specific
companies/organizations (sending malware, hiding
illegal content distribution from known RIAA and law
enforcement hosts, installing trojan horses on
government computers, sending legit copies to AV
companies) etc.

Another potential filtering parameter is by time:
which allows the attacker to limit the distribution of the
malware (i.e sending the hostile version every other
day, or whenever a certain threshold is reached) in
order to lower the chances of being investigated by AV
companies/being noticed by network administrators or
even shutting down the distribution of the malware
completely upon a given date.

Other possible parameters include OS (either
deduced from the client version or using OS
fingerprinting techniques), prior knowledge on the
specific user, the files hosted by the host (in case the
feature is enabled) etc. These criteria can be combined
in order to reach optimized results, and a 'dedicated'
attacker might use machine learning algorithms in
conjunction with a database of various hosts
characteristics in order to optimize the success rates
over several iterations of the attack.

8. Possible Optimizations

Due to the multi-source nature of the network, the
attacking host is only required to provide the affected
chunk of the file (the one containing the colliding
block) in order to affect the behavior of the executable
on the receiving host – thus rendering the attack highly
traffic-efficient.

The multi-source technique also presents a 'race
condition' to the attack where the critical chunk (the
one containing the colliding block) might be distributed
to a host either by the attacker, a host which already
finished the download of the file or a host currently
downloading the file (which already finished the
transfer of the relevant chunk). This 'race condition'
limits the attacker's control over the distribution of the
versions, but a few measures might raise the chances of
the attacker to be the source of the chunk – having fast
connectivity to the network, giving top priority to the
transfer of the critical chunk, allowing a large number
of concurrent transfers and connections to other hosts
etc. Additionally, the attacker may leverage a feature
in the protocol which allows the addition of a pre-
defined source to the eD2k URI. This feature may be
used when the URI is distributed manually through
forums or other means of URI distribution.

Another beneficial optimization can be to remove or
alter the shared file once it is executed (in case it is

executed on the machine running the client). This
optimization can be highly efficient in cases where a
limited distribution is desired and it'll significantly
lower the chances of a host getting the 'limited version'
by chance. Such tactic can be used in addition to giving
'non-interesting hosts' a lower priority in the attacker's
transfer queue; since there are higher chances that the
'default chunk' distributed by other hosts in the network
is the 'legit' one - the chances of a 'false attack' are low.
This tactic can also be reversed in case a higher
distribution of the malicious version is desired.

9. Potential Countermeasures

One possible countermeasure presented in the
eMule developers forums [12] suggests running an
AICH check upon successful download of any file (and
not only in case of corruption). This countermeasure
can prove effective in case a validated AICH hash is
available beforehand (such as the case of a URI
acquired through a website), but due to the 'swarm
voting' mechanism used to determine the AICH hash in
all other cases, it's possible to 'poison' the voting and
send an AICH that fits the version sent to the host.

Another possible countermeasure is to change the
default hashing algorithm used to a more modern
algorithm such as a SHA-2 variant or SHA-3 (once it's
standardized). This modification would break the
backwards-compatibility of the protocol, but a gradual
move might draw the impact to a minimum, and in the
long-run, it seems like an inevitable move the
developers would have to make.

10. Conclusions

In this paper we have examined MD4 hash collision
attacks and the possible attack vectors that it presents
to the eD2k peer to peer network. By publishing this
paper, we hope to trigger discussion of these issues
among the security community and make way to future
research of hash derived weaknesses in today's network
protocols.

11. Acknowledgments

The authors would like to thank Dr. Anat Bremler-
Barr for her support of this paper and Mr. Yoav
Steinberg for the original idea leading us to this
research.

12. References

[1] Ed2k link – Amule Project FAQ.
http://wiki.amule.org/index.php/Ed2k_link.

[2] Macovschi Alexandru, “eDonkey Shuts Down”,
Softpedia. http://news.softpedia.com/news/eDonkey-
Shuts-Down-9528.shtml.

[3] Hans Dobbertin, “Cryptanalysis of MD4”, Fast
Software Encryption 1996: 53–69.

[4] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui
Chen, Xiuyuan Yu, “Cryptanalysis of the Hash
Functions MD4 and RIPEMD”, Eurocrypt 2005: 1–18.

[5] Yu Sasaki, Lei Wang, Kazuo Ohta, Noboru
Kunihiro, “New Message Difference for MD4”, Fast
Software Encryption 2007: 329–348.

[6] Stach & Liu Research – MD5 and MD4 Collision
Generators.
http://www.stachliu.com/research_collisions.html.

[7] Peter Selinger – MD5 Collision Demo.
http://www.mscs.dal.ca/~selinger/md5collision/.

[8] eMule-Project.net. http://www.emule-project.net/.

[9] aMule. http://www.amule.org/.

[10] Possible Danger to Ed2k Network – Official
eMule-Board. http://forum.emule-
project.net/index.php?showtopic=56643.

[11] Md5 Broken – Official eMule-Board.
http://forum.emule-project.net/index.php?
showtopic=59474.

[12] Upgrade Hashing – Official eMule-Board.
http://forum.emule-project.net/index.php?
showtopic=99686&st=20.

[13] IFPI Digital Music Report 2009.
http://www.ifpi.org/content/library/DMR2009.pdf.

http://wiki.amule.org/index.php/Ed2k_link
http://www.ifpi.org/content/library/DMR2009.pdf
http://forum.emule-project.net/index.php?showtopic=99686&st=20
http://forum.emule-project.net/index.php?showtopic=99686&st=20
http://forum.emule-project.net/index.php?showtopic=59474
http://forum.emule-project.net/index.php?showtopic=59474
http://forum.emule-project.net/index.php?showtopic=56643
http://forum.emule-project.net/index.php?showtopic=56643
http://www.amule.org/
http://www.emule-project.net/
http://www.mscs.dal.ca/~selinger/md5collision/
http://www.stachliu.com/research_collisions.html
http://news.softpedia.com/news/eDonkey-Shuts-Down-9528.shtml
http://news.softpedia.com/news/eDonkey-Shuts-Down-9528.shtml

	1. Introduction
	2. Background
	3. Trust Relations in the eD2k Network
	4. Hash Collision Attacks
	5. Description of the attack
	6. Methodology and Results
	7. Attack Vectors
	8. Possible Optimizations
	9. Potential Countermeasures
	10. Conclusions
	11. Acknowledgments
	12. References

