
Exploiting large memory management

vulnerabilities in Xorg server running on Linux

version 1.0

Rafal Wojtczuk
Invisible Things Lab

rafal@invisiblethingslab.com

August 17, 2010

1 Summary

A malicious authenticated client can force Xorg server to exhaust (or fragment)
its address space. If running on Linux, this may result in the process stack top
being in an unexpected region and execution of arbitrary code with server priv-
ileges (root). x86 32 and x86 64 platforms are affected, others most probably
are affected, too.

Note that depending on the system configuration, by default local unpriv-
ileged users may be able to start an instance of Xorg server that requires no
authentication and exploit it. Also if a remote attacker exploits a (unrelated)
vulnerability in a GUI application (e.g. web browser), he will have ability to
attack X server.

In case of a local attacker that can use MIT-SHM extension (which is the
most likely scenario), the exploit is very reliable.

Identifier CVE-2010-2240 has been reserved for the underlying issue (Linux
kernel not providing stack and heap separation). This issue has been known for
at least five years.

2 Attack scenario

The class of vulnerabilities mentioned in the title is described by Gael Delalleu1

at [1]. Applying this paper to X server case, an attacker can instruct Xorg server
to allocate many large pixmaps. This may result in the stack and mmapped
memory regions becoming close, and allows all the tricks described in the Gael’s
paper.

In fact, X server case is special, because of MIT-SHM extension. Local
attacker can almost completely exhaust X server’s address space, then create a

1This paper is the first summary known to the author

1



shared memory segment S and force X server to attach it at the only available
region left, which will be close above the stack. Then attacker instructs X server
to call a recursive function, which results in the stack being extended and the
stack pointer being moved to S for a brief period of time (during recursion).
Attacker can then write to S; this will overwrite the stack locations and allow
arbitrary code execution. So, unlike in Gael’s paper, we will not need to trigger
data structures corruption by expanding the stack; we will be able to write to the
expanded stack directly, which makes this attack 100% reliable (and somehow
unique).

Without MIT-SHM, it is possible for an attacker to allocate a pixmap and
have X server place the stack top there for a moment, but when attacker in-
structs X server to write to this pixmap, the stack is already in a safe location
(because the recursing function has already completed).

Attack steps:

1. In case of x86 64 platform, instruct X server to allocate as many 32Kx32K
pixmaps (largest allowed by X) as possible. Note that on x86 64 platform,
not all 64bit address space is available - legal addresses must be canonical
(top 16bits must be all 0 or all 1), so we have only 49bits address space.
Linux and X have their additional restrictions on the mmap return value;
as a result, ca 36000 pixmaps exhaust all address space. Note that X
server does not initialize pixmap contents (just reserves a VMA for it);
my tests showed that only about 800MB of RAM is needed for this step.
Again, this step is not necessary in x86 32 case.

2. shm seg size=shmmax 2

while shm seg size >= PAGE SIZE
shm seg=shmget(..., shm seg size,...)
have X attach shm seg
if XShmAttach fails, then shm seg size/=2

done

Similarly, the action of creating and attaching a shared memory segment
requires resident memory only for the control structures, not for all seg-
ment content; thus little RAM is required. On Linux, the maximum num-
ber of shared memory segments is limited by shmmni kernel variable (ex-
ported in /proc/sys/kernel/shmmni). By default it is 4096, and that is
why in case of a 64bits platform we need to shrink the available address
space by allocating pixmaps first.

3. Allocate windows arranged so that when X processes them, some function
F is called recursively. Trigger F recursion.

4. Find a shared memory segment S that has nonzero content. Nonzero
content means X stack top was resident in this segment during F recursion.

2shmmax is the maximal shared memory segment size; from /proc/sys/kernel/shmmax

2



5. Spawn a process W that continuously overwrites the bottom page of S
with custom payload

6. Trigger F recursion. When one of Fs returns, it will pick the return address
from our payload. It is a race (W must write to stack after F has placed its
return address there, but before F returns), but reliably winnable, most
easily on SMP systems.

3 Workarounds

3.1 Set RLIMIT AS

As the attack described above exhausts all address space, the natural workaround
would be to set the Xorg process limit on the virtual memory (RLIMIT AS) to
TASK SIZE-SOME SLACK SPACE. Then, when in allocation phase, the ex-
ploit should run out of this limit before the distance between the stack top and
the allocated regions becomes less than SOME SLACK SPACE. One could hope
that SOME SLACK SPACE could be rather small (around RLIMIT STACK,
around 10M).

However, attacker does not need to exhaust all the address space - she just
needs to make sure that the only contiguous free space area of size shmmax is
just below the stack top, and then attach the shared memory segment of size
shmmax. Consider the following pattern of alloc and free:

x
xx
x
xyy
xyyyy
x yy
x yyzzz
x yyzzzzzz
x yy zzz

This way, attacker can clutter the whole address space, allocating only half of its
size. More complicated alloc+free patterns are possible; currently, it is known
that it is enough to allocate ca 39% of address space size in order to clutter it
all, but the precise theoretical lower bound is unknown to the author.

Therefore, if this RLIMIT AS workaround is to be used (probably by creat-
ing a wrapper around Xorg binary that sets RLIMIT AS and executes original
Xorg), one must set the limit as low as possible. In case of x86 32, it means
at most 1.2G. Unfortunately, legal applications that allocate a lot of pixmaps
may require more space, thus this workaround may not be suitable in all 32bits
environments.

On the other hand, in x86 64 case, setting RLIMIT AS to, say, 64G should
not hurt anyone while preventing the vulnerability from being exploited.

3



3.2 Disable MIT-SHM

Another possibility is to disable MIT-SHM extension by placing the

Section "Extensions"
Option "MIT-SHM" "disable"
EndSection

directive in xorg.conf file. This does not prevent memory corruption, but it is
believed to make it very difficult to create a successful code execution exploit.
However, this impacts functionality of the server.

4 The fix

In response to prevent the described attack (and similar ones), the generic solu-
tion implemented in recent Linux kernels is to keep the top page of stack VMA
unmapped; in other words, maintain a one-page gap between the stack and the
rest of the areas. Note that in Gael’s paper, some scenarios (e.g. usage of alloca
with a large argument3) are discussed when such a protection is insufficient; but
it should be enough in vast majority of cases.

The Linux kernel versions that include the commit
320b2b8de12698082609ebbc1a17165727f4c893 from Linus tree are fixed. Partic-
ularly, 2.6.35.2 and 2.6.34.4 are fixed.

5 Impact on security related software that uses
Xorg server

5.1 sandbox -X

”sandbox -X” utility [2] creates an environment for executing untrusted GUI
applications. For each application A, an instance of Xorg server (more precisely,
Xephyr) is run; A is confined by SELinux, and can talk only to its Xephyr server.
The latter connects to a ”real” X server to display A’s output.

Using the vulnerability described above, a malicious application can execute
arbitrary code in the context of the Xephyr server, and then escalate to root by
attacking the ”real” Xorg server that Xephyr is allowed to talk to. As a result,
the whole mechanism of ”sandbox -X” is defeated.

5.2 Qubes OS

In case of Qubes [3] architecture, untrusted applications execute within a VM,
and connect to a Xorg server running within this VM. Xorg server running
in dom0 maps windows content from VM Xorg, and displays them on ”real”
display.

3Xorg server code does not contain code mentioned in these scenarios; particularly, it does
not use alloca

4



Because dom0 X server maps pages from untrusted VMs, one could expect
that its address space can be exhausted, too. However, there are two mitigating
factors:

• Interaction between X server in dom0 and in VM is controlled by a
qubes guid process. One of the proactive safety measures implemented
in qubes guid since the very beginning was to detect the suspiciously high
number of allocations and ask the user (in dom0) for permission to con-
tinue. Thus, the attack would require the user to manually hit the ”OK”
button a few thousands of times (this cannot be emulated by the exploit)
in order to prepare the desired memory layout in the dom0 Xorg server.

• dom0 X server maps pages from VM read-only. Therefore, even if the user
patiently allowed creation of all requested windows (see previous point),
and stack has expanded into one of the mappings from VM, SIGSEGV
would be delivered after first write to the stack top, and the attack would
not succeed.

6 Other notes

The attack has been reproduced on Fedora 13 default install, both 32 and 64bits.
Local users (say, logged in via ssh) can run ”Xorg :1” and attack this process.
SELinux in the enforcing mode neither prevents exploitation nor limits the
executed code capabilities - it is impossible to sandbox a process that requires
iopl privileges (OpenBSD privilege-separated X server could resist this attack,
though).

On Fedora, Xorg executable base is not randomized, so we may happily
return into locations in Xorg executable (they are at constant addresses): into
execl@got in case of x86 32, or into middle of os/utils.c!System in case of x86 64.
If Xorg executable base was randomized (PIE executable), its base would leak
in the stack content (visible in one of the shared memory segment), so it would
not help, either.

If an attacker is not local (or cannot use MIT-SHM extension), the attack
is still possible - expanded stack may overwrite other data structures. This has
not been researched, and probably would be much less reliable.

7 Timeline

• 17 June 2010 - ITL notifies X.org security team about the vulnerability

• 20 June 2010 - X.org security team suggests to discuss the issue with
Linux kernel developers, as the proper solution should be implemented in
the kernel

• 13 Aug 2010 - the fix is committed to Linus tree [4]

• 17 Aug 2010 - the paper is published

5



References

[1] Gael Delalleu, Large memory management vulnerabilities,
http://cansecwest.com/core05/memory vulns delalleau.pdf

[2] Dan Walsh, Cool things with SELinux... Introducing sandbox -X,
http://danwalsh.livejournal.com/31146.html

[3] Qubes OS project, http://www.qubes-os.org

[4] Linus Torvalds, mm: keep a guard page below a grow-down tack segment,
http://git.kernel.org/linus/320b2b8de12698082609ebbc1a17165727f4c893

6


