NETWORK MANIPULATION IN A HEX FASHION:

An introduction to HexInject

1B F5 36 32 BC 40 DO 81 1E C6 87 DC CD D1 62 6F 4D 29 FD
D5 28 54 81 A7 4F 92 65 23 79 E7 22 3F BC AD BA BB AD E9
2D 18 FE 9F OA 5C FF 3F 72 31 60 CD
AE 33 FE 8E 81 00 OA 04 14 47 B8 94 26 87 8B 83
EQ 52 DF A5 8E A2 8B 99 50 C8 D6 67 43 3E 3B BF
BB 52 B5 46 19 24 9B 97 40 04 4D
1C 33 D2 D7 3C B7 2F 66 CB 0C OF 8D FF
04 63 69 E9 CE EC 2D 08 03 91 B1 D7 78
92 3A OE 22 E2 4B 3A 8F D3 D2
Cc4 24 ED 5F A2 6C 3D 50 8B Co D9
69 51 1F FF 32 38 70 B9 21 38 90 D3 47 D5 A3 D4
21 CB F5 FD D6 E2 B5 90 8A 40 5B D7 DC E5 78 02
6D OF 18 FF 2E OF CC 8D 22 16 18
28 82 8E (2 52 20 E4 EE A5 3B 7E CA F4 44
FE FC EE EE 66 1D 37 11 A4 3D 56 74
2C 8A BA 87 24 AA C5 AF
ED 71 33 DO B5 4A F1 D5 76 EB EA 3C F1 Fa
EC C7 3B 91 79 16 8C B9 EO F1 CC E3 5A 3E
A6 OA 46 A8 54 D2 23 83 69 5A 21 8C 10 85 BE
23 21 9C DO C5 36 83 37 C9 D9 66 7F 2A 08 DC
78 60 AB 00 81 05 19 4C 22 7F F3 B8 88 09 14
BD 8E BD OC AE 8E 1E 8B 7E 20 30 10 94 7A 8E 88 FD 5F
2E F1 AC 17 BB A7 12 93 DF 64 A9 3B 3B 0B 3D 37
B4 52 6A 5E 92 16 A7 95 7D B6 5D C9 Al C1 D9 EA FB 05 8F

8D A7 49 AD 81 B3 B2 OA A6 63 8D 77 92 EA 98 D1 D4 25 FF

2010 - Emanuele Acri

<crossbower@backtrack-linux.org>

Special thank to:
BackTrack Linux Staff

<http://www.backtrack-linux.org/>

44
74
74
2F

EE
78
A0
65

17
97
FB
02
Ad
AF

D1
45
17
36
FF
00
16
78

1/26

mailto:crossbower@backtrack-linux.org
http://www.backtrack-linux.org/

Index

INEEOAUCTION. ...ttt ettt et b et s a e bt e bt ebte bt e sat e e e bt e e sateeeabeeens 3
L BT TSP 3
Why heXadeCimal?.........cooiiiiiiiiieie ettt ettt et e st e et e st e et eeabeesaeensaeean 3

B 7 T D Y oL USRI 6
HeXINJECt @S SNITTET.....cc.eiiiiiiiiiie ettt ettt et e st e e e enbeeeensaeeens 6

TeXTUAL PIOTOCOIS. ..eiutiieiiie ettt ettt e et eestaeeetteeetbeeensaeesssaaesnsaeenssaeeeeannsnns 7
IMIXEA PIOLOCOLS. ...eeeiientieeiiieite ettt ettt ettt e et e e bt e e tteeteesabeesseessseenseessnsaeeeensseeesansneannns 7
HeEXINJECT @S INJECTOT....ccuiiiiiiieeeiee ettt ettt e et e et e e taeeesaeesssaeesssaeesnseeenssneaeeeannns 9
INJ@CHINE. ¢ttt ettt ettt et e st e e bt e et e et e e e et e esbeeenb e e teeenbeeeennbeeeeennbeeeenbaeeenns 9

AQVANCEA USAZE...... viieiiiieciie ettt ettt e et e e et e e ste e e steeesaeeesaeeanssaeessseessseeessseeessseeeeeanssssanens 11

BINAry PrOtOCOLS. . .eoutiiiiieiieeiie ettt ettt ettt e et e et e sebeebeeeabeeseesabeenseeesseenseesnsseaeanes 11
EXtract binary fIelAdS.......coouiiiiiiieeie e et e e e e 12
AQVANCEA PIPINE....tiiiiieiiiiiieeiieeie ettt ettt et e st e et e s tte e bt esseeenbeesstessbeesseesnseenseeenseensaeeennsaeesnnnns 14

YN 0] 157 116 P PUP U PPPPUSRP 17
ARP CREAtSNEEL. ..ottt ettt et e 17
TCMP CREAtSNEET. ...ttt ettt ettt et e e et e e eaaeeas 19
UDP ChEatSREEL.......c.eieieiriieieiec ettt et sttt sttt et et e e ane e 22
TCP ChEatSREEL........oouiieeie ettt sttt sbe e st e s 24

2/26

Introduction

HexlInject (http://hexinject.sourceforge.net/) is a very versatile packet injector and sniffer, that
provide a command-line framework for raw network access.

It's designed to work together with others command-line utilities, the utilities you usually use for
processing text output from executables or scripts (replace, sed, awk).

This “compatibility” facilitates the creation of powerful shell scripts, in a very little time, capable of
reading, intercepting and modifying network traffic.

It's like using libpcap (http://www.tcpdump.org/), from the command line, without messing with the
API. From a (lazy) programmer perspective that's fantastic!

Usage

This is a screenshot of the current usage of the tool, the options should be self-explanating:

T root@bt: jgeek/backtrack/backtrack/microverse/h/hexinject - Shell - Konsole = 5 ®
Session Edit View Bookmarks Seltings Help

bt : # hexinject =
I nject 1.1 [hexadecimal p =1 SeniftrTar]
written by: acri emanuele <c vergbacktrack-linux.org=

axinject =optlions=
Options:
-5 sniff mode
p 1in ct mode
-F i @ (instead o 5 moda)
-i :

-C number of packet
disable automatic

1 help screen

: N0 mode selected, see - -p optlons...

HERL

Basically it has two execution modalities: sniff and inject, and two data format: hexadecimal and
raw (the first data format is the default, the second is unparsed network traffic).

You can provide a custom pcap filters to select traffic to capture, very useful for advanced uses.

And finally, because HexInject is capable to set the correct checksum for the packets injected,
there's a flag to disable this feature.

3/26

http://www.tcpdump.org/
http://hexinject.sourceforge.net/

Why hexadecimal?
The tools is written to read and inject data in hexadecimal, why?

We'll not dwell on the advantages of hexadecimal to represent the binary format.

The reasons are just two: because a fixed two character string can represent all the possible values
of a byte (but you already know this...) and because the hexadecimal allow to follow the principles
of Data-Driven Programming.

“When doing data-driven programming, one clearly distinguishes code from the data structures on
which it acts, and designs both so that one can make changes to the logic of the program by editing
not the code but the data structure.” (http://www.fags.org/docs/artu/ch09s01.html).

This is very important to make clear and maintainable programs or scripts. However, not all the
libraries that provide raw network access follow this principle.

For example, libnet uses functions to hide data, as we can see from this snippet of code (from
netdiscover, http://www.nixgeneration.com/~jaime/netdiscover/):

/* Forge Arp Packet, using libnet */
void forge arp(char *source ip, char *dest ip, char *disp)
{
static libnet ptag t arp=0, eth=0;
static u_char dmac[ETH ALEN] = {OxFF, OxFF, OxFF, OxFF, OxFF, OxFF};
static u char sip[IP ALEN];
static u char dip[IP ALEN];
u int32 t otherip, myip;

/* get src & dst ip address */

otherip = libnet nameZaddr4 (libnet, dest ip, LIBNET RESOLVE);
memcpy (dip, (char*)é&otherip, IP_ALEN);

myip = libnet name2addré4 (libnet, source ip, LIBNET RESOLVE);
memcpy (sip, (char*)é&myip, IP ALEN) ;

/* forge arp data */
arp = libnet build arp(
ARPHRD ETHER,
ETHERTYPE TP,

ETH ALEN, IP ALEN,
ARPOP_ REQUEST,

smac, sip,

dmac, dip,
NULL, O,
libnet,
arp) ;

/* forge ethernet header */
eth = libnet build ethernet(

dmac, smac,

ETHERTYPE ARP,

NULL, O,

libnet,

eth);

/* Inject the packet */
libnet write(libnet);

4/26

http://www.nixgeneration.com/~jaime/netdiscover/
http://www.faqs.org/docs/artu/ch09s01.html

Libnet build arp() and libnet build ethernet() are complex functions, that requires a lot of
variables and pointers (many of them libnet-specific). Certainly their use is not intuitive.

The result is, in my opinion, confusing and ugly. But, of course, the function can be rewritten in a
different style:

/* Forge Arp Packet, using libpcap */
void forge arp(char *source ip, char *dest ip, char *disp)
{

in addr t sip, dip;

char raw arp[] =
"\XEA\XEE\XEE\XEf\XEE\XEE" // mac destination
"\x00\x00\x00\x00\x00\x00" // mac source

"\x08\x06" // type
"\x00\x01" // hw type
"\x08\x00" // protocol type
"\x06" // hw size
"\x04" // protocol size
"\x00\x01" // opcode
"\x00\x00\x00\x00\x00\x00" // sender mac
"\x00\x00\x00\x00" // sender ip
M\xEFA\xfA\xff\xff\xff\xff" // target mac
"\x00\x00\x00\x00"; // target ip

/* get src & dst ip address */
dip = inet addr(dest ip);
sip = inet addr (source_ ip);

memcpy (raw_arp + 28, (char*) &sip, IP_ALEN);
memcpy (raw_arp + 38, (char*) &dip, IP_ALEN);

/* set mac addr */
memcpy (raw_arp + 6, smac, ETH ALEN);
memcpy (raw_arp + 22, smac, ETH ALEN);

/* Inject the packet */
pcap_sendpacket (inject, (unsigned char *) raw arp, sizeof (raw arp)-1);

The second version of forge arp() uses a data-driven approach: less variables, a clear representation
of the ARP packet, standard functions and standard data-types. The packet can be modified in
every aspect without altering the code.

This approach is somewhat similar to (well-written) exploits, where the assembly shellcode
(hexadecimal, of course) has every opcode commented, and it's easy to adapt to the target.

HexInject is similar to this second version of forge arp(), only much simpler.

Note: you can download a patch to eliminate the libnet dependency from the last release of
netdiscover, from my site: http://backtrack.it/~crossbower/netdiscover(.3-beta7-no-libnet.patch.
Useful for recent systems that do not support old versions of libnet...

5/26

http://backtrack.it/~crossbower/netdiscover0.3-beta7-no-libnet.patch

Basic usage

“I believe without exception that theory follows practice.
Whenever there is a conflict between theory and practice, theory is wrong.”
David Baker

This practical section of the document show various uses of HexInject, using a lot of examples.

The operating environment is BackTrack 4 R1 (downloadable from here: http://www.backtrack-
linux.org/downloads/), virtualized with VirtualBox.

It's assumed that the system has two network interfaces (eth0, eth1), if these differ from your, you
must adapt the examples to your system (not difficult).

Hexlnject as Sniffer

As seen before, HexInject can be used as sniffer when the options "-s" is provided. It can print
network traffic in both hexadecimal and raw format.

A first test of the functionality can be:

root@backtrack-base# hexinject -s -i etho

1C AF F7 6B OE 4D AA 00 04 00 OA 04 08 00 45 00 00 3C 9A 88 40 00 40 06 51 04 CO
A8 01 09 5B 05 32 79 C9 45 01 BB 61 5E 85 79 00 00 00 00 AO 02 16 DO OD 2F 00 00
02 04 05 B4 04 02 08 OA 00 OD 22 EC 00 00 00 00 01 03 03 07 FF FF FF FF FF FF AA
00 04 00 OA 04 08 06 00 01 08 0O 06 04 00 01 AA 00 04 00 OA 04 CO A8 01 09 00 00
00 00 00 00 CO A8 01 04

AB 00 00 03 00 00 AA 00 04 00 OA 04 60 03 22 00 OD 02 OO0 OO AA 00 04 00 OA 04 03
DA 05 00 00 00 00 00 OO 00 OO0 OO AA 00 04 00 OO OO OA 00 00 02 AA AA FF FF FF FF
FF FF AA 00 04 00 OA 04 08 06 00 01 08 00 06 04 00 01 AA 00 04 00 OA 04 CO A8 01
09 00 00 00 OO0 0O 60 CO A8 01 04

The default data format is hexadecimal: bytes are separated by a single space, and packets are
separated by the “newline” character. This format is very easy to parse by standard unix cmd-line
utilities (like sed, awk, tr...) and by scripting language interpreters (perl, python, tcl... or even bash).

Instead, if raw data format is specified, the output will be similar to this:

root@backtrack-base# hexinject -s -i etho -r
o#

#HOOKEKOBR3#SE [y#HOO# E.Y#Oroo#CO##$00##
(669 1D50%Gz#9#6 .

H666 .6

GEMO; (66 OCAOYG#OOKMGH

E46] Qo#X000# [y#H® . JO#CY#000##000##
7{(669"C

Network packets are are mainly composed of non printable characters. For this reason, if we want to
extract useful information from network streams we need the help of some utilities.

Very useful is the tool strings, that extracts and prints printable character sequences delimited by
unprintable characters. Mainly developed for determining the contents of non-text files, it works
very well for our purpose.

6/26

http://www.backtrack-linux.org/downloads/
http://www.backtrack-linux.org/downloads/

Let's see:

root@backtrack-base# hexinject -s -i eth® -r | strings
w220 Ftp firmware update utility
USER test
331 Password please.
PASS test
Z421 Login incorrect.
[421 Login incorrect.
QlQp
~C

Interesting... we just intercepted an FTP connection to an embedded device (in this case a DLink
Router).

FTP commands are plain text so it's easy to extract the username and the password from the stream:
USER test

PASS test
Textual protocols

We can of course do something a little more advanced... For example we can extract and print some
HTTP headers.

HTTP is a textual protocol used to retrieve web pages from webservers (but not only). An HTTP
request or response is composed by the message headers and the message body.

The headers are easy to parse because they are separated by the character sequence “\r\n” (0x0D
0x0A), so, from a “raw format” perspective, one header per line.

Let's try to extract the host header to see what websites are being visited on our LAN:

root@backtrack-base# hexinject -s -i eth® -r | strings | grep 'Host:'
Host: youtube.com

Host: www.youtube.com

Host: s.ytimg.com

Even in this example we used only common utilities (strings and grep), creating a “specialized”
sniffer without writing a line of code.

“Ok”, You can think, “this is easy if the protocol is textual, but what about binary protocols?”

Don't worry, with a bit of black sorcery, we can do that and more...

Mixed protocols

We just introduced HTTP, but there's another protocol without which the user experience of the web
would not be the same: Domain Name System.

The DNS protocol, translates domain names, meaningful to humans, into binary identifiers (IP
adresses). So, if a user types “www.backtrack-linux.org” into his browser location bar, he will be
properly addressed to 67.23.70.62, the IP address of the webserver.

DNS is a binary protocol, but contains sequences of printable characters and it's widely used, for
this reason it's a good example of “mixed protocol” (binary data + printable sequences). We will
now write a request sniffer for it.

7/26

The strings we want to extract (the domain names requested), are not transmitted entirely in a
printable format: the domain levels are separated by one byte containing the number of characters
of the next string.

Just to visualize the sequence, a resolution request for "www.google.com" will appear as:

HEADER 3 WWwW 6 google | 3 com

We need to extract and decode something like this:
“\x03www\x06google\x03com\x00”

Since we want to use only common shell tools, a good choice to convert binary characters in
printable ones is tr, a tool used to translate set of character. Sets can be strings of printable
characters (represent themselves), or interpreted sequences.

From the manual of tr:

Interpreted sequences are:
\NNN character with octal value NNN (1 to 3 octal digits)

So, with a little trick, we can convert the domain name of DNS requests in a printable string:

tr '\001-\015" '.’
This convert binary values between 1 (\001) and 13 (\015) into dots, joining the domain levels of
DNS requests.
But it's not enough... We must do a better selection of the data. This can be done with the option -f,
providing a custom pcap filter (http://www.manpagez.com/man/7/pcap-filter/).

The following is the filter to capture only DNS requests, since DNS uses UDP as network protocol
and the standard server port is 53:

udp dstport=53
The last thing to do is to ignore the (few) extracted fields that are not domain name:
grep -o -E '[a-zA-Z0-9_-]+[a-zA-Z0-9\._-]+'

Putting it all together:

root@backtrack-base# hexinject -s -i eth® -f 'udp dstport=53' -r -c 10 | tr
'\001-\015"' '.' | strings --bytes=8 | grep -o -E '[a-zA-Z0-9 -]+[a-zA-Z0-9\. -]
+I

www . xkcd.org

www . xkcd.org
www.google.co.uk
www.google.com
www.google.co.uk
www .google.com
www . xkcd.org

Et voila! A one-line DNS sniffer! Compared to writing a sniffer in C or even Python or Perl, how
much time was saved?

We'll explore more example of binary protocol analysis in the advanced section.

8/26

http://www.manpagez.com/man/7/pcap-filter/

HexlInject as Injector

HexInject can be used as injector when the option “-p” is provided. This functionality is
complementary to the sniffing mode, and, when combined together, they can lead to rather
interesting results.

For now we'll briefly explore how to use HexInject as an injection tool.

Injecting

Simply, we can choose to inject data in raw or hexadecimal format, as seen before with the sniffing
mode. HexInject reads data from the standard input (stdint), so, to provide him custom strings, we
must use the pipe operator:

root@backtrack-base# echo "01 02 03 04" | hexinject -p -i etho

Some hex bytes have just been injected:

813.370259000 Ethernet [Malformed Packet]

~ Frame 8 (4 bytes on wire, 4 bytes captured)
Arrival Time: Aug 25, 2010 21:06:37.398179000
[Time delta from previous captured frame: 3,170919000 sec
[Time delta from previous displayed frame: 3.170919000 se

B

CTtpo1 02 03 04 |

N EY

The same thing can be done in raw mode:

root@backtrack-base# echo 'Yum... pizza!' | hexinject -p -i eth0 -r

The result, as you can imagine, is:

1 0000000000 20:70:69:7a:7a:6l 59:75:6d:2e:2e: 2 Ox210a Etl = 2| X

v Frame 1 (14 bytes on w
[+ Ethernet II, Src: 20:70:69:7a:7a:61 (20:70:69:7a:7a:61), Dst: 59:75:6

9/26

The important thing to note, is that the tool injects packets “as they are” in the network, without
performing any kind of parsing (the only exception is the checksum calculation, but the feature can
be disabled).

So, to be correctly interpreted by other hosts on the network, the packets must have a correct
structure, and must be properly encapsulated.

HexInject operates at the Data Link layer of the OSI model (image from
http://en.wikipedia.org/wiki/OSI_model):

0SIl Model
Data unit Layer Function
. . Metwork process to
7. Application o
applcation
Data
representation, encryption
Data . and decryption, convert
Host 6. Presentation .
machine dependent data
|-EI"_0,|"EI'5 to machine independent
data
5, Session Interhost communication

End-to-end connections
Segments |4, Transport o
and reliability, Flow cartrol

P ath deterrmination and
Packet 3. Network

logical addrassing

Media

Frame 2. Data Link P hysical addressing
layers

Bit 1. ph}"SiCE| Media, signal and binary

transrmission

Build your own packages taking this into account.

The “basic usage” part of this document is over. The next sections will show more advanced uses of
the tool.

10/26

http://en.wikipedia.org/wiki/OSI_model

Advanced usage

“You don't have to cook fancy or complicated masterpieces,
Jjust good food from fresh ingredients.”
Julia Child

This section will show more advanced uses of HexInject, but the material will always be presented
as simply as possible and with extensive use of examples.

The operating environment is BackTrack 4 R1 (downloadable from here: http://www.backtrack-
linux.org/downloads/), virtualized with VirtualBox.

It's assumed that the system has two network interfaces (eth0, eth1), if these differ from your, you
must adapt the examples to your system (not difficult).

Binary protocols

We have seen how to extract information from textual and “mixed” protocols. Now we'll see how to
extract information from binary protocols and how to read binary header fields.

A common LAN protocol we can easily spot “in-the-wild” is Address Resolution Protocol (ARP).
This protocol is used to determine a network host's hardware address (MAC) when only it's network
layer address (IP address) 1s known.

The structure of the protocol is simple: it includes the addresses of the sender and recipient and a
field indicating whether the packet is a request or a response.
Let's try to capture a packet to experiment on:

root@backtrack-base# hexinject -s -i eth0 -f 'arp' -c 1
FF FF FF FF FF FF AA 00 04 00 OA 04 08 06 00 01 08 00 06 04 00 01 AA 00 04 00 OA
04 CO A8 01 09 00 00 00 0O GO 00 CO A8 01 04

We can save the captured packet in the file 'arp.example’.

Having a little knowledge of the ARP structure it's possible to divide the protocol header from the
ethernet frame:

FF FF FF FF FF FF AA 00 04 00 OA 04 08 06 00 01 08 00 06 04 00 01 AA 00 04 00 OA
04 CO A8 01 09 00 00 00 0O 00 00 CO A8 01 04

The red part is the ethernet frame. It contains the destination MAC address (in this case
ff:ff: ff:f:ff: ff, broadcast), the sender MAC address (aa:00:04:00:0a:04) and the next header type (in
this case ARP, 0x0806).

The red part is the ARP header:

Harcdweara Type Frotocol Type
Hw Length | Prot Length Operation
=ource MAC Address [003]
Source MAC Address [4:5) | Source IP Address [0:1]
Source [P Address [2:3] | Target MAC Address [001]
Target MAC Address [2:5]
Target IF Address

11/26

http://www.backtrack-linux.org/downloads/
http://www.backtrack-linux.org/downloads/

Let's see what can we extract from this bunch of bytes.

Extract binary fields

Our goal is to create a complete ARP sniffer to print hexadecimal data in a comprehensible manner.
We'll write it in form of shell script using only bash and awk.

The first two fields to extract are Hardware Type and Protocol Type, usually set to “0x0001”
(Ethernet) and “0x0800” (Ipv4). Since these fields are of a fixed length of 2 bytes we can easily
print them using awk.

root@backtrack-base# cat arp.example | awk '{ print "0x"$15$16 }'
0x0001

root@backtrack-base# cat arp.example | awk '{ print "0x"$17$18 }'
0x0800

In the script we'll add a function to convert the value in the protocol name.

The next step is printing the length of the protocol addresses. Since a decimal value it's more useful
we have to change a little the awk command:

root@backtrack-base# cat arp.example | awk --non-decimal-data
'{ printf("%d","0x"$19) }'
6

root@backtrack-base# cat arp.example | awk --non-decimal-data
"{ printf("%d","0x"$20) }'
4

The result is correct: 6 bytes for MAC addresses and 4 bytes for [P numbers. Note: the option '--
non-decimal-data' has been introduced more recently in GNU awk, and is optional because it's not
compatible with old scripts, but it is very useful to interpret hexadecimal numbers as inputs.

Now we can analyze the opcode:

root@backtrack-base# cat arp.example | awk '{ print "0x"$21$22 }'
0x0001

In this case it's an ARP request (opcode 0x0001), but you can encounter also responses (opcade
0x0002).

The last things left to be extracted are the MAC and IP address of the source and the target.
Source addresses:
root@backtrack-base# cat arp.example | awk '{ print

$23II : II$24II : II$25II : II$26II : II$27II : II$28 }]
AA:00:04:00:0A:04

root@backtrack-base# cat arp.example | awk --non-decimal-data '{ printf("%d.%d.
%d.%d", "0x"$29, "0x"$30, "0x"$31, "0x"$32); }'
192.168.1.9

12/26

Target addresses:

root@backtrack-base# cat arp.example | awk '{ print
$33II : II$34II : Il$35ll : II$36II : II$37II : Il$38 } 1
00:00:00:00:00:00

root@backtrack-base# cat arp.example | awk --non-decimal-data '{ printf("%d.%d.

%d.%d", "0x"$39, "0x"$40, "0x"$41, "0x"$42); }'
192.168.1.4

Easy, isn't it?

We've converted IP address to dotted decimal style using awk's printf() (as before we need the
option —non-decimal-data), and “decoded” MAC addresses just joining the 6 bytes wit

characters.

.9

Now that we know how to get all the information we need, let's see if we can put these commands
together to create a script. It will display the packet in a pretty manner:

#!/bin/bash

awk ——non-decimal-data '

{

print "+--- hw type --—-+--- pr type ---+";
print "| Ox" $15S816 " | Ox"™ $17%18 ™" "
print "+--- hw size ---+--- pr size —---+";

print "| 0x"™ $19 " | 0x" $20 " "
print "+-—-—-—-- opcode (type) -------- +r;

print " | 0x"™ $218$22" " ($22==17 "request" :
print "+--------—- source hw —--—-—----—-—-- py

print Hl " $23H:H$24H:H$25H:H$26H:H$27H:H$28H
print "+-------——- source pr —-—-—--—-—---- 41

"response") "

"o,
’

ipl = sprintf ("%d.%d.%d.%d", "0x"$29, "0x"$30, "0x"$31, "0x"$32);

lenl =length (ipl)

printf ("] %$s%*c\n", ipl, 24-lenl, "|");
print "+--------—- target hw -—-—-------- 1

print Hl " $33n:n$34n:n$35n:n$36n:n$37n:n$38n
print "+-------——- target pr —————-————- 4,

ip2 =sprintf ("%d.%d.%d.%d", "0x"$39, "0x"$40, "0x"S$4
len2 = length (ip2) ;

printf (" | $s%*c\n", ip2, 24-len2, "|");
print "t—_— +"’.
print "";

(LI
Iz

1, "0x"$42);

LI

13/26

The script is very simple, but it is difficult to mentally visualize its output without running it
(obviously you can also pipe the script to a running HexInject process to format packets in real
time):

root@backtrack-base# cat arp.example | ./arp_decode.sh
+--- hw type ---+--- pr type ---+
| 0x0001 | 0x0800 |
+--- hw size ---+--- pr size ---+
| 0x06 | 0x04 |
R opcode (type) -------- +
| 0x0001 request |
Fommme e source hw ---------- +
| AA:00:04:00:0A:04 |
Fomme - source pr ---------- +
| 192.168.1.9 |
R target hw ---------- +
| 00:00:00:00:00:00 |
e target pr ---------- +
| 192.168.1.4 |
R +

Although it is only a script, through the awk language it's possible to convert, edit and format any
kind of textual output, making this the perfect language for our purposes.

As you've seen, sometimes, simple scripts and pipelines are as powerful as complex programs. The
difference is in development time and versatility.

In the appendix you can find various cheatsheet to extract field from the most common protocols.
Be sure to give a look...

Advanced piping
So far we only used pipes comprising one instance of HexInject, either reading or injecting data.

Is, of course, possible to combine two different HexInject processes, which, running in different
modalities, allow the modification of network packets “on the fly”.

An intuitive pattern, generally applicable when we need to alter a flow of data is the following:

hexinject -s -i 'src int' -f 'filter’' | ... | ... | hexinject -p -i 'dst int'

A first instance of HexInject read the data from the source interface usually selecting the data
through a pcap filter (it's rare the necessity to analyze all the traffic, so the use of filters is strongly
encouraged).

Then the traffic is analysed by a serie of filters (cmd-line tools) and modified.

Finally the traffic is re-injected in the network by a second instance of HexInject, running on the
destination interface (which may be or not the same as the source interface).

A simple example of this is a “conversion” of an ARP request in an ARP response just changing one
bit of the packet:

root@backtrack-base# hexinject -s -i eth® -c 1 -f 'arp' | replace '06 04 00 01'
'06 04 00 02' | hexinject -p -i etho

14/26

Wireshark dump:

|E]F1Iter: |[arp | v] g5 Expr

Jalime Source DestinatiorProtoce Info

6 3 DigitalE Broadcast ARP Who has 192.168.1.47 Tell 192.168.1.9
7 3 DigitalE Broadcast ARP 192.168.1.9 is at aa:00:04:00:0a:04
WELUWWE . TERLY LWALIL)
[Is gratuitous: False]
Sender MAC address: DigitalE 00:0a:04 (aa:00:04:00:0a:04)
Sender IP address: 192.168.1.9 (192.168.1.9)

gpoe ff ff ff ff ff ff aa OO0 04 00 0a 04 0B 06 00 01

Eele 08 00 06 04 [INEE aa 00 04 00 Ga 04 cO a8 01 09 ... [0..
0020 00 00 00 60 00 00 cO a8 01 04

Note that the strings passed to replace are quite long, though they differs in only one bit. This is
because the pipe is "stateless", so there's the risk of altering wrong parts of the packets.

If you plan to do the same thing with a “smarter” pipe you can adapt the shell script seen previously
for the parsing and dumping of ARP packets.

We said that the source interface may not coincide with the destination interface. This opens up
several new possibilities.

We could put up a pseudo transparent bridge built using only two lines of bash:

root@backtrack-base# hexinject -s -i eth® -c 1 -f 'src host 192.168.1.9' |
hexinject -p -i ethl
root@backtrack-base# hexinject -s -i ethl -c 1 -f 'dst host 192.168.1.9' |
hexinject -p -i etho

Actually this example can surely be improved, it just demonstrate the versatility of the tools.

Bridge

It's even possible to emulate NAT opportunely replacing the IP:

root@backtrack-base# hexinject -s -i eth® -c 1 -f 'src host 192.168.1.9' |
replace 'CO A8 01 09' 'CO A8 01 04' | hexinject -p -i ethl

root@backtrack-base# hexinject -s -i ethl -c 1 -f 'dst host 192.168.1.9' |
replace 'CO A8 01 04' 'CO A8 01 09' | hexinject -p -i etho®

15/26

Note that these two examples lack the management of MAC addresses, that can be implemented as
a script placed in the middle of the pipe. Nevertheless the examples give an idea of what is possible
to do.

A final, but very interesting, example of advanced pipes is the combined use of netcat and hexinject
to create a remote sniffer.

Fublic Network Private Network

RS .
-D

S

Receiver machine Sniffer machine

!
|
The sniffer is located on the machine “192.168.56.101”, a backtrack box running inside virtualbox,
that has not direct access to the internet:

host@192.168.56.101# hexinject -s -i eth® -f 'not dst host 192.168.56.1' | nc -u
192.168.56.1 5555

Note the use of pcap filters to avoid an infinite loops of sniffed and transmitted packets.

The receiver is located on “192.168.1.9” or “192.168.56.1” inside the virtualbox network. To
receive traffic we need just a listening netcat:

host@192.168.1.9# nc -1 -p 5555 -u

OA 00 27 00 00 00 08 00 27 49 48 03 08 00 45 00 00 54 00 00 40 00 40 01 7F EC CO
A8 38 65 CO A8 01 07 08 00 17 93 59 1A 00 02 DB 42 A7 4C 18 BE 01 00 08 09 OA OB
0C 6D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26
27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

OA 00 27 00 00 00 08 00 27 49 48 03 08 00 45 00 00 54 00 00 40 00 40 01 7F EC CO
A8 38 65 CO A8 01 07 08 00 AC 92 59 1A 00 03 DC 42 A7 4C 82 BD 01 00 08 09 OA OB
0C 6D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26
27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

As you can see, some ICMP packets (generated by the ping utility) has been captured and remotely
transmitted to the receiver machine. No tunneling protocols, no GRE, just netcat and hexinject, two
simple standalone tools.

To conclude this last section we can only say that the possibilities and combinations of tools are
virtually endless, and the only limit is our imagination.

I hope this document has not bored you, please contact me via email if you find new interesting
uses of the tool, so that i can add new examples to this document.

16/26

Appendix
“If you can't explain it simply, you don't understand it well enough”
Albert Einstein
“The ability to simplify means to eliminate the unnecessary so that the necessary may speak”

Hans Hofmann

This appendix contains various cheatsheets useful to “decrypt” hexadecimal packet dump. They
describe the structure of the most common protocols and how to extract their fields using only
simple command-line tools.

Surely a lazy programmer/penstester aid ;)

The appendix includes also some visual representation of protocol headers from Wikipedia
(http://www.wikipedia.org).

ARP cheatsheet

Visual representation:

Internet Protocol (IPv4) over Ethernet ARP packet

bit 0=-7 8-15
offset

0 Hardware type (HTYPE)

16 Protocol type (PTYPE)

= Hardware address length | Protocol address length

(HLEN) (PLEN)

48 Operation (OPER)

64 Sender hardware address (SHA) (first 16 bits)
80 (next 16 bits)

96 (last 16 bits)

112 Sender protocol address (SPA) (first 16 bits)
128 (last 16 bits)

144 Target hardware address (THA) (first 16 bits)
160 (next 16 bits)

176 (last 16 bits)

192 Target protocol address (TPA) (first 16 bits)
208 (last 16 bits)

17/26

http://www.wikipedia.org/
http://www.wikipedia.org/

Capture example:

FF FF FF FF FF FF AA 00 04 00 OA 04 08 06 00 01 08 00 06 04 00 01 AA 00 04 00 OA
04 CO A8 01 09 00 00 00 0O 00 00 CO A8 01 04

Capture explanation:

FF FF FF FF FF FF

AA 00 04 00 OA 04

08 06

00 01

08 00

06

04

00 01

AA 00 04 00 OA 04

Co A8 01 09

00 00 00 00 00 0O

CoO A8 01 04

Field extraction cheatsheet:

Field

Destination hw address

Source hw address
Type

Hardware type
Protocol type
Hardware size
Protocol size
Opcode

Sender hw address

Sender proto address

Target hw address
Target proto address

Destination hardware address

Source hardware address

Type
Hardware type
Protocol type
Hardware size
Protocol size

Opcode

Sender hardware address

Sender protocol address

Target hardware address

Target protocol address

Command(s)

awk '{ print $1":"$2":"$3""$4":"$5":"$6 }"

awk '{ print $7":"$8":"§9":"$10":"$11":"$12 }'
awk '{ print "0x"$13$14 }'

awk '{ print "0x"$15816 }'

awk '{ print "0x"$17$18 }'

awk '{ print "0x"$19 }'

awk '{ print "0x"$20 }'

awk '{ print "0x"$21$22 }'

awk '{ print $23":"$24":"$25":"§26":"$27":"$28 }'

awk --non-decimal-data '{ printf("%d.%d.%d.%d",
"0X"$29’ "0X"$307 "0X"$317 "0X"$32); }V

awk '{ print $33":"$34":"$35":"$36":"$37":"$38 }'

awk --non-decimal-data '{ printf("%d.%d.%d.%d",
"0X"$39’ "0X"$40’ HOXH$4 1 , "0X"$42); }V

Result
FF.FF.FF:FF:FF:FF
AA:00:04:00:0A:04
0x0806

0x0001

0x0800

0x06

0x04

0x0001
AA:00:04:00:0A:04
192.168.1.9

00:00:00:00:00:00
192.168.1.4

18/26

ICMP cheatsheet

Visual representation (IP):

bit
0-3 q4-7F 8-13 14-15 16-18 19-31
offset
Differentiated Explicit
.| Heade _ _
0 \ersion Lenath Services Code |Congestion Total Length
en . L
d Point Motification
32 Identification Flags | Fragment Offset
64 Time to Live Protocol Header Checksum
96 Source IP Address
128 Destination IP Address
160 Options [if Header Length = 5)
160
or Data
1924+

Visual representation (ICMP):

Bits| 0-7 8-15 16-23 24-31
0 | Type Code Checksum
32 1w Sequence

Capture example:

1C AF F7 6B OE 4D AA 00 04 00 OA 04 08 00 45 00 00 54 00 00 40 00 40 01 54 4E CO
A8 01 09 CO A8 64 01 08 00 34 98 D7 10 00 01 5B 68 98 4C 00 00 00 00 2D CE 0C 00
00 00 00 00 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26
27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

Capture explanation:

1C AF F7 6B OE 4D Destination hardware address
AA 00 04 00 OA 04 Source hardware address

08 00 Type

45 Version / Header length

00 ToS/DSF

00 54 Total length

00 00 ID

40 00 Flags/Fragment offset

19/26

40
01
54
Co
Co
08
00
34
D7
00
5B
00
1A

27
34

Field extraction cheatsheet:

4E
A8

A8

98

10

01

68
00
1B
28
35

Field

Destination hw address

Source hw address

Type
Version

Header length

01 09

64 01

98 4C 00 00 00 00 2D CE OC 00 00
00 10 11 12 13 14 15 16 17 18 19
1C 1D 1E 1F 20 21 22 23 24 25 26
29 2A 2B 2C 2D 2E 2F 30 31 32 33

36 37

ToS/DSF
Total length

ID

Flags

Fragment offset

TTL

Protocol

Command(s)

awk l{ print $1H:"$2":”$3":"$4":"$5H:"$6 }Y

TTL

Protocol
Checksum

Source address
Destination address
Type

Code

Checksum

ID

Sequence number

Data

Result
1C:AF:F7:6B:0E:4D

awk '{ print $7":"$8":"§9":"$10":"$11":"$12 }' AA:00:04:00:0A:04
awk '{ print "0x"$13$14 }' 0x0800

awk --non-decimal-data

awk --non-decimal-data
}Y
awk '{ print "0x"$16 }'

awk --non-decimal-data

'{ print rshift("0x"$15,4) }' 4
'{ print and("0x"$15, 0xf)*4 20

'{ printf("%d","0x"$17$18) }"

awk '{ print "0x"$19$20

awk --non-decimal-data
rshift("0x"$21$22,13) }'

awk --non-decimal-data

'{ $a=rshift("0x"$21$22,

0x00
84
I 0x0000
'{ print 2

Do not fragment
13); if(and($a,4)) { print

"Reserved" } if(and($a,2)) { print "Do not fragment"
} if(and($a,1)) { print "More fragments" } }'

awk --non-decimal-data
}V

awk '{ print "0x"$23 }'
awk '{ print "0x"$24 }'

'{ print and("0x"$21$22,13) 0

0x40
0x01

20/26

Checksum

Source address

Destination address

Type
Code
Checksum

ID
Sequence number
Data

awk '{ print "0x"$25$26 }'

awk --non-decimal-data '{ printf("%d.%d.%d.%d",
"0X"$27, "0X"$28’ "0X"$297 "0X"$30); }V

awk --non-decimal-data '{ printf("%d.%d.%d.%d",
HOX"$31, HOX"$32, VVOX"$33’ V'OX"$34); }V

awk '{ print "0x"$35 }'

awk '{ print "0x"$36 }'

awk '{ print "0x"$37$38 }'

awk '{ print "0x"$39$40 }'

awk '{ print "0x"$41$42 }'

sed 's/\{125\}//' | replace ' ' "\\x' | xargs printf

0x544E
192.168.1.9

192.168.100.1

0x08

0x00
0x3498

0xD710
0x0001

[h®L-©
HHHHEHEHHH R

1 1HS

%&'()*+,-./01234567

21/26

UDP cheatsheet

Visual representation:

bits 0-15

0 Source Port Mumber

32 Length

64

Capture example:

1C AF F7 6B OE 4D AA 00 04 00 OA 04 08 00 45 00 00 3C 9B 23 00 00 40 11 70 BC CO
A8 01 09 DO 43 DC DC 91 02 00 35 00 28 6F 0B AE 9C 01 00 00 01 00 00 00 0O OO 0O
03 77 77 77 06 67 6F 6F 67 6C 65 03 63 6F 6D 00 00 01 00 01

Capture explanation:

1C AF F7 6B OE 4D

AA
08
45
00
00
9B
00
40
11
70
Co
DO
91
00
00
6F

AE
77

00

00

3C
23

00

BC

A8

43

02

35

28

0B

9C
77

04 00 OA 04

01 09

DC DC

01 00 00 01 00 00 00 00 00 00 03
77 06 67 6F 6F 67 6C 65 03 63 6F

16 - 31
Destination Port Number

Checlksum

Data

Destination hardware address
Source hardware address
Type

Version / Header length
ToS/DSF

Total length

ID

Flags/Fragment offset
TTL

Protocol

Checksum

Source address
Destination address
Sorce port

Destination port

Length

Checksum

Data

22/26

6D 00 00 01 00 01

Field extraction cheatsheet:

Field

Destination hw address

Source hw address

Type
Version

Header length

ToS/DSF
Total length

ID
Flags

Fragment offset

TTL
Protocol
Checksum

Source address
Destination address
Source port
Destination port
Length

Checksum
Data

Command(s)

awk '{ print $1":"$2":"$3":"§4":"$5":"$6 }'

awk '{ print $7":"$8":"$9":"$10":"$11":"$12 }'

awk '{ print "0x"$13$14 }'

awk --non-decimal-data '{ print rshift("0x"$15, 4) }'

awk --non-decimal-data '{ print and("0x"$15,
0xf)*4 }'

awk '{ print "0x"$16 }'

awk --non-decimal-data
"{ printf("%d","0x"$17$18) }'

awk '{ print "0x"$19$20 }'

awk --non-decimal-data '{ print
rshift("0x"$21$22,13) }'

awk --non-decimal-data '{ $a=rshift("0x"$21$22,13);
if(and($a,4)) { print "Reserved" } if(and($a,2))

{ print "Do not fragment" } if(and($a,1)) { print
"More fragments" } }'

awk --non-decimal-data '{ print
and("0x"$21$22,13) }'

awk '{ print "0x"$23 }'
awk '{ print "0x"$24 }'
awk '{ print "0x"$25$26 }'

awk --non-decimal-data '{ printf("%d.%d.%d.%d",
"0X"$27’ "0X"$287 "0X"$29’ "0X"$30); }V

awk --non-decimal-data '{ printf("%d.%d.%d.%d",
"0X"$31, "0X"$32, "0X"$33’ "0X"$34); }V

awk --non-decimal-data '{ printf("%d",
"0x"$35836) }'

awk --non-decimal-data '{ printf("%d",
"0x"$37838) }'

awk --non-decimal-data '{ printf("%d",
"0x"$39%40) }'

awk '{ print "0x"$41$42 }'
sed 's/\{125\}//" | replace ' ' "\\Xx' | xargs printf

Result
1C:AF:F7:6B:0E:4D

AA:00:04:00:0A:04
0x0800

4

20

0x00
60

0x9B23
0

0x40

0x11
0x70BC
192.168.1.9

208.67.220.220
37122
53

40

0x6F0B

© ©#wwwigoogl
etfcom##

23/26

TCP cheatsheet

Visual representation:

Bit offset| o 1 2| 3 4 5 6| 7| 8| 916 11 12 13|14(15|16 |17 18 10 20 21|22 23|24 25|26 27 28 29 30|31

0 Source port Cestination port

32 Sequence number

64 Acknowledgrment number
clelulalrlr|[sS|F _ _

96 Data offset| Reserved (W |C|R|C|5|5 ¥ |I Window Size
RIE|G K/ H|T|N|N

128 Checksum Urgent pointer

160 Options (if Data Offset = 5)

Capture example:

1C AF F7 6B OE 4D AA 00 04 00 OA 04 08 00 45 00 00 34 5A AE 40 00 40 06 5E 67 CO
A8 01 09 58 BF 67 3E 9B 44 00 50 8E B5 C6 AC 15 93 47 9E 80 10 00 58 A5 A0 00 00
01 01 08 OA 00 09 C3 B2 42 5B FA D6

Capture explanation:

1C AF F7 6B OE 4D Destination hardware address
AA 00 04 00 OA 04 Source hardware address
08 00 Type

45 Version / Header length
00 ToS/DSF

00 34 Total length

5A AE 1D

40 00 Flags/Fragment offset
40 TTL

06 Protocol

5E 67 Checksum

CO A8 01 09 Source address

58 BF 67 3E Destination address

9B 44 Sorce port

00 50 Destination port

8E B5 C6 AC Sequence number

15 93 47 9E Ack number

24/26

80

10

00 58

A5 A0

00 00

01 01 08 OA 00 09 C3 B2 42 5B FA D6

Field extraction cheatsheet:

Field

Destination hw address

Source hw address

Type
Version

Header length

ToS/DSF
Total length

ID
Flags

Fragment offset

TTL
Protocol
Checksum

Source address
Destination address
Source port
Destination port

Sequence number

Command(s)

awk '{ print $1":"$2":"$3":"$4":"$5":"$6 }"
awk l{ print $7H:"$8":"$9H:"$10":"$11":"$12 }V

awk '{ print "0x"$13$14

awk --non-decimal-data '{ print rshift("0x"$15, 4) }'
awk --non-decimal-data '{ print and("0x"$15, 0xf)*4

}V
awk '{ print "0x"$16 }'

awk --non-decimal-data

Header length

Flags

Window
Checksum
Padding

Options

}l

'{ printf("%d","0x"$17$18) }'

awk '{ print "0x"$19$20

awk --non-decimal-data
rshift("0x"$21$22,13) }'

awk --non-decimal-data

'{ $a=rshift("0x"$21$22,13); if(and($a,4)) { print
"Reserved" } if(and($a,2)) { print "Do not fragment"
} if(and($a,1)) { print "More fragments" } }'

awk --non-decimal-data '{ print and("0x"$21$22,13)

}l

awk '{ print "0x"$23 }'
awk '{ print "0x"$24 }'
awk '{ print "0x"$25$26

awk --non-decimal-data '{ printf("%d.%d.%d.%d",
"0X"$27’ "0X"$28’ "0X"$29’ "0X”$30); }V

awk --non-decimal-data '{ printf("%d.%d.%d.%d",
HOX"$31, HOXH$32’ HOXH$33’ HOXH$34); }V

awk --non-decimal-data '{ printf("%d", "0x"$35$36)

}V

awk --non-decimal-data '{ printf("%d", "0x"$37$38)

}V

awk --non-decimal-data '{ printf("%d",

}V

'{ print

}l

Result
1C:AF:F7:6B:0E:4D

AA:00:04:00:0A:04
0x0800

4

20

0x00
52

0x5AAE
2

Do not fragment

0x40

0x06
0x70BC
192.168.1.9

88.191.103.62
39748
80

2394277548

25/26

Ack number
Header length

Flags

Window

Checksum
Padding
Options
Data

"0x"$39$40$41%42) }'

awk --non-decimal-data '{ printf("%d", 361973662
"0x"$43$44$45%46) }'

awk --non-decimal-data '{ printf("%d", 32
rshift("0x"$47,4)*4) }'

awk --non-decimal-data '{ $a="0x"$48; Ack

if(and($a,128)) { print "CWR" } if(and($a,64))

{ print "ECN-Echo" } if(and($a,32)) { print "Urg" }
if(and(8$a,16)) { print "Ack" } if(and($a,8)) { print
"Push" } if(and($a,4)) { print "Rst" } if(and($a,2))
{ print "Syn" } if(and($a,1)) { print "Fin" } }'

awk --non-decimal-data '{ printf("%d", "0x"$49$50) 88
}V
awk '{ print "0x"$51$52 }' 0

sed 's/\{197\}//" | replace ' ' "\\X' | xargs printf
(The offset may vary, options dependent)

26/26

	Introduction
	Usage
	Why hexadecimal?

	Basic usage
	HexInject as Sniffer
	Textual protocols
	Mixed protocols

	HexInject as Injector
	Injecting

	Advanced usage
	Binary protocols
	Extract binary fields

	Advanced piping

	Appendix
	ARP cheatsheet
	ICMP cheatsheet
	UDP cheatsheet
	TCP cheatsheet

