
In Memory Fuzzing
Real Time Input Tracing and In Memory Fuzzing

by sinn3r – twitter.com/_sinn3r
2010



Introduction

In memory fuzzing is a technique that allows the analyst to bypass parsers; network-related limitations 
such as max connections, buit-in IDS or flooding protection; encrypted or unknown (poorly 
documented) protocol in order to fuzz the actual underlying assembly routines that are potentially  
vulnerable.  This concept will be explained more in the InMemoryFuzzer.py section, but if you're 
really interested in it, Fuzzing: Brute Force Vulnerability Discovery by Pedram Amini is a great book 
to read.

Prior to the development of my fuzzing toolset, I was unsatisfied (for now) with all the publicly 
available in memory fuzzers, because most of them are just too basic and require too much prep time 
in advance – flow analysis, reverse code engineering, etc – which obviously has a high learning curve 
and time consuming tasks, and most people would rather just stick with traditional fuzzers (which 
usually can accomplish the exact same thing).  Yes, you DO need some reversing skills to make in 
memory fuzzing useful, but honestly it doesn't really have to be that difficult to start fuzzing and find 
bugs... as long as you have the right approach.

One of the approaches we do here is by tracing user input automatically at real time, and log all the 
important functions that process that input, and then fuzz them.  A proof of concept (Tracer.py and 
InMemoryFuzzer.py) is also available to download which can be found here:

http://redmine.corelan.be:8800/projects/inmemoryfuzzing

A video demonstration is also available here that shows how to use in memory fuzzing:
http://www.youtube.com/watch?v=YhyFuAfD7C4

Special thanks to:

• Peter Van Eeckhoutte, and members of Corelan Security
• Offensive Security Exploit Database  
• dookie2000ca   for all the feedback

http://www.youtube.com/watch?v=YhyFuAfD7C4
http://redmine.corelan.be:8800/projects/inmemoryfuzzing
http://twitter.com/#!/dookie2000ca
http://www.exploit-db.com/
http://www.corelan.be:8800/


Requirements/Setup:

In order to use these tools, you should have:

• Windows XP SP2 or SP3 (Not tested on SP1), or newer.
• IDA 4.9: http://www.hex-rays.com/idapro/idadownfreeware.htm OR pvefindaddr.py (optional)
• Python 2.5.0 (installed from Immunity Debugger)
• Pydasm: http://therning.org/magnus/archives/278
• Paimei: http://www.openrce.org/downloads/details/208/PaiMei

Pydbg is probably the trickiest to install so we'll go through the steps briefly:

1. Install Python 2.5.  The one I tested was: Python 2.5 (r25:51908, Sep 19 2006, 09:52:17)
2. Download Pydasm (for Python 2.5) from the URL above.
3. Download Paimei.  Extract the package, go to the “installers” folder, and run the installer.
4. Remove C:\Python25\Lib\site-packages\pydbg\pydasm.pyd
5. Now you're ready to test out Pydbg.  Open command prompt, do the following – if you see 

no errors after importing pydbg, that means your system now supports Pydbg:

http://www.openrce.org/downloads/details/208/PaiMei
http://therning.org/magnus/archives/278
http://www.corelan.be:8800/index.php/security/pvefindaddr-py-immunity-debugger-pycommand/
http://www.hex-rays.com/idapro/idadownfreeware.htm


Tracer.py: How it works

As I previously mentioned in the introduction, in order to deploy an in memory fuzzer, you must go 
through a good amount of analysis to identify all the functions that process your input, and log the 
function entry addresses, RETN addresses, and the argument you want to fuzz.  This makes fuzzing 
very time consuming, simply not something that can be done in minutes.

The purpose of Tracer.py is to ease off this process, allowing the user to track the control flow and user 
input automatically at real-time.  This is done by first searching all the function addresses in the 
application, put a hook point in every one of them, and then start monitoring.  If a hooked function is 
detected, we log the function address and the argument, and keep listening.  Since this happens at real 
time, even with the most basic tool like this can still see some kind of pattern in the log, which gives us 
an idea where to fuzz.

The following example shows how to recognize this pattern in Tracer.py:



Tracer.py: How to

First, open IDA.  If you're using IDA 4.9 (see image):

1. Click on the Functions tab.

2. Select all the functions (click the first function → hold [shift] → select last function)

3. Right click → copy → paste on notepad.  Save it as “functions.txt” under the same directory 
as the script.

If you're using IDA Pro 5.5 or higher, the Functions table should be on the left of the pretty graph. You 
can do the same thing (right click → copy and paste) to obtain all your functions that way.  Keep in 
mind at this stage would be a good time to strip off unnecessary routines that you already know (or add 
more) from your list to reduce noises during sniffing.

Tip:
If you're not a fan of IDA, you can also use pvefindaddr to automatically 
generate functions.txt for you.  Syntax:

!pvefindaddr functions -o -m <module>



Second, open the application you want to fuzz. You must do this before running the script because it 
needs to attach to the process first.

Third, now that you have a function list (functions.txt).  Go to command prompt, and type the 
following (assuming you saved Tracer.py in C:\):

C:>C:\python25\python.exe Tracer.py

Fourth, the script should find the function list file without problems.  Give it a pattern (user input) to 
look for, select the process you want to monitor, and the fun begins.  Note that a file named 
“new_functions_addrs.txt” will be created – this file contains the same function addresses, and the 
correct RETN addresses.  You can use this as a reference later for InMemoryFuzzer.py.

Fifth, now Tracer.py should be monitoring. Go back to the application, feed it the same pattern (user 
input), and then you'll see which functions get triggered.  Press [CTRL] + [C] to terminate the script.

Tip:
It is best to close other unnecessary active processes before running Tracer.py...



InMemoryFuzzer.py: How it works
The idea of how the fuzzer works is simple.  Say you have a vulnerable routine at entry 0x1001BEEF 
(aka snapshot point), which takes the user input as [ESP+4] at the beginning of the prologue, and that 
function ends at address 0x1001BFEA (restore point).  We can put a breakpoint at 0x1001BEEF, 
another at 0x1001BFEA, and let the application run, as the following diagram demonstrates:

When the execution flow hits our first breakpoint (entry) for the first time, we take a snapshot of the 
state (threads, stack, registers, flags, etc), modify the user input in [ESP+4], and resume execution to 
let the function to process our data, and hope something crashes.  If an exception is thrown somewhere 
in the code, we log that, restore the function state, and redirect the execution flow back to the entry 
(0x1001BEEF), and fuzz again with a new input, like this diagram:

Or, no exception is triggered, we end up hitting the second breakpoint (restore point), then all we have 
to do is restore the state, rewind, and fuzz again:

Vulnerable Function

Execution Flow

Entry: 0x1001BEEF
* Breakpoint 1 = snapshot point

RETN: 0x1001BFEA
* Breakpoint 2 = restore point

Vulnerable Function

Execution Flow

Entry: 0x1001BEEF
* Breakpoint 1

RETN: 0x1001BFEA
* Breakpoint 2Exception!

Vulnerable Function

Execution Flow

Entry: 0x1001BEEF
* Breakpoint 1

RETN: 0x1001BFEA
* Breakpoint 2

http://en.wikipedia.org/wiki/Function_prologue


InMemoryFuzzer.py: How to
Before you use the fuzzer, you should already know the following:

• Which process to fuzz

• The function entry address(s) (aka your snapshot points)

• The restore point(s) (typically a RETN address)

• Which function argument(s) to fuzz

First thing, open the application you want to fuzz again.  And if needed, change how many times you 
want to fuzz a routine by editing the “maxFuzzCount” global variable in the source code.  Please note 
that InMemoryFuzzer.py has two modes for fuzzing: Single routine, or multiple.

Single routine mode allows the user to put every required information (function entry, restore 
point, argument) in one line:

C:>C:\python25\python.exe InMemoryFuzzer.py <Snapshot point> <Restore point> <Argument>

So if we were to reuse the same example in the “How it works” section, we would be feeding the 
fuzzer with the following:

C:>C:\python25\python.exe InMemoryFuzzer.py  0x1001BEEF  0x1001BFEA ESP+4

Multiple-Routine mode, which is my favorite mode, does not have to called from command 
line.  All you must do is prepare breakpoints.txt, which contains information such as the snapshot 
point/restore point/argument with the same format: <snapshot point> <restore point> <argument>. 
Example:



Once you have breakpoints.txt ready, double click on InMemoryFuzzer.py, you'll be asked which 
process to attach, trigger the vulnerable routine by feeding some user input again (does not have to be 
the same pattern as you did for Tracer.py) and then it'll start fuzzing once the execution flow hits our 
first breakpoint.

Tip:
If your fuzzer hangs during fuzzing, it is probably due to not having a good 
restore point, or certain input gets out of the code path as you predicted.  In that 
case, pick another restore point, or trigger the fuzzer again.

When the fuzzer is complete, there should be a newly created folder named “crashbin” under the same 
directory as the fuzzer.  Crash Bin is a place where InMemoryFuzzer.py stores all the crashes (html 
files), and the inputs that caused them.  Here's an example of a crash dump:

Each crash dump contains information including:



• Function entry (snapshot point) address
• Argument
• Argument length to crash the application
• Registers (and what data they're pointing to)
• Disassembled instruction
• SEH chains and offsets (if found)
• Input that caused the crash

After an exception is found, the rest leaves for the user to analyze.  This is where IDA Pro, or 
Immunity Debugger becomes handy again.



Who is sinn3r
sinn3r works for Digital Defense Inc.  A proud member of Corelan Security and dev of Offensive 
Security Exploit Database.

Contact: http://twitter.com/_sinn3r

http://twitter.com/_sinn3r
http://www.exploit-db.com/
http://www.exploit-db.com/
http://www.corelan.be:8800/
http://www.ddifrontline.com/

	Introduction
	Requirements/Setup:
	Tracer.py: How it works
	Tracer.py: How to
	InMemoryFuzzer.py: How it works
	InMemoryFuzzer.py: How to
	Who is sinn3r

