
Enough With Default Allow in Web Applications!

Ivan Ristic, Ofer Shezaf
Breach Security (www.breach.com)

Revision 1 (June 30, 2008)

Abstract

The default allow deployment model, which is commonly used to implement
and deploy web applications, is the cause of numerous security problems. We pro-
pose a method of modelling web applications in a platform-agnostic way to adopt
a default deny model instead, removing several classes of vulnerability altogether
and significantly reducing the attack surface of many others. Our approach is best
adopted during development, but can be nearly as efficient as an afterthought, or
when used at deployment time.

1 Introduction

Everyone agrees that we have a terrible problem with the security of web applications.
What got us into this mess is the organic growth of internet technologies over many
years, which had happened with little thought about security. What was supposed to
be a simple mechanism for document exchange exploded into an application delivery
platform. Web-based application interfaces are now everywhere. So it’s no doubt that
we are finding ourselves wishing we could go back in time to do things right from the
beginning. Instead, we are forced to waste enormous efforts on just making the present
bearable. Our hands are now tied: improvements can only be made incrementally, as
it is imperative to keep the Web running while we are improving it. Our best chance
may be to slowly migrate to new platforms that are secure, while doing what we can to
survive the current period of insecurity. This paper is an attempt at both.

Out of all time spent dealing with web application security, most is currently spent
discovering problems, improving coding practices and applying band aids. We feel that,
although these activities are unavoidable at this point, more time should be spent on
changing the way applications are developed and deployed, so that classes of problem
can be systematically eliminated. The only way to truly prevent security issues is to
make sure they cannot be created in the first place. In other words, we must make it
difficult—hopefully impossible—to shoot ourselves in the foot.

1



2 Goals

Our goal with this paper is to change one of the very important causes of web application
insecurity—the default allow principle. We object to the current common practice of web
servers designed and configured to pass all requests to web applications for processing
with little or no restrictions. That is fundamentally wrong, and completely the opposite
of what we have to come to consider good in security.

Two current development practices are amplifying the problem further:

1. In developing web applications programmers are forced to interface directly with a
number of different protocols and specifications—the main being HTTP—and all
their complexities. We believe this is too much to ask, especially considering the
current state of software development where focus is on delivering features with
security as an afterthought. Furthermore, the situation with web security is so bad
that even those who specialise in this subject are finding it difficult to cope with
new developments. How can we expect the programmers to do a good job in such
situation?

2. In many cases applications are built as collections of files, which web servers are
instructed to process: scripts are executed, other files delivered verbatim. This
practice makes applications mere shooting ducks, standing in the open with no
protection whatsoever. Even a simple omission is likely to escalate into a vulner-
ability.

For example, it is a common practice to have text editors preserve one previous
file version in a backup file. Such backup files usually carry the same file name
but use a different extension. If a backup file makes its way to the web server, the
web server is not going to know the file is not supposed to be there. Faced with an
unknown extension, the web server is likely serve the file verbatim, thus causing
an information leakage problem!

Although changing the way application development is done—by moving to libraries
with higher abstraction levels–would result with better security overall, we feel that it
is too late for that, at least in the short term. Too much damage has already been done:
given choice the majority would continue to develop in the way they are doing now. We
feel that an alternative may be more feasible, especially one that can be used to put
things right long term but also serve as an band-aid short term:

1. We are hoping that our proposal is on the right side of the balance of attractiveness
and inconvenience to have a chance to be used.

2. Since our proposed solution can be applied externally, we are not appealing only to
architects and developers, but to system administrators and security professionals

2



too. These groups are typically better motivated to address the security issues in
the applications they handle.

2.1 Benefits

Decoupling of web applications from web servers can serve to address the following web
application security issues:

1. Information leakage, where data is leaked through files that are unintentionally
distributed through web server.

2. Injection attacks through integer parameters can be prevented1.

3. Injection attacks through parameters of other types can be significantly mitigated,
depending on the parameter types.

4. Exploitation of so-called debug parameters, which were intended for debugging
and troubleshooting, but were mistakenly left in production code.

5. Exploitation of any functionality other than production code, even if it was left in
the application by mistake.

6. Buffer attacks are more difficult because parameter size limits can be enforced.

7. Attacks that exploit errors in web server configuration (e.g. attempts to use PUT,
DELETE, or any of the WebDAV methods) can be eliminated.

8. The application attack surface can be reduced by rejecting unknown content type
encodings, and encodings that are not used by the application (e.g. do not allow
requests using multipart/form-data if the application does not need it for file
uploads).

2.2 Use Cases

We have identified the following use cases:

Software developers Best results will be achieved if the default deny model is adopted
in software development, but other options are possible:

1Susceptibility to injection attacks is a result of missing or inadequate encoding of data at system
boundaries. Input validation, which is the basis of our proposal, can only ensure data is in correct format.
This has security benefits only if the format is strict enough to make injection attacks impossible. For
example, it is very difficult to execute any type of injection attacks when you are only able to use digits
in attack payload.

3



1. New applications can be written with default deny in mind, ensuring the
model and the application remain in sync, because developers will need to
declare every external function they wish exposed.

2. Implementing default deny is going to be more difficult for existing applica-
tions because a good model will require a very good understanding of how
an application works.

3. Even when default deny is not adopted in development, it can still be of
significant use when it comes to fixing vulnerabilities quickly. Software de-
velopers can ease the pain experienced by its users by mitigating problems
quickly by virtual patches, in parallel working on a proper fix.

Users Users are sometimes forced to live with insecure applications, for one reason or
another. Faced with an application with a bad track record, or with an vendor
that is slow to react, they can help themselves by building and deploying default
deny models as own security shields2:

1. Virtual patching is a popular and relatively simple way of reducing the win-
dow of opportunity for the attack. In anticipation of a proper fix from soft-
ware manufacturers, users can write virtual patches using publicly available
vulnerability information, or application source code.

2. Legacy applications are unlikely to get fixed, in many cases because no one
understands how they work and dares to attempt a change in fear of breaking
them. Security of such applications can be made bearable through a deploy-
ment of a default deny security model.

3. Users of popular applications could collaborate to build models together. In
case of open source products, such efforts can even be spawned into commu-
nity projects. A single high-traffic application deployment could use machine
learning to arrive to a model that will then be distributed to all product
users. Model deficiencies can be quickly resolved if many sites collaborate to
build a single profile that works for all of them.

Web application firewalls Web application firewalls are best suited to serve as en-
forcement points, especially those network-based, that have a good view of entire
network segments. Such tools could be extended to support import of application
models, either manually or programmatically. In the former case, administrators
could feed application models to web application firewalls as part of deployment
procedure. In the latter case, web vulnerability scanners could be configured to
send virtual patches for every vulnerability they discover.

2We do not mean to say that every user should be a web application security specialist. Our point
here is that users will be in control. Those who can do this job themselves probably will; other can hire
security consultants to do the work for them. In either case, the user is in control of the situation, and
that is our desire.

4



Web vulnerability scanners Web vulnerability scanners typically operate in two log-
ical phases: crawling and testing. The crawling phase is very important: a missed
resource will not be tested for security problems. Our proposal to document ap-
plication interfaces could be of great help to scanners as they could use the in-
formation to gain quick understanding of the application, or to compare their
understanding with the reality. The same effect can be achieved by having scan-
ners communicate with web application firewalls on the same site, using the format
proposed in this paper as the common language.

3 Previous Work

3.1 Default Deny

The idea of allowing only what is known and only what is known to be secure is not new.
It has long been established in theory as one of the cornerstones of good programming
and good security. In spite of this, default deny is seldom found in practice.

Ranum[2] has an insightful account of how the default deny culture lost to the default
allow culture due to pressures for more performance, lower cost and convenience. He
writes:

In the mid 1990’s [sic] the author was selling proxy firewall products that
had a superlative history of resisting attack; yet the market leading products
were simplistic ”stateful” packet filters that were sold based on the fact that
they were faster, cheaper, and more forgiving. Put differently: they didn’t
perform as rigorous checks, so they could be fast. They were easier to code,
so they were cheaper. They were more forgiving, because they were more
permissive.

We believe that is safe to say that the above comment can be applied not only to
network security, but to all our software development and application security practices
today. The majority will do what is more convenient, rather than what is more secure.
Checking of all program input is widely accepted as necessary, but programmers are
consistently avoiding it—thus causing many of the application security problems.

For example, web applications typically use relational databases to store data. Database
fields, which are used to store data, are almost limited in size but application often do
not check whether the user provided data is within the limit. This practice not only
opens a door for exploitation (e.g. buffer overflows) but also propagates the problem,
hides the root cause, and results either in data truncation or database errors, depending
on the database engine used.

5



3.2 Related Work in Web Application Space

Scott and Sharp[3] designed a Security Policy Description Language (SPDL), which
essentially implements a rudimentary application-level firewall with features such as
offering input validation, input transformation, signing of outgoing data, and support
for negative security model in output.

The OWASP Stinger project[6] is a centralised input validation component for Java
that can be used with both new and existing applications (without the need to change
application code, or have access to it), thanks to it being implemented as a Java Servlet
Filter.

Kruegel and Vigna[7] wrote a very interesting paper on anomaly detection, which is
similar in goal to that of Scott and Sharp, except that it uses statistics instead of
heuristics to verify input data.

One of the authors[5] made designed a portable web application firewall rule format
back in 2005 along with a Java-based implementation, but the idea failed to take off.

ModSecurity[4] is an open source web application firewall that can work either embedded
or as a network gateway (coupled with an Apache reverse proxy). Its rule language is
model agnostic (i.e. it supports the default allow and the default deny modes), but the
lack of explicit support for positive security make its usage for anything other than small
tasks (e.g. virtual patching) difficult. The REMO[8] project aims to make the process of
writing positive security models easier by providing tool support, but it does not offer
automation. Christian Bockermann[9] wrote a tool that constructs a positive security
model out of ModSecurity transaction logs (which contain full transaction content) and
exports it back into ModSecurity rules. We are planning to use the same approach for
our proof of concept.

4 Implementation

To approach the problem we take a view that the Internet is a computer, sites are
programs, and each URL is a function call3. We basically treat HTTP as an API we can
intercept, which is a view similar to that of AOP programming. This position allows us
to ignore application implementation details, supporting any web application platform
based on standards. By identifying the basic building blocks of every web application
we arrive at an abstracted model that can be used to enforce the desired default deny
mode of deployment.

3One of the authors still remembers when he first viewed the Internet in this light, while reading
Philip and Alex’s Guide to Web Publishing[1].

6



4.1 Requirements

In this section we describe the main requirements that guided us in designing the positive
security model.

Portability The format must be easy to consume on a wide variety of systems. This
leads to the natural choice of XML for the storage format, which universally sup-
ported and easy to parse.

Partial model support To build a complete positive security model is only possible
if the application is very simple or if the process is automated and incorporated
into the development process.

• A person who sets out to build a model is likely to work by implementing
model for one resource at a time.

• Due to time constraints, they may decide to work only on parts of the appli-
cation or site they feel most exposed. (For example, the attack on the login
page that is exposed on the public Internet is more likely to attract attacks
rather than an internal function accessible only to a small number of users.)

• A partial model may be a goal on its own. This will be case with virtual
patching, where the user sets out to fix a known application problem, in the
anticipation of a better fix in the code.

• Automated tools, on the other hand, are likely to build the model for all
resources in parallel (e.g as they are seeing the transactions), but they are not
going likely to be able to build good model without seeing many transactions
on the same resource. Thus, partial model support here means we need to be
ready to differentiate between the final version of the model, and the parts
that are being built. We will use the term confidence to refer to partial model
in this sense.

Suitability for real-life Although much of the infrastructure used to develop web ap-
plications is standardised, that does not mean that application developers always
choose to use it in a standardised manner. Over the years we have observed the
infrastructure used and misused in ways not originally envisioned. A major re-
quirement for us is the ability of the language to work with real-life application,
which are everything but written according to text-book examples.

Ease of use We want to have a low barrier to entry, and to make it possible to write
or update application profiles by hand. This requirement forced us to look away
from using statistic in input validation. Statistics may work well for tools, but they
don’t work as well with people.

7



4.2 Support For Non-Standard Behaviour

Parametarised URIs Many applications will not only transport parameters in the
usual places (i.e. the query string and the request body), but embedded in the
URL as well. This Amazon URL http://www.amazon.com/dp/0596007248/, for
example, contains book ISDN number that a script on the server will extract from
the URL and use to look the book up in the database.

Resource aliasing One resource can sometimes appear under more than one URI. Re-
quests for folders, for example, will force the web server to select a default resource
to serve.

Gateway pattern While in some application one request URI corresponds to one unit
of work, many applications will perform further request routing internally using
some request aspect. Such an application may have two, three or more (some ap-
plications are known to implement their entire functionality using a single gateway
script) completely different request types processed by what—from the outside–
appears to be a single resource.

The most common variations of the gateway design pattern are given below:

Request method Applications will often implement two behaviours in a sin-
gle resource: one that supports GET and the other that supports POST. The
resource will most commonly respond to a GET by displaying a form, and
responding to POST by processing the supplied POST data.

PATH INFO PATH INFO is the name of the variable in the CGI[10] specification that
contains the part of the URL appended to the filename of the script. Appli-
cations often rely on the PATH INFO information to implement external URLs
that are user and search engine friendly. Unless PATH INFO is parametarised,
however, this case is automatically handled because, from the outside, each
URL will have its own behaviour, which is exactly what we need.

Command parameter Some applications will have one parameter indicating the
operation that needs to be processed. The name of such parameter is often
cmd, command or action.

Dynamic parameters Some applications will generate parameters at run-time. This
technique is quite common in PHP, which will automatically create arrays when
presented with parameter names such as p[1], p[2], p[3] and so on.

4.3 Building Blocks

Application In many instances sites will contain one application, but this does not
always has to be the case. Some sites can contain more than one application, or
even multiple instances of the same application.

8



Resource A resource is a unit of work, which handles requests. In many cases it will
be equivalent to a script, although there are many cases where this is not true.

Resource Behaviour One unit of work can—and usually does—support multiple be-
haviours. The quality of application models will depend in large part on the ability
to address each such behaviour individually.

Parameter In the end, applications must receive data and they do that through pa-
rameters. In our model each behaviour (function call) can receive zero or more
named parameters.

Parameter Attribute Each parameter is modelled with a series of attributes, each
of which addresses one aspect of it. Cardinality, minimum length and maximum
length are all examples of possible parameter attributes.

5 Model Overview

This section contains a description of the model through the storage format, using steps
we envision will be taken to process each request.

5.1 Initialisation

The main task of the initialisation phase is to parse request parameters, but also to arrive
at the effective URL, taking into consideration that an application can be configured
to use any site path as its base URL. For example, a blog application can be installed
directly onto a site blog.example.com or to a sub-path www.example.com/blog.

5.2 Resource Identification

An application is considered to be a collection of nested resources. The root resource
must always be present and use the special name /. The format does not make a differ-
ence between folders and files, as such difference does not exist in the URL space. The
following is an example of a simple web site containing a few scripts:

<applicationModel>

<resource name="/" default="index.php">

<resource name="index.php" />

9



<resource name="sign-in.php" />

<resource name="sign-out.php" />

<resource name="download.php" suffix="^/" />

</resource>

</applicationModel>

Note the following:

• URLs are relative to the root of the application, which may not necessarily be
the same as the root of the site. We appreciate that applications can be installed
using different prefixes, and that there can even be many instances of the same
application sharing the same domain name.

• Path separators are not used anywhere in the model definition (excluding the use
of the forward slash as the special name for the application root resource). Thus
we leave the choice of path separators for deployment time.

• Resource names are case sensitive. Case-sensitivity is a deployment configuration
option that is outside the scope of the application model.

• Note how one resource (index.php) was declared as the default one for the parent
resource. This is to accommodate aliasing which is commonly used in all web
servers.

• Extra content after resource names is not allow by default, but will be accepted if
properly declared using the suffix attribute, as shown for download.php.

• Values of the attributes name, default and suffix will be assumed to be patterns
if they begin with a carat (^). They will be treated as static text otherwise.

5.3 Profile Identification

In the second processing step we identify the appropriate resource behaviour. One re-
source can contain zero or many behaviours. Each behaviour defines pre-conditions that
must be fulfilled in order for the behaviour to be selected for request processing.

In the example below we document on resource with two behaviours: one for GET and
another for POST.

10



<resource name="sign-in.php">

<behaviour>

<preconditions>

<match var="REQUEST_METHOD" value="GET" />

</preconditions>

<!-- remainder omitted for clarity -->

</behaviour>

<behaviour>

<preconditions>

<match var="REQUEST_METHOD" value="POST" />

</preconditions>

<!-- remainder omitted for clarity -->

</behaviour>

</resource>

5.4 Secondary Parameter Extraction

Before parameters can be verified we need to ensure we have a complete understanding
of the behaviour. While most parsing will take place in the initialisation phase, we still
need to take care of the parameters in non-standard places. We have to postpone dealing
with such parameters until we have been able to identify the correct behaviour, as every
behaviour can use a potentially different non-standard location for transport.

<resource name="download.php" suffix="^/">

<behaviour>

<preconditions>

<match var="REQUEST_METHOD" value="GET" />

</preconditions>

<customParams>

<extract

into="USER"

from="PATH_INFO"

pattern="^/(?P<filename>.+)$"

/>

11



</customParams>

<params>

<!-- parameter definition

omitted for clarity -->

</params>

</behaviour>

</resource>

The example above extract one parameter, named filename, out of variable PATH INFO

and into the group of parameters named user. We are using regular expressions and
named group capture to support extraction of more than one parameter and assign
parameter names.

5.5 Parameter Verification

In the final and most interesting step we look at the defined parameters for the identified
behaviour, and compare them to what was supplied in the request.

<params>

<param name="m">

<origins>

<origin>QUERY_STRING</origin>

<origin>REQUEST_BODY</origin>

</origins>

<!-- How many parameters are allowed? -->

<cardinality min="1" max="3" />

<!-- Length constraints. -->

<length min="3" max="10" />

<!-- Allowed byte values in content. -->

<byteRanges>

<range from="10" to="10" />

<range from="13" to="13" />

<range from="32" to="126" />

</byteRanges>

<!-- Content must match pattern. -->

12



<content value="^\d+$" />

</param>

</params>

6 Dealing With Uncertainty

Our examples so far have all assumed we have a full understand ion of the application
that we are modelling. But, as previously discussed, this will be true in real life only in a
limited number of usage scenarios. We propose to handle uncertainty with the addition
of the confidence attribute to all model building blocks:

Branching confidence Are we confident we have identified all resource branches (chil-
dren)? This value can drive enforcement when an unidentified resource is observed.

Resource confidence Are we confident a resource correctly identifies all its behaviours?
This value can drive enforcement when a failure to identify a valid behaviour oc-
curs.

Behaviour confidence Are we confident a behaviour correctly identifies all its pa-
rameters? This value can drive enforcement when an unidentified parameter is
observed.

Parameter confidence Are we confident a parameter is accurately described by its
attributes? This value can drive enforcement when a parameter fails validation.

The value of the confidence attribute itself is an integer between 0 and 100, the meaning
of which is purposefully left undefined: we leave to the enforcers to choose how to
interpret it. Having said that, assigning meanings to the extremes is easy:

1. A confidence of 0 means that we have very little or no understanding of that part
of the application and that no meaningful information cannot be extracted from
the model.

2. A confidence of 100 means that we believe that part of the model is complete and
that it can be, for example, strictly enforced.

A confidence value from the remainder of the range will likely be used by the model
enforcers to calculate the probability of the request being an attack. We believe most
enforcers will also support multiple configurable settings for actions such as warning,
blocking, and other settings to explicitly what action should be taken for events such as
unidentified resources, unidentified parameters, and so on.

13



7 Limitations

Our model, as currently defined, suffers from the following limitations:

Limited content validation options We only support content validation through
regular expression patterns. Regular expressions are a very powerful, but they
only allow for a limited validation logic. An inclusion of validation language could
make the implementation of any validation logic possible, possibly on the account
of a small performance decrease.

No support for content transformation We can currently only analyse content as
it appears, but real life has demonstrated that many applications perform further
custom transformations, either on purpose or by mistake. A support for a pipeline
of transformations along with a library of commonly used transformation functions
—similarly to what is available in ModSecurity—would fix this deficiency.

No support for parameter hierarchies Although our model supports groups of pa-
rameters that appear in different request locations, our groups are lists and there
is no support for hierarchies. While this approach takes care of the way most ap-
plications are built, it does not account for hierarchical data transport encodings,
such as XML and JSON[11].

8 Conclusions and Future Work

We have proposed to have applications stop accepting every request unconditionally, and
instead serve only those requests that are known to be valid. By designing an abstract
model based around HTTP we ensure the concept can be deployed in many different
scenarios, ranging from development to deployment.

We do not see this work as an end in itself. Rather, we believe this paper, in its current
form, should serve as an opening for a discussion among the interested parties: web
application developers, web server developers, system administrators, computer security
researchers, and so on. The concept presented here is yet to be proven in real life. Our
next step is thus to test our ideas in real life and tweak the model until it provides a
reasonable success rate, which we defined as working for most web applications currently
out there.

References

[1] Philip Greenspun. Philip and Alex’s Guide to Web Publishing. Morgan Kaufmann,
1999.

14



[2] Marcus J. Ranum. What is ”Deep Inspection” ?

[3] David Scott and Richard Sharp. Abstracting Application-Level Web Security. Tech-
nical report, University of Cambridge, 2001.

[4] Ivan Ristic et al. ModSecurity (www.modsecurity.org), 2002.

[5] Ivan Ristic. Portable Web Application Firewall Rule Format. 2005.

[6] Jeff Williams et all. OWASP Stinger, 2003.

[7] C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks. In Proceedings
of the 10th ACM Conference on Computer and Communication Security (CCS ’03)
251-261 ACM Press Washington, DC October 2003.

[8] Christian Folini. REMO - Rule Editor for ModSecurity (remo.netnea.com), 2007.

[9] Christian Bockermann. WebApplicationProfiler (www.jwall.org), 2008.

[10] Common Gateway Interface (CGI), 1995.

[11] Douglas Crockford. JavaScript Object Notation - JSON (www.json.org).

15


