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ABSTRACT

Heap spraying is an attack technique commonly used in hijacking
browsers to download and execute malicious code. In this attack,
attackers first fill a large portion of the victim process’s heap with
malicious code. Then they exploit a vulnerability to redirect the
victim process’s control to attackers’ code on the heap. Because the
location of the injected code is not exactly predictable, traditional
heap-spraying attacks need to inject a huge amount of executable
code to increase the chance of success. Injected executable code
usually includes lots of NOP-like instructions leading to attackers’
shellcode. Targeting this attack characteristic, previous solutions
detect heap-spraying attacks by searching for the existence of such
large amount of NOP sled and other shellcode.

In this paper, we analyze the implication of modern operating
systems’ memory allocation granularity and present Heap Taichi, a
new heap spraying technique exploiting the weakness in memory
alignment. We describe four new heap object structures that can
evade existing detection tools, as well as proof-of-concept heap-
spraying code implementing our technique. Our research reveals
that a large amount of NOP sleds is not necessary for a reliable
heap-spraying attack. In our experiments, we showed that our heap-
spraying attacks are a realistic threat by evading existing detection
mechanisms. To detect and prevent the new heap-spraying attacks,
we propose enhancement to existing approaches and propose to use
finer memory allocation granularity at memory managers of all lev-
els. We also studied the impact of our solution on system perfor-
mance.

1. INTRODUCTION
Heap spraying is a new attack technique commonly used in re-

cent attacks to web browsers [4–8, 36]. In a heap-spraying attack,
attackers allocate objects containing their malicious code in the vic-
tim process’s heap, and then trigger a vulnerability to force the
victim process to execute code from the heap region. Compared
to traditional buffer overflow attacks, heap spraying is simpler, as
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there is no need to know the detailed layout of memory regions
surrounding the buffer vulnerable to overflow, but the heap object
locations are not predictable. In order to increase the chance of suc-
cess, existing heap-spraying techniques allocate lots of heap blocks
filled with a large amount NOP-like instructions (e.g. 0x90, 0x0c
0x0a), called NOP sled, and followed by the malicious shellcode.
The NOP sled serves as the landing area of the shellcode, which
leads the execution to the shellcode if the victim process jumps to
anywhere in the NOP sled.

Since a typical heap object used in a heap-spraying attack is in
the form of “NOP sled + shellcode," the large amount of NOP sled
and existence of shellcode are the main characters used by heap-
spraying attack detectors. Accordingly, existing approaches to de-
tect heap-spraying attacks mainly fall into two types: sled-oriented
and shellcode-oriented. Shellcode-oriented methods detect heap-
spraying attacks by detecting the existence of shellcode. For ex-
ample, Egele et al. [21] detect heap-spraying attacks by inspecting
the JavaScript string objects to identify shellcode using lightweight
emulation [9]. However, this type of approach have difficulty in
dealing with shellcode obfuscation techniques, such as, shellcode
encoding [28, 34], encryption [46], polymorphism [20, 24], and
other obfuscation schemes [17, 27, 31, 37].

A more successful type of techniques to detect heap-spraying at-
tacks are sled-oriented [11, 29, 32, 42]. Such techniques focus on
identifying large chunks of NOP sled. In particular, NOZZLE [32]
uses static analysis to build the control-flow graph (CFG) of heap
memory blocks and measures the size of NOP sled, called surface
area, across a process’s entire heap region. If the percentage of
surface area is above a certain threshold, NOZZLE reports an at-
tack. NOZZLE assumes that heap-spraying attacks must inject a
large number of executable codes (especially NOP sled) because
attackers cannot predict the location of their malicious code. Next,
we will show that this assumption is not always valid.

We observe that modern operating system memory allocation be-
havior is more predictable than we usually believe, even in the pres-
ence of address space layout randomization (ASLR). For instance,
the Windows-family systems (from Windows XP to Windows 7)
enforce a memory allocation granularity of 64K bytes [22, 33],
which makes all memory blocks directly allocated by Windows (us-
ing API VirtualAlloc) aligned to a 64K-byte boundary. As a
result, addresses of such heap blocks are less random. For example,
a particular address in a 1MB block only has 16 possible locations,
much less than the one million possible locations if the heap block
can be allocated at random addresses. We discuss this in detail in
Section 3.
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A new attack. Based on the above analysis, we present a new
heap-spraying technique, called Heap Taichi, which can evade ex-
isting detection mechanisms. By precisely manipulating the heap
layout, Heap Taichi only needs to put executable code at a small
number of offsets in a heap block, and thus makes the “large of
NOP sled” feature in traditional heap-spraying attacks unnecessary.

To demonstrate the feasibility of Heap Taichi, we made proof-of-
concept heap-spraying attacks using Heap Taichi. Our experiments
showed that the surface area of a Heap Taichi attack is significantly
less than the acceptable threshold used in existing solutions. We
also studied the impact of different memory-allocation granularity
on heap-spraying attacks and system performance, and found that
larger memory allocation granularity gives attackers more flexibil-
ity without significant gain in performance.

To address this problem, we proposed methods to enhance exist-
ing heap-spraying attack detection techniques by considering mem-
ory allocation granularity, and experimented with new ways of mem-
ory allocation.

Contributions:

∙ We analyze the implication of modern operating systems’
memory allocation granularity on heap-spraying attacks, and
present a new heap-spraying technique utilizing the weak-
ness of memory alignments, which can effectively evade ex-
isting detection tools.

∙ We present four heap object structures that do not require a
large amount of NOP sled. We provide insight into the rela-
tionship between memory alignment size and heap-spraying
attack surface areas.

∙ We implement proof-of-concept Heap Taichi, and measure
the attack surface areas of these attacks. Experiments showed
that our heap-spraying attacks are a realistic threat, which
can evade existing detection tools.

2. HEAP SPRAYING AND DEFENSE
In this section, we describe a typical heap-spraying attack, and

discuss existing defense mechanisms.

2.1 Heap-spraying attacks
Throughout the paper, we use the term heap region to refer to

all the memory areas of a process’s heap. We use the term heap
block to refer to the memory block allocated for heap, e.g., the
blocks allocated by Windows’s memory management through the
VirtualAlloc family APIs. We call individual objects allo-
cated on the heap heap objects, e.g., objects allocated by the API
HeapAlloc. Therefore, a heap region consists of several heap
blocks, and a heap block contains one or more heap objects.

Figure 1 illustrates a typical heap-spraying attack found by our
web crawler. The attack is launched by malicious JavaScript in a
web page, targeting a vulnerability in the Internet Explorer version
6 or version 7 [18]. In the first step of this attack, attackers cre-
ate a large amount of heap objects. Each heap object is filled with
a large number of NOP-like instructions (0x0c0c, the instruction
or al, 0ch) followed by a block of malicious shellcode. Illus-
trated in the right-hand side of Figure 1, the large white areas are
the NOP-like instructions, while the grey areas are the shellcode. If
attackers can hijack the process’s execution to any byte in the range
of NOP-like instructions, the malicious shellcode will be executed.
Although attackers cannot know the exact address of the injected
code, when the browser process’s heap region is very large, certain
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Figure 1: The traditional heap spraying with stack buffer over-

flow exploit.

range of address, such as 0x0c0c0c0c, will be in the region of
allocated heap objects, as is illustrated in Figure 1.

After the heap is prepared with malicious shellcode, the second
step of this attack is to exploit a vulnerability in the victim pro-
cess, forcing the victim process to transfer control to the sprayed
heap region. Any vulnerability that can be exploited to affect the
control flow can be used in this step. Here we show an example
using a stack-based buffer overflow vulnerability, illustrated in the
left-hand side of Figure 1. By exploiting the buffer overflow vul-
nerability, attackers inject lots of 0x0c characters onto the stack,
overwriting the return address. When the program returns using the
corrupted return address, its execution is redirected to the address
0x0c0c0c0c, which is in the NOP sled of a sprayed heap object.
The victim program will continue through the NOP sled and reach
attackers’ shellcode.

Thanks to the defense mechanisms against buffer overflow at-
tacks, it is very hard for attackers to know the exact address of their
shellcode. Therefore, they cannot use the stack overflow to ex-
ecute their shellcode directly. In contrast, heap-spraying attacks
do not require attackers to know the detailed layout of the data
structures of the targeted memory region. But the object addresses
on the heap are harder to predict, even with the deployment of
ASLR [22, 33, 40, 44]. To increase the chance of success in the
second step of the attack, attackers usually put a long NOP sled
before the shellcode in their heap objects, and they have to inject
a large amount of heap objects containing shellcode, so that the
jump target of the attack will be covered by injected code with a
high probability. Otherwise, if the victim process jumps into the
middle of shellcode, or even jumps out of the heap region sprayed
by the attacker, the victim process often crashes because of invalid
memory access or invalid instructions.

In the rest of the paper, we use the following terms to describe the
behavior of a heap-spraying attack. 1) We call the execution after
the exploit and before running the shellcode a landing action. In
traditional heap-spraying attacks, the landing action usually runs
on the huge sled area, byte by byte. The traditional sled is filled
with NOP like bytes, such as 0x90 (NOP), 0x0c0c (or al, 0ch)
and these bytes lead to smooth landing actions. On the contrary,
landing actions executing some jump instructions, such as jmp,
are called bumpy landing. 2) The place where the landing action
starts is called landing position, or landing point. 3) The notion of
surface area is defined in the NOZZLE paper [32] as the number of
available landing positions in one heap object. 4) The normalized
attack surface area (NSA) is a heap object’s surface area divided by
the heap object’s size. The normalized attack surface area repre-
sents the percentage of sled in a memory block. It also represents
the possibility of successfully executing the shellcode when execu-
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tion randomly falls into a heap object. 5) The shellcode entry is the
starting point of the shellcode.

2.2 Existing defense mechanisms
Existing defense mechanisms against heap-spraying attacks can

be classified into two main types based on the analysis they perform
on heap objects. Approaches of the first type detect shellcode by
searching for common patterns of shellcode. Approaches of the
second type analyze the control flow structure of heap objects to
identify common structures used in heap-spraying attacks.

Egele et al. [21] is an example of the first type. It monitors all
strings objects allocated in a browser’s JavaScript engine, and re-
ports an attack when there is shellcode detected in string objects
created by the script. To detect shellcode, it uses the libemu library
to identify suspicious and valid instruction sequences longer than
32 bytes. As is discussed in the paper [21], attackers can evade
detection by breaking shellcode into multiple fragments smaller
than 32 bytes and linking them with indirect jump/call instructions.
However, unless attackers can precisely control the landing posi-
tion, they still need a large portion of NOP sled to make a reliable
attack, which is well over the 32 byte threshold.

NOZZLE [32] is an example of the second type. Given a heap
object, it disassembles possible x86 instructions in the object and
build a control flow graph (CFG). As we have described earlier in
this section, the heap block used in a typical heap-spraying attack
contains a block of shellcode, and the rest of the heap block con-
tains instructions leading to the shellcode. NOZZLE searches for
this property in the CFG by identifying the location 𝑆 that can be
reaching from most of other locations in the heap object. The to-
tal number of locations that lead to 𝑆 is the surface area of the
heap object. In other words, NOZZLE draws the CFG of the heap
block. For each basic block in the CFG, it counts the number of
instructions that connect to the basic block. NOZZLE then calcu-
lates the surface area of the entire heap. When the surface-area-to-
heap-size ratio is greater than a threshold, NOZZLE reports a heap-
spraying attack. This approach is more accurate than the first type
approaches, because it looks for more intrinsic properties of heap-
spraying attacks: when the location of shellcode is not predictable,
it is necessary to include large surface areas to increase the chance
for success.

Both types of existing solutions assume attackers have little in-
formation about the address of their shellcode. With this assump-
tion, attackers cannot break sled and shellcode into small pieces to
evade the approach of Egele et al.; they also cannot evade NOZZLE
by only including very little NOP sled instructions. This assump-
tion is valid if heap objects are allocated randomly without restric-
tion. However, the randomness of heap object allocation is limited
by memory alignment enforced in operating systems. Next, we dis-
cuss its impact on heap memory allocation and describe an attack
that can evade both types of defense mechanisms.

3. HEAP SPRAYING WITH LITTLE SUR-

FACE AREAS
Memory alignment is commonly adopted in modern operating

systems for better memory performance. With memory alignment,
a memory block allocated for a process cannot start from arbitrary
addresses. Instead, the addresses must be multiples of the align-
ment size defined by the system.

In this section, we analyze the memory allocation behavior of the
Windows platform and its implication on heap-spraying attacks.
Then we describe a new attack technique that can evade existing
heap-spraying detection mechanisms. Note that other operating

systems such as Linux have a similar memory allocation behavior
to Windows, which differs mainly in the default memory alignment
size.

3.1 Windows memory allocation granularity
Windows memory alignment is controlled by the allocation gran-

ularity. On all existing Windows platforms, the value of alloca-
tion granularity1 is always 64K [33]. This size 64K was chosen
in part for supporting future processors with large page sizes [22],
as well as solving relocation problems on existing processors [3].
The memory allocation granularity only affects user-mode code;
kernel-mode code can allocate memory at the granularity of a sin-
gle page [22]. As a result of the Windows memory allocation gran-
ularity, almost all of the base addresses of non-free regions are
aligned with 64K boundaries. In a process’s memory space, only
few regions (allocated by kernel-mode code [33]) are not aligned.
Even with ASLR enabled [40], the alignment of memory region ad-
dresses is not affected. On Linux systems, the memory allocation
granularity is 4K bytes.

Therefore, taking Windows as an example, all heap blocks al-
located by user-mode code start from 64K boundaries. Note that
heap objects allocated by HeapAlloc can still start at random ad-
dresses in a heap block, but we have an interesting observation:
when a heap object is bigger than a certain threshold, 512K in
our experiment, Windows always allocates a separate heap block
for this object. That is, the addresses of large heap objects are
also aligned according to the allocation granularity, thus more pre-
dictable.

What is the implication of such a memory allocation behavior
on heap-spraying attacks? Recall that in the second step of a heap-
spraying attack, after the attacker triggers a control-hijacking ex-
ploit successfully, the victim process’s EIP register is loaded with
a value assigned by the attacker. If the starting addresses of heap
objects are fully random, the EIP can fall anywhere in a heap ob-
ject. For example, when the heap object’s size is 512K bytes, the
hijacked EIP can point to any byte of the 512K bytes. This is the
main reason for requiring a large amount of NOP-like instructions
in heap-spraying attacks. However, the Windows memory alloca-
tion granularity makes large heap objects’ addresses much more
predictable. If an EIP assigned by an attacker have few possi-
ble locations in a large heap object, the attacker only need to put
jump-equivalent instructions at those locations to guide the victim
process to execute malicious shell code, which breaks the assump-
tions, relied on by previous defense mechanisms. As a result, the
large block of NOP sled is no longer necessary for a heap-spraying
attack with high chances to succeed.

In fact, an EIP assigned by an attacker can only point to EIGHT
possible locations in a 512K-byte heap object, which is explained
in Figure 2 using the address 0x0c0c0c0c. Due to the 64K
(0x10000) Windows memory allocation granularity, a 512K-byte
heap object covering the address 0x0c0c0c0c can only start from
0x0c050000, 0x0c060000, ..., 0x0c0c0000. Therefore, the
offset of the address 0x0c0c0c0c0 inside the object have eight
possible values: 0x70c0c, 0x60c0c, ..., 0x00c0c. On each
of these offsets, if the attacker puts a few bytes, say 20 bytes (the
unconditional jump instruction takes five bytes on 32-bit x86), of
jumping instructions, the resulting surface area is very little: 160
bytes out of a 512K-byte object.

1It can be retrieved by the GetSystemInfo API (the
dwAllocationGranularity member of the returned
SYSTEM_INFO structure).

329



Memory address

512KB blocks

64KB
0x0c050000

offset=0x70c0c

0x0c0c0c0c

offset=0x60c0c
offset=0x50c0c
offset=0x40c0c

offset=0x30c0c
offset=0x20c0c
offset=0x10c0c
offset=0x00c0c
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Figure 3: Structures of new heap-spraying memory blocks.

3.2 Structure of malicious heap objects with
little surface area

As is discussed in the previous section, given a specific address
𝑎𝑑𝑑𝑟 in the heap region, the landing action can only start at few
offsets in a large heap object. Executable code at other offsets will
never be the direct jump target when the process transfers control
to the address 𝑎𝑑𝑑𝑟. With this new insight, we describe a few new
structures of malicious heap objects that result in very little surface
area.

The general idea is to put jump-equivalent instructions at possi-
ble landing positions to guide execution into attackers’ shellcode.
The shellcode is a small piece of code connected by jump-family
instructions, which can evade the approaches that detect valid in-
struction sequences. Figure 3 shows three types of the new heap
block structures that have little surface area. In this figure, each
rectangle with bold boundary stands for a heap object. The shadow
areas are bytes with random values. The possible landing positions
are represented as solid dots. Shellcode is represented as white
rectangles, with a circle indicating its entry point.

∙ In the Type A structure, attackers first copy the block of ma-
licious shellcode into the heap object. The landing positions
are chained together to reach the shellcode entry. That is,
each landing position is a set of jump-equivalent instructions
that point to the next landing position. The instructions at the
last landing position lead to the shellcode entry.

∙ In the Type B structure, attackers put jump-equivalent in-
structions at the possible landing positions. Each group of
jump instruction will jump to the shellcode entry.

∙ In the Type C structure, the malicious shellcode is directly
put at each landing position. By using this kind of memory
blocks, the landing action is eliminated and the shellcode is
executed immediately after the exploit is triggered.

In the Type C structure, although there are several copies of
shellcode, the surface area is as small as one copy because the
copies of shellcode are not connected. The Type C structure re-
quires the shellcode size to be smaller than the alignment granular-
ity. To launch such an attack on an operating system using a small
alignment granularity, say 32 bytes, we introduce the Type D heap
object structure, which is an improved Type C structure.

Shown in Figure 4, the main idea of this structure is that we
can split the shellcode into pieces and link these pieces with jump
instructions. We place jump instructions at each landing point to
jump to the shellcode. Similar to the Type C structure, although
there are lots of shellcode copies in the heap block, the measurable
surface area is small. We illustrate this type of structure by an ex-
ample. Assuming the memory allocation granularity is 32 bytes,
we construct a 512K-byte heap block using the Type D structure,
which includes 1024 copies of shellcode. In the heap block, we
need to create 512𝐾/32 = 16384 landing points. Each landing
point connects to one of the shellcode copies sequentially or arbi-
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trarily. This transformation is still a “sled construction” technique,
which plants landing points inside the shellcode. The shellcode
features are not changed after these landing points inserted.

Type D structures can be created using the following technique.
Given a piece of shellcode2, we first split it into pieces, where each
piece is less than or equal to 25 bytes. If a piece is less than 25
bytes, we append a few NOP-like instructions to it to make the size
of all pieces 25 bytes. To connect the shellcode pieces, we enclose
each shellcode piece between a prologue and an epilogue, shown
in Step 2 of the figure. The prologue is called “header (hdr) jump”
and it’s a jump instruction (5 bytes, jump near, relative, displace-
ment relative to next instruction) pointing to the shellcode’s starting
position. We need to distribute the header jumps to the start of 1024
copies of shellcode evenly. In the attack, the prologues are put at
landing points. The epilogue is called “tail jump” and it’s a jump
instruction (2 bytes, jump short, relative, displacement relative to
next instruction). In the attack, the epilogues connect the shellcode
pieces. The tail jump only jumps 2 + 5 = 7 bytes forward. So
with the prologue and epilogue, each shellcode piece is extended to
25 + 5 + 2 = 32 bytes. In the third step, we combine 16 such 32-
byte pieces to form shellcode of 16× 32 = 512 bytes. We call it a
512-byte linked shellcode. To fit the selected original shellcode into
such a block, the shellcode size should be less than 25× 16 = 400
bytes. Finally, we merge 1024 linked shellcode pieces into one
heap memory block. There are 1024 × 16 = 16384 header jumps
inside the heap memory block and they are the landing positions.

The final heap memory block will be used in our new heap-
spraying attack. The possible landing positions are at each 32 byte

2The size of shellcode ranges from dozens to hundreds [12].

Alignment size Type A Type B Type C Type D
64 kbytes

√ √ √ √
32 bytes

√ √
×

√
8 bytes

√ √
× ×

4 bytes
√

× × ×

Table 1: Relationship between layout types and alignment size.

boundary. So we could exploit to address such as 0x0c0c0c20,
0x0c0c0c40, 0x0c0c0c60, and etc. When the execution starts
from any one of the landing positions, it will reach the shellcode.

We summarize the relationship between four heap object struc-
tures and the memory alignment boundaries in table 1. When the
alignment size is 64K bytes, all four heap object structures can be
used. More generally, all four heap object structures can be used as
long as the alignment size is larger than the size of the shellcode.
When the alignment size is smaller than the size of the shellcode,
the Type C layout does not work anymore, but the Type D is still
effective.

In the new attack discussed in this paper, the sprayed heap ob-
jects are mostly filled with bytes that cannot be treated as NOP sled
or bytes that cannot be interpreted as legal x86 instructions. NOZ-
ZLE can only find memory blocks that have a normalized surface
area much lower than its threshold.

3.3 Surface area calculation
Our calculation involves the following variables: heap mem-

ory block size 𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘, alignment size 𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡, shellcode
size 𝑠𝑖𝑧𝑒𝑠𝑐, and normalized attack Surface Area 𝑁𝑆𝐴. We use
𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝑋 to represent the normalized attack surface area of Type
X.
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𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝐴 ≈ 𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝐵

≈
𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
+ 𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

=
1

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
+

𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝐶 ≈ 𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝐷 ≈
𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
+ 𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

=
𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘
× (1 +

1

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
)

≈ 𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

From the formulas we can see that

∙ The 𝑁𝑆𝐴 of Type A and B consists of two parts. The first
term of the 𝑁𝑆𝐴 is only relevant to alignment size, and the
second term is relevant to both shellcode size and block size.
The 𝑁𝑆𝐴 of Type A and Type B increases when the align-
ment size or block size decrease, or when the shellcode size
increases.

∙ The 𝑁𝑆𝐴 of Type C is only relevant to the size of shellcode
and memory block size. The 𝑁𝑆𝐴 is proportional to the size
of shellcode, and is inversely proportional to the size of the
memory block size.

∙ The 𝑁𝑆𝐴 of Type D is more complex, but it is clear that
the 𝑁𝑆𝐴 is inversely proportional to the size of the mem-
ory block. We also found that the 𝑁𝑆𝐴 of Type D is much
smaller than that of Type A and B.

There are three independent variables in these formulas and the
function graph is hard to plot. To draw the graph, we must fix two
of them. We assume that the heap memory block size is 1M bytes
and the shellcode size is 256 bytes. Figure 5 shows the function
graphs. The X-axis indicates the alignment size in bytes and the
Y-axis indicates the normalized attack surface area (NSA). To sim-
plify the calculation, we assume all the size of all instructions is
one. Therefore, the surface area of practical samples may be two or
three times of the theoretical value. As is showed in Figure 5, the
normalized attack surface of all new heap objects is lower than the
threshold of NOZZLE (50%).

3.4 Detecting Heap Taichi attacks

Enhanced NOZZLE detection.
From the above discussion, we can see that the assumptions made

by NOZZLE are not necessary for a reliable heap-spraying attack.
NOZZLE can be enhanced to detect some of the new attacks by

considering the effect of memory allocation granularity. The key is
that all the landing positions should not be treated as the same. In-
stead, an enhanced NOZZLE algorithm should count the numbers of
landing positions on each offset inside an “alignment-size segment”
and record these numbers into an array. For example, on a 64K-byte
aligned system, in a 1M-byte heap memory block, the three land-
ing positions at 0x00c0c, 0x10c0c, 0x20c0c number the
count at 0x0c0c as three. In the example of case study, the array
at offset 0x0c0c is counted as 8. Then we calculate the success
rate on each offset. In the example of case study, the success rate
on 0x0c0c is 8 ÷ 8 = 100% and on other positions the success
rates are 0 ÷ 8 = 0%. Any success rate over 50% means a poten-
tial threat that may trigger a shellcode with a high success rate. The
improved NOZZLE report a potential heap-spraying attack when it
finds an offset with success rate over 50%.

However, the enhanced algorithm cannot deal with the Type C
and D attack, where there are many copies of shellcode in one
heap memory block. The landing positions are different from each
other when analyzed statically because that they connect to differ-
ent shellcode copies and these shellcode copies are not connected
in the CFG. So, in Type C and D attack, the enhanced NOZZLE
calculates the success rate at offset 0x0c0c as 1 ÷ 8 = 12.5%.
We report our evaluation results of this enhanced algorithm in Sec-
tion 4.2.

Heap memory allocation in finer granularity.
The main problem behind this new type of attack is the pre-

dictability of heap addresses resulted from the coarse granularity
of memory allocation. So a natural solution to prevent Heap Taichi
attacks and similar attacks is to aligning memory allocation at a
smaller-sized boundary. But we found it not easy to achieve in our
experiments, because several application-level libraries align allo-
cated memory objects by themselves.

There are many heap managers on different levels of a program,
each of which has its own heap management strategy. For exam-
ple, at the kernel level, there are “heap manager” in Windows,
“SLUB allocator” in Linux, and Address Space Layout Permuta-
tion (ASLP) [26] in Linux. At the library level, there are libraries
like jemalloc [23] and tcmalloc [35]. At the program level, we
found that Firefox implemented a memory allocator based on ob-
ject lifetimes named “JSArena” [25]. The heap manager on each
level always manages its own “chunks” and also tries to get the
chunks aligned on its own boundaries. Therefore, the granular-
ity enforced by lower levels may be ignored in higher levels. For
instance, jemalloc wraps VirtualAlloc and keeps its chunks
aligned at 2M-byte boundaries. If the VirtualAlloc returns
a memory block not aligned at the 2M-byte boundary, jemalloc
frees the chunk and repeats the allocation until the returned mem-
ory block is aligned at the 2M-byte boundary.

To our understanding, the main reason for user-level alignment
is performance. However, our performance evaluation (discussed
in Section 4.3) showed that the gain in performance by the user-
level alignment is not significant (less than 5% in our experiment).
Therefore, memory managers at all levels should use finer memory
allocation granularity for better security, a trade-off by sacrificing
a limited amount of performance.
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0xCC 0xCC 0xCC
0xE9 0xFB 0xFF 
0x00 0x00 0xCC

0xCC 0xCC 0xCC

Jump to next 
landing point

3084 bytes 6 bytes 62446 bytes0x0 0xC0C 0xC12 0xffff

0xCC 0xCC 0xCC shellcode 0xCC 0xCC 0xCC

3084 bytes
0xC0C

Type1_64k Type1_64k ... Type2_64kType1_64k

Extra 36 
byte header

0x0 0xffff

Type1_64k:

Type2_64k:

Final block

Figure 6: A sample structure of memory blocks with little surface area.

1 function heapspray(){
2 var scstring = unescape("%u9090...");
3 var alignment_size = 0x10000;
4 var pre_len = 0x00000c0c;
5 var post_len = alignment_size - 0x00000c0c - 0x6;
6 var head_offset = 0x24;
7 var jmp_str = unescape("%uFBE9%u00FF%uCC00");
8 var type1_str = CreateCCstringwithsize(pre_len) + jmp_str + CreateCCstringwithsize(post_len);
9 var type2_str = CreateCCstringwithsize(pre_len) + scstring +

CreateCCstringwithsize(post_len + 0x6 - scstring.length * 2);
10 var type1_total_str = DuplicateStr(type1_str, 15);
11 type1_total_str = type1_total_str.substr(head_offset / 2,

type1_total_str.length - head_offset / 2);
// cut off the header bytes

12 var m = new Array();
13 for(i = 0; i < 200; i++)
14 m[i] = type1_total_str + type2_str;
15 }

Figure 7: Sample JavaScript spraying heap with Type A blocks.

4. EXPERIMENT AND EVALUATION
In this section, we describe our experiments of Heap Taichi,

which generated heap objects that can bypass existing detection
mechanisms. We also measure their normalized attack surface with
different alignment sizes in the experiments.

4.1 Case study: A sample JavaScript code cre-
ating Type A heap objects

In this section, we give a JavaScript example of spraying a browser’s
heap with our Type A heap objects. This attack can also be done in
other languages, including VBScript and ActionScript.

Figure 6 illustrates the structure used in this example. The ma-
licious heap object’s size is 1M bytes, consisting of two types of
64K-byte memory blocks. The first type only contains jump in-
structions at the landing positions, pointing to the landing position
in the next block. The second type of block contains the shellcode
at the landing position. We use the address 0x0c0c0c0c as the
jump target in step two of the attack. According to our analysis
in Section 3, the landing position is at the offset 0x0c0c of each
64K-byte block. We construct the final block by concatenating 15
type-1 blocks and one type-2 block, forming a heap object of 1M
bytes. Note that each heap object allocated by Javascript has a 36-
byte header (a Windows heap management header and a Javascript
heap management header); we need to remove 36 bytes at the be-
ginning of the final block, so that the offsets of landing positions
will not be shifted by the header.

Figure 7 shows a piece of JavaScript code that implements a
Heap Taichi attack, performing the heap object construction and

heap spraying. The function CreateCCstringwithsize is
used to create a string filled with value 0xCC and the function
DuplicateStr is used to create a long string. We fill the blocks
with 0xCC, because it is the opcode of x86’s INT 3 instruction,
regarded as a terminator of a sequence of shellcode by existing ap-
proaches. We can fill these blocks with random bytes, because they
are not used anyway. Because JavaScript strings use unicode en-
coding where each character takes 16 bits, we need to divide the
length measured in bytes by two to get the correct length of uni-
code strings. Line 7 constructs the type1_64k block, and line 8
constructs the type2_64k block. Then line 9 and line 10 prepare
the first half of the final block. Thirty six bytes are cut from the first
half to accommodate the heap header. Finally, the heap is sprayed
in line 12 to line 14 by an array of 200 strings containing the final
block, taking up 200M bytes of the browser’s heap region.

The scstring is filled with shellcode that libemu [9] cannot
detect, which is captured by our drive-by download monitoring sys-
tem [47]. The main reason that libemu cannot detect such shell-
code is that libemu just emulates shellcode and once the shellcode
includes instructions like xor eax, [edi] where register eax
can only be determined at run-time, libemu cannot work well. For
more evasion techniques, we refer readers to [29]. We extracted
44 shellcode pieces from those cached web pages, and 12 of them
can’t be detected by libemu. We choose a 236-byte shellcode to
fill the scstring. Thus this script can bypass defending tech-
niques based on libemu shellcode detection. We have also scanned
this shellcode using 12 anti-virus products, and none of them could
recognize it as a malicious code.
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Sample ID Heap Object Type Alignment size
A64k Type A 64k bytes
B64k Type B 64k bytes
C64k Type C 64k bytes
A4k Type A 4k bytes
B4k Type B 4k bytes
C4k Type C 4k bytes
A32 Type A 32 bytes
B32 Type B 32 bytes
D32 Type D 32 bytes
A8 Type A 8 bytes
B8 Type B 8 bytes

Table 2: Samples used in surface area measurement

Block type Alignment size
8 bytes 32 bytes 4K bytes 64K bytes

Type A 14% 3.6% 0.030% 0.0068%
Type B 25% 3.6% 0.030% 0.0068%
Type C 0.0055% 0.0054%
Type D 0.015%

Table 3: Normalized attack surface area in our experiments

In our experiment, we modified a cached drive-by download web
page by replacing its heap-spraying script with the one shown in
Figure 7. Then we browsed the page using IE6 on Windows XP.
The script reliably executed the shellcode, which downloaded and
installed a bot on the victim machine.

4.2 Surface area measurement experiments
We build several example heap blocks of all the four heap struc-

tures and various alignment sizes, shown as Table 2. For exam-
ple, A64k is the one given in the last subsection. B64k uses type
B structure, a modified version of A64k with different jump in-
structions. C64k uses Type C structure, which can be achieved
by replacing all type1_str with type2_str in our example
JavaScript. The shellcode used in our experiment has 236 bytes,
including 101 instructions. Its maximum attack surface area is 56.

To measure the normalized attack surface area (NSA), we im-
plemented NOZZLE’s surface area measurement algorithm. Table 3
summarizes the measured NSAs. We also plotted the results in Fig-
ure 8, where the Y-axis indicates the NSA of the attack vectors and
the X-axis indicates the test cases. In Figure 8, we also marked
several thresholds used in NOZZLE. When alignment size is 32 or
higher, the normalized attack surface areas of the samples are far
below the 50% threshold in NOZZLE.

When alignment size is 8, the Type C and Type D heap objects
cannot be created. B8 exceeds the 20% “no false positive thresh-
old” of NOZZLE, and A8 is on the border. The enhanced NOZZLE
detection should cooperate with 8-byte or 4-byte heap allocation
granularity. In the Type A and Type B objects, there are many
landing positions connects to one copy of shellcode. The enhanced
NOZZLE detects all of them and reports a heap spraying attack.

Also, we can see the difference in ratio between these results and
the theoretical calculation in Section 3 is less than 3.0, which is
close to the average instruction length. Therefore, the experiments
confirm our theoretical analysis.

4.3 Performance of fine-grained memory allo-
cation granularity

To evaluate the performance of 8-byte alignments, we built the
Firefox 3.6.3 with jemalloc enabled and also modified jemalloc and
SpiderMonkey with 8-byte randomization. Then we measured the
modified Firefox’s Javascript performance with Sunspider Javascript

Threshold proposed by Nozzle(50%) 

No false positive threshold of Nozzle(20%) 

Max top 150 Alexa sites(12%) 

Figure 8: Sorted normalized attack surface area

shellcode

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

Type A+B+C

A 512 KB memory block

shellcode

Figure 9: A sample mixed layout

Benchmark and V8 Benchmark. The result showed that the perfor-
mance overhead is less than 5%. Researchers [26] also reported
acceptable performance overhead of an 8-byte aligned randomiza-
tion using other benchmarks.

5. DISCUSSION

5.1 Variations of Heap Taichi
Section 3 describes four basic memory layouts of Heap Taichi.

Attackers may create new attacks by extending Heap Taichi.
At instruction level, attackers can replace those jump instruction

with different instruction sequences, and fill arbitrary instructions
between landing points and shellcode. At layout level, attackers
can use the basic layouts to compose new layouts. For example,
Figure 9 shows a “mixed” layout by combining Type A, B and C.
Type C includes multiple copies of shellcode but keeps a small sur-
face area; Type A and B layouts introduce more surface area but
fewer shellcode copies. Attackers could use all these types in one
heap block to balance these characteristics to evade detections.

5.2 Difficulty of detecting Heap Taichi attack
Under the 64K-byte alignment size, there are only 16 landing

points in one 1M heap block as analyzed in Section 3. Attackers
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could use mixed layouts similar to the example in Figure 9: place 3
to 5 shellcode pieces in one 1M heap block, and let landing points
lead to any one of these shellcode pieces. In average, four landing
points flow into one shellcode copy. Under this situation, there are
no obvious anomalies in statistics compared to benign heap blocks,
and it is very hard for methods like NOZZLE to detect this kind of
attack without a high false positive rate.

As a consequence, to detect Heap Taichi under 64k memory
alignment is as hard as to detect four shellcode copies in a 1M-
byte heap object in real time. This could be a real challenge, and
there is no practical solution which achieve both low false negative
and low false positive so far.

6. RELATED WORK

6.1 Heap spraying with ASLR and DEP
The Address Space Layout Randomization(ASLR) technique [22,

33,40,44] is widely used in recent Windows versions such as Win-
dows Vista and Windows 7. Analyses [40, 44] show that the ran-
domization of heap area is quite weak. For each heap memory
block, the system creates a five bit random number (between 0 and
31) and multiplies it with 64K, and then adds the product to the ini-
tial allocation base. This technique affects heap-spraying attacks,
because it creates unpredictable gaps between the memory blocks.
But attackers can deal with it by allocating a huge memory block
and structure it carefully, so that the risk of landing in the gaps
would be significantly reduced.

The ASLR-based defense is not effective on the new attack dis-
cussed in this paper. Because of the Windows memory allocation
granularity, heap blocks are still aligned to 64K boundaries even
after randomization. That means, the relative landing positions
in each heap object is unchanged. As long as attackers can spray
enough memory area using the heap region, the attack can still have
a high success rate.

Data Execution Prevention (DEP) [1] is complementary to ASLR.
It is an effective scheme to prevent an application or service from
executing code from a non-executable memory region. Since shell-
code is injected into non-executable memory region, most code in-
jection attacks cannot work anymore when both DEP and ASLR are
turned on. However, the attack techniques that can bypass DEP and
ASLR are continually proposed. For example, Nenad Stojanovski
et al. [41] showed that initial implementation of the software for
DEP in Windows XP is actually not at all secure, and many at-
tacks (such as return-to-libc like attack) can bypass DEP protec-
tion. Furthermore, Alexander Sotirov and Mark Dowd [39] imple-
mented several exploitation techniques to bypass the protections
and reliably execute remote code on Windows Vista. Dion Blaza-
kis [15] illustrated two novel techniques (i.e., pointer inference and
JIT spraying) to Windows Vista with IE8. Recently, during the
PWN2OWN hacking contest 2010 [10], both IE 8 and Firefox 3
web browsers running on the Windows 7 system (both DEP and
ASLR enabled) were successfully compromised. We believe that
the attacks against DEP and ASLR cannot be completely avoided
due to the vulnerabilities in operating systems or security-critical
applications.

6.2 Heap-spraying attack and detection
Our approach is closely related to existing work on heap be-

havior manipulation, heap-spraying detection, as well as x86 ex-
ecutable code detection.

Heap behavior manipulation. A successful heap-spraying
attack requires attackers to be able to predict the heap organiza-

tion and, more importantly, locations of allocated heap objects.
Sotirov [38] introduced a technique to use JavaScript to manipu-
late browser heap’s layout, and implemented this technique into
a JavaScript library for setting up heap state before triggering a
vulnerability. Daniel et al. [19] developed a technique to reliably
position a function pointer after a heap buffer that is vulnerable to
buffer overflow. In this paper, we leverage a weakness on Windows
heap allocation due to the large memory allocation granularity en-
forced on Windows systems, which makes heap allocation more
predictable for attackers.

Executable code detection. Recent researches such as [28,
37] have proved that detecting arbitrary shellcode by static code
features is difficult and even infeasible. In the context of network
packets, several solutions [11,30,42] can detect executable code in
the payload, but they cause high false positives in the context of
heap objects [32], which makes them unsuitable for heap-spraying
detection. In section 2.2, we have discussed several detection meth-
ods in detail.

6.3 Memory exploit detection and prevention
Note that heap spraying itself cannot directly cause the malicious

payload to be executed. A successful attack needs another vulner-
ability to trigger the change of control flow to the sprayed heap.
Detecting and preventing such vulnerabilities can stop heap spray-
ing.

Buffer overflow is the common vulnerability exploited to redirect
victim process’s control flow. Traditional buffer overflow attacks
target the pointer variables on stack or heap. A large number of
solutions [45] have been proposed to address this problem. Among
these efforts, address space layout randomization (ASLR) [2, 13,
14] provides general protection against memory exploits by ran-
domizing the location of memory objects. It is now widely adopted
in major operating systems. Note that address space layout ran-
domization makes the location of memory objects, including heap
objects, unpredictable, thus forcing heap-spraying attacks to in-
ject a huge amount of heap objects containing code to increase the
chance of success. This forms the basis for existing heap-spraying
detection solutions.

Another common vulnerability exploited in browsers is integer
overflow. Many integer overflow vulnerabilities are disclosed in
recent years, and some integer overflow detection and prevention
methods are proposed [16,43]. Integer overflow leads to heap over-
flow in many cases, and heap spraying could construct step stones
when exploiting these vulnerabilities.

In practice, it is very hard to eliminate all such vulnerabilities.
Also, the runtime overhead prevents many of these approaches from
being deployed widely. Therefore, the solution from this paper
complements the approaches in memory exploit prevention.

7. CONCLUSION
Heap-spraying code injection attacks are commonly used in web-

sites with exploits and drive-by downloads. This technique pro-
vides the attacker an easy-to-use code injection method which can
be implemented in many type-safe languages. Since traditional
heap spraying attacks require large number of NOP sled to increase
the possibility of successful attacks, existing detection solutions
mainly check for large amount of executable instructions on the
heap.

By analyzing the operating systems’ memory allocation mech-
anism, we found that the large amount of NOP sled is not neces-
sary for heap spraying attacks if the memory alignment size is large
enough. We introduced a new technique to launch heap-spraying
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attack, which only injects a little amount of executable instruction,
making it undetectable by existing approaches. We discussed the
four basic types of attack modes and provide insight into the re-
lationship between memory alignment size and heap spraying at-
tack surface areas. We verified the technique by a proof-of-concept
implementation. Even when the alignment size is 32 bytes, our
attack can evade existing detection techniques. As a solution, we
propose to enforce finer memory allocation granularity at memory
managers of all levels, trading a limited amount performance for
better security.
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